CodePRM: Execution Feedback-enhanced Process Reward Model for Code
Generation

Qingyao Li'?, Xinyi Dai?, Xiangyang Li?, Weinan Zhang'*,
Yasheng Wang?, Ruiming Tang?, Yong Yu'*,
!Shanghai Jiao Tong University, “ZHuawei Noah’s Ark Lab
{1y890306,wnzhang}@sjtu.edu.cn, yyu@apex.sjtu.edu.cn
{daixinyi5, lixiangyang34, wangyasheng, tangruiming}@huawei.com

Abstract

Code generation is a critical reasoning task for
large language models (LLMs). Recent ad-
vancements have focused on optimizing the
thought process of code generation, achiev-
ing significant improvements. However, such
thought process lacks effective process super-
vision, making it hard to optimize the thoughts.
Although Process Reward Models (PRMs) have
been widely established in mathematical rea-
soning, building a code PRM is still not trivial
for the gap between thoughts to code. In this pa-
per, we propose CODEPRM, a novel approach
that leverages the code execution feedback to
build a code PRM. Specifically, we first col-
lect a large dataset of thought traces, where
each thought step is labeled with their derived
code’ pass rates, accompanied by the corre-
sponding code snippets, and execution feed-
back. During training, we train a PRM to take
both the reasoning process and code execution
feedback as input to score individual thought
steps, enabling it to leverage code execution
results to distinguish between high-quality and
low-quality thought steps. Finally, to use the
PRM during inference, we develop a Generate-
Verify-Refine (GVR) pipeline where the CODE-
PRM serves as a process verifier to dynami-
cally identify and correct errors in the thought
process during code search. Experimental re-
sults demonstrate that CODEPRM with the in-
ference algorithm outperforms strong baselines,
significantly enhancing code generation perfor-
mance. Further analysis reveals the key factors
for building a code PRM.

1 Introduction

Code generation is a task that demands advanced
reasoning capabilities (Fu et al., 2023; Le et al.,
2024; Ni et al., 2024). Early efforts to enhance
LLMs’ performance in code generation primar-
ily focused on direct optimizations at the code
level (Le et al., 2023; Chen et al., 2024), such as

*Corresponding authors.

[J:Random []:Normal PRM []:CodePRM

—_ =

——— N | PRM Predicti 261
Thoughts ormal > Prediction] .
Loss £
Y B
Binary Label a W
7 = T T

Pass Rate Label —

B 6a34
Problem Loss 2

Ferrs
[Thoughs | CodePRM »{ Prediction | i3,
5

Code Feedback

Figure 1: The training paradigms and performance com-
parison of normal PRM and CODEPRM. Without code
and execution feedback-enhancement, code PRM would
perform no better than random reward on Best-of-N al-
gorithm.

decomposing code (Shi et al., 2024) or modifying
code based on variable values change (Zhong et al.,
2024). Recently, however, there has been a shift
in focus toward improving the underlying thought
processes that drive code generation. Numerous
tree search algorithms have been proposed to ex-
plore and refine these thought processes (Li et al.,
2024a; Wang et al., 2024a; Chen et al., 2023; Li
et al., 2024b), demonstrating significant potential
and achieving promising results.

Despite these advancements, a significant gap
remains in developing effective process supervi-
sion for the thought processes involved in code
generation. Unlike mathematical reasoning, where
process reward models (PRMs) have been exten-
sively studied, research on PRMs for code gen-
eration is limited. This gap stems from two key
challenges: (1) Defining Intermediate Steps: In
code generation, the granularity of a “step” lacks a
consistent definition. A step could be an element
in the code space (e.g., a line of code (Wang et al.,
2024d; Dai et al., 2024) or a token of code (Zhang
et al., 2023)) or a natural language-based reasoning
step (Li et al., 2024b; Wang et al., 2024a). Recent
studies suggest that focusing on thought steps is
more effective for LLMs in code generation (Li
et al., 2024b,a; Wang et al., 2024a). (2) Mapping
Code Errors to Thought Processes: In mathematics,

8169

Findings of the Association for Computational Linguistics: ACL 2025, pages 8169-8182
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

intermediate steps often contain partial computa-
tion results, making it easier to trace errors in the
final answer back to middle thoughts. While in
code generation, the thoughts are usually abstract
and involve algorithmic design, workflow construc-
tion, and data structure definition, making it harder
to pinpoint errors in the thought process that lead to
faulty code. Empirically, as illustrated in Figure 1,
we find that training a code PRM using the same
paradigm as mathematical PRMs performs no bet-
ter than random reward assignment, demonstrating
that developing an effective code PRM requires
innovative paradigms tailored to the unique chal-
lenges of code generation.

This paper presents a new perspective on the
problem. The idea is that thought processes in code
generation should not be evaluated in isolation; in-
stead, they should be assessed in conjunction with
the generated code and execution feedback. The
feedback in the code environment usually contains
detailed error information about the code, which
would be helpful in identifying process errors.

In light of this, we propose leveraging the code
and execution feedback as auxiliary information
to construct a robust CODEPRM. Specifically, we
first employ tree search algorithms to generate and
collect a dataset of labeled thought steps for code
generation. Each thought step is annotated with
the average pass rates of the code derived from it.
During this process, we also store the correspond-
ing code snippets and execution feedback associ-
ated with each thought. Subsequently, we train a
vanilla LLM into a feedback-enhanced CODEPRM
through supervised fine-tuning. CODEPRM incor-
porates both the code and execution feedback as
auxiliary inputs when scoring thought steps. As
illustrated in Figure 1, this new paradigm delivers
significant performance improvements.

To apply CODEPRM in inference, we design
a Generate-Verify-Refine (GVR) framework. In
this framework, a generator LLM explores diverse
thought steps and corresponding code using tree
search algorithms. CODEPRM then acts as a veri-
fier to identify erroneous thought steps. The erro-
neous thoughts would be identified and then refined
by the generator LLM, which ultimately leads to
improved code. Overall, our key contributions are
as follows:

* We construct an effective feedback-enhanced
CODEPRM. To the best of our knowledge, we
are the first to systematically study the process

reward model for code generation.

* Based on CODEPRM, we develop the Generate-
Verify-Refine (GVR) inference pipeline that in-
tegrates the CODEPRM to dynamically identify
and correct errors in the reasoning process during
code generation.

* We conducted comprehensive experiments to val-
idate the effectiveness of CODEPRM and have
made the resources and model weights of the
trained CODEPRM available during the review
process!. It would fully open-sourced upon pub-
lication, which we believe will serve as a foun-
dational resource and provide valuable insights
for future research on code process supervision.

2 Related Work

2.1 Large Language Models for Code
Generation

In code generation, early research has predomi-
nantly concentrated on algorithm design or data
collection and fine-tuning at the code level (Shen
etal.,2023; Luo et al., 2023; Shi et al., 2024; Zhong
et al., 2024). LATS (Zhou et al., 2023) employs
the Monte Carlo Tree Search (MCTS) algorithm to
iteratively search through code and incorporates a
reflection mechanism to learn from past mistakes,
thereby improving search quality. Since the release
of OpenAl’s ol model (OpenAl, 2024b), there has
been a growing emphasis on the “thought process’
behind code and mathematics, especially in the
form of long chain-of-thought (CoT) (Wang et al.,
2024a; Jiang et al., 2024; Li et al., 2024a). For
example, PlanSearch (Wang et al., 2024a) explores
coding ideas and strategies using tree search algo-
rithms, enhancing the diversity of the generated
code. RethinkMCTS (Li et al., 2024b) introduces a
refinement mechanism into the code search process,
leveraging execution feedback to correct and refine
the search direction during the search. Although
these approaches have yielded promising results,
there has been limited exploration into process re-
ward models (PRMs) for supervising the thought
steps in code generation. This paper aims to investi-
gate and develop an effective code PRM, providing
process supervision for code search and reasoning
algorithms.

il

'The resources of this work are made available at
https://github.com/SIMONLQY/CodePRM.

8170

https://github.com/SIMONLQY/CodePRM

2.2 Process Reward Model

The Process Reward Model (PRM) enhances rea-
soning quality by providing fine-grained reward
signals for intermediate steps in generation pro-
cesses (Setlur et al., 2024; Zhang et al., 2025),
guiding models to optimize reasoning trajectories.
Previous research on PRMs has predominantly fo-
cused on mathematical tasks (Wang et al., 2024d,b;
Liang et al., 2024). Due to the strong correlation
between the middle thought steps and the final an-
swer in mathematics, PRMs have shown signif-
icant performance (Luo et al., 2024; Wang et al.,
2024c,d; Xiong et al., 2024; Lu et al., 2024). In con-
trast, constructing code PRMs is a challenging task.
Few works have investigated this area. Yu et al.
(2024) utilize code outcomes as inputs to prompt
chat LLMs in providing process rewards, while our
work focuses on training a specialized code PRM
and utilizing it as a verifier for thought refinement.
While these studies have thoroughly examined the
construction of PRMs, there is a lack of systematic
discussion and research on training and applying
a code PRM. This paper aims to fill this gap and
provide a foundation for future research on code
PRMs.

3 Method

The workflow of our method is illustrated in Fig-
ure 2. First, we collect intermediate thought steps
data for code, where each thought is annotated
with the average pass rate of the code it subse-
quently derives. With the code and execution
feedback as an auxiliary input, we fine-tune an
LLM through supervised fine-tuning to develop
a feedback-enhanced PRM. During inference, we
propose a Generate-Verify-Refine (GVR) pipeline,
which can be integrated with various search algo-
rithms. In this pipeline, CODEPRM serves as a
thought verifier, identifying incorrect thoughts dur-
ing the search. These erroneous thoughts are then
refined to produce higher-quality code.

3.1 Data Collection

To build CODEPRM, the first and foremost is to
collect labeled thought steps and corresponding
code data. Similar to the automated PRM data col-
lection strategy used in mathematics (Luo et al.,
2024), we adapt a tree search procedure to sys-
tematically explore possible thought steps and the
associated code.

Tree Search for Thoughts and Code Given a
problem description =, we begin by creating a root
node sg in the tree search, whose state contains
only the problem text. From this root node, we
expand child nodes by generating thought steps
(t1,t2, ...), and each node’s state is the concatena-
tion of its parent node’s state with the new thought
step s; = (z,t1,t2,...,t;). The tree grows as we
repeatedly sample and add these thought steps, in-
crementally constructing chains of reasoning. At
various stages (e.g., after a few thought steps), the
system completes the chains and generates the cor-
responding code c following the thoughts.

Execution Feedback and Pass Rate The gen-
erated code is executed on test cases, producing
two scalar feedback values: pgﬁfs as the pass rate

on public test cases and pg;i;g as the pass rate on
private test cases. Additionally, verbal feedback
f is provided, detailing error information for any
failed test cases. Specifically,

B {All public test cases passed, if pha < 1

| {Error Information}, if p{ifi?s =1

ey

Each node ¢ would finally contain a tuple
(84, pggfs, Phass» ¢, f) referring to the node state, pub-
lic pass rate, private pass rate, code and execution

feedback.

Labeling Thought Steps by Average Pass Rate
One feature of our data collection approach is to
label each intermediate thought step with an aver-
age pass rate of all the code it derives. The phags
of each node represents the label and would be up-
dated with the tree growth. Specifically, whenever
we complete and execute a code c to get a new
pass rate, it is backpropagated to the parent nodes,
and all thought steps along the path update their
corresponding pgfllsvs with the newly observed pass
rate.

riv 1 riv
pgass(s) = |Rc| Z pgass(c)? (2)

cER.

where R is the set of all code that descended from
s and its child nodes.

Final Data for Training CODEPRM Following
the procedure outlined above, we store each data
sample as (z, {t1,t2, ..., ti}, ¢, f, Phass)- By collect-
ing a large number of such samples from various
problems, we create a labeled dataset suitable for
training CODEPRM. Each partial reasoning pro-

cess is linked to its corresponding code and execu-

8171

(1) Data Collection

Code 1 E —> Thought Sample
Code 2 Backpropagation
Eoda ‘ T1 b 57 ‘ T2 ‘ ' Code Sampling
. 1
' T | Thought
Code 4] [0.52 : (T Thoug
Code 5/(0.00 o Pass Rate
Code 6)(0.10) [+ T3 @ [T4) (15) [T6]:|()JAvgPassRate
— — — .

(2] Feedback-enhanced Code PRM

m Thought 1 Score}-M» Pass Rate 1
- Value Head

Thoughs [Thought 2 Score% Pass Rate 2
Code Feedback

[Thought 3 Score}«“*5L%% Pass Rate 3

0.75 035 0.64 '
C—>E X ! T Correct Thought
'

[3) Generate-Verify-Refine
AT~ |

C)Code Generated

1| 7D Refine the Thought

H @ Erroneous Thought

F-F-F-F-e-e v |

E Execution Feedback

X Fail Test Cases

B B Mo

[Generate Verify) Refine) | v Pass Test Cases

Figure 2: Overview of the data collection, training and inference of CODEPRM. We collect data labeled with
average pass rates via tree search to train an execution feedback-enhanced PRM. For evaluation, we integrate
CODEPRM into a Generate-Verify-Refine (GVR) pipeline, where it verifies and refines thought steps, improving

the quality of generated thoughts and code.

tion feedback, with a label driven by the pass rates
of all subsequent code.

3.2 CODEPRM: Feedback-enhanced PRM
for Code

We employ supervised fine-tuning to train an LLM
to function as a code PRM. Unlike other PRMs
that take {problem description, thought steps} as
input, we enhance the input by incorporating the
corresponding code and execution feedback for the
thoughts as {problem description, thought steps,
code, execution feedback}. The LLM, augmented
with a value head, then outputs the predicted score
for each thought. The training label is the aver-
age pass rate, and we train the PRM using Mean
Squared Error (MSE) loss.

D

’D’ Z PRM {t}g:p G, f)

priv

2
ppass,j)) ’

, 3)
where z is the problem description; {¢}]_, is the
thoughts; c and f represent the code and execution
feedback; pp... i is the average pass rate of the
thought j.

3.3 Generate-Verify-Refine

The key advantage of CODEPRM is its ability to
identify errors in the reasoning process through
the execution feedback of the code. We propose a
Generate-Verify-Refine (GVR) inference pipeline,
where CODEPRM serves as a thought process ver-
ifier that identifies and refines real-time thought
errors during code generation, enabling a dynamic
and iterative search process that continuously im-
proves the output.

3.3.1 Generate

First, we employ a generator LLM to explore differ-
ent thoughts and strategies for solving a code prob-
lem. The generator LLM is provided with the prob-
lem description and instructed to propose W can-
didate thought steps. Iteratively, different thought
chains can be formed and corresponding code is
generated. Various tree search algorithms, such as
Best-of-N and Monte Carlo Tree Search (MCTS),
can be used for exploration. In the Best-of-N ap-
proach, the algorithm first generates N thought
chains of fixed length, each leading to a final code.
For MCTS, every node in the tree maintains its
corresponding code c¢;, and the algorithm dynam-
ically explores the tree by balancing exploration
and exploitation. Details of these two algorithms
can be found in Appendix B.

3.3.2 Verity

After the generation phase, we obtain a set of initial
codes from the search process. For codes that suc-
cessfully pass all public test cases, they will not be
further processed. However, for code that fails in
certain public test cases, we analyze and verify the
thought steps. To achieve this, we leverage CODE-
PRM as a verifier to evaluate the quality of each
thought step. The goal is to identify low-quality
thoughts that may have led to errors in the code.
CODEPRM takes as input the problem description
x, the thought chain T = (¢, 19, ..., t;), the cor-
responding code ¢, and the execution feedback f,
and outputs a quality score g; for each thought step
t;. Formally, the input can be represented as:

(¢1,92,...,¢)) = PRM(z®T ®cd f),)

where @ denotes concatenation; ¢; € [0, 1] repre-
sents the quality of the i-th thought step.

8172

Using the scores, we explore two verification
strategies to determine which thoughts require re-
finement:

* Threshold-based Verification: A predefined
threshold 6 is set (e.g. 6 = 0.5). Any thought
steps with a score ¢; < 0 is flagged as requiring
correction. This approach ensures that all steps
below a certain quality standard are refined.

* Locate-Minimum Verification. Only the thought
step tomin With the lowest score ¢y, is identified
for correction. This method focuses on the most
critical flaw in the thought trace, optimizing the
refinement process by targeting the weakest link.

We compare the locate-minimum approach be-
cause our experiments revealed that refining more
thoughts does not necessarily improve results when
using the LLM. Additionally, the threshold 6 in the
threshold-based method requires parameter engi-
neering to determine its optimal value. Therefore,
we believe that the locate-minimum strategy is a
compelling alternative worth exploring and com-
paring.

The scoring of intermediate thought steps by
CODEPRM serves not only to verify the correct-
ness of these steps but can also be directly applied
in search algorithms as reward to filter results. In
MCTS, the PRM’s scores act as rewards for nodes,
guiding the search process. Similarly, in the Best-
of-N algorithm, these scores are used to select the
optimal path from multiple candidates. This dual
functionality enhances the efficiency and accuracy
of both search and selection processes.

3.3.3 Refine

After identifying the thoughts requiring refinement
through the “verify” step, the generator is tasked
with refining these thoughts to correct previous er-
rors. Formally, the generator is is provided with a
prompt Py fine that includes the problem descrip-
tion x, thought trace T' = (t1, t2, ..., t;), code ¢ and
execution feedback f.

Petine =20 T ©cd f 5)

The generator LLM is then instructed to refine
a subset of thoughts Tiefne € T where Tiefine =
{t;|t; is flagged for refinement}. The refinement
process can be represented as:

T’reﬁned = Generator (Reﬁnea T’reﬁne) (6)

The generator focuses on modifying the spec-
ified thoughts Tichne to address the errors high-

lighted by f, ensuring that the revised thought
chain Ticfineq leads to improved code. This tar-
geted refinement process ensures that the generator
efficiently corrects errors while maintaining the
coherence and logical flow of the overall solution.

4 Experiments

In this section, we conduct experiments to illustrate
the effectiveness of CODEPRM compared with
previous methods and investigate the properties of
building and using a code PRM.

4.1 Experimental Setup

Datasets Our evaluation encompasses two
widely used datasets: APPS (Hendrycks et al.,
2021) and Codeforces (MatrixStudio, 2024), more
details can be found in Appendix A:

» APPS contains three levels of difficulties: intro-
ductory, interview, and competition. We evaluate
all the methods on the formal 100 problems of
each difficulty.

* Codeforces provide each problem with a rating
score indicating the difficulty. We pick three
levels of difficulties 1200, 1500, and 1700, and
evaluate each method on the formal 100 prob-
lems of each difficulty.

Baselines To illustrate the effectiveness of CODE-
PRM with the Generate-Verify-Refine (GVR) in-
ference pipeline, we compare two kinds of code
generation methods. The first kind is feedback-
enhanced, which uses the code execution feed-
back to refine code iteratively: LDB (Zhong
et al., 2024), Reflexion (Shinn et al., 2024). The
second kind is tree search-enhanced methods:
PG-TD (Zhang et al., 2023), ToT (Yao et al.,
2024), LATS (Zhou et al., 2023), RAP (Hao
et al., 2023) and RethinkMCTS (Li et al., 2024b).
We compared various methods on two models:
the closed-source GPT-40-mini (OpenAl, 2024a)
and the open-source DeepSeek-Coder-V2-Lite-
Instruct (Zhu et al., 2024).

Implementation Details For search-based meth-
ods, we configure each node to have 3 child nodes.
In Table 1, we implement CODEPRM and the GVR
pipeline within the MCTS algorithm. We limit the
maximum number of rollouts or code generated
to 16. For fine-tuning CODEPRM, we selected
Qwen2.5-Coder-7B-Instruct as the base model, bal-
ancing computational cost and effectiveness to de-
velop CODEPRM. During the training of CODE-

8173

PRM, we utilized 600 problems from APPS, en-
suring that none of these training problems appears
in the inference testing phase.

Evaluation Metircs We adopt pass rate and
pass@] as the primary metrics to evaluate code
correctness, following the methodology outlined in
(Zhang et al., 2023). Pass rate represents the av-
erage proportion of private test cases successfully
passed by the generated code across all problems.
pass @ | measures the percentage of problems for
which the generated programs pass all private test
cases, which is the most widely used metric in the
literature of code generation (Chen et al., 2021).

4.2 Code Generation Performance

We present a comparison between CODE-
PRM(GVR-MCTS) and baseline methods, with re-
sults shown in Table 1. CODEPRM(GVR-MCTS)
outperforms other tree search and code generation
methods. Among all methods, RethinkMCTS and
CODEPRM(GVR-MCTS) achieve leading results
for having refinement mechanisms. This demon-
strates that incorporating refinement in tree search
can lead to better search outcomes by guiding the
search process along more effective paths. Com-
pared to RethinkMCTS, CODEPRM(GVR-MCTY)
performs better by using CODEPRM as a verifier to
identify which thoughts should be refined, demon-
strating that a well-trained code PRM can enhance
code searches.

4.3 Empirical Analysis

(1) For fine-tuning a code PRM, is it necessary
to have code execution feedback as input? Fig-
ure 3 presents a comparative analysis of various
fine-tuned Qwen2.5-Coder-7B-Instruct models as
code PRMs. “Random Reward” means randomly
assigned rewards used for BoN candidate selection.
“Qwen Reward” means rewards provided by an un-
tuned, vanilla Qwen model via prompting, serving
as the filtering criterion for BoN candidate selec-
tion. “Normal PRM Reward” means rewards from
from PRM trained in a traditional way (without
execution feedback, 0/1 labeling, etc), used as the
filtering criterion for Best-of-N candidate selection.
The experimental results reveal that fine-tuning an
LLM as a PRM without the code execution feed-
back yields performance comparable to random
reward, demonstrating that it’s not suitable to train
a PRM to evaluate thought steps in code indepen-
dently. The code and execution feedback are essen-

tial. Moreover, the poor performance of the origi-
nal Qwen2.5-Coder-7B-Instruct model as a PRM
further substantiates that code reward modeling rep-
resents a specialized domain requiring dedicated
fine-tuning to achieve competent performance.

(2) For fine-tuning a code PRM, is it suitable
to use the pass rate as labels? We conducted a
comparative study on fine-tuning CODEPRM using
two labeling strategies: (1) binary 0/1 labels and
(2) pass rate as labels. The resulting PRMs were
then applied to Best-of-N inference, with the per-
formance comparison presented in Figure 4. Our
findings demonstrate that CODEPRM fine-tuned
with pass rate labels consistently improves the over-
all pass rate while maintaining comparable perfor-
mance on the pass@ 1 metric compared to binary
labels.

This improvement can be attributed to two key
factors. First, transitioning from hard labels (binary
0/1) to soft labels (continuous pass rates) provides
richer supervisory signals during training. This is
similar to using averaged binary labels as soft tar-
gets, a technique commonly used in mathematical
reasoning tasks. Second, and more importantly, the
pass rate label serves as a more effective predictor
of “the quality of code that will be generated from a
given thought.” In contrast, binary labels primarily
assess “the correctness of the thought itself.” This
distinction is particularly crucial in code generation
tasks, where the relationship between a thought and
its resulting code is not strictly deterministic. For
instance, a thought step may produce multiple code
snippets, each with a pass rate above 0.9. Under a
binary labeling scheme, this thought step would be
labeled as 0O, despite its potential to generate high-
quality code. While such labeling may work well
in mathematical reasoning, it is less suitable for
code generation. Therefore, pass rates are a more
appropriate metric for constructing a code PRM.

The experimental results validate that this ap-
proach better aligns with the inherent characteris-
tics of code generation tasks, where the probabilis-
tic nature of thought-to-code translation necessi-
tates a more nuanced evaluation metric than simple
binary classification.

(3) For applying a code PRM in GVR as a ver-
ifier, does the threshold-based approach out-
perform the locate-minimum strategy? In this
study, we investigate the comparative effective-
ness of two verification strategies: the threshold-
based approach and the locate-minimum approach.

8174

APPS Codeforces
Model Pass Rate (%) Pass@1 (%) Pass Rate (%) Pass@1 (%)
Intro. Inter. Comp. | Intro. Inter. Comp. | 1200 1500 1700 | 1200 1500 1700

GPT-40-mini

Base 56.56 52.40 35.00 35 29 16 61.53 50.75 40.99 | 40 26 18
PG-TD 65.87 7037 43.16 45 46 27 76.78 67.32 5648 | 61 44 28
ToT 71.03 67.84 37.17 52 46 23 79.29 68.39 60.10 | 63 43 35
LATS 69.46 67.65 35.83 50 45 19 77.16 65.12 55.82 | 67 42 28
RAP 6424 5725 37.67 39 32 20 67.13 5044 4423 | 45 26 20
LDB 60.64 60.78 40.33 40 38 23 80.01 62.05 5243 | 68 40 30
Reflexion 60.65 56.87 38.00 40 31 18 7720 6623 5239 | 6l 41 26
RethinkMCTS 76.60 74.35 42.50 59 49 28 83.23 67.68 61.73 | 70 42 40
CoDEPRM(GVR-MCTS) 7720 76.33 48.17 62 57 29 8529 71.28 6446 73 48 41
Deepseek-Coder-V2-Lite-Instruct

Base 47.67 45.89 19.33 27 23 6 51.02 3495 2695 | 30 12 11
PG-TD 61.52 57.53 2450 41 31 7 6242 5090 4131 | 45 27 16
ToT 63.67 59.49 28.00 40 32 10 66.92 48.57 4493 | 53 26 21
LATS 6470 6273 28.67 48 38 13 68.57 5199 49.18 | 51 32 24
RAP 4720 3592 2233 28 12 9 48.08 3591 29.17 | 30 17 12
LDB 56.67 50.85 19.50 37 27 6 60.99 4590 34.84 | 42 24 16
Reflexion 53.17 4872 19.50 32 26 6 51.72 4095 3279 | 37 16 15
RethinkMCTS 68.57 6795 28.50 50 41 11 70.68 53.83 49.05| 53 32 24
CoODEPRM(GVR-MCTS) 70.03 71.69 31.00 53 46 17 70.80 61.12 5398 56 40 27

Table 1: Performance comparison between different models and strategies. We report pass rate and pass@ 1 on both
datasets and all difficulties. The maximum number of rollouts for tree search algorithms being 16.

66.85 67.46

’\/./.
/-.———- —

=@®= Random Reward
Qwen Reward
Normal PRM Reward

=@= CodePRM Reward

u
©
N
<
o
o
W
N

APPS-Intro
APPS-Inter

w
N
o
©
w
w
i
~

45.59 46.03

T

=®= Random Reward

“\\,,

=@= CodePRM Reward

./.\'/.

™~

41.47

w
o
©
=

-

)

—

APPS-Comp
w
Iy
W
w

== Random Reward
Qwen Reward
Normal PRM Reward

=@= CodePRM Reward

Qwen Reward

27.79
Normal PRM Reward

38.51 5 5 J 3888l

Generation Budget

21

22
Generation Budget

23.23 5 5 0

Generation Budget

23 24 2!

Figure 3: Performance comparison using different fine-tuned Qwen2.5-Coder-7B-Instruct as code PRMs. We assess
their effectiveness by using them to provide reward in Best-of-N.

=1 pass rate label
B 0/1 label

=0 pass rate label
I 0/1 label

10

APPS-Intro APPS-Inter

76.01

62.86.

pass rate
&
3

36.54-

23

APPS-Comp APPS-Intro APPS-Inter APPS-Comp

(a) Pass Rate Comparison (b) Pass@1 Comparison

Figure 4: Performance comparison of fine-tuning CODE-
PRM using different labels. We experiment with two
types of labels fine-tuned CODEPRM on GVR-MCTS.

As demonstrated in Table 2, for simpler tasks
(APPS-Intro/Inter), both methods achieve compa-
rable results, suggesting locate-minimum correc-
tion suffices in sparse-error scenarios. While in
APPS-Comp, threshold-based method under low-
precision verifiers (GPT-40-mini) may cause over-
correction, and on CODEPRM, threshold-based
verification shows superior performance. It in-
dicates that with more precise evaluation scores,

the threshold-based method could show its advan-
tage. This reveals an adaptive principle: verifica-
tion strategies should dynamically align with task
complexity and verifier reliability.

Locate-Min Threshold | Locate-Min Threshold

Dataset (GPT-40-mini) (CODEPRM)
APPS-Intro. 74.05 75.53 76.41 77.20
APPS-Inter. 76.41 77.63 76.31 76.33

890 APPS-Comp.| 43.50 39.83 4250 4817

Table 2: Comparison between locate-minimum and
threshold-based verification approaches. We experi-
ment on GPT-40-mini and CODEPRM as the verifier in
GVR-MCTS.

(4) For applying CODEPRM as verifier, does
refining more thoughts lead to better perfor-
mance? The threshold-based approach demon-
strates strong efficacy when employing code PRM
as a verifier. This prompts the question: does this

8175

effectiveness stem from the threshold’s capacity to
modify more thoughts? In this study, we delve into
this inquiry. Figure 5 illustrates the variation in
performance as the threshold changes. It becomes
evident that a higher threshold—implying more
thoughts are refined—does not necessarily lead to
superior performance. This phenomenon may be
attributed to two reasons. Firstly, from the perspec-
tive of refinement, excessive refinement may trans-
form correct thoughts into erroneous ones. Sec-
ondly, from the verifier’s perspective, the accuracy
of discrimination may vary across different scor-
ing intervals. For instance, distinguishing between
thoughts scored above 0.9 may be challenging in
terms of determining which is superior or inferior,
whereas thoughts scored above or below 0.5 may
be more readily discernible in quality.

76.339 75.528
75.167 74.441

73.904 73353

APPS-Intro
APPS-Inter

72.821 72.266
—e— CodePRM Threshold
7 711
02 05 07 09 02
Threshold

—e— CodePRM Threshold

05 07 09
Threshold

Figure 5: Performance changes as the threshold varies
in GVR-MCTS using CODEPRM as the verifier. It’s
not the case that the more thoughts to be refined (or the
higher the threshold), the better the performance.

(5) For general LLMs, could they be directly
used as code PRMs with code and execution-
feedback enhancement? Here, we conduct ex-
periments on CODEPRM, GPT-40-mini, and the
original Qwen2.5-Coder-7B-Instruct to investigate
if general LLMs could be directly used as code
PRMs with the code and execution-feedback en-
hancement. The results are shown in Figure 6.
We can see that the code and execution feedback
could bring obvious performance improvement in
general LLMs. Despite that, CODEPRM outper-
forms them as a code PRM, demonstrating that
providing process rewards is a highly specialized
task. Fine-tuning can effectively enhance its per-
formance, surpassing that of general LLMs. Fur-
thermore, for general LLMs, the evaluation perfor-
mance is poorer when there is no code execution
feedback in the input. This indicates that, in a cod-
ing environment, the assessment of thought quality
is closely tied to the generated code.

(6) Comparing with open-sourced PRMs, does
CODEPRM perform better in code generation?
Here, we compare the performance of CODE-
PRM with that of open-source PRMs. These

g

72.51 66.34 /_'
o _f
— o

-~
=@ CodePRM
=&~ GPT4o-mini with Feedback
56.60 =®- Qwen with Feedback 240 =&— Qwen with Feedback
GPT40-mini GPT40-mini
Qwen Qwen
51 T P > P 4781 =7 pd pe]
Generation Budget Generation Budget

2
2

APPS-Inter
8

APPS-Intro

=@ CodePRM
=&~ GPT40-mini with Feedback

Figure 6: Performance comparison between various
input types for LLMs functioning as code PRMs in
Best-of-N. It can be seen that incorporating execution
feedback as an input significantly enhances the model’s
performance in process evaluation.

PRMs are utilized to provide rewards in a Best-
of-N algorithm based on GPT-40-mini, and the
results are presented in Table 3. The Skywork-
PRM-1.5B (o1 Team, 2024a) and Skywork-PRM-
7B (ol Team, 2024b) models are general-purpose
PRMs, applicable to both code and mathematics.
Since most open-source PRMs are specialized in
mathematics, we also included Math-Shepherd-
Mistral-7B (Wang et al., 2024c) for comparison.
The results indicate that CODEPRM significantly
outperforms these open-source PRMs in code gen-
eration tasks. The primary reason is that while
open-source PRMs can directly assess the correct-
ness of intermediate reasoning steps, constructing
a code PRM requires the inclusion of both code
and feedback in the input, which is crucial for eval-
uating the thought steps for code.

APPS

PRM Pass Rate (%) Pass@1 (%)

Intro. Inter. Comp. | Intro. Inter. Comp.

MathShepherd-Mistral-7B | 61.66 58.90 36.33 37 37 21

Skywork-PRM-1.5B 59.54 60.17 39.17 38 37 21
Skywork-PRM-7B 61.81 59.31 35.17 38 35 17
CODEPRM-7B 72.07 72772 44.83 54 52 23

Table 3: Performance comparison with open-source
PRMs. We report pass rate and pass@ 1 on APPS dataset
and the maximum number of rollouts for Best-of-N
algorithm being 16.

5 Conclusion

In this paper, we introduced CODEPRM, a novel
framework that leverages execution feedback to
build a process reward model for code generation.
Our approach collects thought steps enriched with
code pass rates, code snippets, and execution feed-
back, and trains a feedback-enhanced code PRM to
score individual thought steps. At inference time,
CODEPRM serves as a process verifier within a
Generate- Verify-Refine (GVR) pipeline, enabling
dynamic error correction during code search. Ex-
perimental results demonstrate that CodePRM sig-

8176

https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-prm
https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-1.5B
https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-7B

nificantly outperforms strong baselines. Further
analysis identifies key factors for building effective
code PRMs, such as the importance of execution
feedback and the granularity of thought steps.

Looking ahead, CODEPRM opens new avenues
for enhancing the reasoning capabilities of LLMs
in complex programming tasks. Future work could
explore extending this framework to other domains
requiring high-level reasoning, as well as investi-
gating more sophisticated methods for integrating
execution feedback into the training and inference
processes.

Ackowledgement

The Shanghai Jiao Tong University team is par-
tially supported by National Key R&D Pro-
gram of China (2022ZD0114804), Shanghai Mu-
nicipal Science and Technology Major Project
(2021SHZDZX0102) and National Natural Science
Foundation of China (62322603, 62177033).

Limitations

Generalization to Other Reasoning Tasks Our
primary contribution lies in developing PRM for
code that leverage execution feedback. While this
approach is effective for code generation tasks, it
may not generalize well to other reasoning tasks,
such as mathematical reasoning, where traditional
format PRMs have shown strong performance (Ma
et al., 2023; Li and Li, 2024). However, for rea-
soning tasks that involve detailed feedback mecha-
nisms similar to code generation, our method could
potentially be applicable.

Limited Exploration of Fine-Tuning Other
LLMs Our experiments, including both stan-
dard PRM and feedback-enhanced PRM, were con-
ducted using the fine-tuned Qwen2.5-Coder-7B-
Instruct model. While this provides a solid foun-
dation, future work could explore the application
of our methods to other large language models to
assess their broader applicability and performance.

PRMs in Reinforcement Learning Training Al-
though PRMs have the potential to offer dense,
step-level rewards in Reinforcement Learning (RL)
training scenarios (Dai et al., 2024; Zhang et al.,
2024), our current work focuses primarily on the
application of PRMs in inference algorithms. The
integration of PRMs into RL training frameworks
remains an open area for future research.

Potential Errors in Refinement Step Our cur-
rent framework emphasizes the development of a
verifier that identifies thought steps requiring re-
finement, delegating the actual refinement process
to the generator LLM. This approach, while effec-
tive, carries the risk of incorrect refinements. De-
veloping a robust thought refiner to mitigate such
errors represents a promising direction for future
research.

Ethics Statement

In this work, we employ LL.Ms as both thought and
code generators, and we fine-tune certain LLMs
to serve as process reward models (PRMs). All
the dataset we use to fine-tune LLMs are publicly
available and are for research purposes only. The
LLMs utilized in our study include open-source
models such as Deepseek-Coder-V2-Lite-Instruct
and Qwen2.5-Coder-7B-Instruct, as well as the
closed-source model GPT-40-mini. Ethical con-
siderations related to these models, including their
training data and deployment, are addressed by
their respective creators. The fine-tuned PRMs in
our work are designed solely to output evaluation
scores for thought steps and do not generate free-
form text. However, we acknowledge that LL.Ms,
including those used in our study, may occasion-
ally produce improper or harmful content. Such
outputs are unintended and do not reflect the views
or intentions of the authors.

References

Eshwar Ram Arunachaleswaran, Natalie Collina, and
Jon Schneider. 2024. Pareto-optimal algorithms for
learning in games. In Proceedings of the 25th ACM
Conference on Economics and Computation, pages
490-510.

Jingchang Chen, Hongxuan Tang, Zheng Chu, Qiang-
long Chen, Zekun Wang, Ming Liu, and Bing Qin.
2024. Divide-and-conquer meets consensus: Un-
leashing the power of functions in code generation.
arXiv preprint arXiv:2405.20092.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Xinyun Chen, Maxwell Lin, Nathanael Schirli, and
Denny Zhou. 2023. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128.

8177

Ning Dai, Zheng Wu, Renjie Zheng, Ziyun Wei, Wenlei
Shi, Xing Jin, Guanlin Liu, Chen Dun, Liang Huang,
and Lin Yan. 2024. Process supervision-guided pol-
icy optimization for code generation. arXiv preprint
arXiv:2410.17621.

Lingyue Fu, Huacan Chai, Shuang Luo, Kounianhua
Du, Weiming Zhang, Longteng Fan, Jiayi Lei, Rent-
ing Rui, Jianghao Lin, Yuchen Fang, et al. 2023.
Codeapex: A bilingual programming evaluation
benchmark for large language models. arXiv preprint
arXiv:2309.01940.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong,
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023.
Reasoning with language model is planning with
world model. arXiv preprint arXiv:2305.14992.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, et al. 2021.
Measuring coding challenge competence with apps.
arXiv preprint arXiv:2105.09938.

Nan Jiang, Xiaopeng Li, Shiqi Wang, Qiang Zhou,
Soneya Binta Hossain, Baishakhi Ray, Varun Ku-
mar, Xiaofei Ma, and Anoop Deoras. 2024. Training
llms to better self-debug and explain code. arXiv
preprint arXiv:2405.18649.

Cuong Chi Le, Hoang-Chau Truong-Vinh, Huy Nhat
Phan, Dung Duy Le, Tien N Nguyen, and Nghi DQ
Bui. 2024. Visualcoder: Guiding large language
models in code execution with fine-grained multi-

modal chain-of-thought reasoning. arXiv preprint
arXiv:2410.23402.

Hung Le, Hailin Chen, Amrita Saha, Akash Gokul,
Doyen Sahoo, and Shafiq Joty. 2023. Codechain: To-
wards modular code generation through chain of self-
revisions with representative sub-modules. arXiv
preprint arXiv:2310.08992.

Jierui Li, Hung Le, Yinbo Zhou, Caiming Xiong, Sil-
vio Savarese, and Doyen Sahoo. 2024a. Code-
tree: Agent-guided tree search for code genera-
tion with large language models. arXiv preprint
arXiv:2411.04329.

Qingyao Li, Wei Xia, Kounianhua Du, Xinyi Dai, Ruim-
ing Tang, Yasheng Wang, Yong Yu, and Weinan
Zhang. 2024b. Rethinkmcts: Refining erroneous
thoughts in monte carlo tree search for code genera-
tion. arXiv preprint arXiv:2409.09584.

Wendi Li and Yixuan Li. 2024.
model with g-value rankings.
arXiv:2410.11287.

Process reward
arXiv preprint

Zhenwen Liang, Ye Liu, Tong Niu, Xiangliang Zhang,
Yingbo Zhou, and Semih Yavuz. 2024. Improving
Ilm reasoning through scaling inference computa-
tion with collaborative verification. arXiv preprint
arXiv:2410.05318.

Jiangiao Lu, Zhiyang Dou, WANG Hongru, Zeyu Cao,
Jianbo Dai, Yunlong Feng, and Zhijiang Guo. 2024.
Autopsv: Automated process-supervised verifier. In
The Thirty-eighth Annual Conference on Neural In-
formation Processing Systems.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat
Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun Zhu,
Lei Meng, Jiao Sun, et al. 2024. Improve mathemati-
cal reasoning in language models by automated pro-
cess supervision. arXiv preprint arXiv:2406.06592.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

Qianli Ma, Haotian Zhou, Tingkai Liu, Jianbo Yuan,
Pengfei Liu, Yang You, and Hongxia Yang. 2023.
Let’s reward step by step: Step-level reward model
as the navigators for reasoning. arXiv preprint
arXiv:2310.10080.

MatrixStudio. 2024. Codeforces-python-submissions.

Ansong Ni, Miltiadis Allamanis, Arman Cohan, Yinlin
Deng, Kensen Shi, Charles Sutton, and Pengcheng
Yin. 2024. Next: Teaching large language mod-
els to reason about code execution. arXiv preprint
arXiv:2404.14662.

Skywork ol Team. 2024a. Skywork-prm 1.5b. https:
//huggingface.co/Skywork/Skywork-o1-0pe
n-PRM-Qwen-2.5-1.5B.

Skywork ol Team. 2024b. Skywork-prm 7b. https:
//huggingface.co/Skywork/Skywork-o1-0pe
n-PRM-Qwen-2.5-7B.

OpenAl. 2024a. Gpt-4o-mini. https://openai.com
/index/gpt-4o-mini-advancing-cost-efficie
nt-intelligence/. Accessed: 2024-07-18.

OpenAl. 2024b. Openai ol system card. Accessed:
2025-02-07.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang
Geng, Jacob FEisenstein, Rishabh Agarwal, Alekh
Agarwal, Jonathan Berant, and Aviral Kumar.
2024. Rewarding progress: Scaling automated pro-
cess verifiers for 1lm reasoning. arXiv preprint
arXiv:2410.08146.

Bo Shen, Jiaxin Zhang, Taihong Chen, Daoguang Zan,
Bing Geng, An Fu, Muhan Zeng, Ailun Yu, Jichuan
Ji, Jingyang Zhao, et al. 2023. Pangu-coder2: Boost-
ing large language models for code with ranking feed-
back. arXiv preprint arXiv:2307.14936.

Yuling Shi, Songsong Wang, Chengcheng Wan, and
Xiaodong Gu. 2024. From code to correctness: Clos-
ing the last mile of code generation with hierarchical
debugging. arXiv preprint arXiv:2410.01215.

8178

https://huggingface.co/datasets/MatrixStudio/Codeforces-Python-Submissions
https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-1.5B
https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-1.5B
https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-1.5B
https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-7B
https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-7B
https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-7B
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://cdn.openai.com/o1-system-card.pdf

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioan-
nis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore
Graepel, et al. 2017. Mastering chess and shogi by
self-play with a general reinforcement learning algo-
rithm. arXiv preprint arXiv:1712.01815.

Codeforces Team. 2024. Codeforces. https://code
forces.com/.

Evan Wang, Federico Cassano, Catherine Wu, Yun-
feng Bai, Will Song, Vaskar Nath, Ziwen Han, Sean
Hendryx, Summer Yue, and Hugh Zhang. 2024a.
Planning in natural language improves 1lm search for
code generation. arXiv preprint arXiv:2409.03733.

Jun Wang, Meng Fang, Ziyu Wan, Muning Wen, Ji-
achen Zhu, Anjie Liu, Zigin Gong, Yan Song, Lei
Chen, Lionel M Ni, et al. 2024b. Openr: An open
source framework for advanced reasoning with large
language models. arXiv preprint arXiv:2410.09671.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai
Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
2024c. Math-shepherd: Verify and reinforce 1lms
step-by-step without human annotations. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 9426-9439.

Zihan Wang, Yunxuan Li, Yuexin Wu, Liangchen Luo,
Le Hou, Hongkun Yu, and Jingbo Shang. 2024d.
Multi-step problem solving through a verifier: An
empirical analysis on model-induced process super-
vision. arXiv preprint arXiv:2402.02658.

Weimin Xiong, Yifan Song, Xiutian Zhao, Wenhao Wu,
Xun Wang, Ke Wang, Cheng Li, Wei Peng, and Su-
jian Li. 2024. Watch every step! 1lm agent learning
via iterative step-level process refinement. arXiv
preprint arXiv:2406.11176.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Zhuohao Yu, Weizheng Gu, Yidong Wang, Zhengran
Zeng, Jindong Wang, Wei Ye, and Shikun Zhang.
2024. Outcome-refining process supervision for code
generation. arXiv preprint arXiv:2412.15118.

Hanning Zhang, Pengcheng Wang, Shizhe Diao, Yong
Lin, Rui Pan, Hanze Dong, Dylan Zhang, Pavlo
Molchanov, and Tong Zhang. 2024. Entropy-
regularized process reward model. arXiv preprint
arXiv:2412.11006.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu
Ding, Joshua B Tenenbaum, and Chuang Gan. 2023.
Planning with large language models for code gener-
ation. arXiv preprint arXiv:2303.05510.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen
Zhang, Runji Lin, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. 2025. The lessons of
developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301.

Li Zhong, Zilong Wang, and Jingbo Shang. 2024.
Ldb: A large language model debugger via verify-
ing runtime execution step-by-step. arXiv preprint
arXiv:2402.16906.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman,
Haohan Wang, and Yu-Xiong Wang. 2023. Lan-
guage agent tree search unifies reasoning acting
and planning in language models. arXiv preprint
arXiv:2310.04406.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang,
Peiyi Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo
Gao, Shirong Ma, et al. 2024. Deepseek-coder-v2:
Breaking the barrier of closed-source models in code
intelligence. arXiv preprint arXiv:2406.11931.

Appendix
A Experiment Details

Dataset Details Here we present some details
about the details of two datasets we utilize: APPS
and Codeforces. The APPS dataset comprises pro-
gramming problems divided into three difficulty
tiers: introductory, interview, and competition. It
includes 5000 problems in a training set and an
additional 5000 in the testing set. On the other
hand, the Codeforces dataset consists of problems
sourced from the Codeforces online programming
contests (Team, 2024), with difficulty levels clas-
sified by “ratings”. For evaluation purposes, we
selected problems with ratings of 1200, 1500, and
1700. Since the both datasets does not distinguish
between public and private test cases, we split each
problem’s test cases evenly into two sets, following
the approach of Zhang et al. (2023). The first set is
used as the public test cases that can be seen during
the algorithm running, and the second set is used as
the private test cases for evaluating the generated
codes.

Additional Implementation Details In Table 1,
the CODEPRM is used to verify intermediate rea-
soning steps and provide additional rewards beyond
the code’s pass rate on public test cases. For us-
ing CODEPRM to score thoughts, we separate the
thought steps with a step tag “\n\n\n\n\n”. In

8179

https://codeforces.com/
https://codeforces.com/

MCTS, each node is corresponded with a gener-
ated code. In Best-of-N, we set each thought chain
to stop at 4 steps, and corresponding code are gen-
erated.

Baseline Details Here, we present more details
of the implementation of the baselines:
(1) Code Generation Algorithms:

* LDB (Zhong et al., 2024): A debugging frame-
work that divides the initial code into blocks, an-
alyzes each block, and resolves issues by moni-
toring changes in block-level variable values. It
iteratively optimizes the code by following this
process.

* Reflexion (Shinn et al., 2024):Iteratively refine
the initial code by utilizing historical error data
and incorporating insights gained from previous
errors.

(2) Tree Search-enhanced Methods:

* PG-TD (Zhang et al., 2023): A token-level
MCTS search method that uses the code’s pass
rate as a scalar reward.

* ToT (Yao et al., 2024): We apply the Tree-of-
Thoughts (ToT) approach to code generation
in a manner similar to its application in cre-
ative writing. The search process is structured
into two distinct phases: thought generation and
code generation, with the tree being explored
using a breadth-first search (BFS) strategy.

* LATS (Zhou et al., 2023): A framework that
integrates MCTS with reflection, summarizing
past errors and storing them as memory within
nodes to assist with future iterations.

* RAP (Hao et al., 2023): Leveraging an LLM as
the world model to simulate and evaluate search
results.

* RethinkMCTS (Li et al., 2024b): Introducing a
refinement mechanism in thought-level MCTS
for code, where the most recent thought in the
tree is refined when the generated code fails
some public test cases.

B Tree Search Methods

In our experiment, we employ two tree search al-
gorithms: Best-of-N and Monte Carlo Tree search.
Here we introduce the details of these two methods.

Best-of-N Best-of-N is a sampling strategy that
generates N candidate thought trajectories from
a generator LLM. Then each thought trajectory
would further derive a corresponding code. The
final output is selected by maximizing the re-
ward from the process reward model (PRM). This
method trades computational cost (linear in N) for
improved output quality through parallel candidate
evaluation.

Monte Carlo Tree Search (MCTS) MCTS bal-
ances exploration and exploitation through four
iterative phases:

* Selection: We employ P-UCB (Silver et al.,
2017), an enhanced version of the UCB algo-
rithm, to compute the overall score for each
node:

P-UCB(s,0) = Q(s,a) + A(s) - pla | 5
V1og(N(s))
14+ N(s) ’
(N

where ' is the state reached by taking action
a in s; N(s) is the visited times of the node;
p(a | s) is the probability that thought a is the
next thought given the problem description
and previous thoughts s, which is proposed
by the generator LLM. § is the weight for
exploration, which depends on the number of
visit of s, defined as

N(S) + cpase + 1

Cbase

B(s) = log <) +c (8)
where cpase 1S a hyperparameter; c is the ex-
ploration weight.

* Expansion: Create child nodes when reach-
ing expandable leaf nodes.

* Simulation: Generate code base on the previ-
ous thought steps from the root node to current
node.

Backpropagation: It updates the Q-values
and visited times of all nodes along the path
from the current node to the root node using
the rewards obtained from the evaluation.

MCTS dynamically allocates computation
to promising search paths, achieving Pareto-
optimal (Arunachaleswaran et al., 2024) perfor-
mance under constrained budgets.

8180

C Prompts

Here, we outline the key prompts utilized in our
generate-verify-refine inference pipeline.

Table 4 displays the prompt employed for gener-
ating intermediate thoughts. Table 5 provides the
prompt used to generate code based on the thought
trace. Finally, Table 6 illustrates the prompt de-
signed for the generator LLM to refine incorrect
thoughts flagged by the verifier.

8181

Prompt for Generating Thoughts

{problem statement }

{thoughts}

Above is a problem to be solved by Python program.

* I need you to analyze and provide new thoughts that can lead to the correct solution code.

* If there are previous thoughts provided, please follow them and offer more detailed and further insights, as a
detailed thinking or enhancement for previous ones.

* I need you to output {width} possible thoughts. Remember each only contain one possible distinct reasoning but all
following previous thoughts if there are.

* Please wrap your response into a JSON object that contains keys ‘Thought-i‘ with i as the number of your thought,
and key ‘Reasonableness* with the Reasonableness of each thought, which should between 0 1 and the sum should be 1.

* The JSON should be a **list of dicts**, the dicts are split with comma ’,’.
Example Answers:
{"Thought-1":" We could use the print function to finish the task in one line: print(2 + 3)", "Reasonableness": 0.7},

{"Thought-2":" We should calculate the problem by setting a=2+3, and then print(a)", "Reasonableness": 0.29},
{"Thought-3":" The problem can’t be solved by Python.", "Reasonableness": 0.01}

]

Table 4: Prompt for generating thoughts in search methods.

Prompt for Generating the Code

Complete the Python program to solve the problem. Remember to contain the complete program including all the
imports and function header in your response.

Also some thoughts are included that you can refer to and build upon when writing the code.
Answer with the code ONLY. No other explanation or words attached!
{problem statement }

{thoughts}

Table 5: Prompt for generating the code following the thoughts in search methods.

Prompt for Refining the Thoughts

{problem statement}
{thoughts}

{code}

{execution feedback}

Above is the combination of problem, thoughts and code.

Each thought is bounded with an id number at the beginning of the thought.

* Revise and enhance the {refine_id}-Thought above in the thoughts by providing a improved new thought to replace
it.

* Remember that you only need to provide the new thought in one or two sentences, not the code.

Table 6: Prompt for generating the code following the thoughts in search methods.

8182

