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Abstract

Adaptive Computation in Transformers
(ACT) has been pursued in two directions:
efficiency- and performance-focused. We
study performance-focused ACT, or PACT,
which invests more computation on hard
steps to improve performance, such as by
adding forward passes. We first discuss
beam search and hesitation-based methods
as PACT and their limitations. While the
hesitation-based approach outperforms beam
search by perturbing input embeddings, it
suffers from inefficiency due to invalidating
KVCache and exhibits instability due to its
reliance on randomness. To address this, we
propose IMPACT, a novel PACT method that
perturbs network weights rather than input
embeddings. This approach enables the reuse
of KVCache, offers deterministic predictions,
and significantly improves memory and
computational efficiency. By achieving a
better balance between performance and
efficiency, IMPACT makes PACT accessible to
communities with consumer-grade hardware.

1 Introduction

Scaling the size and pretraining of Large Language
Models (LLMs) has revolutionized their capabil-
ities, enabling remarkable performance across a
wide range of tasks (Brown et al., 2020). How-
ever, this scaling also makes retraining LLMs pro-
hibitively expensive, motivating recent approaches
for improving inference.

One promising direction for this is Adaptive
Computation in Transformers (ACT), a paradigm
that dynamically adjusts computation at the token
level to handle varying complexities during infer-
ence. ACT has been explored along two primary
directions: efficiency-focused and performance-
focused approaches. The former aims to reduce

* Equal contribution.
¥ Corresponding author.

computation for simpler inferences, while the latter
seeks to enhance performance by allocating more
computation to complex inference steps.

Beam search (Lowerre, 1976), a constrained
variant of breadth-first search that explores mul-
tiple hypotheses at each step, is often adopted for
enhancing performance at the cost of increased
inference time for enumerating multiple hypothe-
ses. While originally designed to mitigate the la-
bel bias problem in greedy decoding, rather than
for such performance-focused ACT (PACT) uses,
its effectiveness as a PACT has been explained
through the Uniform Information Density (UID)
hypothesis (Jaeger and Levy, 2006; Meister et al.,
2020). According to UID, human-generated sen-
tences tend to distribute information evenly, and
beam search aids in making the surprisal values
of model outputs more uniform, resulting in more
human-like text.

A stronger example of PACT is hesitation-based
methods, such as HARP (Storai and Hwang, 2024),
as more directly aligned with UID. HARP intro-
duces ‘hesitation’ into high surprisal token gener-
ation, mimicking how humans deliberate on com-
plex decisions. Specifically, it first identifies points
of hesitation and then performs additional forward
passes to generate reframed predictions, which can
be implemented using random dropout on input
embeddings (Srivastava et al., 2014).

Despite their potential, existing hesitation-based
methods face significant drawbacks, including in-
creased latency and memory overhead. By ran-
domly perturbing input embeddings, these methods
invalidate key-value caches (KVCache), leading to
inefficiencies. Furthermore, randomness can some-
times make the performance of HARP inferior.

To address these challenges, we propose IM-
PACT, a PACT method designed to better balance
performance and efficiency. First, IMPACT en-
ables KVCache reuse, critical for complex tasks
requiring a long generation, a significant demand
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for recent reasoning-focused models. IMPACT
builds on the principles of HARP but replaces the
reframing through input embedding dropout with
an approximation of the original network. Sec-
ond, by eliminating random perturbations, IM-
PACT ensures a fully deterministic forward pass,
improving both reliability and efficiency. Unlike
HARP, which often requires multiple KVCache-
invalidated runs due to its stochastic nature, we
show comparable gains without compromising gen-
eralization.

We empirically validate IMPACT on reasoning-
intensive tasks and modern approaches to reason-
ing, such as chain-of-thought. Qualitatively, we
demonstrate that hesitation-based methods, such as
IMPACT, align closely with the UID hypothesis.
Additionally, IMPACT is effective across models
of various scales—from Llama-3.1-8B-Instruct to
Llama-3.3-70B-Instruct. The code for this method
is publicly available.!

2 Preliminary and Related Work

This section overviews token-level PACT ap-
proaches, though other PACT approaches such as
Pause Tokens (Goyal et al., 2024), or Test-time
scaling (TTS; Snell et al., 2025), can be applied in
conjunction for further improvements.

Uniform Information Density Hypothesis To il-
lustrate UID, consider: ‘How big is the family (that)
you should cook for?’ “that” is optional but often
preferred by UID, as it helps reduce the surprisal
of the next token “you”.

Greedy decoding may omit optional words when
having slightly lower probability—by immediately
committing to the most probable next token, while
beam search may choose such words, as later con-
texts from multiple hypothesis can improve earlier
decisions.

Hesitation-based PACT Hesitation-Aware Re-
framed Forward Pass (HARP; Storai and Hwang,
2024) is more directly aligned for the UID hy-
pothesis. It consists of two main components: (1)
token-level uncertainty estimation to identify hard—
surprising—steps, and (2) an additional Transformer
forward step for those steps. We interpret step (1)
as identifying high-surprisal steps, and step (2) as
reducing surprisal. HARP components and func-
tioning are detailed in Appendix A.

"https://anonymous.4open.science/t/IMPACT-739B

By directly defining hard steps as those with
high entropy (i.e., high surprisal), hesitation-based
PACT, such as our proposal IMPACT, aligns more
strongly with the UID principle. We empirically
confirm in Section 4 that IMPACT lowers entropy,
thus reducing surprisal.

3 IMPACT: Efficiency IMproved PACT

This section discusses the inefficiencies associated
with UID computation and introduces IMPACT as
a solution.

3.1 Challenges of Cache-Invalidating HARP

KVCache significantly improves efficiency in
Transformer-based models (Vaswani et al., 2017)
by storing key-value pairs from the self-attention
mechanism during the forward pass, allowing in-
stant retrieval of previously computed token repre-
sentations and avoiding redundant computations in
subsequent steps.

By applying dropout on input embeddings,
HARP makes the KVCache reuse impossible. We
formally prove that dropout frequently alters a sig-
nificant portion of tokens, continuously disrupting
the cache (proof in Appendix B). Consequently,
this process increases both latency and memory
usage, undermining the efficiency benefits of KV-
Cache (Appendix D). In such a constrained setting,
where HARP can be applied on top of the original
model for the given resources, users may prefer to
use a larger variant of the original model to achieve
better performance.

3.2 KVCache-friendly Reframing

Model Approximation for Reframing In HARP,
two forward passes on e and € generate [ogits and
logits, which contain predictions for each position.
The next-token prediction corresponds to the last
position.

To address the inefficiencies of multiple passes,
we propose a cache-aware reframing technique. In-
stead of performing costly passes on different in-
puts, which cannot utilize the cache, we leverage
the same input e to generate both original and re-
framed predictions, i.e., logits and logits,. This
reframing offers an alternate perspective on predic-
tions without sacrificing quality, all while preserv-
ing computational efficiency.

To achieve this, we employ an approximation of
the original model rather than introducing differ-
ent inputs. It would enable both KVCache reuse
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and the generation of reliable reframed predictions.
Specifically, we use contextual sparsity, building a
structure-pruned network that selectively ignores
input activations with the smallest magnitudes.

Contextual Sparsity for Approximation Con-
textual sparsity has been widely studied in systems
research to enhance computational efficiency in
deep learning by pruning small-magnitude activa-
tions. Our approach repurposes these methods be-
yond efficiency, utilizing sparsity as a mechanism
for controlled reframing while preserving the KV-
Cache structure.

Formally, consider a linear layer in a network
with a weight matrix W and input v. The original
layer output is given by:

h(v)=Wv (1)

Given a threshold ¢, we zero-out the z-th column
of W, denoted as W;, if the corresponding input v;
has a magnitude below t. t is pre-calculated with
a validation set, to meet the desired sparsity of W.

That is,
. 0 if |v;| < t,
W, = i o] < @)
W, otherwise
h(x) = Wv (3)

t simply becomes the s-percentile of the distri-
bution of the magnitudes of elements in v, where
5% is the desired sparsity ratio. Then with this pre-
calculated ¢, we apply Eq. 3 during the inference
time. The sparsity s is conventionally selected as
the highest value showing a negligible drop in the
quality of the output (Liu et al., 2024; Lee et al.,
2024).

When hesitation occurs, applying contextual
sparsity to every linear layer in the network gener-
ates the reframed logits logits,. These logits are
then linearly combined with the original logits as
described in Eq. 6, similar to HARP.

In summary, by changing the reframing pro-
cess of HARP, IMPACT preserves the determin-
istic behavior by eliminating the randomness in-
troduced by dropout in HARP (Eq. 5), while also
enabling KVCache reuse. When diversity needs
to be added, IMPACT can easily be combined with
nucleus sampling, or any other stochastic decoding
method, for decoding.

4 Experiments

We use Llama-3.1-8B-Instruct and Llama-3.3-70B-
Instruct (Dubey et al., 2024) as our base models.

GSM8K LogiEval CsQA
Method Lat. Acc. Lat. EM. Lat. EM.
Original 1.00x 77.71 1.00x 54.39 1.00x 75.92
HARP 6.54x 77.86 2.98x 56.21 1.32x 76.14

Beam search 1.37x 78.17 2.05x 54.45 1.73x 75.92
IMPACT 1.57x 78.85 1.36x 54.58 1.18x 75.92

Table 1: GSMS8K, LogiEval and Commonsense QA
results of Llama-3.1-8B-Instruct with different PACT
methods.

GPQA BBH MMLUPro
Method Lat. Acc. Lat. EM. Lat. EM.
Original 1.00 28.86 1.00 69.56 1.00 43.80
HARP  3.85 33.00 8.09 70.13 9.56 45.20

IMPACT 1.14 32.63 1.19 69.84 1.81 44.00

Table 2: Accuracy of Llama-3.1-8B-Instruct over three
reasoning datasets using chain-of-thought.

All evaluations are conducted using a batch size of
1, in a greedy decoding setting (temperature of 0).
Latency is evaluated on the whole dataset using a
batch size of 1 and a concurrency of 1, following
the convention of HARP. For beam search, we use
a beam size b of 3, and length-normalization (Wu
et al., 2016) of 0.6, to be consistent with previous
work (Storai and Hwang, 2024). We detail the
experimental settings in Appendix E.

IMPACT vs. Other PACT Methods: Balanc-
ing Performance and Efficiency Table 1 shows
that IMPACT outperforms both HARP and beam
search, in terms of balancing performance and effi-
ciency. For GSM8K, the random nature of HARP
leads to suboptimal average performance compared
to beam search. Moreover, HARP requires almost
6.5 times longer time to generate an answer be-
cause of its inability to cache. On the other hand,
IMPACT outperforms beam search while maintain-
ing a comparable latency. Results over LogiEval
and Commonsense QA (CsQA) further highlight
the efficiency of IMPACT.

Performance on Complex Reasoning Tasks
Chain-of-thought prompting (Wei et al., 2024) en-
courages the model to generate long reasoning
steps, often prone to hesitation, making the gen-
eration process more complex. Table 2 presents
the results using this modern approach across three
datasets. While HARP achieves slightly higher
accuracy improvements, it comes at a significant
computational cost, leading to a large increase in
inference latency. In contrast, IMPACT achieves a
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Figure 1: IMPACT introduces a new Pareto frontier in the accuracy-latency trade-off space. Circle sizes indicate the
memory requirements of each method. In the left figure (a), the accuracy is averaged across all tasks described in
Section E, including reasoning and non-reasoning tasks. In contrast, the right figure (b) reports accuracy averaged

only over reasoning tasks

better balance between performance and efficiency,
preserving accuracy gains while significantly re-
ducing computational overhead.

LAMBADA CNN/DM
Method Latency @ EM. Latency Rouge-1
Original 1.00x  55.48 1.00x 29.52
HARP 220x  56.62  7.23x 29.99
IMPACT  230x 5552 1.41x 29.05

Table 3: Results of PACT methods, using Llama-3.1-
8B-Instruct, on two non-reasoning tasks.

Limitation on Non-Reasoning Tasks We
claimed that IMPACT is especially effective on
reasoning tasks, where precision is essential. We
observe mixed results on non-reasoning tasks
(Table 3), confirming our argument.

Method GSM8K  LogiEval
Original 93.63 72.07
Beam search 92.95 71.88
IMPACT (Ours) 93.71 72.14

Table 4: GSMS8K accuracy and LogiEval exact match
score of Llama-3.3-70B-Instruct with different PACT
methods.

Scaling IMPACT to Larger Models Table 4
shows that IMPACT continues to outperform other
PACT methods in experiments, even with more
parameters, validating the benefits of hesitation-
based methods. While beam search lowers the

performance, IMPACT consistently improves it.
The excessive latency and memory constraints of
HARP prevented the evaluation of hesitation on
larger models.

5 Analysis

New Pareto-frontier Figure 1 shows how the
reframing process of IMPACT leads to providing
a new Pareto-frontier in the performance-latency
trade-off space. By offering a more cost-effective
alternative to HARP while maintaining comparable
performance, IMPACT expands the Pareto solu-
tion space, much like LLMs are released in varying
sizes to balance efficiency and performance. The
contrast between Figure la and Figure 1b high-
lights that the overall accuracy gain of IMPACT
diminishes when non-reasoning tasks are included
in the average, suggesting that its advantage is most
pronounced on reasoning tasks.

Stochastic vs Deterministic PACT In Figure 1,
the variance of HARP, shown as an error bar, illus-
trates the downside of HARP’s stochastic nature.
While HARP improves average performance, its
variability makes it challenging to ensure consistent
improvements— For example, two of the five runs of
HARP for GSMS8K in Table 1 showed worse perfor-
mance than the original model (76.58 and 77.32).
Keeping the deterministic aspect of the original
forward pass is a strong advantage of IMPACT,
ensuring the results are consistently improved.

8150



IMPACT for UID We hypothesized that IM-
PACT helps the model generate outputs consis-
tent with the UID hypothesis, where hesitation oc-
curs when surprisal or entropy becomes large. We
validate this empirically: IMPACT decreases the
average entropy by 0.011 every hard step during
the GSMS8K generation of Llama-3.1-8B-Instruct.
Furthermore, IMPACT reduces surprisal kurtosis—
a widely used statistic for detecting outliers—by
nearly half, from 0.605 to 0.363. This reduction
suggests a more even distribution of surprisals, con-
tributing to more stable and consistent model per-
formance.

6 Conclusion

To address the limitations of the hesitation-based
PACT method, we introduced a cache-aware al-
ternative that perturbs network weights instead of
the inputs. Our method, IMPACT, preserves the
training-free advantage of HARP while improving
efficiency and ensuring determinism by eliminating
the randomness caused by dropout. We validated
improvements in both performance and efficiency,
complementing existing approaches focused on per-
formance and efficiency. This makes higher per-
formance and computational speed accessible to
real-world applications and to a wider audience,
including those with consumer-grade GPUs and
limited memory.

7 Limitations

A more precise tuning of the perturbation magni-
tude to balance the trade-off between performance
and computational efficiency could further enhance
performance. We consider more advanced model
compression techniques as a separate direction for
future work.
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Dataset Standard Deviation
GSM8K 0.86
LogiEval 0.63

CsQA 0.27

GPQA 0.28

BBH 0.24
MMLUPro -
CNN/DM 0.45
LAMBADA 0.63

Table 5: Standard deviation of Llama-3.1-8B-Instruct
using HARP across all the datasets. MMLU Pro has not
yet been evaluated on multiple seeds.

A HARRP details

The standard Transformer forward pass processes
an input sequence x by mapping it to token embed-
dings e and generating logits to predict the next
token. HARP modifies this process by computing
uncertainty on the logits during inference. Uncer-
tainty is quantified using Shannon entropy (Shan-
non, 1948), computed from the normalized logits
o(logits):

\4
H(o(logits)) = — Y _ P(v; | x)logy P(v; | X)
=1

4
where P(v; | x) represents the probability of token
v; as the next token, given the input x.

If the entropy H remains below a predefined
threshold 6, the model is considered confident and
the original logits logits are returned. Otherwise,
the model identifies the step as hard and triggers an
additional forward pass.

HARP reframes the input embeddings e by ap-
plying dropout at a rate §, producing reframed em-
beddings é:

& = DROPOUT (e, §). 5)

The second forward pass uses the reframed in-
put embeddings € and generates reframed logits
logits,, which are combined using a 5-weighted
sum with the original logits, as follows:

B - logits + (1 — 3) - logits, 6)

B Proof of Dropout Altering Significant
Portion of Tokens

Proof. Let the random variable X; be defined as

1 atleast one x; dimension is dropped,
' 0 otherwise.

HARP —4> IMPACT (Ours)

Method Components

e e
1. Hesitation
Shannon Entropy on
token-level

1. Hesitation
Shannon Entropy on
token-level

4 - D s
2. Reframing .
] 2. Reframing
Dropout on input —> A
A i Contextual sparsity
N J N
Consequences

% KV Cache Invalidation

Non-deterministic
X outputs

(V KV Cache Compatible \1

J L‘/ Deterministic outputs J

Figure 2: Side to side comparison of our method (IM-
PACT) with the other hesitation-based PACT method
(HARP). Our method overcomes the two limitations of
HARP by changing its reframing process.

for ¢ € [1,n], where n is the length of the input
sequence.

Pr(X; =1] =1 — (1 — §)lhiddenl

where 0 is the dropout rate and |hidden| is the
dimensionality of the embeddings.

Let Y denote the total number of impacted tokens
in the sequence. Then,

By linearity of expectation,

E[Y] = iE[Xi] —n-PriX; = 1]

=n- (1 -(1- 5)|hidden\)

Since |hidden| is typically very large in prac-
tice (4096 for Llama-3.1), (1 — §)/hddenl ap.
proaches 0 rapidly, making Pr[X; = 1] close to 1.
Thus, the expected value of Y (the number of im-
pacted tokens) approaches n for sufficiently large
|hidden|. O

C Illustration of HARP vs IMPACT

Figure 2 compares HARP and IMPACT.
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D Memory usage

HAREP requires twice the memory of the original
model-Llama-3.1-8B-Instruct’s GSM8K genera-
tion demands 16GB for the original model but
32GB for HARP. In contrast, IMPACT achieves
performance improvements with only an 18GB re-
quirement, making it particularly valuable in sce-
narios where HARP’s memory overhead is pro-
hibitive.

E Experimental Settings

Baselines We use Llama-3.1-8B-Instruct and
Llama-3.3-70B-Instruct (Dubey et al., 2024) as
our base models. We compare IMPACT with
three baselines: the original model using KVCache,
HARP (without KVCache), and beam search. All
evaluations are conducted using a greedy decod-
ing setting (temperature of 0). All experiments are
conducted on A6000 GPUs. Latency is evaluated
on the whole dataset using a batch size of 1 and
a concurrency of 1, following the convention of
HARP.

Datasets Our evaluation is implemented using
the LM-Evaluation-Harness (Gao et al., 2021)
framework. We focus on tasks that require rea-
soning, as we hypothesize that hesitation during
inference is particularly beneficial for such tasks.
Our evaluation includes the following datasets:
GSMB8K (Cobbe et al., 2021), a mathematical
problems benchmark; LogiEval (Liu et al., 2023),
a logical reasoning dataset; and Commonsense
QA (Talmor et al., 2019), a general common-
sense understanding evaluation. We also evalu-
ate with chain-of-thought prompting (Wei et al.,
2024)—a modern approach to reasoning—using the
following datasets: BIG-Bench Hard (BBH) (Suz-
gun et al., 2023), GPQA (Rein et al., 2024), and
MMLU Pro (Wang et al., 2024). Additionally,
we include two non-reasoning tasks for continuous
comparison and generalization: CNN DailyMail
(CNN/DM) (Nallapati et al., 2016), a summariza-
tion task; and LAMBADA (Paperno et al., 2016),
a short-word generation task. Following Storai and
Hwang (2024), we use subsets of Commonsense
QA, MMLU Pro, and CNN DailyMail. We specify
the settings used for each dataset in Appendix H.
These datasets cover a range of output formats,
such as free-text reasoning, multiple-choice ques-
tions, and one-word generation. Licenses of the
artifacts are specified in Appendix I.

Metrics For each task, we report the accuracy
and the inference time on the full datasets. For
some datasets, we report the exact match (EM),
while we report the rouge-1 score for CNN Daily-
Mail. Since HARP introduces randomness in its
process, we perform evaluations with multiple ran-
dom seeds and report the average. The standard
deviation of each dataset is reported in Table 5.

Hyperparameters The hyperparameters for
HARP are set as follows: hesitation threshold
# = 1.2, dropout rate § = 0.2, and 5 = 0.5
weighted sum. Storai and Hwang (2024) conducted
their experiments using quantized models and sub-
sets of datasets. After conducting preliminary ex-
periments, we observed that § = 1.2 resulted in
better accuracy compared to the value of § = 1.0
used in their work when evaluated on the full model
and full dataset.

For IMPACT, each ¢ for contextual sparsity is
pre-calculated with TEAL (Liu et al., 2024) to target
30% of sparsity. We set the hesitation threshold
as @ = log 2.2 These hyperparameter values have
been determined to perform well in our setting, but
we leave an exploration of their broader influence
to future work.

For beam search, we use a beam size b of 3, and
length-normalization (Wu et al., 2016) of 0.6, to be
consistent with previous work (Storai and Hwang,
2024).

F Stability of IMPACT over ¢

0 GSMSK
2log?2 78.70
1 78.77
log 2 78.85

Table 6: GSMS8K performance of Llama-3.1-8B-Instruct
over different 6 values.

Table 6 shows that the performance of IMPACT
is stable across various 6 values.

G Choice of Teal Sparsity For IMPACT

Table 7 validates the choice of 30% TEAL sparsity
for IMPACT.

*We used log, for entropy calculation in our implemen-
tation, while HARP formulated entropy with base 2, which
we followed in the writing. Conversion between these two
formulas introduced log 2.
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TEAL sparsity | GSM8K
10% 78.09
20% 78.01
30% 78.85
40% 77.26

Table 7: GSMS8K accuracy of Llama-3.1-8B-Instruct
with different TEAL sparsity levels.

H Datasets Settings

GSMSK: 5-shot
LogiEval: 1-shot

Commonsense QA: zero-shot. We adapted the
evaluation from loglikelihood to generation,
to match with Storai and Hwang, 2024.

BIG-Bench Hard: 3-shot
GPQA: 1-shot

MMLU Pro: zero-shot
CNN DailyMail: zero-shot.

LAMBADA: zero-shot. Similarly as for Com-
monsense QA, we adapted the evaluation to
word generation to match with HARP’s evalu-
ation.

I Artifact Licenses

Datasets The datasets are downloaded from the
Hugging Face Datasets library (Apache License

2.0).

The LM-Evaluation-Harness is based on the

MIT License. The licenses for the specific datasets
used are as follows:

GSMS8K: MIT License

LogiEval: Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International
License

Commonsense QA: MIT License
BIG-Bench Hard: MIT License

GPQA: Creative Commons Attribution 4.0
MMLU Pro: Apache License 2.0

CNN DailyMail: Apache License 2.0

LAMBADA: Modified MIT License (GPT2)

Llama Models The Llama models (Llama 3
Community License) are used with the Hugging
Face Transformers library (Apache License 2.0).
TEAL is licensed under the MIT License.
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