
Findings of the Association for Computational Linguistics: ACL 2025, pages 8124–8146
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Flow2Code: Evaluating Large Language Models for Flowchart-based Code
Generation Capability

Mengliang He1, Jiayi Zeng1, Yankai Jiang2, Wei Zhang1,
Zeming Liu3*, Xiaoming Shi1*, Aimin Zhou1

1 East China Normal University, Shanghai, China 2 Shanghai AI Lab, Shanghai, China
3 Beihang University, Beijing, China

{51255901020, 51265901055}@stu.ecnu.edu.cn; zhangwei.thu2011@gmail.com;
zmliu@buaa.edu.cn; {xmshi, amzhou}@cs.ecnu.edu.cn

Abstract

While large language models (LLMs) show
promise in code generation, existing bench-
marks neglect the flowchart-based code genera-
tion. To promote further research on flowchart-
based code generation, this work presents
Flow2Code, a novel benchmark for flowchart-
based code generation evaluation. The evalua-
tion dataset spans 15 programming languages
and includes 5,622 code segments paired with
16,866 flowcharts of three types: code, UML,
and pseudocode. Extensive experiments with
13 multimodal LLMs reveal that current LLMs
can not generate code based on flowcharts
perfectly. Besides, experiment results show
that the supervised fine-tuning technique con-
tributes greatly to the models’ performance.
We publicly release our code and datasets at
https://github.com/hml-github/Flow2Code.

1 Introduction

The code generation task aims to convert specific
requirements into executable code (Nuseibeh and
Easterbrook, 2000), which attracts interest and fo-
cus from the academic and industrial communi-
ties. Recently, for automatic code generation, large
language models (LLMs) (OpenAI, 2023; Team,
2024; Nijkamp et al., 2023; DeepSeek-AI et al.,
2024; Hui et al., 2024) exhibit substantial potential
and show alluring application value for enhancing
productivity, minimizing human error.

To comprehensively evaluate and understand the
code generation capabilities of emerging LLMs,
substantial efforts have been devoted to estab-
lishing and refining code generation benchmarks.
Specifically, as shown in Figure 1, current code gen-
eration benchmarks can be classified into two cate-
gories: those based on textual descriptions, such as
HumanEval (Chen et al., 2021) and MBPP (Austin
et al., 2021), and those based on images of pro-
gramming problems or matplotlib plots, such as

* Corresponding authors: Zeming Liu, Xiaoming Shi.

MMCode (Li et al., 2024) and Plot2Code (Wu et al.,
2024a). Despite the potential value, these works
fundamentally suffer from a critical flaw: The lack
of flowchart-based code generation evaluation.

Compared to textual descriptions, images of pro-
gramming problems, or matplotlib plots, flowcharts
offer a more effective and intuitive way to under-
stand and visualize program logic such as deci-
sions, loops, and conditionals, making them acces-
sible to both programmers and non-programmers
alike (Xinogalos, 2013). Flowcharts mainly consist
of three types: basic code flowcharts, Unified Mod-
eling Language (UML) flowcharts, and pseudocode
flowcharts (Chapin, 2003). Specifically, basic code
flowcharts represent the step-by-step execution of
a program, UML flowcharts are a formal graphical
representation of an object-oriented system’s struc-
ture, and pseudocode flowcharts are a high-level
abstraction of program logic and are represented by
natural Language. Despite these advantages, there
is a notable gap in code generation benchmarks,
with no dedicated datasets or frameworks for gener-
ating code from flowcharts. This limitation hinders
the ability of LLMs to fully utilize flowcharts for
code generation.

To address this gap, this work first introduces
Flow2Code, a comprehensive code generation
benchmark that includes three types of flowcharts
and corresponding code in 15 programming lan-
guages. The construction of Flow2Code consists
of three parts: the creation of code and UML
flowcharts, pseudocode conversion, and data check-
ing. After the construction of the dataset, a two-
step human evaluation process is employed to en-
sure data quality, which includes both code verifica-
tion and validation of pseudocode flowchart trans-
formations. Finally, the dataset is obtained with
a total of 5,622 code segments, 16,866 flowcharts
and includes 15 programming languages, offering a
rich resource for evaluating code generation tasks.

To further conduct the evaluation of current

8124

Datasets Code Flowchart UML Flowchart Pseudocode Flowchart Multimodal Multilingual Samples
APPS (Hendrycks et al., 2021) ✗ ✗ ✗ ✗(text) ✗ 10,000
HumanEval (Chen et al., 2021) ✗ ✗ ✗ ✗(text) ✗ 164
MBPP (Austin et al., 2021) ✗ ✗ ✗ ✗(text) ✗ 974
DS-1000 (Lai et al., 2023) ✗ ✗ ✗ ✗(text) ✗ 1,000
CodeContests (Li et al., 2022) ✗ ✗ ✗ ✗(text) ✓(3) 13,610
MBXP (Athiwaratkun et al., 2023) ✗ ✗ ✗ ✗(text) ✓(13) 12,425
ClassEval (Du et al., 2023) ✗ ✗ ✗ ✗(text) ✗ 100
CoderEval (Yu et al., 2024) ✗ ✗ ✗ ✗(text) ✓(2) 460
HumanEval-X (Zheng et al., 2023) ✗ ✗ ✗ ✗(text) ✓(5) 820
MCEVAL (Chai et al., 2024) ✗ ✗ ✗ ✗(text) ✓(40) 16,031
BigCodeBench (Zhuo et al., 2024) ✗ ✗ ✗ ✗(text) ✗ 1,140
Plot2Code (Wu et al., 2024a) ✗ ✗ ✗ ✓(image, text) ✗ 132
MMcode (Li et al., 2024) ✗ ✗ ✗ ✓(image, text) ✗ 3,548
HumanEval-V (Zhang et al., 2024) ✗ ✗ ✗ ✓(image, text) ✗ 253
Flow2Code ✓ ✓ ✓ ✓(image, text) ✓(15) 16,866

Table 1: Comparison of the Flow2Code dataset with other code generation benchmarks, where the number in the
Multilingual column represents the amount of programming code contained in the dataset.

LLMs, we conduct comprehensive benchmark-
ing experiments on the Flow2Code dataset us-
ing 13 LLMs under the settings of zero-shot
and supervised fine-tuning. The experimental re-
sults demonstrate that：(1) Current LLMs lack
sufficient flowchart-based code generation capa-
bility, particularly on the UML and pseudocode
flowcharts; (2) Supervised fine-tuning technique
is effective in improving LLMs’ flowchart-based
code generation. These findings highlight areas
for improvement and provide guidance for future
research in code generation.

This work makes the following contributions:

• We identify a key challenge for current LLMs
as flowchart-based code generation.

• To promote further research on flowchart-
based code generation, we introduce a novel
benchmark, termed Flow2Code, and perform
extensive evaluation experiments on various
LLMs, providing a standardized platform for
assessing flowchart-based code generation.

• Experimental results show that supervised
fine-tuning on flowchart-based code genera-
tion datasets is an effective technique to im-
prove LLMs’ performance.

2 Related work

This Section first reviews the current research on
code generation benchmarks (Section 2.1), fol-
lowed by an overview of research on multimodal
benchmarks (Section 2.2).

2.1 Code Generation Benchmarks
Traditional code generation benchmarks, such as
HumanEval (Chen et al., 2021), MBPP (Austin

et al., 2021), DS-1000 (Lai et al., 2023),
and APPS (Hendrycks et al., 2021), focus
on text-based tasks and a single program-
ming language. Although newer benchmarks
like MBXP (Athiwaratkun et al., 2023), MCE-
VAL (Chai et al., 2024), MultiPL-E (Cassano et al.,
2023), humaneval-X (Zheng et al., 2023), and
HumanEval-XL (Peng et al., 2024) cover multiple
languages and tasks, they still focus on text-based
code generation. In contrast, Flow2Code incorpo-
rates flowchart-based representations, offering a
more comprehensive evaluation of LLMs in multi-
modal code generation tasks.

2.2 Multimodal Benchmarks

Recent multimodal benchmarks such as MM-
Bench (Xu et al., 2023), MMMU (Yue et al., 2024),
MMStar (Chen et al., 2024a), and Web2Code (Yun
et al., 2024) evaluate MLLMs on tasks involving
text and images, mainly focusing on visual rea-
soning and general multimodal capabilities. MM-
Code (Li et al., 2024) and Plot2Code (Wu et al.,
2024a) extend this by targeting code generation,
with MMCode focusing on Python problems with
visual aids and Plot2Code on plots-to-code genera-
tion. However, these datasets are domain-specific,
with limited coverage of broader code genera-
tion tasks. In contrast, the Flow2Code bench-
mark specifically evaluates the task of translating
various flowchart types—code, UML, and pseu-
docode—into executable code, offering a more spe-
cialized and structured evaluation across diverse
programming languages.

8125

Other Code

def greatest_common_divisor(a: int, b:

int) -> int:

 while b:

 a, b = b, a % b

 return a

Java Code

def greatest_common_divisor(a: int, b:

int) -> int:

 while b:

 a, b = b, a % b

 return a

Dot Code
Pseudocode Dot Code

Python Code

UML Flowchart

Code Flowchart

Pseudocode Flowchart

def greatest_common_divisor(a: int, b:

int) -> int:

 while b:

 a, b = b, a % b

 return a

digraph FlowChart{

 …………

 …………

5 [shape=plaintext,label=""];

6 [shape=ellipse,label="def

greatest_common_divisor(a:\nint, b: int) -\> int"];

10 [shape=diamond,label="b ?"];

16 [shape=box,label="a, b = b, a % b"];

18 [shape=box,label="return a"];

7 [shape=Msquare,label="End",color="brown"];

 …………

 …………}

digraph FlowChart{

 …………

5 [shape=plaintext,label=""];

6 [shape=ellipse,label="Define function

`greatest_common_divisor` with parameters ̀ a`

and `b`, both of type integer, and return type

integer"];

10 [shape=diamond,label="Check if `b` is equal

to zero"];

16 [shape=box,label="Assign `b` to `a`, and the

remainder of `a` divided by `b` to `b`"];

18 [shape=box,label="Return ̀ a`"];

7 [shape=Msquare,label="End",color="brown"];

 …………}

Visustin

Human

Human

Review

Review

Graphviz

GPT-4o Transform

You will be given one input:

1. A `DOT` representation of the control flow for

a piece of code.

Your task is to generate a natural language-

oriented flowchart in `DOT` syntax. This

flowchart must:

- Clearly describe the logic in plain English.

- Follow `DOT` syntax accurately.

- Include key operations, conditions, and outputs.

Instructions:

1. ……………………

2. ……………………

Gemini-2.0 Check

You will be given two inputs:

1. A new DOT representation of the control flow

for a piece of code.

2. An old DOT representation of the control flow

for the same piece of code.

Your task is to evaluate if the transformation

from the old DOT code to the new DOT code

adheres to the following rules:

Rules:

1. ……………………

2. ……………………

Qualified

Qualified

Failure

Qualified

Figure 1: Overview of the flowchart generation process. The source code is initially converted into DOT code and
code, UML flowcharts using Visustin. GPT-4o is then employed to transform the DOT code into a natural language
pseudocode (highlighted in gray text). The generated DOT code is first validated through a Gemini-2.0 check, after
which the pseudocode flowcharts are created. Finally, the pseudocode, code, and UML flowcharts are subjected to a
comprehensive human review to ensure the accuracy and quality of the transformations.

3 Dataset Construction

This section first describes the data source and se-
lection for the Flow2Code dataset (Section 3.1), fol-
lowed by the flowchart construction process (Sec-
tion 3.2), and concludes with an analysis of the
dataset (Section 3.3).

3.1 Data Selection

The Flow2Code dataset is constructed from four
key datasets: HumanEval-X (Zheng et al., 2023),
MBXP (Athiwaratkun et al., 2023), MCEval (Chai
et al., 2024), and ClassEval (Du et al., 2023). These
datasets are selected for their diverse program-
ming languages, task complexities, and availability
of solution code segments, offering a comprehen-
sive foundation for code generation tasks. Com-
pared to other datasets like DS-1000 (Lai et al.,

2023) or APPS (Hendrycks et al., 2021) and Hu-
manEval (Chen et al., 2021), which often focus
on isolated, single-language problems, the selected
datasets in Flow2Code offer a better balance of mul-
tilingual coverage and task variety. Furthermore,
the inclusion of class-level tasks from ClassEval
allows for a more holistic evaluation, challenging
models with more complex code generation.

Moreover, only those problems with official so-
lution code segments are kept. The availability of
official solutions ensures the reliability and con-
sistency of the flowchart generation process, en-
abling us to evaluate flowchart-based code genera-
tion tasks effectively.

Finally, the selected data is obtained. These se-
lections ensure a rich and varied dataset that tests
code generation models across a wide range of pro-

8126

gramming languages and task complexities.

3.2 Flowchart Construction
In the Flow2Code dataset construction process, a
crucial step is transforming the raw data from the
original datasets into a format suitable for code
generation. This transformation process relies on
an automated pipeline designed to convert solution
code segments into flowchart representations, fa-
cilitating their subsequent use in code generation
tasks.

3.2.1 Code Flowchart and UML Flowchart
The construction progress of code flowchart and
UML flowchart can be divided into three steps: for-
mat conversion, flowchart conversion, and human
review.

Format conversion: The first step in this trans-
formation process involves converting the solution
code segments into code files. The solution code
segments contain code in various programming lan-
guages, covering diverse task complexities.

Flowchart conversion: As shown in Figure 1,
this work uses Visustin software1, a widely-used
tool for code-to-flowchart conversion, to gener-
ate code flowcharts and UML flowcharts from
these code files. Visustin processes the code into
flowcharts that visually represent the control flow,
function calls, conditionals, and other program-
matic steps, providing a clear and intuitive view of
the underlying logic.

Human review: To ensure the correctness and
fidelity of the generated flowcharts, human evalua-
tion is conducted. Five evaluators with master’s de-
grees in computer science who have over four years
of practical programming experience are employed.
Each evaluator is proficient in multiple program-
ming languages and software engineering practices.
The evaluation is conducted in two phases. For
code and UML flowcharts, the evaluators verify
the logical correctness of the generated flowcharts
against the source code using the following crite-
ria: Logical consistency: Do flowchart execution
paths, conditions, and loops exactly reflect the orig-
inal code? Completeness: Are there missing or
extraneous elements that alter the intended pro-
gram logic? Semantic accuracy: Are variable
assignments, function calls, and control statements
correctly captured? Each instance is scored in bi-
nary form: 1: The flowchart is logically and se-
mantically correct and complete. 0: The flowchart

1https://www.aivosto.com/visustin.html

contains critical inaccuracies or omissions. All in-
stances are independently double-blind reviewed
by two evaluators. In case of disagreement, the
third expert adjudicates. The Krippendorff’s Al-
pha (Krippendorff, 2011) is employed to assess
inter-annotator agreement, achieving a reliability
score of α= 0.88. This high agreement ensures
the trustworthiness of the manual verification.

3.2.2 Pseudocode Flowchart
Pseudocode flowcharts provide a human-readable
and language-agnostic description of the program’s
logic, which complements the visual structure of
code and UML flowcharts. This combination of
textual pseudocode with visual flowchart repre-
sentations enables more comprehensive and inter-
pretable model evaluations. It helps to bridge the
gap between abstract flow control and practical
code generation by providing an additional level of
clarity that may not be captured fully by flowcharts
or UML diagrams alone.

A particularly important step in the dataset con-
struction process is the conversion of the raw DOT
files into a pseudocode flowchart. The pseudocode
flowchart construction can be divided into six steps:
format conversion, Dot code generation, GPT-4o
transformation, Gemini-2.0 check, human review,
and automatic flowchart conversion.

Format conversion: The format conversion is
conducted the same as the format conversion in
code flowchart and UML flowchart conversion.

Dot code generation: Furthermore, Visustin
also converts the flowcharts into raw DOT files,
which are descriptions of graphs in a specific for-
mat used by the Graphviz visualization tool (Ellson
et al., 2004). In these DOT files, each node corre-
sponds to a specific step or operation in the code’s
flow, such as a variable assignment or a loop, while
the edges between nodes represent the relationships
between these steps. The DOT format provides a
flexible, machine-readable structure that can be
used for various types of graph visualizations.

GPT-4o transformation: The GPT model is
given the task of converting each node label in the
DOT file into a natural language description. The
prompt is carefully designed to ensure the labels
clearly describe the logic of each node in plain
English (the prompt is in Appendix Figure 11).
As shown in Figure 1, a label like “a, b = b, a %
b” might be transformed into “Assign ‘b’ to ‘a’,
and the remainder of ‘a’ divided by ‘b’ to ‘b’.” a
conditional like “b ?” might be converted into

8127

https://www.aivosto.com/visustin.html

“check if ‘b’ is equal to zero.”
Gemini check: Since GPT-4o is used to generate

the pseudocode DOT files, using the same model to
also validate the results could introduce the risk of
potential biases or errors in the verification process.
To mitigate this concern, Gemini-2.0 is tasked with
determining whether the content of the generated
DOT files has been correctly converted into natu-
ral language descriptions by GPT-4o. The prompt
used for Gemini-2.0’s verification is detailed in Ap-
pendix Figure 10. If Gemini-2.0 determines that
the content is accurate, the corresponding data is
retained in the dataset. If Gemin-2.0 identifies er-
rors in an instance, the instance is re-generated by
GPT-4o.

To maintain the integrity of the dataset, this re-
generation process is repeated up to five times. If
the data still fails to meet the accuracy criteria after
five attempts, it is excluded from the final dataset
to prevent erroneous or unreliable data from affect-
ing the benchmark. This approach guarantees that
only high-quality, accurately converted data is in-
cluded in Flow2Code, ensuring the reliability of the
dataset for subsequent code generation evaluations.

Human review: In verifying the pseudocode
flowcharts derived from natural language transfor-
mations of DOT representations, evaluators con-
duct a structured assessment based on: Seman-
tic accuracy: Whether natural language node la-
bels precisely match the intended semantics of the
original DOT nodes. Clarity: Whether the labels
are concise and easily interpretable. Consistency:
Whether the number and structure of descriptions
accurately correspond to the graph structure. Scor-
ing follows a binary scheme: 1: Label is accu-
rate, clear, and consistent with the original struc-
ture. 0: Label is ambiguous, incorrect, or incon-
sistent. Each pseudocode flowchart is reviewed
independently by at least two evaluators, with a
third reviewer resolving conflicts. As with the other
flowcharts, the scoring achieves Krippendorff’s Al-
pha of 0.88.

Automatic flowchart conversion: Finally,
Graphviz is used to automatically convert the cor-
responding pseudocode flowcharts from the gener-
ated DOT files.

3.3 Dataset Analysis

3.3.1 Data Statistics

Through this transformation process, the
Flow2Code dataset ultimately includes three types

Perl(50)

Shell(50)
Tcl(50)

VB(50)

Pascal(50)
HTML(50)

Fortran(50)

Java(828)
JS(661)

PHP(661)

Python(925)

Ruby(661)

C(50)

CPP(825)

C#(661)

Figure 2: The number and proportion of each program-
ming language in the Flow2Code dataset.

of flowcharts—code flowcharts, UML flowcharts,
and pseudocode flowcharts—and contains 15
different programming languages, 5,622 code
segments, and 16,866 flowcharts, as shown in
Table 2. The distribution of samples across these
languages reflects the inherent characteristics of
the original datasets, where some languages are
more represented than others, as illustrated in
Figure 2. We offer a well-rounded multimodal
approach that better tests and pushes the code
generation capabilities of MLLMs. This ensures
that models are evaluated in a more thorough,
balanced manner, improving their ability to
generate accurate and meaningful code from
diverse input formats.

To support fine-tuning and evaluation experi-
ments, the Flow2Code dataset is divided into train-
ing and test sets using a 9:1 split ratio. This parti-
tioning is conducted within each language subset
of the original source datasets (e.g., HumanEval-X,
MBXP, McEval, and ClassEval). For instance, in
HumanEval-X, which contains code samples across
multiple programming languages, we select 10%
of the instances from each language as the test set
and retain the remaining 90% for training. This ap-
proach ensures proportional representation across
all languages and prevents the exclusive use of any
source dataset as the test set. Such balanced parti-
tioning enhances the fairness and generalizability
of our experimental evaluations.

3.3.2 Data Quality

To ensure the quality of the Flow2Code dataset,
we conduct a two-step human evaluation process,
following the approach of Liu et al. (2020). Five
evaluators, all graduate students with master’s de-

8128

of Programming Languages 15
of Code Segments 5,622
Avg. # of Characters in Code Segments 315.93
Max. # of Characters in Code Segments 3914
Min. # of Characters in Code Segments 10

of Code Flowchart 5,622
of UML Flowchart 5,622
of Pseudocode Flowchart 5,622
Avg. # of Units in Flowcharts 11.44
Max. # of Units in Flowcharts 84
Min. # of Units in Flowcharts 3

Table 2: Statistics of the Flow2Code dataset.

grees in computer science and over four years of
programming experience, are selected to carry out
the evaluation.

The evaluation includes two steps:
Code and UML Flowchart Verification: Eval-

uators checked whether the flowcharts accurately
represented the solution code segment’s logic.
Each correct conversion is assigned a score of “1”
and an incorrect one “0”.

Pseudocode Flowchart Verification: Evalua-
tors judge whether GPT correctly transforms the
DOT file labels into natural language descriptions.
Each correct conversion is assigned a score of “1”
and an incorrect one “0”.

We randomly sampled 100 instances from each
flowchart type for evaluation. The average score
across all evaluations is 0.94, indicating that the
dataset contains high-quality flowcharts suitable
for code generation tasks. This process ensures the
reliability of Flow2Code for further research and
evaluation.

4 Experiments and Results

This section first presents the experimental setting
(Section 4.1) and evaluation metrics (Section 4.2),
followed by the model baselines (Section 4.3) and
experimental results (Section 4.4).

4.1 Experimental Setting

Implementation Details: In this work, the local
model deployment frameworks LMDeploy (ver-
sion 0.6.5) and SGLang (version 0.4.1.post4) are
used, with model fine-tuning conducted via the
Llama-Factory framework (version 0.9.2.dev0).

Computing Platform: Experiments are carried
out on a server featuring dual Intel Xeon Gold 5320
CPUs, 377 GB RAM, and eight NVIDIA A100
GPUs, running Ubuntu 20.04.6 LTS. The setup
provides a robust environment for efficient model

training and deployment.
Fine-tuning Details: Qwen2-VL-7B is fine-

tuned on the Flow2Code dataset using Low-Rank
Adaptation (LoRA) (Hu et al., 2021), chosen for
its efficient adaptation of large models to multi-
modal tasks. The fine-tuning employs a learning
rate of 5.0e-5, a batch size of 4, and 1 training
epoch with a cosine learning rate scheduler. The
AdamW (Loshchilov, 2017) optimizer is used with
gradient accumulation steps of 8 to ensure stability
(Details can be found in the Appendix Section D).

4.2 Evaluation Metrics
The evaluation uses test samples from the four
core datasets selected for Flow2Code. The test-
ing procedure follows the execution-based eval-
uation method, where candidate code is executed
against a set of test cases, and success is determined
by passing those tests. Unlike traditional n-gram
evaluations, execution-based evaluation allows for
functional correctness even if the generated solu-
tion differs in implementation from the reference
solution. This flexibility is crucial for code gen-
eration tasks, as it accommodates different code
styles and approaches that still achieve the desired
functionality.

Following Athiwaratkun et al. (2023), we use
Pass@k scores (Kulal et al., 2019) with the unbi-
ased estimate from Chen et al. (2021) as the eval-
uation metrics, where a task is deemed successful
if any of the top k samples are correct. For the
evaluation, k is set as 1, 3, and 5, as the key metrics,
which provide a comprehensive view of the model’s
ability to generate correct code given flowchart.

4.3 Baselines
For the experiments, we evaluate a range of MM-
LLMs with a focus on their ability to generate code.
The specific information of the model is shown in
Appendix Table 4.

Based on the research of Shiri et al. (2024), Das
et al. (2024), and Ai et al. (2024), The following
LLMs are evaluated:

Claude-3.5-Sonnet (Anthropic, 2024) is known
for its strong performance in reasoning, math, and
coding tasks, particularly with multimodal inputs.

DeepSeek-VL2 (Wu et al., 2024b) is a Mixture-
of-Experts model designed for visual understand-
ing, ideal for tasks involving complex visual inputs.

Gemini-2.0-Flash-Exp (Int, 2024) offers low-
latency, high-performance multimodal capabilities,
particularly excelling in video understanding.

8129

Model
ClassEval (100) HumanEval-X (164) MBXP (611) McEval (50)

Python CPP Java JS Python CPP C# Java JS PHP Python Ruby C C#

Claude-3.5-Sonnet 26.00 32.32 48.78 39.02 49.39 43.86 51.23 50.90 51.06 100.00 57.77 49.26 48.00 70.00
DeepSeek-VL2 1.00 1.83 11.59 29.88 40.24 12.77 11.29 9.00 39.12 85.27 42.06 45.01 28.00 36.00
Gemini-2.0 70.00 85.37 90.24 87.20 87.80 90.67 82.98 89.20 92.14 91.49 94.27 94.11 78.00 96.00
GLM-4V-plus 18.00 54.27 60.37 78.66 72.56 76.60 68.58 75.12 81.83 98.36 79.38 84.78 68.00 72.00
GPT-4o 47.00 43.90 82.93 85.98 82.93 74.14 67.92 71.85 85.76 99.67 87.23 89.20 76.00 90.00
Intern-VL2.5-8B-MPO 14.00 12.80 21.95 56.70 59.75 31.75 14.40 21.44 60.07 99.51 68.74 72.01 38.00 30.00
Intern-VL2.5-78B-MPO 35.00 53.05 68.29 79.27 84.15 72.01 71.85 58.10 81.01 97.87 85.11 89.85 60.00 78.00
LLaVA-OneVision-7B 0.20 0.00 6.71 3.66 10.37 0.00 0.00 1.47 18.99 65.47 9.33 13.75 2.00 2.00
LLaVA-OneVision-72B 7.00 9.15 26.22 34.15 42.07 23.24 13.75 18.99 46.64 100.00 45.34 52.05 26.00 36.00
MiniCPM-V-2_6 2.00 1.22 14.02 21.34 34.76 5.56 10.47 3.44 45.50 83.47 42.23 54.17 4.00 2.00
Qwen2-VL-72B 41.00 54.88 74.39 74.39 79.27 76.60 65.47 70.21 84.94 100.00 83.63 88.38 66.00 84.00
Qwen2-VL-7B 14.00 1.83 38.41 50.00 64.63 10.15 3.60 14.89 54.99 66.28 54.34 28.48 32.00 44.00
Qwen2-VL-7B-FT 25.00 49.39 75.61 71.34 79.88 84.12 81.34 82.65 81.83 86.42 78.56 83.63 64.00 76.00

Variance 4.10 9.52 9.23 7.49 5.67 11.55 11.28 11.14 5.09 1.47 5.93 6.65 6.36 9.92
Avg 24.09 34.80 50.57 56.88 62.46 48.99 44.90 46.61 64.94 89.77 65.38 66.40 46.57 56.86

Model
McEval (50)

CPP Fortran HTML Java JS Pascal Perl PHP Python Ruby Shell Tcl VB Avg

Claude-3.5-Sonnet 48.00 32.00 12.00 32.08 50.00 52.00 54.00 62.00 60.00 68.00 48.00 56.00 70.00 50.43
DeepSeek-VL2 26.00 12.00 6.00 33.96 34.00 4.00 32.00 38.00 46.00 32.00 12.00 10.00 32.00 26.53
Gemini-2.0 86.00 24.00 52.00 35.84 92.00 70.00 92.00 94.00 84.00 90.00 48.00 82.00 86.00 80.48
GLM-4V-plus 64.00 46.00 30.00 30.19 68.00 48.00 52.00 86.00 74.00 78.00 42.00 54.00 52.00 63.49
GPT-4o 64.00 68.00 60.00 35.85 84.00 66.00 74.00 92.00 94.00 82.00 66.00 74.00 92.00 75.43
Intern-VL2.5-8B-MPO 44.00 20.00 14.00 24.53 38.00 24.00 38.00 32.00 48.00 52.00 14.00 22.00 36.00 37.34
Intern-VL2.5-78B-MPO 58.00 60.00 66.00 26.42 68.00 46.00 76.00 60.00 82.00 80.00 50.00 66.00 74.00 67.71
LLaVA-OneVision-7B 4.00 0.00 0.00 5.66 10.00 4.00 8.00 20.00 68.00 50.00 2.00 4.00 0.00 11.47
LLaVA-OneVision-72B 24.00 4.00 2.00 33.96 30.00 24.00 30.00 24.00 42.00 60.00 12.00 20.00 48.00 30.91
MiniCPM-V-2_6 10.00 0.00 0.00 1.89 14.00 0.00 28.00 12.00 34.00 48.00 8.00 4.00 0.00 18.31
Qwen2-VL-72B 66.00 72.00 40.00 30.19 74.00 50.00 74.00 78.00 84.00 78.00 64.00 66.00 80.00 70.35
Qwen2-VL-7B 42.00 22.00 4.00 26.42 48.00 18.00 24.00 56.00 46.00 64.00 32.00 20.00 52.00 35.05
Qwen2-VL-7B-FT 70.00 36.00 20.00 20.75 68.00 26.00 56.00 76.00 64.00 70.00 46.00 56.00 68.00 62.85

Variance 5.81 6.32 5.25 1.09 6.31 5.60 5.73 7.59 3.49 2.56 5.32 8.05 8.58 5.30
Avg 47.71 32.57 24.14 26.01 52.86 35.00 49.43 57.00 64.29 65.86 36.57 43.29 54.71 49.95

Table 3: Pass@1 results for 13 LLMs on the code flowchart generation task in the Flow2Code benchmarks.
ClassEval, HumanEval-X, MBXP, and McEval represent the code source of the instances in Flow2chart, respectively.
The results in bold are the optimal results, while the underlined results represent the suboptimal results. The results
are represented in percentage (%).

GLM-4V-Plus (GLM et al., 2024) specializes in
image and video recognition, making it suitable for
tasks requiring advanced visual comprehension.

GPT-4o (Team, 2024) is a leading multimodal
model capable of processing text, images, and au-
dio, with strong code generation abilities.

InternVL2_5-MPO (8B and 78B) (Chen et al.,
2024b) is optimized for multimodal reasoning
tasks, this model excels in complex, multimodal
code generation scenarios.

LLaVA-OneVision-Qwen2-OV (7B and
72B) (Li et al., 2025) is known for strong perfor-
mance across a range of visual tasks, including
image and video understanding.

MiniCPM-V-2_6 (Yao et al., 2024) is optimized
for video understanding and multimodal reasoning
with efficient processing of visual data.

Qwen2-VL-Instruct (7B and 72B) (Wang et al.,
2024) provides strong performance in understand-
ing visual content across varying resolutions.

These models are selected based on their demon-
strated capabilities in multimodal tasks and their

potential for generating code from both visual and
textual inputs.

4.4 Experimental Results

As shown in Table 3 and Figure 3, the benchmark
evaluation of 13 multimodal models across three
flowchart types (code, UML, and pseudocode) re-
veals distinct performance patterns.

Model Performance Disparity: Gemini-2.0
consistently maintains a significant advantage
across all three tasks, with an average pass rate
improvement of 4.78% over the next best models,
i.e., GPT-4o. GPT-4o and Qwen2-VL-72B perform
similarly on the code flowchart task, but their per-
formance decreases by about 5% and 10% respec-
tively on UML and pseudocode tasks. Smaller mod-
els (such as LLaVA-OneVision-7B and MINICPM-
V-2_6) exhibit overall weaker performance, with
average pass rates only 14.3%-22.35% of those
achieved by the top-performing Gemini-2.0.

Programming Language Sensitivity: The gen-
eration ability for PHP is notably strong, with three

8130

Cl
au
de
-3
.5-
So
nn
et(
C)

Cl
au
de
-3
.5-
So
nn
et(
P)

Cl
au
de
-3
.5-
So
nn
et(
U)

De
ep
Se
ek
-V
L2
(C
)

De
ep
Se
ek
-V
L2
(P
)

De
ep
Se
ek
-V
L2
(U
)

Ge
mi
ni-
2.0
(C
)

Ge
mi
ni-
2.0
(P
)

Ge
mi
ni-
2.0
(U
)

GL
M
-4
V-
plu
s(C
)

GL
M
-4
V-
plu
s(P
)

GL
M
-4
V-
plu
s(U
)

GP
T-
4o
(C
)

GP
T-
4o
(P
)

GP
T-
4o
(U
)

In
ter
n-
VL
2.5
-7
8B
-M
PO
(C
)

In
ter
n-
VL
2.5
-7
8B
-M
PO
(P
)

In
ter
n-
VL
2.5
-7
8B
-M
PO
(U
)

In
ter
n-
VL
2.5
-8
B-
M
PO
(C
)

In
ter
n-
VL
2.5
-8
B-
M
PO
(P
)

In
ter
n-
VL
2.5
-8
B-
M
PO
(U
)

LL
aV
A-
On
eV
isi
on
-7
2B
(C
)

LL
aV
A-
On
eV
isi
on
-7
2B
(P
)

LL
aV
A-
On
eV
isi
on
-7
2B
(U
)

LL
aV
A-
On
eV
isi
on
-7
B(
C)

LL
aV
A-
On
eV
isi
on
-7
B(
P)

LL
aV
A-
On
eV
isi
on
-7
B(
U)

M
ini
CP
M
-V
-2
_6
(C
)

M
ini
CP
M
-V
-2
_6
(P
)

M
ini
CP
M
-V
-2
_6
(U
)

Qw
en
2-
VL
-7
2B
(C
)

Qw
en
2-
VL
-7
2B
(P
)

Qw
en
2-
VL
-7
2B
(U
)

Qw
en
2-
VL
-7
B(
C)

Qw
en
2-
VL
-7
B(
P)

Qw
en
2-
VL
-7
B(
U)

Qw
en
2-
VL
-7
B-
FT
(C
)

Qw
en
2-
VL
-7
B-
FT
(P
)

Qw
en
2-
VL
-7
B-
FT
(U
)

0.0

0.2

0.4

0.6

0.8

1.0

P
as
s@
1

Pass@5 Pass@3 Pass@1

Figure 3: Stacked diagram of Pass@1, 3, and 5 of all the evaluation models on the benchmark. The suffixes of the
model names represent different flowchart types: C represents code flowchart, P represents pseudocode flowchart,
and U represents UML flowchart.

C# C CPP Fortran HTML Java JavaScript PHP Pascal Perl Python Ruby Shell Tcl Visual Basic
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
as
s@
1

Easy
Middle
Hard

Figure 4: The average Pass@1 rate of the three difficulty levels of the samples in the Flow2Code’s McEval part on
the code flowchart.

models achieving perfect scores. In contrast, the av-
erage pass rates for Fortran and HTML are 57.2%-
65.63% lower compared to PHP. The disparity in
generation capabilities between models is most
pronounced for CPP, C#, and JavaScript, which
exhibit the largest variance in performance. PHP,
Python, and Ruby languages exhibit the least varia-
tion across models.

Model Scale Effect: Increasing the model size
results in systematic improvements. For exam-
ple, Qwen2-VL-72B shows a 103.8% performance
boost over its 7B version in the code flowchart
task. Similarly, the Intern-VL2.5-78B version out-
performs its 8B counterpart in the UML task by
75.1%.

Flowchart Type Difference Results: The code
flowchart task shows the highest average pass rate,
followed by the UML task, with the pseudocode
task proving to be the most challenging, showing
a decrease of 10.63% and 7.48% in average pass
rates compared to the first two tasks. Some models
exhibit task-specific performance, such as Claude-
3.5-Sonnet, which performs exceptionally well in

generating Tcl code for pseudocode tasks, but its
ability to generate Fortran code decreases by 6%
compared to the code flowchart task.

Fine-Tuning Strategy Effectiveness: As shown
in Figure 5, after fine-tuning, significant perfor-
mance improvements are observed in Qwen2-
VL-7B-FT, with the most pronounced in object-
oriented languages (C#, Java) and web languages
(JS, PHP), suggesting the fine-tuning data em-
phasized modern programming paradigms. The
modest performance increase in legacy languages
(Fortran, Pascal) and markup languages (HTML)
suggests either data scarcity in these domains
or architectural limitations in handling non-OOP
paradigms.

Code Generation with Different Difficulty
Levels: Figure 4 presents the average Pass@1
performance of 13 multimodal models across 15
programming languages, categorized by difficulty
level (Easy, Middle, Hard). Several key observa-
tions can be made.

(1) A consistent trend across most languages and
models is the inverse correlation between task dif-

8131

0.0

0.2

0.4

0.6

0.8

1.0

Python

JS

Java
CPPPython

Qwen2-VL-7B
Qwen2-VL-7B-FT

CPP

C#

Java

JS

PHP

Python

Ruby
C

C#CPP
Fortran

HTML

Java

JS

Pascal

Perl

PHP

Python

Ruby

Shell

Tcl
VB

 ClassEval
 HumanEval-X
 MBXP
 McEval

Figure 5: Average Pass@1 results for Qwen2-VL-
7B and the fine-tuned Qwen2-VL-7B-FT (on the
Flow2Code dataset) on code flowchart tasks. The
dataset labels in the bottom-right corner of the image
show which subclass corresponds to each dimension of
the radar chart.

ficulty and Pass@1. Performance is highest for
“Easy” tasks, decreases for “Middle” tasks, and is
lowest for “Hard” tasks. This is expected, as the
complexity of the code generation task directly im-
pacts the likelihood of generating a correct solution
on the first attempt (Pass@1).

(2) There is significant variation in performance
across different programming languages. For in-
stance, models generally achieve higher Pass@1
scores in Python and Ruby, even at higher difficulty
levels, compared to languages like HTML, Java,
or Fortran. The superior performance of Python
and Ruby may be attributed to a combination of
factors, including the prevalence of these languages
in training data, their relatively simpler syntax and
higher-level abstractions, and the rich availability
of libraries and corresponding descriptions within
the dataset.

5 Conclusion

We introduce Flow2Code, a multimodal dataset
combining flowcharts and code in 15 programming
languages, designed to advance research in code
generation. The dataset includes three flowchart
types—code, UML, and pseudocode—providing a
rich resource for training and evaluating MLLMs.
We propose a new benchmark, Flow2Code, to as-
sess MLLMs on code generation from flowchart
inputs. Extensive evaluations of 13 MLLMs high-
light their strengths and weaknesses, providing
valuable insights for future research.

Acknowledgments

We want to thank the School of Computer Science
and Technology and the Institute of AI Education
at East China Normal University for providing the
computational platform. We also thank the review-
ers for their insightful comments.

Limitations

While this study introduces the Flow2Code dataset
and the Flow2Code benchmark as valuable re-
sources for code generation, the limitations remain
that should be addressed in future work. The cur-
rent evaluation framework focuses on end-to-end
code generation tasks but does not account for the
potential complexities involved in real-world code
maintenance tasks, such as debugging or refactor-
ing. Extending the benchmark to include tasks
beyond initial code generation, such as identifying
and fixing bugs or optimizing existing code based
on flowchart representations, could better reflect
the broader utility of multimodal models in soft-
ware development.

Ethics Statement

We ensure that the Flow2Code dataset is con-
structed in full compliance with the terms of use of
the original datasets (HumanEval-X, MBXP, MCE-
val, and ClassEval) and strictly respect the intel-
lectual property rights of their authors. All code
segments and flowchart transformations are derived
from publicly available solutions or generated pro-
grammatically, with no inclusion of sensitive, pro-
prietary, or personally identifiable information.

For human reviewers involved in the flowchart
verification and pseudocode transformation pro-
cesses, we guarantee fair treatment, including ap-
propriate compensation and adherence to ethical
labor practices. Reviewers participated voluntar-
ily with full awareness of their tasks and associ-
ated requirements, and their contributions were
anonymized to protect privacy.

The Flow2Code dataset focuses on flowchart-
based code generation tasks and does not involve
socially sensitive topics, biased content, or ethically
controversial material. The generated flowcharts
and code segments are purely algorithmic and logic-
driven, posing no foreseeable risks of misuse or
harmful societal consequences. All flowchart gen-
eration tools (Visustin, Graphviz) and AI models
(GPT-4o, Gemini-2.0) were used in accordance
with their respective licenses and API terms. The

8132

dataset will be released under open licenses that
align with the original data sources’ policies.

References
2024. Introducing Gemini 2.0: Our

new AI model for the agentic era.
https://blog.google/technology/google-
deepmind/google-gemini-ai-update-december-
2024/.

Qihang Ai, Jiafan Li, Jincheng Dai, Jianwu Zhou,
Lemao Liu, Haiyun Jiang, and Shuming Shi. 2024.
Advancement in graph understanding: A multimodal
benchmark and fine-tuning of vision-language mod-
els. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 7485–7501, Bangkok,
Thailand. Association for Computational Linguistics.

AI Anthropic. 2024. Claude 3.5 sonnet model card
addendum. Claude-3.5 Model Card, 3:6.

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang,
Xiaopeng Li, Yuchen Tian, Ming Tan, Wasi Uddin
Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, et al.
2023. Multi-lingual evaluation of code generation
models. In ICLR.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, H. Michalewski, David Dohan, Ellen Jiang,
Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles
Sutton. 2021. Program Synthesis with Large Lan-
guage Models. ArXiv.

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-
ney Nguyen, Luna Phipps-Costin, Donald Pinckney,
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,
Molly Q Feldman, Arjun Guha, Michael Greenberg,
and Abhinav Jangda. 2023. MultiPL-E: A Scal-
able and Polyglot Approach to Benchmarking Neural
Code Generation. IEEE Transactions on Software
Engineering, 49(7):3675–3691.

Linzheng Chai, Shukai Liu, Jian Yang, Yuwei Yin,
Ke Jin, Jiaheng Liu, Tao Sun, Ge Zhang, Changyu
Ren, Hongcheng Guo, Zekun Wang, Boyang Wang,
Xianjie Wu, Bing Wang, Tongliang Li, Liqun Yang,
Sufeng Duan, and Zhoujun Li. 2024. McEval:
Massively Multilingual Code Evaluation. Preprint,
arXiv:2406.07436.

Ned Chapin. 2003. Flowchart, page 714–716. John
Wiley and Sons Ltd., GBR.

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang
Zang, Zehui Chen, Haodong Duan, Jiaqi Wang,
Yu Qiao, Dahua Lin, et al. 2024a. Are we on the
right way for evaluating large vision-language mod-
els? CoRR.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Pondé, Jared Kaplan, Harrison Ed-
wards, Yura Burda, Nicholas Joseph, Greg Brockman,

Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, F. Such,
D. Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William H.
Guss, Alex Nichol, Igor Babuschkin, S. Balaji, Shan-
tanu Jain, A. Carr, J. Leike, Joshua Achiam, Vedant
Misra, Evan Morikawa, Alec Radford, M. Knight,
Miles Brundage, Mira Murati, Katie Mayer, P. Welin-
der, Bob McGrew, Dario Amodei, Sam McCandlish,
I. Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing Large Language Models Trained on Code. ArXiv.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo
Chen, Sen Xing, Muyan Zhong, Qinglong Zhang,
Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu,
Yu Qiao, and Jifeng Dai. 2024b. Intern VL: Scal-
ing up Vision Foundation Models and Aligning for
Generic Visual-Linguistic Tasks. 2024 IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 24185–24198.

Rocktim Das, Simeon Hristov, Haonan Li, Dimitar
Dimitrov, Ivan Koychev, and Preslav Nakov. 2024.
EXAMS-V: A multi-discipline multilingual multi-
modal exam benchmark for evaluating vision lan-
guage models. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 7768–7791,
Bangkok, Thailand. Association for Computational
Linguistics.

DeepSeek-AI, Qihao Zhu, Daya Guo, Zhihong Shao,
Dejian Yang, Peiyi Wang, Runxin Xu, Y. Wu, Yukun
Li, Huazuo Gao, Shirong Ma, Wangding Zeng, Xiao
Bi, Zihui Gu, Hanwei Xu, Damai Dai, Kai Dong,
Liyue Zhang, Yishi Piao, Zhibin Gou, Zhenda Xie,
Zhewen Hao, Bingxuan Wang, Junxiao Song, Deli
Chen, Xin Xie, Kang Guan, Yuxiang You, Aixin
Liu, Qiushi Du, Wenjun Gao, Xuan Lu, Qinyu Chen,
Yaohui Wang, Chengqi Deng, Jiashi Li, Cheng-
gang Zhao, Chong Ruan, Fuli Luo, and Wenfeng
Liang. 2024. DeepSeek-Coder-V2: Breaking the Bar-
rier of Closed-Source Models in Code Intelligence.
Preprint, arXiv:2406.11931.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang,
Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng
Sha, Xin Peng, and Yiling Lou. 2023. ClassE-
val: A Manually-Crafted Benchmark for Evaluating
LLMs on Class-level Code Generation. Preprint,
arXiv:2308.01861.

John Ellson, Emden R Gansner, Eleftherios Kout-
sofios, Stephen C North, and Gordon Woodhull. 2004.
Graphviz and dynagraph—static and dynamic graph
drawing tools. Graph drawing software, pages 127–
148.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chen-
hui Zhang, Da Yin, Dan Zhang, Diego Rojas, Guanyu
Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning
Wang, Jiadai Sun, Jiajie Zhang, Jiale Cheng, Jiayi

8133

https://doi.org/10.18653/v1/2024.acl-long.404
https://doi.org/10.18653/v1/2024.acl-long.404
https://doi.org/10.18653/v1/2024.acl-long.404
https://doi.org/10.1109/TSE.2023.3267446
https://doi.org/10.1109/TSE.2023.3267446
https://doi.org/10.1109/TSE.2023.3267446
https://doi.org/10.48550/arXiv.2406.07436
https://doi.org/10.48550/arXiv.2406.07436
https://doi.org/10.1109/CVPR52733.2024.02283
https://doi.org/10.1109/CVPR52733.2024.02283
https://doi.org/10.1109/CVPR52733.2024.02283
https://doi.org/10.18653/v1/2024.acl-long.420
https://doi.org/10.18653/v1/2024.acl-long.420
https://doi.org/10.18653/v1/2024.acl-long.420
https://doi.org/10.48550/arXiv.2406.11931
https://doi.org/10.48550/arXiv.2406.11931
https://doi.org/10.48550/arXiv.2308.01861
https://doi.org/10.48550/arXiv.2308.01861
https://doi.org/10.48550/arXiv.2308.01861

Gui, Jie Tang, Jing Zhang, Jingyu Sun, Juanzi Li,
Lei Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu,
Minlie Huang, Peng Zhang, Qinkai Zheng, Rui Lu,
Shuaiqi Duan, Shudan Zhang, Shulin Cao, Shuxun
Yang, Weng Lam Tam, Wenyi Zhao, Xiao Liu, Xiao
Xia, Xiaohan Zhang, Xiaotao Gu, Xin Lv, Xinghan
Liu, Xinyi Liu, Xinyue Yang, Xixuan Song, Xunkai
Zhang, Yifan An, Yifan Xu, Yilin Niu, Yuantao
Yang, Yueyan Li, Yushi Bai, Yuxiao Dong, Zehan Qi,
Zhaoyu Wang, Zhen Yang, Zhengxiao Du, Zhenyu
Hou, and Zihan Wang. 2024. ChatGLM: A Family of
Large Language Models from GLM-130B to GLM-4
All Tools. Preprint, arXiv:2406.12793.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, et al. 2021.
Measuring coding challenge competence with apps.
In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track
(Round 2).

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. 2021. Lora: Low-rank adaptation of large lan-
guage models. In International Conference on Learn-
ing Representations.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, Kai Dang, Yang Fan,
Yichang Zhang, An Yang, Rui Men, Fei Huang,
Bo Zheng, Yibo Miao, Shanghaoran Quan, Yun-
long Feng, Xingzhang Ren, Xuancheng Ren, Jingren
Zhou, and Junyang Lin. 2024. Qwen2.5-Coder Tech-
nical Report. Preprint, arXiv:2409.12186.

Klaus Krippendorff. 2011. Computing krippendorff’s
alpha-reliability.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina
Lee, Oded Padon, Alex Aiken, and Percy S Liang.
2019. Spoc: Search-based pseudocode to code. Ad-
vances in Neural Information Processing Systems,
32.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih, Daniel
Fried, Sida Wang, and Tao Yu. 2023. Ds-1000: A
natural and reliable benchmark for data science code
generation. In International Conference on Machine
Learning, pages 18319–18345. PMLR.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng
Li, Hao Zhang, Kaichen Zhang, Peiyuan Zhang, Yan-
wei Li, Ziwei Liu, and Chunyuan Li. 2025. LLaVA-
onevision: Easy visual task transfer. Transactions on
Machine Learning Research.

Kaixin Li, Yuchen Tian, Qisheng Hu, Ziyang Luo, Zhiy-
ong Huang, and Jing Ma. 2024. Mmcode: Bench-
marking multimodal large language models for code
generation with visually rich programming problems.
In Findings of the Association for Computational
Linguistics: EMNLP 2024, pages 736–783.

Yujia Li, David Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal
Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-
Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel J. Mankowitz,
Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.
2022. Competition-Level Code Generation with Al-
phaCode. Science, 378(6624):1092–1097.

Zeming Liu, Haifeng Wang, Zheng-Yu Niu, Hua Wu,
Wanxiang Che, and Ting Liu. 2020. Towards conver-
sational recommendation over multi-type dialogs. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1036–
1049.

I Loshchilov. 2017. Decoupled weight decay regulariza-
tion. arXiv preprint arXiv:1711.05101.

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Sil-
vio Savarese, and Yingbo Zhou. 2023. CodeGen2:
Lessons for Training LLMs on Programming and
Natural Languages.

Bashar Nuseibeh and Steve Easterbrook. 2000. Require-
ments engineering: a roadmap. In Proceedings of the
Conference on the Future of Software Engineering,
pages 35–46.

OpenAI. 2023. GPT-4 Technical Report. Preprint,
arXiv:2303.08774.

Qiwei Peng, Yekun Chai, and Xuhong Li. 2024.
Humaneval-xl: A multilingual code generation
benchmark for cross-lingual natural language gen-
eralization. In LREC/COLING.

Fatemeh Shiri, Xiao-Yu Guo, Mona Golestan Far, Xin
Yu, Reza Haf, and Yuan-Fang Li. 2024. An empirical
analysis on spatial reasoning capabilities of large mul-
timodal models. In Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 21440–21455, Miami, Florida, USA.
Association for Computational Linguistics.

OpenAI Team. 2024. GPT-4o System Card. Preprint,
arXiv:2410.21276.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei
Du, Xuancheng Ren, Rui Men, Dayiheng Liu, Chang
Zhou, Jingren Zhou, and Junyang Lin. 2024. Qwen2-
VL: Enhancing Vision-Language Model’s Percep-
tion of the World at Any Resolution. Preprint,
arXiv:2409.12191.

Chengyue Wu, Yixiao Ge, Qiushan Guo, Jiahao Wang,
Zhixuan Liang, Zeyu Lu, Ying Shan, and Ping Luo.
2024a. Plot2Code: A Comprehensive Benchmark
for Evaluating Multi-modal Large Language Models
in Code Generation from Scientific Plots.

8134

https://doi.org/10.48550/arXiv.2406.12793
https://doi.org/10.48550/arXiv.2406.12793
https://doi.org/10.48550/arXiv.2406.12793
https://doi.org/10.48550/arXiv.2409.12186
https://doi.org/10.48550/arXiv.2409.12186
https://openreview.net/forum?id=zKv8qULV6n
https://openreview.net/forum?id=zKv8qULV6n
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://doi.org/10.48550/ARXIV.2305.02309
https://doi.org/10.48550/ARXIV.2305.02309
https://doi.org/10.48550/ARXIV.2305.02309
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.18653/v1/2024.emnlp-main.1195
https://doi.org/10.18653/v1/2024.emnlp-main.1195
https://doi.org/10.18653/v1/2024.emnlp-main.1195
https://doi.org/10.48550/arXiv.2410.21276
https://doi.org/10.48550/arXiv.2409.12191
https://doi.org/10.48550/arXiv.2409.12191
https://doi.org/10.48550/arXiv.2409.12191
https://doi.org/10.48550/ARXIV.2405.07990
https://doi.org/10.48550/ARXIV.2405.07990
https://doi.org/10.48550/ARXIV.2405.07990

Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao
Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang Ma,
Chengyue Wu, Bingxuan Wang, Zhenda Xie, Yu Wu,
Kai Hu, Jiawei Wang, Yaofeng Sun, Yukun Li, Yishi
Piao, Kang Guan, Aixin Liu, Xin Xie, Yuxiang You,
Kai Dong, Xingkai Yu, Haowei Zhang, Liang Zhao,
Yisong Wang, and Chong Ruan. 2024b. DeepSeek-
VL2: Mixture-of-Experts Vision-Language Models
for Advanced Multimodal Understanding. Preprint,
arXiv:2412.10302.

Stelios Xinogalos. 2013. Using flowchart-based pro-
gramming environments for simplifying program-
ming and software engineering processes. In 2013
IEEE Global Engineering Education Conference
(EDUCON), pages 1313–1322.

Cheng Xu, Xiaofeng Hou, Jiacheng Liu, Chao Li, Tian-
hao Huang, Xiaozhi Zhu, Mo Niu, Lingyu Sun,
Peng Tang, Tongqiao Xu, Kwang-Ting Cheng, and
Minyi Guo. 2023. MMBench: Benchmarking End-
to-End Multi-modal DNNs and Understanding Their
Hardware-Software Implications. In 2023 IEEE In-
ternational Symposium on Workload Characteriza-
tion (IISWC), pages 154–166.

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo
Cui, Hongji Zhu, Tianchi Cai, Haoyu Li, Weilin Zhao,
Zhihui He, et al. 2024. Minicpm-v: A gpt-4v level
mllm on your phone. CoRR.

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang,
Yuchi Ma, Guangtai Liang, Ying Li, Qianxiang Wang,
and Tao Xie. 2024. CoderEval: A Benchmark of
Pragmatic Code Generation with Generative Pre-
trained Models. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineer-
ing, pages 1–13.

Xiang Yue, Yuansheng Ni, Tianyu Zheng, Kai Zhang,
Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu
Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao
Yu, Ruibin Yuan, Renliang Sun, Ming Yin, Boyuan
Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang,
Huan Sun, Yu Su, and Wenhu Chen. 2024. MMMU:
A Massive Multi-Discipline Multimodal Understand-
ing and Reasoning Benchmark for Expert AGI. In
2024 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 9556–9567.

Sukmin Yun, Haokun Lin, Rusiru Thushara, Moham-
mad Qazim Bhat, Yongxin Wang, Zutao Jiang,
Mingkai Deng, Jinhong Wang, Tianhua Tao, Junbo
Li, et al. 2024. Web2code: A large-scale webpage-
to-code dataset and evaluation framework for multi-
modal llms. CoRR.

Fengji Zhang, Linquan Wu, Huiyu Bai, Guancheng Lin,
Xiao Li, Xiao Yu, Yue Wang, Bei Chen, and Jacky
Keung. 2024. Humaneval-v: Evaluating visual under-
standing and reasoning abilities of large multimodal
models through coding tasks. CoRR.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Lei Shen, Zihan Wang, Andi Wang,

Yang Li, et al. 2023. Codegeex: A pre-trained model
for code generation with multilingual benchmarking
on humaneval-x. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 5673–5684.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu,
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al.
2024. Bigcodebench: Benchmarking code genera-
tion with diverse function calls and complex instruc-
tions. CoRR.

A Flowchart Example

Due to page limitations in the main text, it is not
feasible to include relatively complex flowcharts.
Therefore, a set of representative flowchart exam-
ples is provided in the appendix. These examples
illustrate three different forms of flowchart repre-
sentations for the same code segment.

B Prompts to Use

This section presents the prompts used during
the flowchart generation process and Flow2Code
benchmark evaluation, as well as the LLM message
code templates.

C Baselines Details

This section provides detailed information about
the 13 MLLMs used for the Flow2Code benchmark
evaluation.

D Fine-tuning Setting

The parameters used for fine-tuning are as follows:
bf16: true; cutoff_len: 2048; ddp_timeout:

180000000; do_train: true; eval_steps: 100;
eval_strategy: steps; finetuning_type: lora;
flash_attn: auto; gradient_accumulation_steps:
8; learning_rate: 5.0e-05; logging_steps: 5;
lora_alpha: 16; lora_dropout: 0; lora_rank:
8; lora_target: all; lr_scheduler_type: cosine;
max_grad_norm: 1.0; max_samples: 100000;
num_train_epochs: 1.0; optim: adamw_torch;
packing: false; per_device_eval_batch_size:
4; per_device_train_batch_size: 4; plot_loss:
true; preprocessing_num_workers: 16; report_to:
none; save_steps: 100; stage: sft; template:
qwen2_vl; trust_remote_code: true; val_size: 0.1;
warmup_steps: 0.

E Additional Results

This section presents the detailed results ob-
tained from evaluating 13 MLLMs using the

8135

https://doi.org/10.48550/arXiv.2412.10302
https://doi.org/10.48550/arXiv.2412.10302
https://doi.org/10.48550/arXiv.2412.10302
https://doi.org/10.1109/EduCon.2013.6530276
https://doi.org/10.1109/EduCon.2013.6530276
https://doi.org/10.1109/EduCon.2013.6530276
https://doi.org/10.1109/IISWC59245.2023.00014
https://doi.org/10.1109/IISWC59245.2023.00014
https://doi.org/10.1109/IISWC59245.2023.00014
https://doi.org/10.1145/3597503.3623322
https://doi.org/10.1145/3597503.3623322
https://doi.org/10.1145/3597503.3623322
https://doi.org/10.1109/CVPR52733.2024.00913
https://doi.org/10.1109/CVPR52733.2024.00913
https://doi.org/10.1109/CVPR52733.2024.00913

Prompt for DOT Code Transformation
from typing import List

def separate_paren_groups(paren_string: str) -> List[str]:

 # Remove spaces from the input string
 paren_string = paren_string.replace(" ", "")

 # Initialize variables to store current group and stack to track parentheses
 current_group = ""
 stack = []
 result = []

 # Iterate over each character in the input string
 for char in paren_string:
 # If it's an opening parenthesis, push to stack and add to current group
 if char == "(":
 stack.append(char)
 current_group += char
 # If it's a closing parenthesis, pop from stack and add to current group
 elif char == ")" and stack:
 stack.pop()
 current_group += char
 # If stack is empty, it means we have a complete group
 if not stack:
 result.append(current_group)
 current_group = "" # Reset current group for the next one

 return result

Figure 6: The code segment example.

8136

Figure 7: The code flowchart based on Figure 6 the code segment example.

8137

Figure 8: The UML flowchart based on Figure 6 the code segment example.

8138

Figure 9: The pseudocode flowchart based on Figure 6 the code segment example.

Flow2Code benchmark, including the specific
Pass@1, Pass@3, and Pass@5 data for each of
the three flowchart types.

8139

Prompt for Dot Code Check
You will be given two inputs:

1. A new DOT representation of the control flow for a piece of code.
2. An old DOT representation of the control flow for the same piece of code.

Your task is to evaluate if the transformation from the old DOT code to the new DOT code adheres to the following rules:

Example:
Old DOT code:
```dot
digraph FlowChart {
  1 [shape=ellipse, label="import math"];
  2 [shape=ellipse, label="def calculate_area(radius)"];
  3 [shape=box, label="area = math.pi * radius * radius"];
  4 [shape=Msquare, label="End"];
  
  1->2;
  2->3;
  3->4;
}
```
New DOT code:
```dot
digraph FlowChart {
  1 [shape=ellipse, label="Import the math module"];
  2 [shape=ellipse, label="Define function `calculate_area` with parameter `radius`"];
  3 [shape=box, label="Calculate the area using the formula `pi * radius * radius` and assign it to `area`"];
  4 [shape=Msquare, label="End"];
  
  1->2;
  2->3;
  3->4;
}
```
Explanation:
- The import statement is translated into "Import the math module".
- The function definition is described as "Define function `calculate_area` with parameter `radius`".
- The calculation step is explained as "Calculate the area using the formula `pi * radius * radius` and assign it to `area`".

Final Note:
Respond only with ‘yes’ or ‘no’.

Figure 10: The prompt used by Gemini-2.0 to check the DOT code generated by GPT-4o.

8140

Prompt for DOT Code Transformation

You will be given one input:
1. A `DOT` representation of the control flow for a piece of code.

Your task is to generate a natural language-oriented flowchart in `DOT` syntax. This flowchart must:
- Clearly describe the logic in plain English.
- Follow `DOT` syntax accurately.
- Include key operations, conditions, and outputs.
- Be mindful of the specific characteristics of the programming language used.

Instructions:
1. **Do not change the structure of the `DOT` code**. Only modify the `label` content of the nodes to describe the code's logic in natural language.
2. For the "label" fields, describe the code inside them in clear and concise natural language, while considering the characteristics of the given programming
language. In particular, the definitions of various data types and function types should be clarified.
3. If the `label` represents an import statement, describe it as “Import module XYZ”.
4. For function definitions, describe the function name and its input parameters in plain English, e.g., “Define function `function_name` with parameters
`param1`, `param2` of type `type1`”. If a parameter has a default value, mention it explicitly, e.g., “Parameter `param1` has a default value of `10`.”
5. For operations like assignments or calculations, describe them in natural language, e.g., “Assign the value of `radius * radius * pi` to `area`.”
6. For conditionals, describe them in natural language, e.g., “Check if `distance` is less than `threshold`.”
7. For loops, describe them as “Iterate through the list `numbers`.”
8. If a function has a return statement, describe the returned value, e.g., “Return `result`.”
9. **Do not modify the rest of the `DOT` syntax** like nodes, edges, or graph attributes; only modify the labels as instructed.
10. **Only output the `DOT` code inside code blocks** (i.e., between the triple backticks “```”).

Example:
Given DOT Input:
```dot
digraph FlowChart {
  1 [shape=ellipse, label="import math"];
  2 [shape=ellipse, label="def calculate_area(radius)"];
  3 [shape=box, label="area = math.pi * radius * radius"];
  4 [shape=Msquare, label="End"];
  
  1->2;
  2->3;
  3->4;
}
```
Desired Output:
```dot
digraph FlowChart {
  1 [shape=ellipse, label="Import the math module"];
  2 [shape=ellipse, label="Define function `calculate_area` with parameter `radius`"];
  3 [shape=box, label="Calculate the area using the formula `pi * radius * radius` and assign it to `area`"];
  4 [shape=Msquare, label="End"];
  
  1->2;
  2->3;
  3->4;
}
```
Explanation:
- The import statement is translated into "Import the math module".
- The function definition is described as "Define function `calculate_area` with parameter `radius`".
- The calculation step is explained as "Calculate the area using the formula `pi * radius * radius` and assign it to `area`".

Final Note:
Next is the dot code you need to convert, and you should modify the labels based on the programming language's characteristics. It is converted from XXX
programming language into dot code.

Figure 11: The prompt used by GPT-4o to convert DOT code into pseudocode DOT code.

8141

Prompt for Code Generation

Prompt:

You will be given an image representing a **XXX flowchart**. The flowchart describes the logic and structure of a program in terms of nodes and edges.

Your task is to generate the **complete code** that matches the flowchart. Follow these instructions:

1. Write the **complete code** based on the flowchart's structure. Ensure that the program is functional and adheres to the flowchart's steps.
2. The generated code must match the flowchart's described logic:
 - Define any necessary functions.
 - Implement loops, conditionals, and assignments as indicated by the flowchart.
 - Follow the flow and operations of the program as described by the nodes and edges.
3. The code should **match the intended programming language**: `<<insert_language_name_here>>`.
4. You must **only output the complete code** surrounded by **code blocks** (i.e., between triple backticks ```).
5. Do not include any other explanations or markdown outside the code block.
6. Do not include any comments or explanations within the generated code. The code should be solely composed of the functional elements from the flowchart,
without any descriptive or explanatory annotations.
7. Do not add any additional code that is not represented in the flowchart. For example, if there is no main function in the flowchart, do not add a main function
without authorization.

Figure 12: The prompt used to evaluate LLMs on flowchart-based code generation tasks using the Flow2Code
benchmark.

Unified Format for LLMs ‘messages’ Code
completion = client.chat.completions.create(

 model = model,

 messages = [

 {

 "role": "user",

 "content": [

 {"type": "text", "text": prompt},

 {

 "type": "image_url",

 "image_url": {"url": f"data:image/png;base64,{base64_image}"},

 },

],

 }

],

)

Figure 13: The LLM message code template used for evaluating large models on flowchart-based code generation
tasks using the Flow2Code benchmark.

8142

Model Language Model Vision Model time

Closed-source

Claude-3.5-Sonnet (Anthropic, 2024) - - 2024.10
Gemini-2.0 (Int, 2024) - - 2024.12
GLM-4V-plus (GLM et al., 2024) - - 2024.08
GPT-4o (Team, 2024) - - 2024.05

Open-source

DeepSeek-VL2 (Wu et al., 2024b) DeepSeekMoE-27B SigLIP-400M 2025.01
Intern-VL2.5-8B-MPO (Chen et al., 2024b) InternLM2.5-7B InternViT-300M-v2.5 2024.12
Intern-VL2.5-78B-MPO (Chen et al., 2024b) Qwen-2.5-72B InternViT-6B-v2.5 2024.12
LLaVA-OneVision-7B (Li et al., 2025) Qwen2-7B SigLIP-400M 2024.09
LLaVA-OneVision-72B (Li et al., 2025) Qwen2-72B SigLIP-400M 2024.09
MiniCPM-V-2_6 (Yao et al., 2024) Qwen2-7B SigLIP-400M 2024.08
Qwen2-VL-72B (Wang et al., 2024) Qwen2-72B QwenViT 2024.10
Qwen2-VL-7B (Wang et al., 2024) Qwen2-7B QwenViT 2024.10

Table 4: Details of the baseline model.

Model
ClassEval (100) HumanEval-X (164) MBXP (611) McEval (50)

Python CPP Java JS Python CPP C# Java JS PHP Python Ruby C C#

Claude-3.5-Sonnet 24.00 29.88 40.85 22.56 50.61 48.61 55.16 53.36 50.25 100.00 57.61 51.23 44.00 72.00
DeepSeek-VL2 3.00 2.44 9.76 40.85 35.98 21.44 9.98 8.84 38.13 83.63 43.54 48.61 24.00 20.00
Gemini-2.0 60.00 71.34 79.88 89.02 82.93 87.89 88.05 79.54 90.02 86.42 91.65 93.45 76.00 88.00
GLM-4V-plus 16.00 50.61 57.32 81.10 73.78 77.58 64.98 73.32 81.34 98.85 76.92 84.94 62.00 62.00
GPT-4o 43.00 37.80 73.17 80.49 79.27 60.56 58.27 69.07 76.92 99.18 82.16 85.43 66.00 90.00
Intern-VL2.5-8B-MPO 13.00 13.41 26.83 65.24 54.27 38.95 23.73 29.13 61.37 98.20 63.01 67.27 46.00 28.00
Intern-VL2.5-78B-MPO 37.00 42.68 64.63 82.32 75.00 72.01 71.69 62.03 80.20 99.84 83.96 87.07 60.00 80.00
LLaVA-OneVision-7B 0.20 0.00 3.05 9.15 5.49 0.00 0.00 3.11 19.15 62.36 10.80 15.22 4.00 0.00
LLaVA-OneVision-72B 9.00 7.93 23.78 39.02 37.20 20.46 13.91 19.64 43.21 100.00 45.01 49.92 28.00 32.00
MiniCPM-V-2_6 1.00 1.22 10.37 39.63 32.93 15.22 16.37 2.13 41.73 88.87 42.23 57.28 24.00 12.00
Qwen2-VL-72B 39.00 50.61 73.17 75.61 76.22 77.58 67.59 71.19 82.00 98.04 82.00 88.71 60.00 86.00
Qwen2-VL-7B 8.00 3.66 23.78 54.27 54.88 27.50 4.75 7.36 57.61 73.65 57.28 36.66 38.00 48.00
Qwen2-VL-7B-FT 20.00 48.78 71.34 60.98 65.24 81.51 82.65 81.18 81.51 84.78 71.52 83.47 56.00 0.00

Model
McEval (50)

CPP Fortran HTML Java JS Pascal Perl PHP Python Ruby Shell Tcl VB Avg

Claude-3.5-Sonnet 46.00 34.00 32.00 26.42 48.00 38.00 62.00 62.00 68.00 60.00 28.00 52.00 56.00 48.61
DeepSeek-VL2 22.00 10.00 10.00 26.42 34.00 8.00 20.00 24.00 38.00 24.00 8.00 10.00 28.00 24.33
Gemini-2.0 78.00 14.00 52.00 37.74 80.00 62.00 90.00 78.00 76.00 90.00 50.00 74.00 82.00 75.56
GLM-4V-plus 62.00 44.00 36.00 28.30 68.00 48.00 50.00 70.00 66.00 76.00 40.00 54.00 52.00 61.34
GPT-4o 54.00 58.00 54.00 33.96 74.00 56.00 80.00 98.00 92.00 90.00 68.00 70.00 92.00 71.18
Intern-VL2.5-8B-MPO 32.00 18.00 18.00 32.08 48.00 22.00 36.00 38.00 50.00 38.00 10.00 24.00 24.00 37.77
Intern-VL2.5-78B-MPO 58.00 52.00 58.00 28.30 60.00 46.00 74.00 70.00 74.00 84.00 50.00 58.00 72.00 66.03
LLaVA-OneVision-7B 4.00 0.00 0.00 5.66 10.00 8.00 12.00 4.00 76.00 60.00 2.00 0.00 4.00 11.78
LLaVA-OneVision-72B 20.00 14.00 2.00 28.30 28.00 14.00 30.00 14.00 62.00 44.00 14.00 22.00 38.00 29.61
MiniCPM-V-2_6 24.00 0.00 4.00 15.09 32.00 6.00 20.00 20.00 36.00 24.00 10.00 8.00 18.00 22.56
Qwen2-VL-72B 74.00 68.00 48.00 32.08 70.00 48.00 76.00 70.00 74.00 84.00 66.00 62.00 78.00 69.61
Qwen2-VL-7B 34.00 12.00 6.00 24.53 40.00 6.00 38.00 38.00 48.00 46.00 20.00 14.00 50.00 32.55
Qwen2-VL-7B-FT 64.00 36.00 38.00 20.75 62.00 18.00 56.00 70.00 50.00 68.00 48.00 40.00 0.00 54.08

Table 5: Pass@1 results for 13 LLMs on UML flowchart generation task in the Flow2Code benchmarks. The
results in bold are the optimal results, while the underlined results represent the suboptimal results. The results are
represented in percentage (%).

8143

Model
ClassEval (100) HumanEval-X (164) MBXP (611) McEval (50)

Python CPP Java JS Python CPP C# Java JS PHP Python Ruby C C#

Claude-3.5-Sonnet 2.00 62.80 71.34 43.29 73.17 51.72 66.12 48.12 80.85 100.00 80.69 81.51 58.00 66.00
DeepSeek-VL2 1.00 0.00 4.27 19.51 36.59 1.80 0.82 1.80 36.82 60.23 36.99 40.92 14.00 12.00
Gemini-2.0 44.00 78.05 70.73 86.59 85.37 50.74 79.54 80.52 90.67 77.09 92.80 87.23 76.00 88.00
GLM-4V-plus 1.00 20.12 7.93 29.88 73.17 28.97 21.11 4.91 76.27 71.69 66.61 79.54 50.00 40.00
GPT-4o 9.00 56.71 57.93 35.98 85.37 63.83 52.21 36.66 81.01 98.20 87.56 82.16 66.00 80.00
Intern-VL2.5-8B-MPO 7.00 0.00 3.66 43.29 54.88 1.80 11.95 5.07 60.56 93.94 61.70 60.07 26.00 8.00
Intern-VL2.5-78B-MPO 26.00 51.22 7.93 79.27 82.93 41.90 58.27 7.86 79.38 82.65 82.98 82.49 58.00 56.00
LLaVA-OneVision-7B 0.20 0.00 2.44 7.93 27.44 0.00 0.00 0.98 36.66 25.53 23.24 31.26 4.00 8.00
LLaVA-OneVision-72B 9.00 4.88 12.20 41.46 58.54 6.71 17.84 4.75 59.74 100.00 53.68 60.07 20.00 34.00
MiniCPM-V-2_6 0.00 0.00 0.61 6.71 37.80 0.00 0.82 0.49 38.30 35.68 37.64 39.44 12.00 8.00
Qwen2-VL-72B 19.00 64.63 23.78 73.17 84.15 40.75 67.43 9.66 83.80 98.04 84.62 81.83 62.00 74.00
Qwen2-VL-7B 2.00 0.00 22.56 39.02 59.15 1.47 1.47 12.27 62.19 65.47 59.57 28.81 26.00 42.00
Qwen2-VL-7B-FT 4.00 46.95 57.32 53.05 61.59 79.05 79.38 77.74 80.03 75.61 71.36 75.29 40.00 54.00

Model
McEval (50)

CPP Fortran HTML Java JS Pascal Perl PHP Python Ruby Shell Tcl VB Avg

Claude-3.5-Sonnet 52.00 26.00 12.00 30.19 72.00 52.00 72.00 70.00 80.00 80.00 50.00 78.00 80.00 60.73
DeepSeek-VL2 22.00 2.00 0.00 18.87 34.00 0.00 26.00 28.00 32.00 34.00 8.00 4.00 18.00 18.69
Gemini-2.0 72.00 30.00 20.00 15.09 78.00 68.00 68.00 84.00 88.00 86.00 44.00 74.00 82.00 70.98
GLM-4V-plus 50.00 24.00 16.00 45.28 56.00 38.00 46.00 70.00 52.00 76.00 22.00 32.00 66.00 44.17
GPT-4o 48.00 40.00 22.00 28.30 72.00 54.00 74.00 92.00 90.00 90.00 44.00 68.00 86.00 63.05
Intern-VL2.5-8B-MPO 36.00 12.00 8.00 26.42 42.00 10.00 26.00 28.00 28.00 36.00 14.00 10.00 30.00 27.77
Intern-VL2.5-78B-MPO 48.00 48.00 16.00 52.83 56.00 38.00 66.00 64.00 70.00 70.00 46.00 56.00 72.00 56.19
LLaVA-OneVision-7B 8.00 0.00 0.00 9.43 20.00 2.00 6.00 20.00 36.00 56.00 4.00 4.00 12.00 12.78
LLaVA-OneVision-72B 24.00 20.00 8.00 58.49 48.00 24.00 38.00 36.00 54.00 58.00 34.00 22.00 44.00 35.24
MiniCPM-V-2_6 12.00 0.00 0.00 13.00 22.00 2.00 10.00 36.00 28.00 18.00 18.00 16.00 6.00 16.43
Qwen2-VL-72B 60.00 32.00 26.00 66.04 66.00 46.00 60.00 78.00 66.00 80.00 52.00 56.00 58.00 59.81
Qwen2-VL-7B 30.00 2.00 10.00 22.64 48.00 4.00 30.00 48.00 44.00 42.00 24.00 12.00 30.00 29.12
Qwen2-VL-7B-FT 42.00 16.00 4.00 15.09 52.00 10.00 38.00 56.00 42.00 56.00 32.00 20.00 52.00 47.79

Table 6: Pass@1 results for 13 LLMs on the pseudocode flowchart generation task in the Flow2Code benchmarks.
The results in bold are the optimal results, while the underlined results represent the suboptimal results. The results
are represented in percentage (%).

Model
ClassEval (100) HumanEval-X (164) MBXP (611)

Avg
Python CPP Java JS Python CPP C# Java JS PHP Python Ruby

Claude-3.5-Sonnet 33.60 45.24 56.10 49.27 59.02 58.64 63.24 60.03 59.07 100.00 68.56 59.20 59.33
DeepSeek-VL2 3.40 3.72 32.26 54.70 65.61 35.30 29.30 27.99 71.05 99.12 69.84 72.98 47.15

Gemini-2.0 73.90 90.67 93.54 90.85 91.65 92.39 89.80 92.08 94.53 96.15 95.22 96.63 91.77
GLM-4V-plus 20.70 61.46 65.55 80.55 76.77 78.33 72.68 77.94 84.14 98.81 81.85 86.84 73.90

GPT-4o 64.10 57.99 91.22 89.27 89.09 83.29 85.16 85.17 90.18 100.00 93.29 95.27 85.33
Intern-VL2.5-8B-MPO 21.90 24.94 30.49 65.37 67.68 46.25 28.43 31.11 69.38 99.98 74.12 79.26 53.24
Intern-VL2.5-78B-MPO 37.70 60.98 75.06 83.05 86.83 78.90 78.87 67.58 85.09 99.66 88.72 92.03 77.90
LLaVA-OneVision-7B 0.60 0.00 10.06 9.15 16.77 0.00 0.00 5.06 33.57 88.71 19.44 28.72 17.67
LLaVA-OneVision-72B 10.60 17.68 35.67 46.65 50.55 37.92 28.27 34.65 57.68 100.00 58.25 64.71 45.22

MiniCPM-V-2_6 3.00 1.10 22.50 35.18 44.57 12.93 19.39 9.95 58.92 96.73 52.70 70.61 35.88
Qwen2-VL-72B 50.90 62.74 77.56 79.02 81.71 81.46 76.50 75.58 86.25 100.00 86.46 90.33 79.04
Qwen2-VL-7B 20.40 4.39 59.94 67.44 77.20 20.90 9.17 33.88 75.22 88.90 71.42 51.82 49.11

Qwen2-VL-7B-FT 36.30 67.01 82.68 83.11 86.95 91.67 90.57 91.00 90.29 92.00 88.66 92.18 82.74

Table 7: Pass@3 results for 13 LLMs on the code flowchart generation task in the Flow2Code benchmarks. The
results in bold are the optimal results, while the underlined results represent the suboptimal results. The results are
represented in percentage (%).

8144

Model
ClassEval (100) HumanEval-X (164) MBXP (611)

Avg
Python CPP Java JS Python CPP C# Java JS PHP Python Ruby

Claude-3.5-Sonnet 30.70 36.59 51.71 28.66 61.59 60.98 66.22 63.96 59.87 100.00 67.56 61.42 57.44
DeepSeek-VL2 8.50 7.38 28.78 61.77 61.04 43.65 29.31 26.94 68.92 98.59 65.55 73.26 47.88

Gemini-2.0 67.40 78.60 83.72 89.57 88.84 90.07 91.33 86.99 92.50 91.90 93.76 95.02 88.15
GLM-4V-plus 18.30 57.56 63.54 82.99 78.23 79.77 69.87 76.74 83.26 99.15 79.38 85.73 72.95

GPT-4o 60.30 60.00 80.91 94.82 88.11 83.99 87.35 84.35 88.92 99.98 92.23 94.81 84.65
Intern-VL2.5-8B-MPO 18.00 23.11 34.21 73.96 63.54 51.03 37.25 42.18 70.38 99.74 72.19 74.75 55.05
Intern-VL2.5-78B-MPO 44.00 48.17 74.02 86.65 81.10 78.23 80.16 70.28 85.22 99.77 87.73 91.00 77.21
LLaVA-OneVision-7B 0.60 0.00 5.37 17.38 12.80 0.20 0.00 5.97 33.27 87.87 18.25 25.66 17.28
LLaVA-OneVision-72B 10.90 13.17 33.54 51.52 50.12 31.10 29.48 36.76 56.43 100.00 57.12 62.64 44.40

MiniCPM-V-2_6 5.30 3.05 19.88 53.66 43.35 23.40 29.85 4.12 56.55 97.94 55.34 69.95 38.69
Qwen2-VL-72B 44.10 58.05 76.71 78.90 78.29 81.26 76.07 77.58 85.24 99.93 84.39 91.00 77.63
Qwen2-VL-7B 20.60 10.06 51.10 66.16 67.87 50.98 13.85 21.19 73.26 91.62 73.58 57.87 50.32

Qwen2-VL-7B-FT 30.00 65.43 80.79 71.52 79.45 91.72 90.36 90.07 88.71 93.08 83.11 91.41 79.68

Table 8: Pass@3 results for 13 LLMs on the UML flowchart generation task in the Flow2Code benchmarks. The
results in bold are the optimal results, while the underlined results represent the suboptimal results. The results are
represented in percentage (%).

Model
ClassEval (100) HumanEval-X (164) MBXP (611)

Avg
Python CPP Java JS Python CPP C# Java JS PHP Python Ruby

Claude-3.5-Sonnet 3.00 71.10 79.76 50.61 81.89 62.90 73.00 69.13 84.55 100.00 86.24 85.30 70.62
DeepSeek-VL2 1.20 3.29 8.84 43.66 53.29 5.94 3.85 7.86 65.74 87.69 63.42 67.09 35.07

Gemini-2.0 52.50 87.13 84.51 87.32 88.48 58.81 83.06 88.63 92.90 79.59 94.60 89.36 83.94
GLM-4V-plus 1.00 31.40 12.20 31.71 76.28 36.37 25.52 8.43 78.09 76.01 69.53 81.33 45.98

GPT-4o 18.00 79.02 79.21 50.55 91.10 80.77 77.66 69.44 87.86 99.93 92.05 88.59 76.19
Intern-VL2.5-8B-MPO 13.60 0.37 8.72 55.18 65.55 4.17 21.59 12.14 69.12 98.77 69.59 72.08 41.00
Intern-VL2.5-78B-MPO 33.00 67.80 16.34 83.54 83.23 50.54 68.41 17.04 83.65 93.06 86.45 86.38 64.70
LLaVA-OneVision-7B 0.60 0.00 7.74 22.26 41.46 0.00 0.00 3.34 52.57 50.00 38.67 48.90 22.13
LLaVA-OneVision-72B 9.30 10.49 31.34 53.84 69.51 10.74 35.34 14.27 67.91 100.00 65.86 74.06 45.22

MiniCPM-V-2_6 1.50 0.00 1.71 16.16 44.33 0.10 1.59 0.88 56.60 62.19 53.32 54.75 27.49
Qwen2-VL-72B 21.10 69.09 30.12 75.85 86.52 43.73 72.27 15.14 86.56 99.31 87.33 84.75 64.37
Qwen2-VL-7B 4.80 0.37 39.09 58.48 73.72 2.55 3.63 29.35 78.85 82.06 76.09 50.62 42.90

Qwen2-VL-7B-FT 9.00 61.59 73.90 64.09 79.63 87.74 89.75 87.04 88.99 85.40 88.35 86.84 75.22

Table 9: Pass@3 results for 13 LLMs on the pseudocode flowchart generation task in the Flow2Code benchmarks.
The results in bold are the optimal results, while the underlined results represent the suboptimal results. The results
are represented in percentage (%).

Model
ClassEval (100) HumanEval-X (164) MBXP (611)

Avg
Python CPP Java JS Python CPP C# Java JS PHP Python Ruby

Claude-3.5-Sonnet 37.00 50.61 58.54 53.05 61.59 63.50 66.78 63.67 62.68 100.00 71.85 63.18 62.70
DeepSeek-VL2 4.00 4.88 42.07 60.98 71.34 47.14 39.61 38.46 78.07 99.84 76.43 80.20 53.60

Gemini-2.0 75.00 92.07 93.90 91.46 92.07 93.13 91.16 92.96 95.25 98.04 95.58 97.22 92.48
GLM-4V-plus 22.00 64.02 66.46 81.10 77.44 78.89 73.65 78.56 84.62 99.02 82.65 87.40 74.73

GPT-4o 66.00 67.07 92.68 90.24 90.24 86.91 87.40 87.89 91.49 100.00 94.27 96.40 87.55
Intern-VL2.5-8B-MPO 26.00 29.27 35.37 67.68 69.51 51.55 33.88 35.84 72.67 100.00 75.94 81.67 56.62
Intern-VL2.5-78B-MPO 41.00 64.02 78.05 84.76 87.80 80.85 80.85 70.87 86.58 99.67 89.69 92.80 79.77
LLaVA-OneVision-7B 1.00 0.00 12.80 13.41 20.12 0.00 0.00 7.36 40.43 93.78 24.22 35.19 20.69
LLaVA-OneVision-72B 12.00 21.95 39.63 50.61 54.88 44.84 34.70 43.37 61.54 100.00 63.01 69.07 49.63

MiniCPM-V-2_6 3.00 1.83 26.83 41.46 48.17 17.35 25.20 14.89 63.83 98.20 57.12 76.10 39.64
Qwen2-VL-72B 55.00 65.24 79.27 80.49 82.93 83.14 78.40 78.23 87.23 100.00 87.73 91.00 80.72
Qwen2-VL-7B 26.00 7.32 68.90 71.95 81.71 29.79 13.09 46.15 80.69 94.27 76.60 61.05 55.20

Qwen2-VL-7B-FT 41.00 71.34 85.98 84.76 89.63 93.45 91.98 93.13 92.14 92.80 91.00 93.62 85.12

Table 10: Pass@5 results for 13 LLMs on the code flowchart generation task in the Flow2Code benchmarks. The
results in bold are the optimal results, while the underlined results represent the suboptimal results. The results are
represented in percentage (%).

8145

Model
ClassEval (100) HumanEval-X (164) MBXP (611)

Avg
Python CPP Java JS Python CPP C# Java JS PHP Python Ruby

Claude-3.5-Sonnet 35.00 40.24 55.49 31.10 63.41 64.98 70.38 67.76 63.99 100.00 70.87 64.98 60.68
DeepSeek-VL2 11.00 10.37 36.59 66.46 66.46 53.19 39.12 36.50 77.25 99.51 71.52 80.03 54.03

Gemini-2.0 68.00 81.10 84.76 90.24 90.24 90.83 92.14 88.87 93.13 94.44 94.27 95.58 89.10
GLM-4V-plus 19.00 60.37 64.63 83.54 79.27 80.52 71.36 77.74 84.12 99.35 80.20 85.92 73.89

GPT-4o 64.00 67.68 83.54 96.34 89.63 87.23 89.53 86.74 90.83 100.00 93.29 96.07 87.07
Intern-VL2.5-8B-MPO 21.00 27.44 37.80 76.83 67.68 55.97 43.21 48.12 74.80 99.84 75.45 77.09 58.78
Intern-VL2.5-78B-MPO 47.00 50.00 76.22 87.80 82.32 80.69 82.49 73.16 87.07 99.84 89.03 91.98 78.98
LLaVA-OneVision-7B 1.00 0.00 7.93 22.56 15.24 0.33 0.00 8.67 40.10 93.78 21.93 31.75 20.27
LLaVA-OneVision-72B 12.00 16.46 37.80 56.71 55.49 36.01 36.01 45.01 61.05 100.00 61.21 67.92 48.81

MiniCPM-V-2_6 7.00 3.05 23.78 58.54 48.17 28.31 36.17 6.22 62.19 99.02 60.07 75.29 42.40
Qwen2-VL-72B 47.00 61.59 78.66 79.88 79.27 82.65 77.74 79.38 86.42 100.00 85.60 91.65 79.15
Qwen2-VL-7B 25.00 13.41 60.98 70.12 71.95 59.57 19.15 30.44 77.58 95.91 79.05 66.45 56.09

Qwen2-VL-7B-FT 32.00 69.51 84.76 74.39 84.76 93.62 92.14 92.14 90.67 95.09 86.58 93.13 82.45

Table 11: Pass@5 results for 13 LLMs on the UML flowchart generation task in the Flow2Code benchmarks. The
results in bold are the optimal results, while the underlined results represent the suboptimal results. The results are
represented in percentage (%).

Model
ClassEval (100) HumanEval-X (164) MBXP (611)

Avg
Python CPP Java JS Python CPP C# Java JS PHP Python Ruby

Claude-3.5-Sonnet 3.00 73.17 81.71 52.44 84.15 66.78 74.30 75.12 85.92 100.00 88.22 86.58 72.62
DeepSeek-VL2 2.00 5.49 13.41 53.05 59.15 9.17 5.89 12.27 73.98 95.25 70.38 74.30 39.86

Gemini-2.0 55.00 89.63 87.20 88.41 89.02 62.68 83.80 90.67 93.45 80.52 94.93 90.02 85.40
GLM-4V-plus 1.00 33.54 15.24 32.32 76.83 39.28 27.17 9.66 78.56 77.58 70.21 81.67 47.12

GPT-4o 21.00 82.93 84.76 55.49 92.07 84.94 80.36 78.56 89.20 100.00 93.29 89.53 79.34
Intern-VL2.5-8B-MPO 16.00 0.61 10.37 60.37 69.51 5.40 25.53 17.18 71.36 99.18 72.50 75.12 43.66
Intern-VL2.5-78B-MPO 36.00 70.73 20.12 85.98 84.15 53.68 70.70 23.57 84.94 95.74 87.40 87.56 67.07
LLaVA-OneVision-7B 1.00 0.00 11.59 30.49 48.17 0.00 0.00 4.91 59.41 61.05 44.03 57.12 26.48
LLaVA-OneVision-72B 12.00 14.63 41.46 57.93 75.00 13.42 42.39 21.11 70.87 100.00 70.38 78.23 49.79

MiniCPM-V-2_6 2.00 0.00 2.44 21.95 49.39 0.16 2.29 1.47 63.67 72.18 59.41 60.88 30.31
Qwen2-VL-72B 22.00 70.73 32.93 76.83 87.20 44.68 73.98 17.68 87.23 99.51 88.05 85.60 65.58
Qwen2-VL-7B 6.00 0.61 47.56 65.24 78.05 3.60 5.89 40.75 82.65 87.89 80.03 60.39 47.50

Qwen2-VL-7B-FT 11.00 67.68 78.05 69.51 85.37 89.69 91.98 89.85 91.82 87.23 91.82 89.85 78.70

Table 12: Pass@5 results for 13 LLMs on the pseudocode flowchart generation task in the Flow2Code benchmarks.
The results in bold are the optimal results, while the underlined results represent the suboptimal results. The results
are represented in percentage (%).

8146

