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Abstract

Finetuning language models (LMs) is crucial
for adapting the models to downstream data and
tasks. However, full finetuning is usually costly.
Existing work, such as parameter-efficient fine-
tuning (PEFT), often focuses on how to fine-
tune but neglects the issue of where to finetune.
As a pioneering work on reducing the cost of
backpropagation (at the layer level) by answer-
ing where to finetune, we conduct a seman-
tic analysis of the LM inference process. We
first propose using transition traces of the latent
representation to compute deviations (or loss).
Then, using a derived formula of scaling law,
we estimate the gain of each layer in reducing
deviation (or loss). Further, we narrow down
the scope for finetuning, and also, study the
cost-benefit balance of LM finetuning. We per-
form extensive experiments across well-known
LMs and datasets. The results show that our
approach is effective and efficient, and outper-
forms the existing baselines. Our approach is
orthogonal to other techniques for improving
finetuning efficiency, such as PEFT methods,
offering practical values on LM finetuning.

1 Introduction

With the rapid advancements and notable perfor-
mance of language models, their application has ex-
tended to numerous downstream tasks (Bommasani
et al., 2021). Fine-tuning techniques are pivotal
in augmenting the capabilities of language mod-
els (Raffel et al., 2019; Ouyang et al., 2022). For
example, CODE LLAMA is a code-specialized LM
and is finetuned on 100B tokens of Python code
for a language-specialized variant (Touvron et al.,
2023; Rozière et al., 2023). The Python variant
provides better capabilities in code understanding
and generation, since Python is most popular in
programming (Carbonnelle, 2024; TIOBE, 2024).

Compared to their smaller pretrained predeces-
sors, finetuning large LMs offers both advantages
and disadvantages. On one hand, the vast number

of model parameters triggers the emergent abilities
of large LMs (Wei et al., 2022), leading to superior
performance across a variety of tasks, which serves
as an excellent foundation for domain-specific fine-
tuning. On the other hand, the extensive parameter
size presents challenges for downstream finetuning.
For instance, large LMs require greater memory
costs and higher computational costs in finetuning.

The challenge is on finding the correlation be-
tween performance and efficiency of LM finetun-
ing. There have been developed techniques such as
model quantization and PEFT methods to improve
efficiency (Rokh et al., 2022; Han et al., 2024).
Model quantization reduces the precision of the
model and data to reduce the burden of storage
and computation. However, the performance of
LM finetuning may be damaged to some extent.
Most PEFT methods introduce additional parame-
ters to learn the updates in LM finetuning, and then
merge the updates into the LM. Their focus is to re-
duce the memory cost instead of the computational
cost (Han et al., 2024). Overall, there has been rela-
tively little work exploring the correlation between
model performance and computational efficiency,
that is, whether the performance of LM finetuning
can be improved while saving computation cost.
To mitigate the gap, we propose utilizing the se-
mantics in LM latent space to specify the layers
that are more in need of finetuning being trainable,
and freeze other layers.

Our intuition is that, by interpreting the LM’s
functionality as a transition of semantics and com-
paring it with a set of special latent representations,
we can estimate the gains of each layer in reducing
deviations. The deviations can be used to evaluate
the convergence degree of model layers, and fur-
ther, as the evidence to decide which layers shall
be trainable. Based on empirical experience and
theoretical analysis, the deviations in semantic tran-
sitions greatly decide the effects of LM finetuning.
By freezing model layers with the maximum gains
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in reducing deviation and shortening the process
of backpropagation, the computation cost may be
reduced and meanwhile, the finetuning effects can
be improved. Computational-efficient finetuning
via layer-freezing is orthogonal with existing tech-
niques, including model quantization and PEFT
methods, so can combine with these techniques to
achieve more efficient performance.

In this paper, we realize computation-efficient
model finetuning by proposing an effective and
reliable layer-freezing approach, referred to as
Semantic-Aware Layer-Freezing (SALF). First, on
the shoulder of LM semantics (Gu et al., 2024,
2025), we study the phenomenon of semantic tran-
sition in LMs. By deriving the scaling law of LM
pretraining, we estimate the gains of reducing devi-
ations in each model layer; Next, our layer-freezing
approach finds the model layer whose gain is the
maximum and only finetunes the deeper layers;
Last, to support a flexible cost-benefit tradeoff in
LM finetuning, we propose a shallow-to-deep pol-
icy for layer-freezing under a given budget. We
also propose better budget plans for the tradeoff.

We evaluate our approach in fine-tuning diverse
datasets on a wide range of modern LMs. Based on
the results, our semantic-based layer-freezing ap-
proach performs better than baselines. Combined
with budget plans, our approach can further reduce
the computation cost and improve LM performance.
We discuss the insights of efficient finetuning from
the perspective of semantics and conclude the find-
ings in LM finetuning. The replication artifact is
available online for open science 1.

Our contributions are as follows:

• We propose using semantic transition to de-
scribe the process of LM inference, and the
derived formula of scaling law to estimate the
capability of model layers, and further study
the cost-benefit tradeoff in LM finetuning;

• We emphasize the importance of knowing
where to finetune, through which we can
improve the performance of LM finetuning
and save the computation cost. We propose
semantic-based layer-freezing as a solution;

• We conclude some findings on the behavior
of LMs, which can contribute to future work
in finetuning and analyzing LMs. Also, we
propose planning the budget for a better cost-
benefit tradeoff of LM finetuning.

1https://github.com/jianguda/salf

2 Preliminaries

2.1 Semantic Field in LM Latent Space
Based on vocabulary-defined semantics, the seman-
tics of hidden states can be regarded as the overlap-
ping impact of “semantic fields” (Gu et al., 2024,
2025). The semantic field is similar to the field term
in physics, such as electric field, where the electric
strength relies on the distance to the center of the
field (the electric pole). The corresponding proba-
bilities on the vocabulary of a representation can be
directly computed with its locations in the semantic
fields in the latent space, as shown in Figure 1. In
contrast, in common practice, the representations in
last-layer latent space will undergo a dimensional
change to be computed as logits, and then be nor-
malized as the probabilities on the vocabulary. The
dimensional change causes entanglement of seman-
tics, and exacerbates the computation complexity.

Figure 1: Vocabulary-defined semantics is demonstrated
with a LM, whose vocabulary is a collection of colorful
labels: (1) in the latent space (left), large color dots are
the corresponding semantic bases of vocabulary labels.
The small dark dot is the hidden state of a given data.
The similarities of the data with semantic bases are
regarded as logits; (2) on the vocabulary (right), the
logits are normalized as probabilities, and the argmax
label is orange. Consistently, the nearest semantic basis
to the hidden state is the orange one.

The semantics of LM latent space is decided by
semantic fields (Gu et al., 2024, 2025). For each
label in the vocabulary, there is a corresponding
semantic field in the latent space. The pole of each
semantic field is called “semantic basis”, represent-
ing an unmixed and purest meaning. If the nearest
semantic basis to latent representations is the same
one, they tend to share the meaning of that seman-
tic basis. The semantic meaning of a representation
in the latent space is decided by the overlapping
impact of multiple semantic fields.

The computation of semantic bases is simple. At
the LM input side, we multiply onehot embedding
e⃗ by the embedding matrix Wi to obtain the se-
mantic basis r⃗i = e⃗ ·Wi. At the LM output side,
due to the opposite operation direction between the
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embeddings and the representations, we turn to use
the pseudoinverse of the LM-head matrix W+

o . We
multiply onehot embedding e⃗ by the pseudoinverse
matrix to obtain the semantic basis r⃗o = e⃗ ·W+

o .
Since LM vocabulary is required in the computa-
tions, semantic bases only exist in the embedding
latent space and the last-layer latent space.

2.2 Semantic-based Loss Computation

Based on the local isotropy of LM latent space (Cai
et al., 2021), the logits in LM training and inference
can be computed via similarity measurement (with
semantic basis), instead of matrix multiplication
(with LM-head matrix). The logits computed in
this way is termed as "similarity-based logits" (Gu
et al., 2024). It proves to have the same effects as
the common practice of logits computation, and
shows advantages in disentangling the semantics.

Algorithm 1 Semantic Cross-Entropy Loss

Require: N semantic bases b⃗i; ground truth label
l; last-layer latent repr r⃗

Ensure: optimization target loss
logits← init_1d_tensor(N)
for i← 0 to N do
logits[i] ← cosine_similarity(r⃗, b⃗i)

end for
loss ← cross_entropy_loss(logits, l)

In LM finetuning, the logits will be used in
loss computation. Taking the cross-entropy loss
as an example, we compute the similarities be-
tween a given hidden state with semantic bases as
similarity-based logits, and then compute with the
ground truth for the loss, as shown in Algorithm 1.
In terms of numerical calculations, when comput-
ing in the last-layer latent space, it is equivalent to
the logits computed via matrix multiplication.

Algorithm 2 Semantic Cosine-Distance Loss

Require: l-th semantic base b⃗i (for ground truth
label l); last-layer latent repr r⃗

Ensure: optimization target loss
loss ← 1 - cosine_similarity(r⃗, b⃗l)

Further, leveraging the disentanglement effects
of similarity-based logits, we can compute the loss
merely with the corresponding ground truth. In
the loss computation, the hidden state is only com-
puted with one semantic basis solely, instead of
with all semantic bases, as shown in Algorithm 2.

In terms of effect, it optimizes the hidden state to
make it steer towards the corresponding semantic
basis. The cosine-distance loss is better in compu-
tation cost, and its computation shows an intuitive
geometric meaning in the latent space.

3 Computation-Efficient Fine-Tuning

Figure 2: Our SALF approach is demonstrated with a
LM with 4 layers (so there are 5 latent spaces). The
rectangles with dark bars are the deviations, and the
rectangles with cross-hatching are the gains in reducing
deviations. In LM finetuning, SALF uses a semantic-
based analysis to compute the deviations in each latent
space, and then uses a derived formula of the scaling
law to estimate the gains of each model layer. SALF
will find the layer with the maximum gain and only
finetune the deeper layers. In the illustration, layer 2 is
chosen and the first two layers are frozen, so only layer
3 and layer 4 will be finetuned. The layers and spaces
marked in gray color mean their gains and deviations
will remain unchanged in LM finetuning.

Semantic-Aware Layer-Freezing, shortened as
SALF, is a novel technique to reduce the compu-
tation cost in LM finetuning, by freezing certain
layers. The core idea is dropping the unneces-
sary computation in LM backward-pass. Due to
the chain rule in loss backpropagation, the com-
putation on shallower layers requires the compu-
tation in deeper layers. That is, SALF realizes
a computation-efficient LM finetuning by freez-
ing the first few layers. To guarantee that layer-
freezing will not damage the finetuning effects, and
even improve the finetuning effects, we proposed
a semantic-based analysis on LM inference and a
derived formula of scaling law to estimate the con-
vergence of layers. An illustration of our SALF
approach is shown in Figure 2. We also introduce
strategies of assigning data samples under a given
budget, to obtain a good cost-benefit balance for
layer-freezing.
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Figure 3: The transition of semantics is illustrated with a 4-layer LM, whose vocabulary is a collection of colorful
labels. The green dot is the medium token (input-side semantic basis) and the blue dot is the ground truth (output-
side semantic basis). The solid/dashed black curves (transition trace) represent the semantic transition of the
medium token, defined by the dark dots (hidden states) in each latent space. The solid/dashed green lines (semantic
deviation) indicate the differences between the hidden states and the ground truth, and they differ before and after
LM finetuning: Comparing solid green lines (before finetuning) with dashed green lines (after finetuning), the
semantic deviation in each layer is reduced. Through LM finetuning, the hidden state in the last-layer semantically
approaches to the ground truth, and the argmax label becomes from red to blue.

3.1 Transitions on Semantics
In next-token prediction, the last token in the given
input is used as the medium to compute the next
token, denoted as medium token. Influenced by
the embeddings of other tokens and the parameters
in model layers, the medium token will undergo a
layer-by-layer transition on its semantic meaning,
denoted as semantic transition. LM finetuning has
effects on semantic transition, and the differences
before and after finetuning are illustrated in Fig-
ure 3. We define the involved concepts as below.
Transition Trace. For a given sequence of n tokens,
t1, t2, ..., tn, assume a m-layer LM will predict the
next token tn+1, the representation of tn under-
goes a semantic transition from semantic meaning
i to j. The hidden state in each layer is denoted
as f0, f1, f2, ..., fm (f0 is the onehot embedding,
equals to i; while fm is the last-layer representa-
tion, equals to j), so the semantic transition defined
by these representations is a transition trace.
Transition Deviation. For a semantic transition of
a m-layer LM, the deviation of the hidden state in
the k-th layer to the semantic basis of the ground
truth, called semantic deviations, is denoted as dk.
It is measured using cosine similarity, that is, dk =
1 − cosine_similarity(fk, v⃗), where v⃗ is the
semantic basis of ground truth label. Concerning
computation, the semantic deviation is equivalent
to the semantic cosine-distance loss, but can also
be measured using other metrics.

The semantic deviations before and after fine-
tuning differ. Theoretically and empirically, LM
finetuning tends to reduce the deviations. For a
given medium token, in LM finetuning, the transi-

tion trace will approach the semantic basis of the
corresponding ground truth. The approach will be
reflected in the deviation in each layer. By probing
the situation of each layer, the semantic deviation
will be reduced as well. That means, the hidden
state will approach the semantic basis of the corre-
sponding ground truth.

Further, semantic deviations can be regarded as
the evaluation metrics of the capability of model
layers. In the latent space of the LM last-layer, the
representation of the medium token is intended to
be close enough to the semantic basis (namely the
ground truth). If the hidden states in the middle
layers are close to the semantic basis of the corre-
sponding ground truth, then the hidden state in the
last layer is likely to be close to the semantic basis
as well. Therefore, leveraging the semantic devia-
tions, model layers can be finetuned selectively.

3.2 Layer-level Convergence Estimation

We propose an intuitive method to measure the
performance of each model layer leveraging scaling
laws. Scaling laws refer to empirical relationships
that describe how the model performance improves
with increasing resources, including data amount,
model size, and convergence degree (which is often
revealed as computational power).

According to the compute-optimal scaling law
of LM pretraining (Hoffmann et al., 2022; Zhang
et al., 2024), the training loss follows a parametric
function of the information entropy of training data
E, the number of model parameters N and the
amount of data tokens D. The function is shown
as Equation (1). In terms of definition, the second
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term a
Nα is the ideal capability of model, and the

third term b
Dβ is the finite optimization of data.

L̂pretrain ≜ E +
a

Nα
+

b

Dβ
(1)

By performing a slight derivation on the def-
inition of the scaling law, the relationships be-
tween the finetuning loss (of the data for finetuning)
and resources (used in LM pretraining) can be de-
scribed as shown in Equation (2). The first term
L0(E

′) is the loss when interpreting the informa-
tion entropy of the given data. It only depends on
the embedding process and the LM-head, exclud-
ing all model layers, since the information entropy
is converted to predictable tokens by LM vocabu-
lary. The second term C(N,D) is the capability
of models in finetuning, which is the degree close
to the convergence. It is a function of data amount
D and model size N , corresponding to the latter
two terms in Equation (1). In the derived formula,
the first term remains stable, while the second term
will be larger as the finetuning goes on. It indicates
an improved convergence, leading to a smaller loss.

L̂finetune ≜ L0(E
′)− C(N,D) (2)

By targeting a given model, the capability of
different layers can be estimated and compared.
For a m-layer LM, where layers are denoted as
l1, l2, ..., lm, we define “virtual submodel” as the
truncated models starting from the shallowest layer.
The k-th virtual submodel, denoted as vk, is com-
posed of l1, l2, ..., lk (as well as the embedding
layer and the LM-head). Meanwhile, the loss of
all m virtual submodels are computed in one-time
of LM forward-pass, so the capability of vk are
computed as Cvk ≜ L0 − Lk. Further, we can
compare the capability of model layers. The loss
gain of lk, denoted as Glk , indicates the capabil-
ity difference between vk and vk−1, so we have
Glk ∝ Cvk − Cvk−1

. Since L0 the remains same,
the loss gain are reduced as Glk ∝ Lk−1 − Lk.
When the gain of lk is positive, the capability of vk
is better than vk−1. A larger gain indicates stronger
improvement between neighboring submodels.

3.3 Semantic-Aware Layer-Freezing

In next-token prediction, via LM finetuning, the
last-layer hidden state of the medium token is close
enough to the ground truth. The finetuning pro-
cess can be explained as divide-and-conquer: If
the hidden state is closer to the virtual one in the

k-th layer, then they tend to be closer as well in
the (k + 1)-th layer. It is consistent with an exist-
ing empirical finding that, when viewed through
the output lens, the hidden states across LM layers
yield distributions that converge monotonically to
the final prediction (Belrose et al., 2023). By mak-
ing the hidden state close enough to the semantic
basis of the ground truth in each layer, the repre-
sentation in the last-layer tends to be close to the
ground truth as well.

Based on the explanation, we propose a layer-
freezing method to accelerate finetuning. The idea
is simple: instead of finetuning from the first-layer,
we find the layer where the gain is the largest and
then finetune from there to the last-layer. We call
the layer having the largest gain as the end-of-
freezing layer, short as eof-layer. The shallow lay-
ers will be frozen so only the eof-layer and deeper
layers are trainable, as shown in Algorithm 3.

Algorithm 3 Semantic-Aware Layer-Freezing

Require: model, datum
1: # (a) compute deviations of latent spaces
2: deviations← empty list
3: latent_reprs← model(datum)
4: semantic_bases← VDS(model)
5: for id← 0 to layer_num+1 do
6: deviation← compute_deviation(

latent_reprs[id],semantic_bases)
7: deviations.add(deviation)
8: end for
9: # (b) compute gains of model layers

10: layer_gains← empty list
11: for id← 0 to layer_num do
12: gain← deviations[id] -

deviations[id+1]
13: layer_gains.add(gain)
14: end for
15: # (c) freeze layers and backpropagate
16: eof_layer← argmax(layer_gains)
17: freeze_layers(range(eof_layer))
18: backpropagate(model, datum)

For a given dataset, the computation cost of back-
propagation is decided by the depth of eof-layers,
we can count the depths to know the cost-saving
of layer-freezing. On the opposite, we can have
a budget plan and force the depths of eof-layers
to fulfill the budget. In this way, we control the
cost-saving by planning the depth of eof-layers.

8023



3.4 Budget for Layer-Freezing
To balance the effectiveness and cost of model fine-
tuning, we incorporate a budget to determine the
extent of layer-freezing based on specific require-
ments (see Appendix A). This budget represents
the number of model layers to fine-tune for a given
dataset. It controls the efficiency of LM finetuning,
for example, we tend to give a low budget for LM
finetuning if we want a high efficiency.
Budget Plan. Similar to the common practice of
finetuning half layers, we design budget plans to
control the cost-benefit tradeoff. For a given model
of m layers, we make the amount of data, that is as-
signed to finetuning layers between the eof_layer
to the last layer, following the relative proportion
of the growth sequence: (1) Following geometric
growth, we take the growth ratio as 2. Then, the
amount of data assigned for finetuning follows the
relative proportion of 1, 2, 4, ..., 2m−1; (2) Follow-
ing arithmetic growth, we make the initial term
the common difference between terms. Then, the
amount of data assigned for finetuning follows the
relative proportion of 1, 2, 3, ...,m− 1.
Budget Infilling. For a given dataset, if the bud-
get cannot be infilled completely with the data, the
infilling order will affect the cost-benefit tradeoff.
We introduce two practices for budget infilling: (1)
Breadth-First (BF) fills eof-layers in the shallow
layers, and then deeper layers; (2) Depth-First (DF)
fills eof-layers in all layers evenly, until layers are
infilled successively from shallow to deep. We illus-
trated with a model having four layers, following
geometric growth, as shown in Figure 4.

4 Experiments and Results

4.1 Setup

Datasets. We use 5 established datasets, covering
the common natural language tasks: emotion recog-
nition: CARER (Saravia et al., 2018); similarity
detection: MRPC (Dolan and Brockett, 2005); sen-
timent analysis: SST5 (Socher et al., 2013); and
general text classification: TREC (Voorhees and
Tice, 2000) and WebSS (Phan et al., 2008). The
statistics of datasets are shown in Table 1.
Models. We use the recently released LLMs, includ-
ing Qwen2 (0.5B-7B) (Yang et al., 2024), Gemma2
(2B-9B) (Riviere et al., 2024), and the state-of-
the-art Llama-3 (8.0B) 2. They are performant in
massive comparisons with other competitors, and

2https://github.com/meta-llama/llama3

Figure 4: The order of budget infilling for a 4-layer
model is: first red, then orange, then green, and finally
blue shares. In breadth-first infilling, the color of shares
is decided by layer. First let eof-layers be in first-layer
until the layer is full (red); then let them be in second-
layer until full (orange); then be in third-layer (green);
and finally be in last-layer (blue). In depth-first infilling,
the color of shares is decided by the position in layers.
First let eof-layers be in first-share of all layers, from
shallow to deep layers; then let them be in second-share
of all layers; and then repeat the practice in the third
share, forth share, until the budget of each layer is satis-
fied in the proper order (red, orange, green, and blue).

CARER MRPC SST5 TREC WebSS

Class Num. 6 2 5 6 8

Data Num.
Train 16,000 4,076 8,544 5,452 10,060
Test 2,000 1,725 2,210 500 2,280

Avg. Prompt Length 25.6 61.0 28.0 17.1 27.8

Table 1: Stats of natural language datasets.

Qwen2 Gemma2 Llama3

0.5B 1.5B 7B 2B 9B 8B

Model Size 0.49B 1.54B 7.62B 2.61B 9.24B 8.03B

Head Num. 14 12 28 8 16 32

Layer Num. 24 28 28 26 42 32

Dimension 896 1,536 3,584 2,304 3,584 4,096

Vocabulary 151,936 152,064 256,000 128,256

Table 2: Stats of Qwen2, Gemma2, and Llama3 models.

leading in the popularity statistics (especially, most
downloads per month) in the hugging-face website
3. The details are available in Table 2.

Baselines. LIFT is the state-of-the-art in layer-wise
LM finetuning on saving the computation cost. It
takes a front-to-end selection policy to prioritize
the layer to finetune (Zhu et al., 2024). However,
it only finetunes one layer each time, which may
damage its performance. We relax its restrictions
for a stronger baseline by letting more layers be
trainable while the computation cost is the same.
We mark the vanilla one as LIFT[half], and the
enhanced one as LIFT⋆[half]. In addition, we also
compare our approach SALF with two common
finetuning practices with LoRA: full-layer finetun-

3https://huggingface.co/
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LLM Method Dataset Avg.
CARER MRPC SST5 TREC WebSS

Q
w

en
2-

0.
5B

LoRA[full] 0.765 0.454 0.302 0.779 0.837 0.627
LoRA[half] 0.746 0.663 0.335 0.795 0.847 0.677
LIFT[half] 0.241 0.399 0.239 0.701 0.583 0.433
LIFT⋆[half] 0.806 0.755 0.456 0.805 0.891 0.743
SALF[half] 0.807 0.785 0.444 0.941 0.847 0.765

Q
w

en
2-

1.
5B

LoRA[full] 0.835 0.750 0.293 0.787 0.749 0.683
LoRA[half] 0.687 0.769 0.373 0.793 0.856 0.696
LIFT[half] 0.469 0.566 0.318 0.727 0.705 0.557
LIFT⋆[half] 0.823 0.779 0.503 0.808 0.917 0.766
SALF[half] 0.815 0.735 0.520 0.940 0.876 0.777

Q
w

en
2-

7B

LoRA[full] 0.820 0.399 0.075 0.252 0.029 0.315
LoRA[half] 0.794 0.690 0.388 0.796 0.866 0.707
LIFT[half] 0.532 0.739 0.320 0.747 0.699 0.607
LIFT⋆[half] 0.797 0.781 0.534 0.802 0.915 0.766
SALF[half] 0.823 0.831 0.542 0.951 0.852 0.800

G
em

m
a2

-2
B LoRA[full] 0.867 0.494 0.281 0.711 0.771 0.625

LoRA[half] 0.865 0.498 0.243 0.711 0.694 0.602
LIFT[half] 0.328 0.399 0.082 0.505 0.453 0.353
LIFT⋆[half] 0.872 0.518 0.280 0.737 0.797 0.641
SALF[half] 0.877 0.399 0.199 0.734 0.778 0.597

G
em

m
a2

-9
B LoRA[full] 0.801 0.399 0.193 0.706 0.765 0.573

LoRA[half] 0.865 0.399 0.201 0.725 0.741 0.586
LIFT[half] 0.382 0.399 0.187 0.577 0.484 0.406
LIFT⋆[half] 0.862 0.399 0.281 0.729 0.791 0.612
SALF[half] 0.860 0.399 0.190 0.658 0.797 0.581

L
la

m
a3

-8
B

LoRA[full] 0.394 0.399 0.402 0.256 0.029 0.296
LoRA[half] 0.818 0.664 0.338 0.784 0.861 0.693
LIFT[half] 0.590 0.466 0.476 0.779 0.837 0.630
LIFT⋆[half] 0.843 0.468 0.552 0.799 0.900 0.712
SALF[half] 0.872 0.399 0.571 0.945 0.885 0.734

Table 3: F1 Scores of layer-freezing methods (on the
diverse datasets and models).

ing and half-layer finetuning. The former is to
finetune all model layers, while the latter is to fine-
tune only the last half model layers. We marked
them as LoRA[full] and LoRA[half].

Metrics. For effectiveness, we use F1 score to mea-
sure whether the predicted next-token is the ground
truth because of the class imbalance in the datasets.
F1 score is the harmonic mean of precision and
recall, and considers the effects of both false posi-
tives and false negatives. For efficiency, we use the
“cost-saving” ratio as a new metric, representing the
saved computation cost in backpropagation. Large
ratios mean better effects.

Pipeline. We conduct LM finetuning experiments
to compare our approach with other layer-freezing
practices. Since LIFT is designed to save around
50% computation cost in backpropagation, we re-
strict our approach to the same computation cost
for a fair comparison (on effectiveness). Our im-
plementation is as we described, and does not use
other techniques, such as instruction tuning. The
details on the implementation are in Appendix A.

4.2 Performance Evaluation

We evaluate the performance of our approach and
the baselines in LM finetuning: finetune the LMs
on the training set, and do inference on the test set.

As shown in Table 3, based on the average F1
score, on 4 out of 6 models, SALF performs better
than others, while on the other model, its perfor-
mance is very close to the best. Compared with
the common practices LoRA[full] and LoRA[half],
LIFT shows superiority in the performance while
our approach SALF shows stable and obvious im-
provements. Besides, the advantages of SALF vary
on the datasets. On WebSS, SALF performs the
best only in the case where the model is Llama3,
but the performance gap to the best is not obvi-
ous. However, SALF cannot show stable improve-
ments on MRPC, especially when with Gemma2
and Llama3. The reason is that, the class number
of the MRPC dataset is only 2, meaning the seman-
tic transition is very simple, thereby the deviations
in the process may not be very helpful. All meth-
ods cannot perform well in SST5 with Gemma2,
which may caused by the bad semantic property of
Gemma2 models due to its risk of semantic degra-
dation in Gemma2 design. Gemma2 models use a
non-standard FFN, which has an extra gate on top
of GEGLU. In contrast, Qwen2 and Llama3 mod-
els use SwiGLU, which is a standard FFN design.
Another possible reason is that, Gemma2 uses Sen-
tencePiece as the tokenizer, which is not as good
as the BPE tokenizer used in Qwen2 and Llama3,
especially in token granularity and consistency.

It is noteworthy that LoRA[full] performs worse
than others, and even worse than LoRA[half]. It is
counter-intuitive since full-layer finetuning is up-
dating all layers and requires a larger computation
cost than LoRA[half]. However, in our understand-
ing, it may caused by the difference in the effects
of shallow and deep model layers. Usually, shallow
layers learn the macro features while deep layers
learn the micro features (So et al., 2019; Brown
et al., 2020). It means, when the learning rate is
fixed in LM finetuning, the update in shallow lay-
ers shall be less frequent than that in deep layers.
It also explains the reason why both LoRA[full]
and LoRA[half] perform not as well as LIFT⋆ or
SALF: LoRA[full] updates shallow layers too of-
ten while LoRA[half] updates them too seldom.

Meanwhile, the results of the baseline LIFT
is not as good as the enhanced implementation
LIFT⋆. Their difference is that, the former only
makes the eof-layer trainable, while the latter fine-
tunes all layers between eof-layer to last-layer. It
indicates that, merely finetuning shallow layers can-
not guarantee smaller deviations in the deep layers,
or the deviations require further processing.
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In Appendix B, we compared the effects of tak-
ing different metrics of deviations. Further, we
analyzed the advantages of SALF in LM finetun-
ing with the illustrations on semantic deviations.

5 Analysis on Cost-Benefit Tradeoff

We study the performance and cost-benefit trade-
off of budget plans and infilling practices to layer-
freezing. For example, a geometric-growth budget
with breadth-first infilling is denoted as geom[bf].

As shown in Table 4, the budget for cost-benefit
tradeoff is useful to both LIFT⋆ and our approach
SALF, while our approach still shows better per-
formance. In comparison, the arithmetic-growth
budget shows similar performance to the geometric-
growth budget. Meanwhile, the practice of depth-
first infilling tends to perform better and more sta-
bly than breadth-first infilling.

Budget Dataset Avg.
CARER MRPC SST5 TREC WebSS

LIFT⋆[half] 0.843 0.468 0.552 0.799 0.900 0.712
LIFT⋆[arith][bf] 0.817 0.516 0.548 0.798 0.893 0.714
LIFT⋆[arith][df] 0.835 0.581 0.543 0.789 0.906 0.731
LIFT⋆[geom][bf] 0.763 0.729 0.404 0.791 0.876 0.713
LIFT⋆[geom][df] 0.845 0.625 0.559 0.795 0.899 0.745

SALF[half] 0.872 0.399 0.571 0.945 0.885 0.734
SALF[geom][bf] 0.906 0.665 0.586 0.962 0.855 0.795
SALF[geom][df] 0.920 0.711 0.607 0.970 0.921 0.826
SALF[arith][bf] 0.921 0.752 0.391 0.964 0.911 0.788
SALF[arith][df] 0.914 0.751 0.588 0.964 0.914 0.826

Table 4: Accuracy of layer-freezing methods with differ-
ent budget plans and infilling practices (on the diverse
datasets, using Llama3-8B).

As shown in Table 5, compared with geometric-
growth, the budget of arithmetic-growth saves
more computation costs. The reason is that, for a
model of the same number of layers, the arithmetic-
growth increases slower than the geometric-growth,
so the budget of the latter is not likely to be fulfilled.
For geometric-growth, eof-layers can fill in shallow
layers but cannot fill in deep layers. Also, depth-
first infilling saves more than the breadth-first in-
filling. The reason is similar, more eof-layers tend
to be in deep layers than in shallow layers.

Considering the efficiency and cost-benefit trade-
off, the budget of arithmetic-growth shows equiva-
lent performance but saves more computation costs.
Also, the practice of depth-first infilling is bet-
ter than breadth-first infilling. Based on the re-
sults, an arithmetic-growth with depth-first infilling
saves around 1/3 more computation cost and has a
slightly better performance. The reason explaining
why the combination is performant is the same as

Budget Dataset Avg.
CARER MRPC SST5 TREC WebSS

LoRA[full] 0.000 0.000 0.000 0.000 0.000 0.000
LoRA[half] 0.500 0.500 0.500 0.500 0.500 0.500
LIFT[half] 0.484 0.483 0.484 0.484 0.484 0.484
LIFT⋆[half] 0.484 0.483 0.484 0.484 0.484 0.484
SALF[half] 0.484 0.483 0.484 0.484 0.484 0.484

[geom][bf] 0.374 0.312 0.346 0.328 0.355 0.343
[geom][df] 0.616 0.583 0.601 0.589 0.604 0.598
[arith][bf] 0.614 0.613 0.613 0.609 0.615 0.613
[arith][df] 0.644 0.640 0.644 0.642 0.645 0.643

Table 5: Backpropagation cost-saving of layer-freezing
methods with different budget plans (on the diverse
datasets, using Llama3-8B).

discussed, when the learning rate is fixed in LM
finetuning, the update in shallow layers shall be
less frequent than that in deep layers.

6 Related Work

Leveraging the layered structure of neural mod-
els, the concept of layer-freezing was proposed
decades ago, but mainly for deep belief networks
(DBN) (Hinton, 2009). DBN is a stack of directed
sigmoid belief network (SBN) (Neal, 1992) and
an undirected restricted boltzmann machine (Hin-
ton, 2017). The backpropagation is only applied to
finetune the restricted boltzmann machine, while
the dependencies between other layers are not bidi-
rectional. Therefore, progressively training each
layer is proposed as a greedy strategy for training
DBN (Hinton et al., 2006; Bengio et al., 2006).

In the era of language models, there has been
little significant work studying layer-freezing for
efficient finetuning, while the focus often lies on
parameter-efficient, namely reducing the amount
of trainable parameters, instead of computation-
efficicent (Pan et al., 2024; Zhu et al., 2024). One
reason is the complexity and interpretability of lan-
guage models. Besides, the correlation between
model layers is not intuitive, and the effects of
bidirectional dependencies on layer-wise finetun-
ing have not been studied. Another reason is that,
the prior work on PEFT shows similar effects on
reducing the number of trainable parameters, or
even making the trainable parameters detachable.

7 Conclusion

In this paper, we have proposed the novel concept
of semantic transition. By defining transition trace
to describe the change of semantic meaning of the
next token, we explain LM finetuning as the pro-
cess of letting the representation gradually steer
to the corresponding ground truth in latent space.
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Meanwhile, based on a derived law of scaling law,
we can reasonably estimate and compare the ca-
pability of model layers, so to better allocate the
computation resources in LM finetuning. Further,
we propose layer-freezing to accelerate LM finetun-
ing, by finding the layer with the maximum gains
of reducing deviation and finetuning deeper layers.

Based on our results on diverse datasets and mul-
tiple models, semantic-aware layer-freezing pro-
vides better performance than the state-of-the-art
as well as common practices. Moreover, our work
explores the effects of budget plans on the cost-
benefit tradeoff for layer-freezing. In return, the
effectiveness of our lay-finetuning approach vali-
dates the usefulness of semantic transition.

Limitations

In this paper, we proposed semantic transition as
a new perspective on the LMs’ functionality. Be-
sides, estimated and compared the capability of
model layers. We suggest using the gains of reduc-
ing deviations in semantic transition to reduce the
computation cost of LM finetuning. Our approach
maintains and even improves the performance of
LM finetuning.

In our understanding, our approach is leveraging
the derived formula of scaling law to estimate and
compare the capability of model layers. However,
the capability cannot be strictly seen as the con-
vergence degree, namely the expected benefits of
finetuning a certain model layer. Besides, freez-
ing the layer with the maximum gains of reducing
deviation and finetuning shallower layers is an em-
pirical wise practice, but there is no proof saying
this is optimal. Meanwhile, in a high-dimensional
latent space, the representations tend to be orthog-
onal to each other (Vershynin, 2018). Therefore,
using the cosine distance between latent representa-
tion and the semantic basis as the deviation may not
be optimal practice. There possibly exists potential
evidence to support other better choices.

The semantic transition is based on the similarity
measurement between latent representations and
semantic bases. The theoretical support is the local
isotropy of LM latent space (Cai et al., 2021), there-
fore for the language models whose latent space
cannot fulfill local isotropy in terms of semantics
(even though they seem not to exist, to the best of
our knowledge), our approach may not stand.
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A Implementation Details

A.1 Environments

Our implementation uses deep learning framework
PYTORCH (Paszke et al., 2019), TRANSFORM-
ERS (Wolf et al., 2019), and use PEFT 4 to con-
duct the LoRA experiments. The LM finetuning
experiments are based on existing PEFT meth-
ods, specifically LORA (Hu et al., 2021). We use
quantization techniques (INT4) to load Qwen2-7B,
Gemma2-9B, and Llama3-8B, with the default set-
tings (Dettmers et al., 2023; Wu et al., 2023), which
reduces the memory requirements in LM finetuning
with slight performance loss.

The experiments are conducted via a single run,
with the global random-seed 42. The computation
is based on a single Nvidia V100 (32 GB), and the
computation budget is around 2200 GPU hours.

A.2 License and Terms

We understand and respect the licenses used in our
experiments, including the Apache-2.0 license for
Qwen2 models and Gemma2 models, as well as
the Llama3 community license for Llama3 models
5. We confirm that our use of existing artifacts was
consistent with their intended use.

A.3 SALF Algorithm with Budget

By introducing the budget for LM finetuning, our
semantic-based layer-freezing approach can fulfill
the intended computation cost. Then, to guarantee

4https://github.com/huggingface/peft
5https://llama.meta.com/llama3/license/

improved performance, we propose the SALF al-
gorithm with the budget consideration, as shown in
Algorithm 4.

Algorithm 4 SALF w/ Budgets

Require: model, data, budgets
1: tabu_data← empty list
2: for layer← 0 to layer_num do
3: # (a) freeze layers from deep to shallow
4: freeze_layers(range(layer))
5: # Backpropagation of Matching Data
6: for datum in data do
7: # (b) check whether to jump the loop
8: if budgets[layer] == 0 then
9: break

10: end if
11: if datum in tabu_data then
12: continue
13: end if
14: # (c) execute line 1-16 in Algorithm 3
15: eof_layer← SALF(model, datum)
16: if eof_layer > layer then
17: continue
18: end if
19: # (d) backpropagate
20: backpropagate(model, datum)
21: budgets[layer] -= 1
22: tabu_data.append(datum)
23: end for
24: # Backpropagation of Remaining Data
25: sampled_data← random_sample(

data, filter=tabu_data,
amount=budgets[layer])

26: finetune(model, sampled_data)
27: budgets[layer]← 0
28: tabu_data.extend(sampled_data)
29: end for

The intent of the code is intuitive: first, compute
the deviations to find the eof-layer for each data;
then, arrange the data with the similar eof-layers
into the budget; last, gradually narrow down the
scope of finetuning (freezing more model layers),
and use the arranged data to backpropagate the loss.
For the sake of the sequential access restriction
of data-loader, the algorithm is described with
the for-loops and the repeated iterations. In the
implementation, we can use random access and
caching techniques to remove the for-loops and
reduce the number of iterations.
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B More Analysis

B.1 Differences between Parameter-Efficiency
and Computation-Efficiency

Different from PEFT methods proposed for bet-
ter parameter-efficiency, our approach SALF (as
well as the baseline LIFT) is a layer-freezing
method proposed for better computation-efficiency.
The focus of parameter-efficiency is reducing the
memory cost of finetuning, while in contrast, the
focus of computation-efficiency is reducing the
computation cost of backpropagation. For newly-
emerging topics, including knowledge editing (Yao
et al., 2023), representation engineering (Zou et al.,
2023), and language model repair (Gu et al., 2023),
computation-efficiency is critical in realizing the
flexibility and adaptability.

Compared with full-parameter finetuning, PEFT
methods cannot guarantee computation-efficiency.
The computation cost of finetuning covers the cost
of forward-inference and back-propagation. The
forward-inference cost cannot be reduced, so any
method for better computation-efficiency must deal
with the back-propagation cost. Then, based on
the chain rule of calculus to compute gradients,
which is the mathematical foundation of back-
propagation, if the gradients of the k-th layer are
needed, the gradient computation of any deeper
layers (whose layer index is larger than k) cannot
be skipped. Therefore, PEFT methods like LORA
are not computation-efficient since they cannot re-
duce the cost of back-propagation. For the same
reason, layer-freezing is intuitive and reliable in
guaranteeing the computation-efficiency.

B.2 Metrics for Computing Deviations

SALF represents a common practice to detect how
the model capability improves across different lay-
ers. That is, probing the hidden states in middle
layers, and using them for logits computation as an
estimation for LM interpretability.

When computing the deviations in LM infer-
ence, there are alternatives to the used semantic
cosine-distance loss. We check the case where
letting the cross-entropy loss be the deviation mea-
surement, denoted as SALF[half][ce]. Since cross-
entropy loss is do computation with all ground
truths, not merely with the corresponding one, as
did by cosine-distance loss, the former one involves
more constraints than the latter one. It indicates that
SALF[half][ce] will be slower in convergence, and
further explains why this variant cannot perform

Variant Dataset Avg.
CARER MRPC SST5 TREC WebSS

SALF[half] 0.872 0.399 0.571 0.945 0.885 0.734
SALF[half][ce] 0.213 0.595 0.419 0.952 0.835 0.603
SALF[half][rank] 0.086 0.753 0.455 0.946 0.876 0.623

Table 6: F1 scores of layer-freezing variants (on the
diverse datasets, using Llama3-8B).

as well as SALF[half] when training for the same
epoch. Based on our analysis, they tend to have
similar performance when doing model finetuning
for an unlimited number of epochs until conver-
gence. In our understanding, a less constrained
loss function indicates a more straightforward con-
vergence process, and therefore tends to perform
better in LM finetuning. Since the cross-entropy
loss is commonly used in logits computation, the
advantages of SALF indicate that, cosine-distance
loss is a notable alternative for its better efficiency.

Meanwhile, we experimented with a variant us-
ing the customized metric: SALF[half][rank] mea-
sures the ranking of the ground truth in the out-
put probabilities. Theoretically, in LM finetuning,
the ranking of the ground truth shall keep increas-
ing until becoming the first. As shown in Table 6,
it fails to realize the equivalent performances to
SALF. Based on our analaysis, it is caused by the
small output space and the large model size. For
example, Llama3-8B has 32 model layers while
the class number of datasets is smaller than 10,
so the deviations tend to be very small, and so do
the gains in reducing the deviations. The variant
SALF[half][rank] cannot be numerically sensitive,
since its deviations tend to remain unchanged in
neighboring layers and the gains cannot express
useful information. In contrast, the cosine-distance
loss is numerically sensitive, and focuses on cosine
similarity with the corresponding ground truth.

B.3 Heuristics in Layer Freezing

Based on the analytical results on semantic transi-
tion in LMs, namely deviations and gains, there are
heuristic practices to decide which layers to freeze.

In our approach, we find the model layer where
the gain is the largest, and freeze it and other deeper
layers. Concerning the effects, after multiple turns
of layer-freezing, deeper layers are more likely to
become the largest-gain layer, especially the deep-
est layer. Considering the functionality of each
LM layer contributes to the convergence monotoni-
cally (Belrose et al., 2023), our approach tends to
force each layer contribute to the converge. Corre-
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spondingly, the gain of a deep layer will be larger
than that of a shallow layer.

We conducted a contrastive study on other sim-
ilar decisions, such as finding the least-deviation
layer, and then freeze it and other deeper layers.
We observed that the located layer is usually the
first model layer, because the first model layer usu-
ally improves the largest model capability, which
means, the deviation gain is the least. Therefore, if
the strategy of layer-freezing is to find the layer of
the least gain, the effect is like freezing no layers.

As for the heuristic options which decide layer-
freezing directly using deviations, we find their
benefits to LM finetuning are not stable. It indi-
cates that, the comparisons in adjacent layers pro-
vide more useful information than directly using
the deviations. Based on our understanding, layer-
by-layer comparison serves the function of regular-
izing deviations. The necessity of regularization
is because the layer-wise deviations correspond to
different latent spaces, so the deviations cannot be
compared across model layers.

B.4 Semantic Effects of LM Finetuning
To study the effects of our SALF approach on LM
finetuning, we illustrate the deviation changes in
LM finetuning of two settings: one is making all
layers trainable, corresponding to LoRA[full], as
shown in Figure 5; while the other one is taking
our approach for layer-freezing, corresponding to
SALF[half], as shown in Figure 6.

In the illustrations, the deviations are in the range
of [0, 2], since it is derived from the cosine simi-
larity. Besides, in a high-dimensional latent space,
the representations tend to be orthogonal to others
(including the semantic bases) (Vershynin, 2018),
so when the deviations are smaller than 1, it means
the corresponding data representations are steering
towards the ground truth, then the corresponding
LM predictions may be correct. Otherwise, if the
deviations are larger than 1, then the corresponding
LM predictions are not likely to be correct.

By comparing the illustrated two situations of
the blue shapes, we conclude the advantages of
our semantic-based layer-freezing approach to LM
finetuning as: our approach avoids the side effects
of LM finetuning to shallow layers, and tends to
make the semantic deviations in deep layers small.
Taking the illustrated situation of the red shapes as
a reference, we believe that the first advantage (on
the side effects to the shallow layers) may be the
cause of the second advantage (on the small devia-

tions in deep layers). It explains why our approach
lead to small deviations in deep layers, and also,
it also emphasizes the importance of reducing the
deviations in shallow layers. Further, the causation
explains how to achieve better performance while
reducing the computation cost in LM finetuning.

In addition, based on the illustrations, we see the
accumulated effects of our approach in reducing
the deviations in the last few model layers, where
the blue shapes gradually move to lower positions,
which indicates lower deviations of the data and a
higher likelihood of correct LM predictions.
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Figure 5: Violin plot of the deviations of each layer in LM finetuning, where the crossbars represent the mean of
deviations, when making all model layers trainable (on the CARER dataset, using Llama3-8B). The phenomena
include: (1) The red crossbars usually lie at lower positions than the blue crossbars (in the first 27 layers). It means,
the deviation changes by LM finetuning are negative in most layers. (2) The blue shapes are flattened in the last
few layers (from the 25-th layer to the last-layer) but some areas in the shapes lie at higher positions. It means, the
distribution of the deviations in the last layers is forming multiple peaks, no longer centered in only one peak, and
lots of data show higher deviations; (3) The differences between red and blue are large and show a reversal (first red
is better, then blue is better) in the first and last few layers. It means, the deviation changes by LM finetuning are
significant, which are worse in the shallower layers but better in the deeper layers.

Figure 6: Violin plot of the deviations of each layer in LM finetuning, where the crossbars represent the mean of
deviations, when taking semantic-based layer-freezing (on the CARER dataset, using Llama3-8B). The phenomena
include: (1) The red crossbars usually lie at the same positions as the blue crossbars (in the first 27 layers). It means,
the deviation changes by LM finetuning are very small in most layers. (2) The blue shapes are flattened in the last
few layers (from the 25-th layer to the last-layer) but almost all areas in the shapes lie at lower positions. It means,
the distribution of the deviations in the last layers is forming multiple peaks, no longer centered in only one peak,
and almost all data show lower deviations; (3) The differences between red and blue are only getting large (blue is
better) in the last few layers. It means, the deviation changes by LM finetuning are positive and highly targeted,
which are mainly in the deeper layers.
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