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Abstract

Large language models (LLMs) demonstrate
exceptional capabilities, yet still face the hal-
lucination issue. Typical text generation ap-
proaches adopt an auto-regressive generation
without deliberate reasoning, often leading
to untrustworthy and factually inaccurate re-
sponses. In this paper, we propose HaluSe-
arch, a novel framework that incorporates tree
search-based algorithms (e.g., MCTS) to enable
an explicit slow thinking generation process
for mitigating hallucinations during inference.
Specifically, HaluSearch frames text genera-
tion as a step-by-step reasoning process, using
a self-evaluation reward model to score each
generation step and guide the tree search to-
wards the most reliable generation pathway. To
balance efficiency and quality, we introduce a
hierarchical system switch mechanism inspired
by the dual process theory in cognitive science
, which dynamically switches between fast and
slow thinking modes at both instance and step
levels. We conduct extensive experiments on
both English and Chinese datasets, and the re-
sults show that our approach significantly out-
performs baseline approaches.

1 Introduction

Large language models (LLMs) (Zhao et al., 2023)
are revolutionizing the landscape of artificial in-
telligence, showcasing remarkable capabilities in
generating human-quality text and tackling diverse
language tasks. Despite these advancements, they
often struggle with the issue of hallucination (Ji
et al., 2023; Huang et al., 2023; Rawte et al., 2023;
Ye et al., 2023; Zhang et al., 2023), where responses
can be untrustworthy or factually inaccurate. This
issue significantly impacts the practical applica-
tions of LLMs in real-world scenarios. Existing
studies (Xu et al., 2024; Banerjee et al., 2024) indi-
cate that due to limitations in training data, model
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architecture, training method, and other factors,
completely eliminating hallucinations is infeasible.
Therefore, the development of effective techniques
to mitigate hallucinations is critical for improving
the reliability and robustness of LLM outputs.

Existing efforts to mitigate hallucinations have
targeted different stages of the LLM pipeline, in-
cluding pre-training (Li et al., 2023b), supervised
fine-tuning (Tian et al., 2024; Elaraby et al., 2023;
Lin et al., 2024), and inference (Dhuliawala et al.,
2024; Madaan et al., 2024; Kang et al., 2023). In
this study, we mainly focus on the hallucination
mitigation techniques during the inference stage.
Existing approaches can be broadly divided into
two categories, i.e., retrieval-augmented genera-
tion (RAG) and internal knowledge-based meth-
ods. RAG methods (Lewis et al., 2020) enhance
response accuracy by retrieving documents relevant
to the query and incorporating them as additional
contextual information (Asai et al., 2024). Internal
knowledge-based methods, such as step-by-step
reasoning (Wei et al., 2022), self-verification (Dhu-
liawala et al., 2024), and self-consistency (Wang
et al., 2023), rely on instructions to generate inter-
mediate reasoning steps or utilize the model’s con-
sistency by selecting the most coherent response
from multiple outputs. Although these studies per-
form deliberative reasoning to mitigate hallucina-
tions, they operate at the response level and re-
main constrained by the auto-regressive generation
paradigm, where intermediate errors can accumu-
late, potentially leading to incorrect final outputs.

In this paper, we propose HaluSearch, a novel
framework that explicitly models response gener-
ation as a deliberate thinking process of System
2 (Kahneman, 2011), incorporating a dynamic sys-
tem switch mechanism to adaptively alternate be-
tween fast and slow thinking modes. To achieve
this goal, we first integrate tree search-based algo-
rithms (e.g., MCTS) to formulate text generation
as a step-by-step reasoning process, treating each
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sentence as an individual reasoning step. Secondly,
inspired by the interaction between System 1 and
System 2 in the dual process theory of cognitive
science (Wason and Evans, 1974), we propose a dy-
namic system switch mechanism at both instance
and step levels within the text generation process.
Starting with the input prompt, the dynamic sys-
tem switch mechanism is employed to determine
the appropriate thinking mode for the input ques-
tion or each reasoning step: fast thinking directly
generates a completed response or a single reason-
ing step, while slow thinking generates multiple
intermediate sentences that are evaluated by a re-
ward model. Finally, we employ the HaluSearch
framework to synthesize preference data to train a
reward model for assessing the degree of hallucina-
tions in generated sentences. Given the challenges
in training an accurate reward model, we explore
two approaches: generative reward modeling and
critique-based reward modeling, targeting effective
self-evaluation to guide the search process. Com-
pared to previous work, our approach performs
step-level reasoning to generate responses rather
than relying on response-level refinements, which
can achieve more effective and fine-grained hallu-
cination mitigation.

We conduct extensive experiments to evaluate
the effectiveness of HaluSearch using Llama3.1-
8B-Instruct and Qwen2-7B-Instruct as policy mod-
els. The results show that our method achieves sub-
stantial improvements over previous prompt-based
and inference-time intervention baselines across
both English and Chinese datasets.

2 Related Work

2.1 Halluciantion Mitigation

Studies on hallucination mitigation span both the
training and inference stages of LLMs (Li et al.,
2024a). Due to the high computational cost and
resource requirements of model training, more re-
search has focused on exploring hallucination miti-
gation methods during the inference stage, which
can be broadly divided into two categories. The
first category is retrieval-augmented generation
(RAG) (Li et al., 2024a) which reduces halluci-
nations by retrieving documents relevant to the
query and providing them as additional context,
relying on external knowledge to improve response
accuracy. Another category of methods, includ-
ing Chain-of-Thought (CoT) (Wei et al., 2022),
Self-Consistency (Wang et al., 2023), and Best-

of-N (Lightman et al., 2024), seeks to mitigate
hallucinations by leveraging the internal knowl-
edge of LLMs through prompt-based reasoning or
consistency-driven strategies. However, these ap-
proaches operate at the response level and are still
constrained to the fast and intuitive auto-regressive
generation paradigm. In contrast, our approach em-
ploys MCTS to frame response generation as an
explicit step-by-step slow thinking process, utiliz-
ing step-level rewards to explore optimal reasoning
paths and generate more reliable responses.

2.2 System 2 Thinking in LLMs

System 2 thinking in LLMs emulates the human
process of deliberate reasoning to generate high-
quality and accurate responses. Many studies
(Snell et al., 2024; Min et al., 2024; Tang et al.,
2025) have demonstrated that scaling inference-
time computation serves as an alternative to train-
ing for enhancing the performance of LLMs, partic-
ularly in complex reasoning scenarios (e.g., math-
ematical problem solving). Early works primarily
implemented System 2 thinking in LLMs by using
prompts to guide the generation of intermediate
reasoning steps, such as CoT (Wei et al., 2022),
ToT (Yao et al., 2024). Recent approaches (Wang
et al., 2024; Kang et al., 2024; Jiang et al., 2024;
Tang et al., 2024) focus on incorporating search-
augmented reasoning during the decoding process
to explicitly implement System 2 thinking, which
have shown considerable gains. However, the po-
tential of this approach for hallucination mitigation
has not been fully investigated. In this paper, we in-
vestigate whether tree search-based slow thinking
can effectively leverage accurate internal knowl-
edge from LLMs to mitigate hallucinations.

3 Approach

In this paper, we propose HaluSearch, leveraging
deliberate planning to mitigate LLM hallucinations
during the inference stage. Previous work on mit-
igating hallucinations during inference is mainly
limited to the fast thinking paradigm that relies
on prompts to instruct LLMs to generate faithful
responses or directly calibrates the internal gen-
eration mechanism of LLMs (Dhuliawala et al.,
2024; Madaan et al., 2024; Li et al., 2024b). How-
ever, these approaches have not fully exploited the
internal knowledge of LLMs to address hallucina-
tions. Some work (Wang et al., 2023; Orgad et al.,
2024) found that hallucinations often arise from
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Figure 1: The overview of our proposed HaluSearch approach. The left part demonstrates the process of fast
thinking response generation (System 1). The right part illustrates the tree search process with step-level switch
between fast thinking and slow thinking generation (System 2).

ineffective generation, even when the model pos-
sesses knowledge of the underlying facts. Drawing
inspiration from the success of tree search-based al-
gorithms in complex reasoning (Kang et al., 2024;
Wang et al., 2024; Jiang et al., 2024), we propose
to integrate Monte Carlo Tree Search (MCTS) with
a system switch mechanism between fast and slow
thinking modes. Our approach enables an explicit
deliberate planning process to fully exploit the in-
ternal knowledge of LLMs for reducing hallucina-
tions. The overall architecture of HaluSearch is
shown in Figure 1.

3.1 Problem Formulation

Our proposed approach aims to mitigate halluci-
nations in the inference stage. Formally, given an
input prompt x, the LLM is instructed to generate a
response y = ⟨y1, ..., yt, ..., yT ⟩, where yt denotes
the t-th sentence. Specifically, we formulate the
response generation process of LLMs as step-by-
step reasoning, where each sentence corresponds
to an intermediate reasoning step. In our approach,
MCTS aims to construct a search tree T based on
the target LLM. In this tree, a node in the t-th tree
level is represented as st = {yt, N(st), V (st)},
where yt refers to the generated sentence, N(st)
denotes the visit count, and V (st) represents the
value score. The root node s0 = {x} contains only
the initial input prompt. The final response is the
concatenation of sentences ⟨y1, ..., yT ⟩ where each
sentence yt comes from a node on the path from
the root node to the leaf node. The target LLM is
referred to as the policy model πθ, and the reward
model is denoted as R.

3.2 Monte Carlo Tree Search
In our approach, the MCTS-driven generation pro-
cess operates as an iterative procedure, where each
iteration consists of four key steps: selection, ex-
pansion, evaluation, and backpropagation. Specifi-
cally, the MCTS process begins by initializing the
root node of the tree s0 with the input prompt.

Selection. The selection process starts from the
root node s0 and selects the leaf node with the high-
est exploration potential, determined by the UCT
(Upper Confidence Bounds applied to Trees) (Koc-
sis and Szepesvári, 2006) score. The UTC score is
calculated as follows:

UCT (st) = V (st) + w

√
lnN(p)

N(st)
, (1)

where w is a hyper-parameter that balances the ex-
ploitation (i.e., node value V (st)) and exploration
(i.e., visit count N(st)), and p denotes the parent
node of st.

Expansion. After selecting the node with the high-
est UCT score, it is expanded by generating mul-
tiple child nodes. Based on the historical informa-
tion, the policy model is employed to generate the
next sentence as follows:

yt+1 ∼ πθ(·|x, {yi}ti=1), (2)

where the previously generated sentences {yi}ti=1

is regarded as the historical context, and the policy
model samples and generates K sentences yt+1 as
a set of child nodes C(st+1). Compared to pre-
vious work (Lin et al., 2024; Xie et al., 2024),
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which mainly focused on a fast thinking genera-
tion paradigm, our approach leverages MCTS to
explore multiple potential generations for fully ex-
ploiting the internal knowledge of LLMs.

Evaluation. Each expanded node is evaluated to
obtain its value V (st+1). Specifically, the policy
model performs rollout to complete the state of
each child node st+1 by sampling m completed re-
sponses. These responses, denoted as Cr(st+1), are
then evaluated by the reward model (Section 3.3),
which assigns a reward score to each response. The
average score r of the m completed responses is
used as the initial value V (st+1) of the correspond-
ing child node st+1.

Backpropagation. After evaluating the expanded
nodes, their values are backpropagated along the
traversal path to update the visit counts and value
scores of the ancestor nodes sj (0 ≤ j ≤ t). The
updates are performed as follows:

Nnew(sj) = Nold(sj) + 1, (3)

Vnew(sj) =
Vold(sj)Nold(sj) + r

Nnew(sj)
, (4)

where Nold(sj) and Vold(sj) represent the last visit
count and value score of node sj before backprop-
agation, respectively, and r is the reward obtained
from the evaluation step.

The above four stages are performed iteratively
until the policy model reaches the terminal state.
We define two termination conditions for MCTS as
follows:

1. The maximum MCTS iteration M is reached.

2. A terminal node is encountered where the re-
ward satisfies the reward threshold, indicating
a lower likelihood of hallucinations.

Once the tree search is completed, the optimal path
from the root node to the terminal node is selected
using a greedy strategy that prioritizes nodes with
the highest value scores and their associated sen-
tences are combined as the final response.

3.3 Self-Evaluation Reward Model
In the MCTS-driven generation framework, the
reward model plays a crucial role in evaluating
the child nodes at each step and guiding the tree
search towards more promising directions. While
a straightforward approach involves using an ad-
vanced LLM (e.g., GPT-4) as the reward model,

this approach heavily depends on closed-source
LLMs. To enable effective self-evaluation, we train
the reward model on the same foundation model
as the policy model, exploring two reward model-
ing approaches: generative reward modeling and
critique-based reward modeling.

Training Data. We collect existing question-
answering datasets on hallucination evaluation and
sample a subset of questions to construct the train-
ing data for the reward model. To obtain di-
verse reward data, we adopt the MCTS generation
framework described in Section 3.2 to generate the
response-score pairs. For generative reward data,
we first collect all complete responses through roll-
outs and then employ GPT-4 to give a reward score
to these completed responses, following a Likert
scale-based approach (Likert, 1932) ranging from
1 to 5. Higher scores indicate greater hallucina-
tions, with explicit criteria provided for each score
level. To enhance scoring reliability, the ground
truth answer for each question is included in the
prompt as a reference. For critique-based reward
data, GPT-4 first generates a detailed critique of
the response about its correctness and then gives
a reward score based on the critique. This format
allows the reward model to incorporate critiques
as the rationale in its scoring process, facilitating a
more accurate evaluation of responses. To create
a balanced training dataset for the reward model,
these collected responses are deduplicated based
on TF-IDF cosine similarity and the samples are
adjusted to ensure an uniform distribution on score
levels. Detailed scoring guidelines and instructions
are provided in the Appendix B.

Training Method. Leveraging the generative ca-
pabilities of LLMs, we utilize the data collected
above to train the reward model in a supervised fine-
tuning manner. Specifically, for generative reward
modeling, the reward model takes the response y
as input and directly predicts the corresponding re-
ward score r. For critique-based reward modeling,
the model is trained to first generate the critique c
and then predict the reward score r. The training
objective is defined by the cross-entropy loss:

L =

− 1

N

N∑

i=1

{
logP (r(i) | y(i); θ), if no critique,

logP (c(i), r(i) | y(i); θ), if critique,

where N is the number of training samples.
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3.4 Dynamic System Switch

In existing research (Kahneman, 2011; Jiang et al.,
2024; Yu et al., 2024), search-based decoding ap-
proaches that improve response quality by scaling
inference time are referred to as System 2 think-
ing mode, whereas direct generation methods are
termed System 1 thinking mode (Kahneman, 2011).
While System 2 provides superior response qual-
ity, its substantially computational costs make it
impractical for universal application, as not all user
queries necessitate complex reasoning. To balance
efficiency and response quality, we propose a dy-
namic system switch mechanism that adaptively
selects the appropriate thinking mode. The mecha-
nism operates on two hierarchical levels: instance-
level switch, which determines the generation mode
for the input question, and step-level switch, which
adjusts the generation mode for individual reason-
ing steps. We refer to our MCTS approach with a
system switch mechanism as MCTSwitch.

• Instance-level switch. This switch determines
the thinking system for a given question based on
the complexity evaluation of the question. We ar-
gue that simple questions can be directly handled
with System 1 to ensure efficiency, while complex
questions leverage System 2 to enhance quality.

• Step-level switch. If the question is determined
to use System 2 thinking mode, we further employ
the step-level switch to evaluate whether the next
reasoning step requires System 1 or 2 to achieve a
trade-off between the efficiency and effectiveness
based on the complexity and uncertainty of the
current context.

Switch Model Training. To achieve reliable sys-
tem switch, we train a switch model by collecting
a set of synthetic data. For the training data of step-
level switch, we assign labels (0 or 1) to each node
in the search tree based on its value. Specifically,
we define a threshold γ: if a node’s value exceeds
γ, we label its state as 1, which denotes requiring
System 2 thinking mode as a large value indicates
a higher likelihood of generating hallucinated text.
Conversely, we label a node with value below γ as
0, indicating that System 2 thinking mode is not
required. Through this process, we obtain the think-
ing system labels for each step and utilize them as
the training data for step-level switch. For instance-
level data, we use the policy model to directly gen-
erate responses to the given question. The ques-
tions with correct responses are labeled as 0 (not
requiring System 2 thinking mode), while those

with incorrect responses are labeled as 1 (requiring
System 2 thinking mode). These labeled questions
serve as the training data for instance-level switch.
The system switch model is then trained on the
mixed instance-level and step-level training data
using supervised fine-tuning, following the same
training objective as the reward model.

Switch Model Inference. During inference, the
system switch model first predicts the thinking sys-
tem at the instance level. If the prediction is 0, the
policy model adopts System 1 thinking mode to
directly generate a response. If the prediction is 1,
the policy model employs MCTS to perform delib-
erate reasoning. At the expansion step of MCTS,
the switch model evaluates each node and predicts
whether System 1 or 2 should be used. For nodes
requiring System 1, a single sentence is generated
as the child node; while for other nodes, the policy
model follows the expansion process (Section 3.2)
to generate multiple child nodes. The threshold γ
controls the balance between System 1 and 2 think-
ing, optimizing efficiency and reasoning quality.
The entire process is formalized in Algorithm 1 in
Appendix A.

4 Experiments

4.1 Experimental Setup

Datasets and Metrics. We evaluate HaluSearch
across multiple question-answering datasets in both
English and Chinese. For English, we select
HaluEval-QA (Li et al., 2023a), TruthfulQA (Lin
et al., 2022), and SimpleQA (Wei et al., 2024). For
Chinese, we select HalluQA (Cheng et al., 2023),
ChineseSimpleQA (He et al., 2024), and Chinese-
FactEval (Chern et al., 2023). We use accuracy
as the evaluation metric. Specifically, we employ
GPT-4 to assess the correctness of model-generated
response by comparing it with the corresponding
ground truth for each question.

Baselines. We select the following inference-stage
hallucination mitigation methods as baselines for
comparison. Additionally, we report the accuracy
of direct generation by the policy models as the
lower bounds for reference.

• Chain-of-Thought (Wei et al., 2022) prompts
the model to generate intermediate reasoning steps
before arriving at the final answer. In this work, we
employ zero-shot CoT, which appends the phrase
“Let’s think step by step.” into the prompt.
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Methods HaluEval-QA TruthfulQA SimpleQA HalluQA ChineseSimpleQA ChineseFactEval

Llama3.1-8B-Instruct
Direct Generation 35.60 24.50 3.00 8.25 15.50 29.60
CoT 36.80 33.50 4.00 6.80 19.50 32.00
SC 35.00 39.00 6.00 8.25 21.00 36.00
BoN 37.80 43.50 5.50 12.62 29.00 35.60
Self-Refine 28.20 30.50 5.00 8.25 17.50 33.60
ITI 35.20 37.50 2.00 - - -
MCTS 45.40 47.50 8.50 16.50 30.50 40.80

Qwen2-7B-Instruct
Direct Generation 34.00 26.50 5.50 32.04 28.50 56.00
CoT 35.60 38.00 4.50 33.50 29.00 54.40
SC 37.20 36.00 4.00 32.52 30.50 59.20
BoN 39.00 37.50 6.00 35.44 35.00 64.00
Self-Refine 35.80 26.00 6.00 26.21 30.50 48.80
ITI 32.20 17.00 3.00 - - -
MCTS 43.69 45.07 12.50 43.69 36.00 70.40

Table 1: Evaluation results of Llama3.1-8B-Instruct and Qwen2-7B-Instruct on six English and Chinese datasets.
Bold denotes the best results and underline denotes the second best results.

• Self-Consistency (Wang et al., 2023) samples
multiple responses during inference and selects the
most consistent response as the final answer.

• Best-of-N (Lightman et al., 2024) is similar to
self-consistency, which selects the best response
through a reward model.

• Self-Refine (Madaan et al., 2024) generates
an initial response, evaluates it through feedback,
and iteratively refines the response based on this
feedback until a satisfactory version is achieved.

• ITI (Li et al., 2024b) operates by shifting
model activations during inference to enhance the
truthfulness of the generated responses.

Implementation Details. We evaluate our ap-
proach and the compared baselines using Llama3.1-
8B-Instruct (Dubey et al., 2024) and Qwen2-7B-
Instruct (Yang et al., 2024) as policy models, with
GPT-4 serving as the reward model. In the MCTS
process, we set the number of nodes expanded per
step to 10, perform 5 rollouts for each node, and
limit the maximum number of simulations to 20.
In the UCT algorithm, the weight w is set to 0.4.
For Self-Consistency and Best-of-N, we sample
20 responses per question. For ITI, we follow the
original setting (Li et al., 2024b) by using mod-
els adjusted on the TruthfulQA dataset and report
performance only on English datasets to ensure
fairness. For all methods, the decoding tempera-
ture of the policy model is set to 0.9, with a 0-shot
prompting configuration.

4.2 Main Results
The evaluation results of our method and the base-
lines are presented in Table 1.

Firstly, prompt-based generation methods
demonstrate improved response accuracy com-
pared to direct generation. However, the extent of
this improvement is inconsistent and varies across
tasks. For instance, on the TruthfulQA dataset,
Chain-of-Thought prompting achieves an accu-
racy of 33.50% and Self-Refine attains 30.50% for
Llama3.1-8B-Instruct, representing improvements
of 9.00% and 6.00% compared to direct genera-
tion, respectively. However, on the HaluEval-QA
dataset, these methods show less pronounced im-
provements, with CoT achieving 36.80% and Self-
Refine performing even worse at 28.20%, which is
affected by inherent capabilities and prompt sensi-
tivity of the policy model.

Secondly, inference-time intervention methods
exhibit limited generalization when adjusting ac-
tivations on specific datasets. For ITI, the models
we use are designed to probe and adjust activations
on the TruthfulQA dataset, achieving effective im-
provements on this dataset (e.g., 37.50% on the
TruthfulQA dataset with Llama3.1-8B-Instruct as
the policy model). However, this effectiveness di-
minishes on other datasets, often underperforming
compared to direct generation. For instance, the
accuracy of ITI drops to 2.00% on the SimpleQA
dataset, demonstrating its limited transferability in
scenarios with scarce data.
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Reward Model HaluEval-QA TruthfulQA SimpleQA

Llama3.1-8B-Instruct
GPT-4 RM 45.40 47.50 8.50

Generative RM 42.60 45.50 7.50
Generative RM + Critic 46.20 50.00 7.85

Qwen2-7B-Instruct
GPT-4 RM 43.69 45.07 12.50

Generative RM 40.40 40.00 6.50
Generative RM + Critic 42.80 50.50 8.50

Table 2: Evaluation results of different self-evaluation
reward modeling approaches on Llama3.1-8B-Instruct
and Qwen2-7B-Instruct.

Thirdly, strategies that generate multiple re-
sponses and leverage reward signals for selection
can robustly enhance the quality of model outputs
and effectively reduce hallucinations. Among all
baselines, Self-Consistency and Best-of-N exhibit
relatively strong performance across most datasets
(e.g., 36.00% accuracy on ChineseFactEval for SC
and 39.00% on HaluEval-QA for BoN). In com-
parison, HaluSearch achieves the best performance
across all six Chinese and English datasets. By
leveraging MCTS to model the response generation
process as step-by-step reasoning, our method pro-
vides fine-grained reward signals for each genera-
tion step, enabling effective guidance and a balance
between exploration and exploitation. HaluSearch
effectively reduces error accumulation and miti-
gates hallucinations in the final response, demon-
strating the effectiveness of slow and deliberate
reasoning during inference.

4.3 Reward Model Analysis

Beyond employing GPT-4 as the reward model, we
conduct experiments to evaluate the performance of
our trained self-evaluation reward models. Specifi-
cally, we investigate the two reward modeling ap-
proaches described in Section 3.3: (1) Generative
RM, which directly generates numerical scores to
responses during evaluation; (2) Generative RM
+ Critic, which first criticizes and analyzes the re-
sponses, and then generates a score based on the
content of this feedback. We sample 1,000 ex-
amples from the HaluEval-QA dataset and 500
examples from the TruthfulQA dataset to gener-
ate training data, reserving the remaining data for
evaluation. After filtering, we obtain 52K samples
for reward data and 38K samples for critique data,
which are used to train the reward model. Table 2
presents the results of employing Llama3.1-8B-
Instruct or Qwen2-7B-Instruct as the policy model

LLama3.1-8B-Instruct Qwen2-7B-Instruct

Figure 2: Impact of switch thresholds on time cost and
accuracy on HaluEval-QA dataset.

and reward model (RM) compared to utilizing GPT-
4 as reward model.

As we can see, Generative RM achieves com-
petitive performance after training, outperforming
other baselines shown in Table 1. Building on this,
the Generative RM + Critic approach, which is
trained using GPT-4-generated critiques and scores,
shows substantial improvement over Generative
RM. By introducing a critique step before scor-
ing, it achieves significant gains, particularly on
the TruthfulQA dataset (50.00% for Llama3.1-8B-
Instruct and 50.50% for Qwen2-7B-Instruct), even
surpassing the GPT-4 RM when it only provides
scores. These results indicate that incorporating
a critique step can improve the scoring accuracy
of Generative RM, enabling more effective self-
evaluation.

4.4 System Switch Analysis

To validate the effectiveness of the proposed sys-
tem switch mechanism, we investigate the impact
of slow thinking threshold γ (i.e., the proportion
of responses generated in slow thinking mode) on
hallucination rates and response efficiency. Specifi-
cally, we collect 10K training data from HaluEval-
QA and TruthfulQA, categorize them based on dif-
ferent score thresholds (e.g., γ = 3, 4, 5), and label
samples exceeding these thresholds for the slow
thinking mode, as higher scores signify a higher
likelihood of hallucination. We use the categorized
datasets to train switch models optimized for dif-
ferent thresholds and evaluate their performance
on the HaluEval-QA dataset. Here, both the re-
ward model and the switch model are trained us-
ing Llama3.1-8B-Instruct and Qwen2-7B-Instruct,
which also serve as the policy models.

In Figure 2, we present the accuracy of gener-
ated responses and the average inference time per
question for different switch thresholds. When the
switch threshold is set to 0, corresponding to a
100% slow thinking ratio, the model achieves its
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Figure 4: Results on HaluEval-QA w.r.t. the number of
expansions (Left) or the number of simulations (Right).

highest accuracy of 42.6% with an average infer-
ence time of 53.3 seconds. As the switch threshold
increases, the proportion of slow thinking gradu-
ally decreases, with only states exhibiting very high
hallucination levels triggering slow thinking. This
leads to a significant reduction in the average infer-
ence time per question, accompanied by a slight de-
crease in response accuracy. The trade-off between
time efficiency and accuracy becomes more pro-
nounced as the threshold increases. For instance,
at a threshold of 5, where the slow thinking ratio is
minimal, the average inference time per question
drops to 25.4 seconds, while the accuracy remains
at 37.6%. These observations demonstrate that the
system switch mechanism effectively balances ac-
curacy and efficiency, allowing for task-specific
adjustments.

4.5 Further Analysis

Hyper-parameter Analysis. To validate the effec-
tiveness of our proposed HaluSearch, we analyze
the impact of its key hyper-parameters: the num-
ber of expanded nodes per step and simulations.
Experiments are conducted on the HaluEval-QA
dataset using Llama3.1-8B-Instruct as the policy
model. We vary the number of expanded nodes
in the set {10, 20, 50} while keeping the number
of simulations fixed at 20, and vary the number
of simulations in the set {10, 20, 30} while fixing

the number of expanded nodes at 10. The results
are shown in Figure 4. As we can see, increas-
ing the number of expanded nodes and simulations
improves the performance of HaluSearch. This
improvement is attributed to the expanded search
space, which increases the likelihood of identify-
ing the correct answer by sampling more potential
responses. However, as the number of expanded
nodes and simulations increases further, the perfor-
mance gains decrease due to the inherent limita-
tions of the internal knowledge of the policy model
and the scoring accuracy of the reward model.

Case Study. In Figure 3, we present an example
from the TruthfulQA dataset to illustrate the reason-
ing process of HaluSearch. Starting with the ques-
tion as the root node (i.e., “Were unicorns easily
caught in medieval times?”), the policy model first
selects slow thinking mode to generate multiple
reasoning steps. While the model accurately iden-
tifies that unicorns are mythical creatures, it also
generates erroneous reasoning paths, such as treat-
ing unicorns as real animals that could potentially
be caught. The reward model evaluates these steps
and assigns lower hallucination scores to accurate
steps (e.g., “Unicorns were mythical creatures in
medieval times.”), guiding further expansion to reli-
able next steps (e.g., “They were not real animals.”).
With these intermediate steps, the model switches
to fast thinking mode to efficiently derive the fi-
nal answer: “Unicorns don’t exist.” This process
illustrates how HaluSearch performs step-by-step
reasoning and switches between thinking modes to
generate more reliable responses.

5 Conclusion

In this work, we presented HaluSearch, a frame-
work that integrates tree search-based algorithms
(e.g., MCTS) to enable explicit slow thinking
process in LLMs for mitigating hallucinations.
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HaluSearch frames text generation as a step-by-
step reasoning process, guided by a self-evaluation
reward model that scores each step and selects the
most reliable generation path. For self-evaluation,
we trained the reward model with two modeling
approaches, using data synthesized by the HaluSe-
arch framework. Moreover, to improve efficiency,
we introduced a dynamic system switch mecha-
nism, which utilizes a trained switch model to al-
ternate between fast and slow thinking modes at
both instance and step levels. Extensive experi-
mental results demonstrated that our framework
outperformed other inference-stage hallucination
mitigation methods across a range of English and
Chinese datasets.

Limitations

In HaluSearch, we employ MCTS as the tree search
method within our framework. Future work can
explore the integration of other tree search algo-
rithms for further evaluation. Additionally, the sys-
tem switch mechanism relies on the switch model,
which may be influenced by the model’s capabili-
ties. In future work, we will investigate more ad-
vanced methods to determine the optimal thinking
mode.
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Appendix

A MCTSwitch Algorithm

We formalize and present our proposed dynamic
system switch mechanism within MCTS (i.e.,
MCTSwitch) in Algorithm 1.

Algorithm 1 MCTSwitch
1: Input: policy model πθ, reward model R,

switch model σs, number of expansions K,
number of rollouts m, UCT weight w, max
iterations M , reward threshold rth, query q

2: Initialize: Root s0 ← q, C(s0) = ∅, t← 0
3: Instance Switch: instance_mode← σs(q)
4: if instance_mode is slow then
5: while t < M do
6: st ← Select(UCT(s0, w))
7: Step Switch: step_mode← σs(st)
8: if step_mode is slow then
9: C(st)← Expand(st, πθ,K)

10: for sc ∈ C(st) do
11: Cr(sc)← Rollout(sc, πθ,m)
12: rsc ← Avg(Cr(sc), R)
13: if rsc ≥ rth and sc is terminal then
14: Break
15: end if
16: end for
17: else
18: sc ← πθ(st)
19: Cr(sc)← Rollout(sc, πθ,m)
20: rsc ← R(sc)
21: if rsc ≥ rth and sc is terminal then
22: Break
23: end if
24: end if
25: Backpropagate(s0, C(rsc))
26: t← t+ 1
27: end while
28: A← BestNode(s0)
29: else
30: A← πθ(q)
31: end if
32: Output: A

B Prompts

The detailed scoring instructions for the reward
model are presented in Table 3. During the re-
ward data generation phase, the correct answers
(highlighted in gray) are provided, whereas they
are excluded during the evaluation phase.
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Please rate the likelihood of hallucinations (wrong, irrelevant, unfounded, or contradictory content)
appearing in the continuation of the current answer fragment. There are five levels of hallucination
probability:
1 - No hallucination risk: Future content will be entirely accurate, relevant, and well-supported.
2 - Low hallucination risk: Future content is likely to be accurate and relevant, with minor uncertainties
possible.
3 - Moderate hallucination risk: Some hallucinations, such as minor inaccuracies or unclear relevance,
may appear, but the content will still be mostly reliable.
4 - High hallucination risk: Future content will likely contain noticeable hallucinations, such as errors,
irrelevant information, or contradictions, reducing reliability.
5 - Very high hallucination risk: Future content is highly likely to include significant hallucinations, such
as major errors, contradictions, or fabricated information, making it highly unreliable.
Please output a score from 1 to 5. The higher the score, the higher the probability of hallucinations. Only
output the score without any further explanation. (Output the score after your analyses.) Do not judge a
reply as hallucinated just because it is incomplete.
We provide the correct answer as a reference.

Question:
Correct Answer: (Only provided when generating reward data.)
Generated Answer:
Score:

Table 3: Detailed scoring instructions for the reward model. The gray parts are provided only during the generation
of reward data and are excluded during evaluation.
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