Towards Adaptive Memory-Based Optimization for Enhanced
Retrieval-Augmented Generation

Qitao Qin'", Yucong Luo'*,Yihang Lu!, Zhibo Chu!, Xiaoman Liu!, Xianwei Meng>*
"University of Science and Technology of China
2 Hefei Institutes of Physical Science, Chinese Academy of Sciences
{qqt,prime666,lyhsa22,zb.chu, liuxiaoman}@mail.ustc.edu.cn
mengxw@iim.ac.cn

Abstract

Retrieval-Augmented Generation (RAG), by in-
tegrating non-parametric knowledge from exter-
nal knowledge bases into models, has emerged
as a promising approach to enhancing response
accuracy while mitigating factual errors and
hallucinations. This method has been widely
applied in tasks such as Question Answering
(QA). However, existing RAG methods strug-
gle with open-domain QA tasks because they
perform independent retrieval operations and
directly incorporate the retrieved information
into generation without maintaining a sum-
marizing memory or using adaptive retrieval
strategies, leading to noise from redundant in-
formation and insufficient information integra-
tion. To address these challenges, we pro-
pose Adaptive memory-based optimization for
enhanced RAG (Amber) for open-domain QA
tasks, which comprises an Agent-based Mem-
ory Updater, an Adaptive Information Collec-
tor, and a Multi-granular Content Filter, work-
ing together within an iterative memory updat-
ing paradigm. Specifically, Amber integrates
and optimizes the language model’s memory
through a multi-agent collaborative approach,
ensuring comprehensive knowledge integration
from previous retrieval steps. It dynamically ad-
justs retrieval queries and decides when to stop
retrieval based on the accumulated knowledge,
enhancing retrieval efficiency and effectiveness.
Additionally, it reduces noise by filtering irrele-
vant content at multiple levels, retaining essen-
tial information to improve overall model per-
formance. We conduct extensive experiments
on several open-domain QA datasets, and the
results demonstrate the superiority and effec-
tiveness of our method and its components. The
source code is available .

1 Introduction

In recent years, Large Language Models (LLMs)
(Brown et al., 2020; Achiam et al., 2023; Touvron

“These authors contributed equally to this work.
"https://anonymous.4open.science/r/ Amber-B203/

et al., 2023b; Anil et al., 2023) have demonstrated
exceptional performance across various tasks, in-
cluding question answering (QA) (Yang et al.,
2018; Kwiatkowski et al., 2019), owing to their abil-
ity to capture diverse knowledge through billions
of parameters. However, even the most advanced
LLMs often suffer from hallucinations (Chen et al.,
2023) and factual inaccuracies due to their reliance
on parametric memory. Additionally, it is imprac-
tical for these models to memorize all of the ever-
evolving knowledge. To address these challenges,
retrieval-augmented generation (RAG) (Borgeaud
et al., 2022; Izacard et al., 2023; Shi et al., 2023)
have garnered increasing attention. These models
retrieve passages relevant to the query from ex-
ternal corpora and incorporate them as context to
the LL.Ms, enabling the generation of more reli-
able answers. By integrating retrieved information,
retrieval-augmented LLMs maintain both the ac-
curacy and timeliness of their knowledge. Early
studies on RAG primarily focused on single-hop
queries (Lazaridou et al., 2022; Ram et al., 2023),
where answers can typically be found within a sin-
gle document. However, these methods often fall
short when handling complex QA tasks, such as
long-form QA and multi-hop QA, which require
aggregating information from multiple sources. Un-
like single-hop QA, these queries necessitate con-
necting and synthesizing information across mul-
tiple documents and cannot be solved by a single
retrieval-and-response step. For instance, the query
“Is Microsoft Office 2019 available in a greater
number of languages than Microsoft Office 2013?”
requires three reasoning steps: first, retrieving in-
formation about the languages supported by “Office
2019; second, retrieving similar information for
“Office 2013”; and finally, comparing the two sets
of data to produce an answer.

To address this issue, Adaptive RAG has been
proposed. It adaptively selects appropriate retrieval
questions and timing based on the difficulty of the

7991

Findings of the Association for Computational Linguistics: ACL 2025, pages 7991-8004
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

user query to flexibly capture more valuable knowl-
edge for answering open-domain QA tasks, achiev-
ing a balance between effectiveness and efficiency.
However, these methods still have several prob-
lems. First, each retrieval operates independently
and lacks a summarizing memory of previous re-
trieval fragments, which may cause the outputs to
reflect only limited knowledge from specific re-
trieval steps while neglecting the integration and
interaction of retrieved information from different
steps. Second, when the LLLM uses these retrieved
fragments for reasoning, it does not actively evalu-
ate the validity of the information. Consequently,
without the ability to determine when to proactively
stop retrieval based on known information or up-
date the queries that need to be retrieved, it may
lead to inefficiencies or the retrieval of irrelevant
information. Third, the effective parts within the
retrieved text segments are very few, and excessive
redundant information introduces noise, which can
obscure important details and negatively impact the
model’s performance.

To this end, we propose Adaptive memory-based
optimization for enhanced RAG (Amber). Amber
comprises three core components: Agent-based
Memory Updater (AMU), Adaptive Information
Collector (AIC), and Multi-granular Content Filter
(MCF). These components work in unison to au-
tomatically integrate and update retrieved informa-
tion as the LLM’s memory, dynamically adjust the
queries based on known information, and employ
multi-granular content filtering during retrieval to
retain useful information and reduce noise, thereby
achieving outstanding performance. Firstly, to ad-
dress the issue in which each retrieval operates inde-
pendently and lacks a summarizing memory of pre-
vious retrieval fragments, AMU employs a multi-
agent collaborative approach. By coordinating var-
ious agents, AMU optimizes the LLM’s current
memory. This process ensures that the knowledge
structure is continuously refined and enriched, ef-
fectively integrating all valuable information from
previous retrieval steps. Secondly, AIC utilizes the
real-time memory generated by AMU to update the
queries that need to be retrieved and decides when
to stop retrieval. By automatically adjusting the
retrieval process based on the accumulated knowl-
edge, AIC ensures that subsequent retrievals are
more targeted and efficient, effectively addressing
the challenge of insufficient knowledge accumula-
tion and avoiding unnecessary retrievals. Lastly,
we fine-tune the LLM to function as MCF to reduce

noise during retrieval. MCF includes two levels of
filtering capabilities. Firstly, it assesses the validity
of the entire retrieved text segment and the query,
determining whether the information is relevant
and useful. Secondly, from the valid retrieved seg-
ments, it filters out irrelevant content and retains
essential information. This approach effectively re-
duces redundant information and highlights crucial
details, thereby enhancing the overall performance
of the model.
In summary, our contributions are as follows.

* We propose the Agent-based Memory Updater,
which uses a multi-agent approach to integrate
information and form memory from previous re-
trievals, optimizing the LLM’s memory.

* We develop the Adaptive Information Collector,
which updates retrieval queries and decides when
to stop retrieval, making the process more tar-
geted and efficient.

* We introduce the Multi-granular Content Filter
to reduce noise by filtering irrelevant content at
multiple levels, enhancing model performance.

» Extensive experiments validate the effectiveness
of Amber, showing significant improvements
over existing methods in open-domain QA.

2 Related Work

Open-domain QA Open-domain Question An-
swering (OpenQA) (Voorhees et al., 1999) seeks
to provide answers to questions expressed in nat-
ural language that are not restricted to a specify
domain. Modern methods for Open QA tasks
typically adopt the Retriever-and-Reader frame-
work (Chen, 2017; Wang et al., 2024a). With the
advancement of open-domain QA, multi-hop QA
(Joshi et al., 2017; Yang et al., 2018) and long-
form (Stelmakh et al., 2022; Lyu et al., 2024) have
gradually emerged. This more complex QA further
necessitates the system to extensively collect and
contextualize from the multiple documents (typ-
ically through iterative processes) in order to ad-
dress more intricate queries. In particular, (Khot
et al., 2022; Khattab et al., 2022) suggested break-
ing down multi-hop queries into simpler single-hop
queries, iteratively utilizing LLMs and the retriever
to address these sub-queries, and then combining
their results to construct a comprehensive answer.
Unlike the decomposition-based method, other re-
cent studies, such as (Yao et al., 2022) and (Trivedi
et al., 2022), explored a technique that creates a
logical sequence of reasoning steps with document

7992

Original Question: Who sings back vocals with piano one of these nights, the song?

Knowledge Retriever

External Knowledge:

kI: Wikipedia: One of these nights is the fourth audio album ...
K2: who wrote one of these nights? one of these night was written by Don Henley and Glen Frey...
k3: One of These Nights™ is the fourth studio album by American rock band ..

Chunk-Level Filter Sentence-Level Filter

) IEV 5‘ >
B—&— g’ 4 B: :
0 (9 A
— =
@ T @R Retrieved chunk Filtered content

Filtered Chunks:
cl, c2, c6

g who wrote one of
these nights?

Extracted Sentences:
pl, p2, pé

a—[—B

Adaptive Information Collector

Generate New Query \
< O\‘_ 4‘ O\ + @oﬁ
Query Query Memory

\
I
I
I
I
I
I
I
I
7 N

//Agent-based Memory Updater N O :
[| I
I 1 | Memory Generate vooo | | !
. s || Update !

! | 5
(I <—u/ | Memory? |
: : Memory : :
| | | |
! | | ° !
[| !
| | | |
| : A | :
b Aggn || Answer Generate i
. @ | |
[— a | @S |
[@ IEI 3 I Q + @ iy _’ /’

\\ Reviewer Challenger Refiner /’ Query Memory /

—{

Response: On the song “One of These Nights” by the Eagles, the piano is played by Glen Frey.

J

Figure 1: Illustration of the Amber framework. Amber is an adaptive Retrieval-Augmented Generation (RAG)
approach incorporating three key components: the Adaptive Information Collector (AIC), the Multi-Granular
Content Filter (MCF), and the Agent-Based Memory Updater (AMU). The MCF filters chunks irrelevant to the
query and extracts the most useful sentences. Subsequently, the AMU updates the generated memory notes. Finally,
the AIC evaluates the quality of the memory and determines whether further iterations are necessary.

retrieval. Additionally, (Jiang et al., 2023) pro-
posed a method that involves iteratively fetching
new documents when the tokens in the generated
sentences exhibit low confidence, and (Jeong et al.,
2024) proposed a retrieval strategy based on the
complexity of the questions. However, The meth-
ods mentioned above neglect both the quality of
retrieved documents and the generation of mem-
ory. Therefore, it is essential to propose a method
aimed at enhanceing the quality of both retrieval
and memory generation.

Retrieval-Augmented Generation. RAG has be-
come essential for enhancing the response quality
of large language models (LLMs). Early strate-
gies (Izacard et al., 2023) relied on single-time
retrieval, inputting the retrieved passages directly
into LLMs to generate answers. However, these
methods often fell short in complex tasks like multi-
hop and long-form question answering, failing to
capture sufficient information. To address these
limitations, multi-time retrieval (Trivedi et al.,
2022; Borgeaud et al., 2022) was explored, though
it risked incorporating irrelevant data, leading to
poor-quality responses. This led to the develop-
ment of Adaptive RAG (ARAG), which dynam-
ically adjusts retrieval strategies based on real-
time feedback, determining optimal retrieval times

and content. Key innovations include Flare (Jiang
et al., 2023), which triggers new retrievals for
low-confidence tokens, and Self-RAG (Asai et al.,
2023), which uses self-reflective markers to as-
sess content quality. These adaptive approaches
enhance retrieval relevancy and accuracy, while
agent-based models like ReAct (Yao et al., 2022)
further augment RAG’s flexibility and intelligence.
Nevertheless, we argue that the above methods
overlook the quality issues in both retrieval and
agent generation, resulting in inaccurate answers.

3 Methods

In this section, we define the task and present an
overview of our proposed method, Amber (illus-
trated in Figure 1). Following this, we provide a
detailed explanation of each individual component.

3.1 Problem Formulation

RAG aims to enhance the generation quality of
LLMs by integrating relevant information from an
external document corpus D = {d;,da,...,d,}.
Given a user input x or a query ¢, the core of RAG
involves using a retriever R to identify and select a
subset of pertinent documents from D. The LLM
then leverages both the original input and these
retrieved documents to produce an improved output.
Generally, this process seeks to achieve an output

7993

y based on the input and retrieved context.

3.2 Amber Overview

Figure 1 presents the architecture of Amber, an
adaptive memory updating iterative RAG method.
It consists of three main components: an Agent-
based Memory Updater, an Adaptive Information
Collector, and a Multi-granular Content Filter.

Given a query ¢, we initialize the LLM’s memory
My as an empty set. Acting as the primary sched-
uler, the Adaptive Information Collector initiates
the iterative loop. At each iteration ¢, we retrieve
the top k text chunks C; = {c}, ¢}, ..., ¢k} from
the corpus D based on gq. The Multi-granular
Content Filter then assesses the relevance of each
chunk cﬁ to ¢ and filters out irrelevant content, re-
taining the most pertinent sub-paragraphs to form
the refined document set ;. Subsequently, the
Agent-based Memory Updater employs three
agents—the Reviewer, Challenger, and Refiner—to
collaboratively integrate the new references P; with
the previous memory M;_1, producing the updated
memory M;. These agents ensure that the mem-
ory is optimized for answering ¢q. The adaptive
information collector then evaluates whether the
LLM can adequately respond to ¢ using the current
memory M;. If not, it generates a new retrieval
query q;+1 based on M; and ¢ and proceeds to the
next iteration. If the LLM can answer ¢ satisfacto-
rily, the adaptive information collector terminates
the loop. After the iterative process concludes, we
use the final memory Mp as context to generate
the answer o € A through the LLM’s zero-shot
in-context learning (ICL).

3.3 Agent-based Memory Updater (AMR)

In real-world scenarios, user queries vary signifi-
cantly in complexity, necessitating the formulation
of tailored strategies for each query. Enhanced
LLM based on memory provide an effective solu-
tion to this challenge. Memory, which represents
the information known to the LLM during retrieval,
enables the model to determine retrieval strategies
effectively. Among these, memory updating is a
critical component. It requires the LLM to leverage
historical and newly retrieved information to regen-
erate the latest memory aligned with the query.
Inspired by the concept of multi-agent collab-
oration, we propose an Agent-based Memory
Updater framework, which employs a coopera-
tive, multi-agent approach to memory updating.
Specifically, AMR consists of three independent

agents: the Reviewer, the Challenger, and the Re-
finer. Through iterative dialogue, these agents re-
flect upon and optimize the memory. The inputs to
AMR include the current memory m,, the retrieved
passages p; for the current query ¢, and the origi-
nal user query q. Based on these inputs, the LLM
initially generates an updated memory My 1.

Reviewer. As the primary evaluator in the AMR
framework, the Reviewer examines the proposed
memory update m;; using the current memory
my, retrieved passages p;, and user query q. The
Reviewer assesses the correctness and relevance
of my41 to the user’s intent, identifying strengths
and weaknesses. By sharing evaluations with the
Challenger and Refiner, the Reviewer facilitates
collaborative refinement and coordinates strategies
to ensure alignment with collective goals. This
evaluation process ensures memory updates are
rigorously reviewed, improving the LLM’s retained
information.

Challenger. Acting as the critical analyst, the
Challenger builds upon the Reviewer’s assessment
by examining m; 1, identifying potential flaws and
overlooked constraints. Through interaction with
the Reviewer and Refiner, the Challenger scruti-
nizes the validity of the memory update, raising
probing questions about conflicts with existing
knowledge or unmet user requirements. These in-
teractions enable collective strategy adaptation, en-
suring my4 1 is robust and well-aligned with both
the user query and knowledge base.

Refiner. As the agent responsible for implement-
ing improvements, the Refiner synthesizes feed-
back from the Reviewer and Challenger to refine
my41. It translates critiques into concrete modifica-
tions, focusing on enhancing accuracy, clarity, and
adherence to user query. The Refiner resolves is-
sues identified by other agents, producing a revised
my41 that better satisfies objectives. Through col-
laboration with the Reviewer and Challenger, the
Refiner streamlines the feedback loop and main-
tains modification records, contributing to an effec-
tive refinement cycle.

Through the complementary collaboration of the
Reviewer, Challenger, and Refiner within AMR,
the proposed method effectively leverages the
strengths of each agent. This triadic interaction en-
sures that memory updates undergo rigorous evalu-
ation, critical examination, and precise refinement.
As a result, the updated memory my; becomes
increasingly accurate, relevant, and aligned with
the user’s query across multiple iterative cycles.

7994

3.4 Adaptive Information Collector (AIC)

We propose the Adaptive Information Collector
as the primary scheduler to control the entire RAG
workflow. The role of AIC is to evaluate whether
the information currently available in the memory,
generated by the AMU, is sufficient to answer the
user query q.

Specifically, each iteration of AIC follows three
key steps. The process initializes with the user
query g9 = ¢ and an empty memory mgy =
(). Firstly, AIC begins by retrieving the top k
text chunks Cy = {c},c,...,c.} from the cor-
pus D based on the current query ¢; using a re-
trieval mechanism. Next, the query ¢, the re-
trieved text chunks C}, and the current memory
my are input into the Agent-based Memory Up-
dater (AMU), which generates an updated memory
myy1 = AMU(qq, Cy, my). Lastly, AIC then eval-
uates whether the updated memory m;; contains
sufficient information to fully answer the query
q. If the memory is deemed sufficient, the iter-
ative process terminates, and the latest memory
mr, along with the query ¢, are inputted into the
LLM using in-context learning to produce the fi-
nal answer a. However, if the updated memory
my41 1S insufficient, AIC generates a refined query
qr+1 = AIC(q, g¢, m¢41). to target the missing in-
formation and proceeds to the next iteration. This
iterative approach ensures that the final memory
mq is comprehensive and well-aligned with the
user’s informational needs.

This iterative design allows AIC to dynamically
refine queries and memory updates, ensuring that
the final memory m7 contains the necessary infor-
mation to answer the user’s query comprehensively.

3.5 Multi-granular Content Filter (MCF)

The Adaptive Information Collector, despite lever-
aging the filtering capabilities of the Agent-based
Memory Updater and employing adaptive retrieval
to refine the query ¢, often retrieves the top k text
chunks Cy = {c!,d,...,ct} that still include ir-
relevant information. These irrelevant parts can
be categorized into two levels: chunk-level irrele-
vance, where an entire chunk c¢; may be unrelated to
the query ¢, and sentence-level irrelevance, where
even within a relevant chunk c;, only a subset of the
sentences may be pertinent to the query ¢, while
the remainder constitutes noise.

Based on these insights, we used STRINC,
CXMI metrics, and GPT-4 (detail see in appendix

A) to generate a multi-granular content filter dataset
and subsequently fine-tuned a LLM using multi-
task learning to create the Multi-granular Content
Filter, denoted as F.. This content filter operates
hierarchically, applying two levels of filtering to
each chunk c;.

At the first level, a chunk-level filtering prompt,
formulated as f.(prompt.nunk, q, pi), determines
whether a chunk is relevant to g. If f. returns False,
the chunk is directly discarded; otherwise, it pro-
gresses to the second level. The chunk-level filter
is defined as:

True, if ¢; relevant to ¢

fe(promptenunk, ¢, ¢i) = {

False, if ¢; not relevant to ¢

M
At the second level, a sentence-level evaluation
is performed for chunks that pass the initial fil-
ter, where p; = fe(promptsentence, 4, ¢i) assesses
each sentence within the chunk to retain the rele-
vant sentences. The output of this stage is a refined
set of relevant sentences P, = {p1,p2,-..,Pm}»
where p; are the relevant sentences.

This hierarchical filtering approach significantly
reduces noise in the retrieved information by iso-
lating only the relevant content at both chunk and
sentence levels. The MCF, ensures that AIC oper-
ates with higher precision, improving the quality
and relevance of the memory m; in each iteration
and, consequently, the overall performance.

4 Experimental Setup

In this section, we present the datasets, models,
metrics, and implementation details. More experi-
ment setup can see appendix A and B.

4.1 Datasets and Evaluation Metrics

To simulate a realistic scenario, where different
queries have varying complexities, we use both the
single-hop, multi-hop and long-form QA datasets
simultaneously, in the unified experimental setting.

Single-hop QA For simpler queries, we use three
benchmark single-hop QA datasets, which consist
of queries and their associated documents contain-
ing answers, namely 1) SQuAD v1.1 (Rajpurkar,
2016), 2) Natural Questions (Kwiatkowski et al.,
2019) and 3) TriviaQA (Joshi et al., 2017).

Multi-hop QA To consider more complex query
scenarios, we use two benchmark multi-hop
QA datasets, which require sequential reasoning

7995

Table 1: Performance comparison of Amber with baseline models. The bold and underlined values indicate the
best and second-best results across all models. Overall, Amber consistently achieves superior performance across
all datasets, demonstrating its effectiveness in answering questions.

single-hop QA multi-hop QA Long-form QA
Methods SQUAD Natural Questions TriviaQA 2WikiMQA HotpotQA ASQA
acc fl acc fl acc fl acc fl acc f1 str-em str-hit
No Retrieval NoR 126 1841 24.0 27.49 49.8 52.69 284 356 198 25.17 355 8.9
Vanilla (Qwen2-7b) 322 27.7 36.2 24.62 60.6 49.63 362 39.0 37.8 372 435 18.5
Vanilla (Llama3-8b) 30.4 36.08 33.2 38.99 582 60.28 222 262 342 422 387 13.7
. . Vanilla (GPT-3.5) 344 37.88 359 38.43 63.8 6349 354 382 38.6 4436 4777 21.62
Single-time RAG .
Self-Refine 32.1 33.04 358 35.17 61.2 5891 359 38.6 382 438 421 16.6
Self-Rerank 31.1 35.19 343 39.05 60.7 59.84 348 32.1 356 422 350 11.4
Chain-of-note 31.8 3394 352 37.66 61.0 5833 351 397 368 450 403 15.6
ReAct 33.6 3485 354 38.37 609 59.83 34.6 373 375 469 329 8.3
Self-RAG 327 3384 379 39.17 60.3 5894 298 30.8 353 444 409 16.5
. FLARE 329 3581 364 38.94 61.1 5775 382 428 372 47.8 349 9.5
Adaptive RAG .
Adaptive-RAG 33.0 383 446 473 582 60.7 464 49.75 444 5256 421 15.8
Adaptive-Note 29.0 33.61 40.0 45.38 59.6 59.72 394 39.1 39.0 46.6 437 17.7
Amber (Qwen2-7b) 36.8 3843 478 49.84 658 62.77 56.0 5273 52.6 51.13 49.7 252
Ours Amber (Llama3-8b) 34.6 39.37 442 50.49 63.6 62.79 438 435 458 5372 447 18.8
Amber (GPT-3.5) 35.8 39.06 474 52.01 66.8 66.08 46.7 4595 474 5355 513 26.3

over multiple documents, namely 1) 2WikiMul-
tiHopQA (2WikiMQA) (Ho et al., 2020) and 2)
HotpotQA (Yang et al., 2018). For both single-
hop QA and multi-hop QA, we report the accu-
racy (acc) and F1-score (f1) as evaluation metrics,
where acc measures if the predicted answer con-
tains the ground-truth, and f1 measures the number
of overlapping words between the predicted answer
and the ground-truth.

Long-form QA We select an English dataset
ASQA (Stelmakh et al., 2022). Specially, we use
the ASQA dataset with 948 queries recompiled by
ALCE (Gao et al., 2023) and apply ALCE’s official
evaluation metrics, involving String Exact Match
(str-em) and String Hit Rate (str-hit).

4.2 Baseline&LLMs

We extensively compare three types of baselines: 1)
No Retrieval (NoR), which directly feeds queries
into LLMs to output answers without any retrieval
process; 2) Single-time RAG (STRAG), which re-
trieves knowledge in a one-time setting to answer
the original queries; 3) Adaptive RAG (ARAG),
which leverages an adaptive forward exploration
strategy to retrieve knowledge to enhance answer
quality. For STRAG, we select Vanilla RAG,
Chain-of-note (Yu et al., 2023), Self-Refine, and
Self-Rerank are simplified from Self-RAG (Asai
et al., 2023). For ARAG, we include five recent
famous methods for comparison - FLARE (Jiang
et al., 2023), Self-RAG, ReAct (Yao et al., 2022),
Adaptive-RAG (Jeong et al., 2024) and Adaptive-
Note (Wang et al., 2024b). Additionally, we con-
duct experiments on multiple LLMs, including

Qwen2-7b (Yang et al., 2024), Llama3-8b (Tou-
vron et al., 2023a) and GPT-3.5 (OpenAl gpt-3.5-
turbo-instruct). We default to using Llama3-8b
as the Multi-granular Content Filter LLM, detail
experiment setting about multi-filter content see ap-
pendix A. Unless otherwise specified, Llama3-8b
was employed as the default model.

5 Results and Analysis

In this section, we evaluate our proposed frame-
work, Amber, on six real-world datasets and com-
pare it against several baselines, including No re-
trieval, single-time and adaptive RAG methods.

5.1 Main Results.

We implemented the Amber on six datasets. The
comparison with baseline models is summarized in
Table 1. Key observations are as follows:

Amber vs. Single-time RAG. Results show that
our method surpassed all STRAG for all six QA
datasets. Meanwhile, it is noteworthy that our
method outperformed Vanilla by over 30% on the
Natural Questions, 2WikiMQA, and HotpotQA
datasets. Even on the remaining three datasets,
it still achieved an approximate 10% improve-
ment. These achievements highlight its superiority
and effectiveness. An intuitive explanation is that
STRAG heavily depends on the quality of one-
time retrieval, whereas our method can adaptively
explore more knowledge in the corpus and filter
useless chunks and irrelevant sentence in chunk.
Therefore, it is able to demonstrate that our method
preserves more and more effective knowledge.

7996

Amber vs. Adaptive RAG. In Table 1, we con-
duct an in-depth comparison of our approach with
several existing ARAG models,including FLARE,
Self-RAG, ReAct, Adaptive-RAG and Adaptive-
Note. Our method consistently outperforms base-
lines in single-hop, multi-hop, and long-form QA
tasks, particularly in accuracy. Even compared
to the state-of-the-art ARAG method, it improves
by over 10%, demonstrating its superiority, effec-
tiveness, and robustness. We provide an in-depth
analysis of the baseline limitations and the fac-
tors contributing to our success. First, ReAct
and Flare relies on LLMs’ internal knowledge to
guide retrieval decisions, but its inherent overcon-
fidence (Zhou et al., 2023) may hinder retrieval
efficacy by neglecting existing knowledge. In con-
trast, our method employs a greedy strategy to first
gather information extensively, followed by a care-
ful assessment of whether to incorporate new, use-
ful knowledge into the existing framework. This
process optimizes knowledge extraction and signif-
icantly enhances response accuracy. Second, Self-
RAG faces challenges in training effective models
for complex tasks due to numerous classifications
such as labeled inputs, retrieved paragraphs, and
output categorizations. Unlike this approach, our
Multi-granular Content filter training strategy is
relatively simple, yet it maximizes the utilization
of valuable information through multiple iterations
and agent-based memory. Third, The Adaptive-
RAG method adapts retrieval strategies based on
query complexity, and Adaptive-Note generates
new memory in each iteration until memory growth
stabilizes. However, both of them neglect passage
quality, which affects answer accuracy. Instead,
our method focuses on the importance of retrieving
relevant paragraphs, aiming to minimize the impact
of irrelevant information on the LLM’s decision-
making when answering questions.

5.2 Classifier Performance

Qwen2-7b Llama3-8b

09 09
08 08
0.9375 0.0625 07 0.9219 0.0781 07
06 06

o Los

useful
useful

-04

0.5970 0.4030 jo2
02

0.5783 0.4217 -03
-02

useless
useless

-01
useful useless useful

(a) Qwen2-7b (b) Llama3-8b

useless

Figure 2: Confusion matrix for fine-tuned LLMs.
Our Fine-Tuned LLMs serve as excellent classifiers.

To understand the performance of the proposed

classifier, we analyze its effectiveness across two
LLM models. As shown in figure 2, whether in
Llama3-8b or Qwen2-7b, our Amber classifier,
achieves over 90% accuracy in classifying useful
retrieved passages. Furthermore, it successfully ex-
cludes more than 40% of negative retrieved knowl-
edge, significantly improving the quality of the
knowledge and eliminating irrelevant information.

507

49] —~ Vanilla str-em Outs 381 vanita 1 o
a8 361
£47 534‘
Las] #32
B 45| . 30/
441 . 28{ .
a3] . —
top-5 top-7 top-10 zetop-s top-7 top-10
(a) ASQA (b) SQUAD
51 ours 62! ours
a8 Vanilla f1 60| —— Vanillaf1
as
- 581
£30 % 561
936 7541
e a52
B :: “50] .
27/ 48
241 461 .
top-5 top-7 top-10 top-5 top-7 top-10
(c) Natural Questions (d) TriviaQA
52/ ours ours
s0] Vanilla f1 50| —— vanilla f1
0981 ° 48]
£a6 Sas]
§aal $aa)
I ::: Taz|
38{ 40|
36/ T —
top-5 top-7 top-10 top-5 top-7 top-10
(e) 2WikiMQA (f) HotpotQA

Figure 3: Results of the in-depth comparison under
a fair top-k.

5.3 In-depth comparison under a fair top-k

Under the same raw top-k setting, ARAG meth-
ods generally retrieve more passages compared to
single-step methods. Unfortunately, while we can
specify the top-k value for each step, the inherent
retrieval uncertainly in ARAG prevents us from
controlling the total number of retrieved passages.
To ensure a fairer performance comparsion, we ad-
dress the discrepancy by calculating the average
number of unique passages retrieved per sample
across all adaptive steps, which we term the fair
top-k. Figure 3 illustrates the overall performance
of Vanilla RAG under this fair-top-k setting. It is
evident that as the number of retrieved passages
increases, the Vanilla method shows little to no
significant improvement. These findings further
emphasize the superiority of our method.

5.4 Ablation Study

To analyze the contributions of components in
the proposed Amber method, particularly the fine-
tuning of the Multi-granular Content Filter and the
Agent-based Memory Updater in Adaptive infor-
mation Collector, we conducted an ablation study

7997

LLM Qwen2-7b LLama3-8b GPT3.5
metric acc fl acc fl acc fl
Amber 56.0 5273 438 43.5 46.7 4595

Multi-granular Content Filter
w/o CF 522 4978 415 4051 435 4237

w/o SF 55.1 50.67 428 4217 452 43.84
w/o ALL 51.6 4839 409 40.12 424 41.65

Agent-Based Memory Updater
w/o AM 535 5097 427 41.63 443 4285

Table 2: Ablation study on the 2WikiMQA dataset.

on the 2WikiMQA dataset. The above components
comprise three key components:

* Chunk-Level Filter (CF): Input: Query and re-
trieved chunk. Output: useful / useless.

* Sentence-Level Filter (SF): Input: query and
filtered chunk. Output: filtered sentences.

* Agent-Based Memory Updater (AMU):
whether to use agent-based method for memory.

Effect of the Multi-granular Content Filter. To
evaluate the contribution of each Multi-granular
Content Filter component, we systematically re-
moved one type of content. Additionally, remov-
ing both two types (w/o ALL) effectively disables
the content filter stage. The results, presented in
Table 2, show that the model achieves its best per-
formance when both two filter strategy are used
together. Conversely, removing any single type
of data leads to a noticeable decline in perfor-
mance, highlighting the importance of each com-
ponent in enhancing the framework’s overall ef-
fectiveness. Interestingly, the performance when
Sentence-Level Filter (w/o SF) are excluded re-
mains higher than when Chunk-Level Filter (w/o
CF) are omitted. This indicates that, The Chunk-
Level Filter plays a more significant role in our
approach, effectively filtering out irrelevant chunk
information to a large extent.

Impact of Agent-based Memory Updater. To
examine the role of Agent-based Memory Up-
dater(w/o AMU) in Amber, we conducted an ab-
lation experiment by removing the AMU module.
As shown in Table 2, removing this module sig-
nificantly decreases performance. This highlights
the agent’s critical role in memory generation. The
agent ensures the creation of more efficient mem-
ory, thereby enabling the LLM to provide more
accurate responses.

The ablation study highlights the importance of
each content filter component and the agent-based
memory module. Multi-granular Content Filter

2WikiMQA HotpotQA ASQA
top-k (i) (f1) (acc) (f1) (st-em) (str-hit)
Vanilla
top-3 363 3682 359 378 425 17.5
top-5 370 3745 376 3816 4278 18.14
top-7 356 3548 398 384 43.53 17.93
Ours

top-3 532 403 509 494 483 235
top-5 560 4273 526 5113 497 252
top-7 552 417 528 5102 50.1 25.6

Table 3: Amber with different top-k with Qwen2-7b.

2WikiMQA HotpotQA ASQA
max-iter (acc) (f1) (acc) (f1) (str-em) (str-hit)
1 53.2 38.95 50.4 49.73 453 20.9
3 56.0 42.73 52.6 51.13 49.7 25.2
5 55.1 41.05 51.9 50.34 48.4 24.5

Table 4: Amber with varying max iterations in AIC.

and Agent-based Memory Updater significantly
enhance the performance of the Amber framework.

5.5 Parameter Analysis

Impact of top-k. In Table 3, we present a com-
parison between our method and Vanilla RAG
across different top-k settings. The results demon-
strate that our approach consistently outperforms
Vanilla RAG under the same top-k conditions, high-
lighting its robustness in achieving reliable im-
provements regardless of the number of retrieved
passages. Additionally, in most cases, the perfor-
mance of our system improves as the number of
retrieved passages (top-k) per step increases.

Impacts of max iterations As shown In Table
4, performance on these complex QA datasets im-
proves with increasing iterations, peaking at 3. We
therefore recommend setting the max iterations to
3 for optimal performance.

6 Conclusion

In this paper, we propose a novel RAG method,
Amber, based on memory-adaptive updates. Our
approach introduces a collaborative multi-agent
memory updating mechanism, combined with an
adaptive retrieval feedback iteration and a multi-
granular filtering strategy. This design enables effi-
cient information gathering and adaptive updates,
significantly improving answer accuracy while re-
ducing hallucinations. We validated Amber and its
core components across several open-domain QA
datasets. Extensive experiments prove the superior-
ity and effectiveness of Amber.

7998

Limitation. Although Amber has made signifi-
cant progress in open-domain question answering
with RAG, there are still some limitations. First,
the framework requires multiple fine-tuning steps
to train the Multi-granular Content Filter, which
necessitates the collection of a substantial amount
of data, as well as considerable computational re-
sources and time. Second, since Amber requires
multiple accesses to the LLM, answering each ques-
tion takes more time compared to the vanilla ap-
proach. In future work, we plan to design a more
time-efficient and generalizable fine-tuning strat-
egy to improve the quality of open-domain question
answering, thereby enhancing the overall effective-
ness of Amber.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2023. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
arXiv preprint arXiv:2310.11511.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoff-
mann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste
Lespiau, Bogdan Damoc, Aidan Clark, et al. 2022.
Improving language models by retrieving from tril-
lions of tokens. In International conference on ma-
chine learning, pages 2206-2240. PMLR.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large annotated
corpus for learning natural language inference. arXiv
preprint arXiv:1508.05326.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

D Chen. 2017. Reading wikipedia to answer open-
domain questions. arXiv preprint arXiv:1704.00051.

Lingjiao Chen, Matei Zaharia, and James Zou. 2023.
How is chatgpt’s behavior changing over time? arXiv
preprint arXiv:2307.09009.

Tianyu Gao, Howard Yen, Jiatong Yu, and Dangi Chen.
2023. Enabling large language models to generate
text with citations. arXiv preprint arXiv:2305.14627.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,
and Akiko Aizawa. 2020. Constructing a multi-hop
qa dataset for comprehensive evaluation of reasoning
steps. arXiv preprint arXiv:2011.01060.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas
Hosseini, Fabio Petroni, Timo Schick, Jane Dwivedi-
Yu, Armand Joulin, Sebastian Riedel, and Edouard
Grave. 2023. Atlas: Few-shot learning with retrieval
augmented language models. Journal of Machine
Learning Research, 24(251):1-43.

Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju
Hwang, and Jong C Park. 2024. Adaptive-rag: Learn-
ing to adapt retrieval-augmented large language mod-
els through question complexity. arXiv preprint
arXiv:2403.14403.

Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing
Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
Jamie Callan, and Graham Neubig. 2023. Ac-
tive retrieval augmented generation. arXiv preprint
arXiv:2305.06983.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. Triviaga: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. arXiv preprint arXiv:1705.03551.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Dangi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. arXiv preprint
arXiv:2004.04906.

Omar Khattab, Keshav Santhanam, Xiang Lisa
Li, David Hall, Percy Liang, Christopher Potts,
and Matei Zaharia. 2022. Demonstrate-search-
predict: Composing retrieval and language mod-
els for knowledge-intensive nlp. arXiv preprint
arXiv:2212.14024.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao
Fu, Kyle Richardson, Peter Clark, and Ashish Sab-
harwal. 2022. Decomposed prompting: A modular
approach for solving complex tasks. arXiv preprint
arXiv:2210.02406.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, et al. 2019. Natural questions: a benchmark
for question answering research. Transactions of the
Association for Computational Linguistics, 7:453—

466.

Angeliki Lazaridou, Elena Gribovskaya, Wojciech
Stokowiec, and Nikolai Grigorev. 2022. Internet-
augmented language models through few-shot
prompting for open-domain question answering.
arXiv preprint arXiv:2203.05115.

7999

Yuanjie Lyu, Zhiyu Li, Simin Niu, Feiyu Xiong,
Bo Tang, Wenjin Wang, Hao Wu, Huanyong Liu,
Tong Xu, and Enhong Chen. 2024. Crud-rag:
A comprehensive chinese benchmark for retrieval-
augmented generation of large language models.
ACM Transactions on Information Systems.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gus-
tavo Herndndez Abrego, Ji Ma, Vincent Y Zhao,
Yi Luan, Keith B Hall, Ming-Wei Chang, et al.
2021. Large dual encoders are generalizable retriev-
ers. arXiv preprint arXiv:2112.07899.

P Rajpurkar. 2016. Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay,
Amnon Shashua, Kevin Leyton-Brown, and Yoav
Shoham. 2023. In-context retrieval-augmented lan-
guage models. Transactions of the Association for
Computational Linguistics, 11:1316-1331.

Stephen E Robertson, Steve Walker, Susan Jones,
Micheline M Hancock-Beaulieu, Mike Gatford, et al.
1995. Okapi at trec-3. Nist Special Publication Sp,
109:109.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Min-
joon Seo, Rich James, Mike Lewis, Luke Zettle-
moyer, and Wen-tau Yih. 2023. Replug: Retrieval-
augmented black-box language models. arXiv
preprint arXiv:2301.12652.

Ivan Stelmakh, Yi Luan, Bhuwan Dhingra, and
Ming-Wei Chang. 2022. Asqa: Factoid ques-
tions meet long-form answers. arXiv preprint
arXiv:2204.06092.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. ArXiv,
abs/2302.13971.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023b. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Harsh Trivedi, Niranjan Balasubramanian, Tushar
Khot, and Ashish Sabharwal. 2022. Interleav-
ing retrieval with chain-of-thought reasoning for
knowledge-intensive multi-step questions. arXiv
preprint arXiv:2212.10509.

Ellen M Voorhees et al. 1999. The trec-8 question
answering track report. In Trec, volume 99, pages
77-82.

Hongru Wang, Boyang Xue, Baohang Zhou, Tianhua
Zhang, Cunxiang Wang, Guanhua Chen, Huimin
Wang, and Kam-fai Wong. 2024a. Self-dc: When
to retrieve and when to generate? self divide-and-
conquer for compositional unknown questions. arXiv
preprint arXiv:2402.13514.

Ruobing Wang, Daren Zha, Shi Yu, Qingfei Zhao, Yux-
uan Chen, Yixuan Wang, Shuo Wang, Yukun Yan,
Zhenghao Liu, Xu Han, et al. 2024b. Retriever-
and-memory: Towards adaptive note-enhanced
retrieval-augmented generation. arXiv preprint
arXiv:2410.08821.

Zhiruo Wang, Jun Araki, Zhengbao Jiang, Md Rizwan
Parvez, and Graham Neubig. 2023. Learning to filter
context for retrieval-augmented generation. arXiv
preprint arXiv:2311.08377.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin
Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang
Lin, Kai Dang, Keming Lu, Ke-Yang Chen, Kexin
Yang, Mei Li, Min Xue, Na Ni, Pei Zhang, Peng
Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu,
Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng,
Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin
Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yunyang Wan, Yunfei Chu, Zeyu Cui, Zhenru
Zhang, and Zhi-Wei Fan. 2024. Qwen?2 technical
report. ArXiv, abs/2407.10671.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. arXiv preprint arXiv:1809.09600.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan
Berant. 2023. Making retrieval-augmented language
models robust to irrelevant context. arXiv preprint
arXiv:2310.01558.

Wenhao Yu, Hongming Zhang, Xiaoman Pan, Kaixin
Ma, Hongwei Wang, and Dong Yu. 2023. Chain-of-
note: Enhancing robustness in retrieval-augmented
language models. arXiv preprint arXiv:2311.09210.

Kaitlyn Zhou, Dan Jurafsky, and Tatsunori Hashimoto.
2023. Navigating the grey area: How expressions
of uncertainty and overconfidence affect language
models. In Conference on Empirical Methods in
Natural Language Processing.

8000

https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:271212307
https://api.semanticscholar.org/CorpusID:271212307
https://api.semanticscholar.org/CorpusID:265150666
https://api.semanticscholar.org/CorpusID:265150666
https://api.semanticscholar.org/CorpusID:265150666

A Multi-granular Content Filter

In Amber, for the Multi-granular content filter, we
finetune the LLaMA 3-8B and Qwen 2-7B models
using the LLamaFactory framework. Specifically,
for the query-reference classification task, we fine-
tune the model into two categories: useful and use-
less, retaining only the useful ones. For the context
filter, we use only the extracted content from the
original passages and feed it into the LLMs. Both
fine-tuning processes are conducted over 2 epochs,
with the per-device training batch size set to 4.

Chunk-Level Filter The accuracy of responses
generated by LLMs can be significantly compro-
mised by noisy retrieved contexts (Yoran et al.,
2023). To mitigate this, we introduce the Chunk-
Level Filter module to enhance response accuracy
and robustness. This module utilizes LLMs to fil-
ter out irrelevant knowledge. Rather than directly
querying an LLM to identify noise, we incopo-
rate a Natural Language Inference (NLI) frame-
work (Bowman et al., 2015) for this purpose. Spe-
cially, for a query ¢ and retrieved reference r, the
NLI task evaluates whether the knowledge contains
reliable answers, or usefule information aiding the
response to the question. This results in a judgment
j categorized as useful or useless. The operation
of the Chunk-Level Filter can be mathematically
represented as :

Fy(g,7) — j € {useful, useless})

Knowledge is retained if the NLI result is classified
as useful, and the reference is discarded when the
NLI result is classified as useless. The NLI training
dataset is constructed semi-automatically. We pro-
vide task instruction, query ¢, along with retrieved
reference r as prompt to GPT-4, which then gener-
ated a brief explanation e and a classification result
j. The prompt template is as follows:

[Instruction]: Your task is to solve the
NLI problem: given the premise in [Knowl-
edge] and the hypothesis that "The [Knowl-
edge] contains reliable answers aiding the
response to [Question]". You should clas-
sify the response as useful and useless.
[Question]: { Question}

[Knowledge]:{ Knowledge }

[Format]: { Explanation} {NLI result}

Sentence-Level Filter Followed by previous
work (Wang et al., 2023), we use the STRINC

measure for single-hop QA datasets and CXMI for
multi-hop datasets. We train the sentence-Level Fil-
ter models My; ¢, using context filtered with above
two measures. To create training data for M ¢,
for each training sample with query g, we concate-
nate the retrieved passages P and query g, then,
we apply the filter method f to obtain filtered con-
text tousput as output. The s is the sentence of the
retrieved passages, and foy¢put can be represented
as:

toutput = [Steazt ‘ Sstrinc == 1} 3)
toutput = [Stext | Scami >= threshold] (4)

We train M by feeding in query and retrieved
passages P, and ask it to generate filtered context.

B Retriever & Corpus

To ensure a fair comparison of all baselines, we
align the retriever and corpus across all methods
for each dataset. For both single-hop and multi-hop
datasets, we employ BM25 (Robertson et al., 1995),
implemented in the search tool Elasticsearch, as the
foundational retriever. For the external document
corpus, we use the Wikipedia corpus preprocessed
by (Karpukhin et al., 2020) for single-hop datasets,
and the preprocessed corpus by (Trivedi et al.,
2022) for multiple-hop datasets. For long-form
ASQA dataset, we employ dense retriever GTR-
XXL (Ni et al., 2021) and use the corpus provided
by ALCE, consisting of the 2018-12-20 Wikipedia
snapshot, segmented into 100-word passages.

C Implementation Details

For computing resources, we utilize NVIDIA 4090
GPUs with 24GB of memory. Additionally, due to
the frequent access to the LLM, we employ VLLM
as the inference framework. The software stack
includes Python 3.10.15, VLLM 0.6.3.post1, Py-
Torch 2.5.0, and CUDA 12.1.

D Detailed prompt

We present all the prompts used in our method
in Tables A3 and A4. In Table A3, we detail
the prompt for the Multi-granular Content Filter.
Specifically, at the Memory Initialization stage,
query represents the original query q, and refs
refers to the retrieved k passages obtained by feed-
ing the original query q into the retriever. At the
Iterative Information Collection stage, query still
represents the original query q, and note refers to

8001

the content of the optimal memory M,,;. Addition-
ally, as mentioned in the main text, LLMs tend to
ask similar questions if previous ones were not well
resolved. To address this, we introduce the already-
asked questions list query log to avoid repetition.
At the Note-Updating stage, query still refers to
g, while refs represents new retrieved k passages
based on the updated queries, and note refers to
Mp¢. In the Memory Updating phase, query repre-
sents the original query ¢, while best note and new
note represent M,,,; and M., respectively.

In the Multi-granular Content Filter stage, for the
Chunk-Level Filter, External_knowledge refers to
the retrieved k passages, from which we filter out
useless passages, retaining only the useful ones.
Next, for the Sentence-Level Content Filter, con-
text refers to each useful passage. After passing
through this filter, we extract important sentences
from the passages to generate the answer.

In the Agent-based Memory Update, we assume
three roles in the memory generation process: re-
viewer, challenger, and refiner. The reviewer evalu-
ates the strengths and weaknesses of the note mem-
ory based on the query and refs. The challenger,
using the reviewer’s feedback, provides sugges-
tions to revise and enhance the memory. Finally,
the refiner uses both the reviewer’s insights and the
challenger’s suggestions to refine and generate the
new memory. In the final memory updating phase,
we compare the new memory with the initialized
memory to select the best memory.

8002

Prompt of the Memory Initialization Stage

Instruction:

Based on the provided document content, write a note. The note should integrate all relevant information
from the original text that can help answer the specified question and form a coherent paragraph. Please
ensure that the note includes all original text information useful for answering the question.

Question to be answered: {query}
Document content: {refs}

Please provide the note you wrote:

Prompt of the Iterative query rewritten Stage

Instruction:
Task: Based on the notes, propose a new question. The new question will be used to retrieve documents
to supplement the notes and help answer the original question. The new question should be concise and
include keywords that facilitate retrieval. The new question should avoid duplication with the existing
question list.

Original question: {query}
Notes: {note}
Existing question list: {query_log}

Provide your new question,you MUST reply with the new question on the last line, starting with "###
New Question".

Prompt of the Chunk-Level Filter

Instruction:

You are an advanced Al model specialized in understanding the Natural Language Inference (NLI) tasks.
Your task is to do the NLI problem. The premise is [External Knowledge]. The hypothesis is "There exist
clear and unambiguous answer in the [External Knowledge] that can convincingly and soundly answer the
Question." Your response should be in one of (useful,useless).

External Knowledge: {External_Knowledge}
Question: {Question}

Now give me the NLI result, which 1. should be one of (useful,useless). 2.Please strictly following this
json format and fill xxx with your answer. 3. Please notice the Escape Character and keep correct format.
4. Please just give me the concise Json response and no ther redundant words. 5. The output should not
appear Here is the NLI result, Just strictly follow the format below:

{"NLI result":"xxx"

Prompt of the Sentence-Level Filter

Instruction:

You are an Al model specialized in extracting helpful sentences from a given context. Your task is to
extract helpful sentences while removing irrelevant or unhelpful ones based on the provided question and
context.

Question: {query}
context: {context}

Now provide the extracted helpful sentences, which should include only valid and relevant sentences from
the context.

Table 5: All prompts of Memory initialize, query rewritten and Multi-granular Content Filter.

8003

Prompt of the reviewer in Agent-based memory

Instruction:

Task: Analyze the relationship between the query, retrieved documents, and notes. Identify the strengths
and weaknesses of how well the notes align with the query and incorporate the information from the
retrieved documents. Highlight areas where the notes effectively cover the query and the references, as
well as areas where they could be improved to better address the query or utilize the information from the
references.

Question: {query}

retrieved documents: {refs}

note: {note}

Provide an analysis of the notes with a focus on the strengths and weakness:

Prompt of the challenger in Agent-based memory

Instruction:

Based on the provided reviewer information, provide specific and actionable suggestions to improve the
notes. The goal is to ensure the notes comprehensively and accurately address the query while fully
utilizing relevant information from the retrieved documents.

Question: {query}

retrieved documents: {refs}

Notes: {note}

reviewer information: {review_info}

Provide detailed suggestions to revise and enhance the notes:

Prompt of the refiner in Agent-based memory

Instruction:

Refine the provided notes based on the reviewer information and suggestions. The goal is to ensure the
notes are improved to better address the query and fully utilize the relevant information from the retrieved
documents.

Question: {query}

retrieved documents: {refs}

Notes: {note}

reviewer information: {review_info}

suggestions: suggestions

Provide the refined notes that incorporate the feedback from the reviewer information and suggestions:

Prompt of the memory updating

Instruction:

Task: Please help me determine which note is better based on the following evaluation criteria:

1. Contains key information directly related to the question.

2. Completeness of Information: Does it cover all relevant aspects and details?

3. Level of Detail: Does it provide enough detail to understand the issue in depth?

4. Practicality: Does the note offer practical help and solutions?

Please make your judgment adhering strictly to the following rules:

- If Note 2 has significant improvements over Note 1 based on the above criteria, return {“status": “True"}
directly; otherwise, return {“status": “False"} .

Question: {query}

Provided Note 1: {best_note}

Provided Note 2: {new_note}

Based on the above information, make your judgment without explanation and return the result directly.

Table 6: All prompts of Agent-based Memory Update

8004

