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Abstract

Natural Language Inference (NLI) has gained
significant attention recently due to its impor-
tance in understanding how machines compre-
hend and reason about language. While English
has received tremendous interest, low-resource
languages like Hebrew require more research.
In this paper, we address the evaluation of He-
brew NLI models by introducing LCHAIM,
a dataset designed to evaluate these models
on tasks involving long premises and complex
reasoning. The dataset, created by translating
and validating the English ConTRoL dataset,
consists of 8,325 context-hypothesis pairs that
require coreferential, temporal, logical and an-
alytical reasoning. Our experiments show the
difficulty of contextual reasoning in Hebrew,
as evidenced by the performance of different
models. Fine-tuning the LongHero model on
both the shorter premise Hebrew NLI and the
LCHAIM datasets yielded a mean accuracy of
52%, that is 35% less than human performance.
Similarly, Large language Models (LLMs) like
Gemma-9B, Dicta-LM-2.0-7B, and GPT-40
achieved a top mean accuracy of 60.12% in few-
shot setting. The code and dataset are available
in Github'.

1 Introduction

NLI, also called Textual Entailment (TE) is a key
task in natural language processing (Dagan et al.,
2013; Bowman et al., 2015). It involves determin-
ing whether a given hypothesis can be logically
inferred from a premise. This task has shown to be
very helpful in various applications, including text
classification, event extraction, and summarization
evaluation, (Yin et al., 2019; Sainz et al., 2022;
Scire et al., 2024). NLI has gained significant atten-
tion recently due to its importance in understanding
how machines comprehend and reason about lan-
guage. This is largely because almost any task can
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P: Twenty-four billion is invested in premium bonds and in the
past 10 years the number of bonds in the draw has increased
sevenfold. The chances of winning have recently changed from
27,500 to one to 24,000 to one. Record sales have meant that a
new machine to select winning numbers randomly was
required. The predecessor took five and a half hours to
complete the draw, while the new machine can complete the
task in half that time. Each month there are 1 million winners.
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H1: The chances of winning a prize have increased and
there are now more winners numbers.
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H3: The new machine takes 150 minutes to draw the 1
million winning numbers.
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Figure 1: A sample of NLI task from the proposed
LCHAIM dataset and ConTRoL dataset.

be generalized to determining entailment or con-
tradiction in context between texts (Dagan et al.,
2013; Liu et al., 2021a).

Although many datasets have been developed to
train and evaluate NLI models (Dagan et al., 2005;
Giampiccolo et al., 2007; Bowman et al., 2015;
Williams et al., 2018; Welleck et al., 2019), these
datasets primarily focus on sentence-level exam-
ples, which do not fully capture the complexity of
real-world language understanding.

To address this issue, Liu et al. (2021a) proposed
ConTRoL, a long context NLI dataset that enabled
investigating contextual reasoning for NLI.? The

2Other English datasets with long context NLI include Yin
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example in Figure 1 demonstrates Mathematical
reasoning, which requires an understanding of cal-
culus to solve it.

However, despite large advances in NLP, re-
search and datasets predominantly focus on En-
glish, leaving low-resource languages like Hebrew
underrepresented. Furthermore, the rich morpho-
logical structure of Hebrew presents significant
challenges for Natural Language Understanding
(NLU) tasks, leading for example to inconsisten-
cies and errors in evaluation metrics (Cohen et al.,
2023).

Recent studies have increased interest in He-
brew (Seker et al., 2022; Gueta et al., 2022), but
the emphasis remains largely on morpho-syntactic
tasks. Despite the existence of a few NLI datasets
for morphologically rich languages (Klemen et al.,
2024; Halat and Atlamaz, 2024; Jallad and Ghneim,
2022), to the best of our knowledge, no existing
dataset specifically addresses the challenges asso-
ciated with long premises that require complex rea-
soning. Furthermore, none of the aforementioned
datasets is in Hebrew.

To address these gaps, we present in this paper
a first investigation of long context reasoning in
Hebrew. As part of this investigation, we compile
LCHAIM - Long Context Hebrew with Advanced
reasoning Inference Model Benchmark - a Hebrew
version of ConTRoL (Liu et al., 2021a). LCHAIM
contains 8,325 premise-hypothesis pairs in Hebrew,
labeled for contradiction, entailment, or neutral
relationship between premise p and hypothesis #,
and is obtained from the ConTRoL dataset via auto-
matic translation and human validation. Then, we
provide an evaluation of Hebrew Language Models
for the task of NLI, using the resulting dataset. We
show that the task of NLI with contextual reason-
ing is challenging even for larger language models,
which shows the need for the construction of com-
plex NLU benchmarks in Hebrew.

The research contribution is three-fold:

1. We present LCHAIM, a dataset for training,
and validating models on complex reasoning
in Hebrew.

2. We adapt, validate and document a translation
methodology for translating datasets from En-
glish to Hebrew.

et al. (2021); Koreeda and Manning (2021); Shaham et al.
(2022), but these do not specifically include complex reason-
ing.

3. We perform detailed experiments to evaluate
Hebrew models on the task of long-premise
NLI with complex reasoning.

2 LCHAIM Dataset

The LCHAIM dataset is a translated version of
ConTRoL (Liu et al., 2021a). It is compiled from
publicly available online verbal reasoning tests, in-
cluding those used in police initial recruitment ex-
ams, medical college admissions, and university
clinical aptitude tests, as well as corporate verbal
aptitude assessments. These tests are structurally
similar to NLI tasks, presenting a premise and a
hypothesis with three answer choices: true, false,
or cannot say. These choices correspond to the NLI
labels ENTAILMENT, CONTRADICTION, and
NEUTRAL.

The data format of LCHAIM aligns with existing
NLI benchmarks (Bowman et al., 2015; Williams
et al., 2018). A notable difference from existing
datasets is that LCHAIM features longer premises,
often spanning one or more passages. Additionally,
each premise is paired with three or more hypothe-
ses.

The verbal reasoning tests require candidates
to comprehend meaning, evaluate logical strength,
make valid inferences, and identify appropriate con-
clusions. The passages cover various topics, in-
cluding current affairs, business, science, the envi-
ronment, economics, history, meteorology, health,
and education. These questions are of high quality
and are used in rigorous assessments, reflecting
a high level of difficulty. After removing dupli-
cates, the ConTRoL and LCHAIM datasets con-
sisted of 8,325 context-hypothesis pairs. Lexical
overlap analysis, calculated using Jaccard Simi-
larity between premises and hypotheses in each
class, shows only 4.87% overlap for ENTAIL-
MENT pairs and 5.49% for CONTRADICTION
pairs, indicating that the dataset presents significant
challenges for simple lexical matching techniques
(Liu et al., 2021a).

LCHAIM is created as an analog to the orig-
inal ConTRoL dataset, and with the hypothesis
that translation from English to Hebrew does not
affect the reasoning types present in the dataset
at large. As such LCHAIM contains various rea-
soning tasks such as Coreferential Reasoning (Ye
et al., 2020), Verbal Logical Reasoning (Liu et al.,
2021b), Temporal and Mathematical Reasoning
(Nakhimovsky, 1987), Information Integration over
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Paragraphs (Welbl et al., 2018), and Analytical Rea-
soning (Williams et al., 2019).

2.1 Translation

The LCHAIM dataset was created via translation of
the previously mentioned ConTRoL dataset, a large
NLI dataset with especially long premises that aims
to address contextual reasoning. To ensure opti-
mal translation we employ two translation models,
Amazon Translate®, a neural network-based ma-
chine translation service, and DictaLM Translation,
a Hebrew-LLM-based translation service (Shmid-
man et al., 2024). We translate the entire ConTRoL
dataset using both translation models using the API
of both services.

2.2 Validation

To determine which translation is superior for this
task, we perform a manual evaluation of the trans-
lation.

We employed a stratified random sampling ap-
proach. From our dataset of 8,325 samples, we
randomly selected 200 samples, maintaining the
proportional representation of the original train,
test, and development splits.

Two out of four human annotators (two authors
of the paper) independently reviewed and ranked
each translated sample based on three ordinal scale
parameters and one binary parameter:

1. Translation Accuracy: The degree of preci-
sion in translating from English to Hebrew
(Popovi¢ et al., 2006).

2. Fluency: The naturalness and coherence of the
translated premise and hypothesis (Graham
et al., 2013).

3. Cultural Fit: The extent to which the trans-
lation preserves the cultural nuances and ap-

propriateness of the original English text in
Hebrew (Nida, 1964).

4. Label Validity: Binary, whether the label is
still valid after the translation of the premise
and hypothesis.

Each ordinal parameter was scored on a scale
of 1 to 5, with 5 representing the highest quality
and 1 the lowest. Additionally, the annotators as-
sessed whether the original label remained valid
after translation, ensuring the logical relationship

Shttps://aws.amazon.com/translate/

between the premise and hypothesis is reserved in
the target language.

Following this validation process, we calculated
the average annotators’ score for each of the three
parameters (Translation Accuracy, Fluency, and
Cultural Fit). We also computed the percentage of
cases where the original label was maintained after
translation. These results are presented in Table 1.

Amazon Translate was selected as the better
translation in the context of this dataset, with a
mean accuracy, fluency, and cultural fit of 85.57%,
82.53%, and 74.49% respectively. The percentage
of samples with original labels remaining valid af-
ter translation was 97.8% for Amazon Translate
and 94% for DictalLM Translation. This evaluation
methodology allowed us to comprehensively assess
the quality and reliability of both automatic transla-
tion models in the context of our specific task, with
quantitative measures to support our choice.

Additionally, we conduct an automatic val-
idation of the translation quality using back-
translation.  Specifically, we re-translate both
premises and hypotheses back to English using
the same translation service and compute sentence
similarity between the original English text and
its back-translation. For this evaluation, we used
MiniLM*, which yielded an average sentence simi-
larity of 0.9537£0.0479 for premises, with only 22
out of unique 1928 unique instances scoring below
0.75, following (Lin et al., 2021). For hypotheses,
the average sentence similarity is 0.9331 =+ 0.0886,
with 103 out of unique 1928 instances scoring be-
low the 0.75 threshold. Based on these results, we
remove samples with a sentence similarity < 0.75
from the dataset to ensure dataset quality.

To further verify that the back-translated dataset
preserves semantics, we extract embeddings from
both the original dataset (ConTRoL) and its back-
translated version using a Longformer (Beltagy
et al., 2020) model. We then train a Multi-Layer
Perceptron (MLP) classifier solely on the ConTRoL.
train set embeddings and use it to make predictions
on both the original and LCHAIM-back-translated
test sets. When comparing test results, we find that
the classifier assigns the same label (entailment,
contradiction, or neutral) to 92.11% of the test sam-
ples in both datasets. This high agreement indicates
that the translation process largely preserves the es-
sential meaning of the dataset.

4https://huggingface.co/sentence—transformers/
all-MinilM-L6-v2
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Model Accuracy Fluency Cult. Fit Label Validity
Mean + 95% CI
Amazon Translate 4.279 + 0.075 4.127 £0.0495 3.775 £ 0.09 4.890 £ 0.01

DICTA-LM-2.0 4.057 £0.057 4.096 +£0.031 3.927 +0.148 4.700 £ 0.190
Krippendorff’s o

Amazon Translate 0.784 0.737 0.694 0.894

DICTA-LM-2.0 0.765 0.721 0.646 0.748

Table 1: Translation evaluation results for Amazon Translate and DICTA-LM-2.0. Scores range from 1 to 5.
Krippendorff’s o quantifies inter-rater agreement (01 scale).

3 Experiments

3.1 Hebrew Pre-trained Language Models

We implement and evaluate SOTA pre-trained lan-
guage models in Hebrew to demonstrate their
NLU capabilities, proxied by their performance
on LCHAIM.

AlephBERT AlephBERT (Seker et al., 2022) is a
Hebrew version of the classic BERT (Devlin et al.,
2019) pre-trained language model with a large vo-
cabulary. It was trained on three datasets: the He-
brew portion of the OSCAR corpus-cleaned Twitter
texts (Ortiz Su’arez et al., 2020), and the entire He-
brew Wikipedia. Both variants utilize wordpieces
with a vocabulary size of 52,000. AlephBERT was
trained only using the masked token prediction ob-
jective, excluding next-sentence prediction.

LongHero LongHero (Shalumov and Haskey,
2023) is a variant of the HeRo model (Shalumov
and Haskey, 2023), which is a Hebrew language
model based on the RoBERTa architecture (Liu
et al., 2019). It is designed to handle long se-
quences more effectively and uses a BPE tokenizer
with a vocabulary size of 50,265 tokens, trained on
the HeDC4 dataset (Shalumov and Haskey, 2023).

We implement this experiment following the
original ConTRoL paper implementation. Given a
premise p and a hypothesis h, we concatenate them
into a new sequence: [CLS]+ p+ [SEP] + h + [SEP],
where [CLS] is the classification token and [SEP] is
the separator token. We encode the sequence with
the pre-trained model, and feed the hidden repre-
sentation of the [CLS] token from the final layer to
the Multi-Layer Perceptron (MLP) with a softmax
layer for classification. The MLP has three hidden
layers followed by an output layer. The first per-
forms a linear transformation from the input size

to 300 units, followed by ReL.U activation, layer
normalization, and dropout with a rate of 0.3. The
second layer transforms to 100 units, and the third
to 50 units. The final output layer maps the 50
units to 3 output classes for classification. Each
hidden layer includes ReLU activation and layer
normalization.

For AlephBERT, we use the methodology pro-
posed by Devlin et al. (2019). We adhere to the
original implementation details, using the same
dataset split into training, development, and test
sets with an 8:1:1 ratio (6,692:837:836 samples for
training, validation and test respectively) and train-
ing all models for 10 epochs (see Appendix A for
hyperparameter optimization details). The maxi-
mum sequence length is set to 512 tokens for Ale-
phBERT and 4,096 for LongHero.

To further investigate the performance of these
models in different settings, we employ fine-tuning
in 3 ways. Firstly, we fine-tune both AlephBERT
and LongHero using the HebNLI (HebArabNIp-
Project, n.d.) dataset, a translated version of the
original SNLI dataset (Bowman et al., 2015). This
is done to investigate the effect of fine-tuning using
a short-premise NLI dataset for the task of long-
premise NLI in LCHAIM. Second, we perform fur-
ther fine-tuning of the same models using the train
set of the LCHAIM dataset. We report Accuracy
over the test set as the main metric, and precision
(P), recall (R), and F1-Score (F1) for each class.

3.2 In-Context Learning with LLMs

We further evaluate three SOTA Hebrew and multi-
lingual LLMs for the LCHAIM NLI task: (1) Dicta-
LM-2.0-7B (Shmidman et al., 2024), (2) Gemma-
9B (Team et al., 2024), and (3) GPT-40 (Hurst
et al., 2024). For models description, see Appendix
B. Inference with LLMs was performed using the
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Huggingface Transformers ecosystem (Wolf, 2019)
and Azure’s OpenAl Service (Microsoft, 2024), by
parsing the LLM’s response. Each model returned
a single-letter label: ’e’ for entailment, ¢’ for con-
tradiction, and 'n’ for neutral. We ensured that
every response adhered to this format, validating
the outputs accordingly. Results are reported over
the test set only. During the prompt engineering
process, several methodologies were investigated to
enhance the model’s performance. Initially, we em-
ployed a direct zero-shot approach, wherein only
free-text instructions were provided to the model to
guide the task. However, this method proved insuf-
ficient, as it was overly simplistic for the models to
accurately predict the specific labels, resulting in
incorrect outputs.

We then implemented a prompt with detailed
instructions regarding the structure of the desired
output (see Appendix C). This adjustment led to
an improvement in the model’s performance. To
further refine the approach, we iteratively modi-
fied the prompt in the zero-shot setting, randomly
sampling and evaluating 30 instances after each
iteration. If performance improved, we retained
the new prompt; otherwise, we reverted to the
previous version. This process was repeated over
seven iterations. Finally, we introduced examples,
known as the “few-shot” (Brown, 2020) approach
or in-context learning, which involved providing
the model with several instances of NLI tasks along
with the correct labels.

Additional Experiments To obtain a human
performance baseline, we perform a human test,
where 4 of the authors, Hebrew native speakers,
assessed 200 random samples from the test set of
the LCHAIM dataset.

To further investigate the complexity of the var-
ious types of reasoning, and the increased con-
text length available in LCHAIM, we test Ale-
phBERT, LongHero, and Gemma-9B using the
shorter-premise HebNLI dataset, a translated ver-
sion of the original Stanford NLI (SNLI, Bowman
et al., 2015), for comparison. We initially ran mod-
els without fine-tuning, to highlight the impact of
fine-tuning and compare baseline performance be-
tween models.

4 Results

Table 2 presents the results for the models tested.
AlephBERT achieved an overall mean accuracy
of 39.5%, with an F1-Score of 36. However, the

model showed relatively uneven calibration, con-
sistently predicting the entailment class in the test
set. After accounting for overfitting through class
balance, vanishing gradient, and varying model
complexity, we assume this behavior indicates the
difficulty of the task at hand. Fine-tuning Aleph-
BERT using the HebNLI dataset achieved 37.5%
mean accuracy and 35.42 F1 Score resulting in a
2%, and 1.5 absolute difference respectively, com-
pared to the non fine-tuned model.

Fine-tuning only using LCHAIM, without the
HebNLI step, resulted in a mean accuracy of 38.4%
and an F1 Score of 32.4, which indicates an abso-
lute difference of 1%, and 3 respectively. Continu-
ous fine-tuning on both HebNLI and LCHAIM re-
sulted in a mean accuracy of 42.6% and an F1 Score
of 41.3, or an overall 3%, and 5 absolute increase
respectively. This means that for AlephBERT the
best setting is fine-tuning on both the short premise
HebNLI and the long premise LCHAIM datasets.
These settings also showed better calibration than
the original pre-trained version, with relatively bal-
anced class prediction.

LongHero, which has a long enough context to
be able to accommodate the long premises, was
able to achieve a mean accuracy and an F1-Score
of 34.5% and 33.7 respectively without fine-tuning.
The model displayed some imbalance towards the
entailment class. Fine-tuning LongHero using the
shorter premise HebNLI resulted in an accuracy of
32% and an F1 Score of 25, or an absolute differ-
ence of 2% and 8 compared to the non-fine-tuned
version. Fine-tuning only using the LCHAIM train-
ing set resulted in an accuracy of 41% and an F1
Score of 34, or an absolute difference of 7% and 1
respectively. Furthermore, fine-tuning LongHero
on HebNLI and then on LCHAIM resulted in the
best overall performance of 52% mean accuracy
and F1 Score, an absolute performance difference
of 18% and 19 respectively. This represents a sub-
stantial relative improvement of 35% in both mean
accuracy and F1 score, highlighting a significant
boost in performance. This model also showed
the overall best calibration between the 3 predicted
classes. The best model for the task was a fine-
tuned LongHero using both HebNLI and LCHAIM.

For the LCHAIM test set, Gemma-9B achieved
56.15% accuracy in zero-shot, and 50.93%,
49.94%, and 48.45% for 1, 2, and 3-shot prompting
from the HebNLI dataset. With random sampling
from the LCHAIM dataset, it achieved 55.65%,
49.57%, and 49.32% for 1, 2, and 3-shot, re-
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Model Acc. F1 Entailment Contradiction Neutral
P R F1 P R F1 P R F1

Human (English) 87.06 93.15 9483 9565 9524 9333 91.21 9226 93.02 9191 9295
Human (Hebrew) 84.97 8426 77.05 87.04 81.74 91.23 7879 84.55 8533 87.67 86.49
AlephBERT 3950 3594 4247 68.19 5234 31.38 2438 27.44 39.13 1525 2195
AlephBERT-HebNLI 3751 3542 4243 56.57 4849 28.92 1446 19.28 33.06 34.74 33.88
AlephBERT-LCHAIM 38.38 32.39 42.61 60.85 50.12 32.82 4421 37.67 2500 0.01 0.02
AlephBERT-ALL 42.60 4132 4626 56.88 51.02 3645 4338 39.62 4521 22.03 29.63
LongHero 3453 3374 3942 46.17 4253 287 3347 3091 3285 19.49 2446
LongHero-HebNLI 31.55 2492 50.77 10.09 16.84 3448 1240 1824 29.25 80.93 4297
LongHero-LCHAIM 4149 3468 4194 8196 5549 44.12 1240 1935 36.73 1525 21.56
LongHero-ALL 5217 5220 59.74 57.19 5844 47.56 44.22 4582 47.19 53.39 50.10

Table 2: Performance results for different models over the LCHAIM test set. Metrics include overall accuracy, F1
score, precision (P), recall (R), and F1 scores for each class: Entailment, Contradiction, and Neutral. -HebNLI
indicates fine-tuning using HebNLI, -LCHAIM indicates fine-tuning using LCHAIM, and -ALL indicates sequential
fine-tuning on HebNLI and then LCHAIM. Human (English) and Human (Hebrew) indicate performance of four
educated testees of 300, and 200 samples from ConTRoL and LCHAIM respectively. Bold indicates the best
performing model.

Model Shots’ Dataset  0-shot 1-shot 2-shot 3-shot
GemmadB Gy I Sl o v
pecinam SN e B m e
GPT-4o Loma TS e g s

Table 3: Mean accuracy of LLMs Gemma-9B and Dicta-LM-2.0-7B over the LCHAIM test set, under 0-shot, 1-shot,
2-shot, and 3-shot settings. The ’Shots’ Dataset column indicates the dataset from which few-shot examples were
sampled. Note that for the zero-shot setting, only a single accuracy score is reported, as no examples are provided
for in-context learning leading to exactly the same prompt. Best performance model and setting in bold. GPT-40

scored the best result, 60.12% for the 2-shot setting.

spectively. Dicta-LM-2.0-7B scored 39% in zero-
shot, with a small 1.5% increase in accuracy for
few-shot (40.45%, 40.99%, and 40.62% for 1, 2,
and 3-shot). For shots sampled from LCHAIM,
it achieved 42.36%, 40%, and 41.37% for 1, 2,
and 3-shot. GPT-40 performed best with 57.68%,
58.37%, 60.12%, and 57.21% for zero, 1, 2, and
3-shot, respectively. Results are shown in Table 3.

Human performance is displayed in Table 2. The
testers were able to achieve a mean accuracy of
84.97% and an F1 Score of 84.26, a significant
difference of 33 absolute accuracy and F1 Score
compared to the best LongHero model. Human
performance also shows a 27.29% higher mean
accuracy compared to the best LLM, GPT-4o.

Results for the shorter premise HebNLI test set
are presented in Table 4. The base AlephBERT
model achieved a mean accuracy and an F1 Score

of 53.50% and 53.42% respectively without fine-
tuning, while the LongHero base model achieved
47.17% and 46.74% mean accuracy and F1 Score
respectively. Fine-tuning using the HebNLI dataset
resulted in 15% and 27% absolute increases in
accuracy for AlephBERT and LongHero respec-
tively. However, fine-tuning using the LCHAIM
dataset, resulted in 17% and 10% absolute de-
creases for both models respectively, showing that
fine-tuning using LCHAIM hinders performance
for the HebNLlI task.

Fine-tuning using first the LCHAIM and then
HebNLI datasets resulted in a mean accuracy and
an F1 Score of 78.28% and 78.24% for Aleph-
BERT, offering similar results to fine-tuning only
with HebNLI . The same approach resulted in a
mean accuracy and an F1 Score of 83.93% and
83.78% respectively for the LongHero model, a
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5.5% increase in performance compared to fine-
tuning only with HebNLI.

The best model for the HebNLI test set
(LongHero-ALL), achieved a 31.76% absolute
higher mean accuracy compared to the best model
for the LCHAIM test set (also LongHero). Both
models showed good calibration over both test sets.
For comparison, SOTA performance for HebNLI
is reported in the Hebrew LLM leaderboard, with a
mean accuracy of 95.48% for Qwen2.5-72B (Qwen
etal., 2025).

5 Error Analysis

5.1 Morphological Richness and Errors

To explore the relationship between morphological
richness and model performance, we compute the
Type-to-Token Ratio (TTR) of the test set samples.
TTR is calculated as the average between two ra-
tios. The (1) ratio of distinct parts-of-speech (POS)
types to the total number of POS in the text, and
(2) the ratio of distinct lemmas to the total number
of lemmas in the text. As TTR measures lexical
diversity, here we use TTR to measure morpho-
logical diversity, following Kettunen (2014). We
hypothesize that morphological complexity in He-
brew may affect model accuracy due to challenges
in tokenization, syntactic parsing, and semantic
disambiguation.

We calculated TTR values for both the premise
and hypothesis combined in each dataset sample
and correlated them with the model’s accuracy.
This analysis focuses on the best-performing mod-
els, LongHero-ALL, and GPT-40. Our results,
presented in Figure 2, show that higher TTR val-
ues, indicating greater morphological diversity, are
associated with more prediction errors, which sup-
ports our hypothesis.

These findings might indicate the need to ac-
count for morphological complexity when design-
ing models for languages like Hebrew.

5.2 Reasoning Types and Errors

We hypothesize LCHAIM is a difficult NLI task
due to the complex and various reasoning types it
contains, unlike other Hebrew NLI datasets. To
investigate the relationship between model perfor-
mance and reasoning, we report the average model
accuracy for each of four main reasoning types: (1)
Temporal, (2) Corereferential, (3) Logical, and (4)
Analytical. We rely on previous work (Liu et al.,

SHebrew LLM leaderboard on Hugging Face.

0.8
L] —e— LongHero-ALL

\ -®- GPT-40

0.7 4

o
o
L
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o
o

o
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0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55
Binned TTR

Figure 2: Mean accuracy for the best performing, fine-
tuned, LongHero-ALL model, across different TTR
bins, over the LCHAIM test set.

2021a) to determine the types of reasoning. Using
the LongHero-ALL model, and calculated for all
samples in the test set, our analysis shows a mean
accuracy of 49.16%, 64.00%, 52.27%, and 53.74%
for Temporal, Coreferential, Logical, and Analyti-
cal categories respectively. Note that each sample
can contain one or more types of reasoning.

6 Discussion

The results of our evaluation of the LCHAIM
dataset shed light on the challenges and perfor-
mance of models dealing with long-premise NLI
tasks in Hebrew. To the best of our knowledge,
LCHAIM is the first long premise, complex reason-
ing, NLI dataset available in Hebrew.

Model Performance The AlephBERT model
struggled with long-premise NLI tasks. It achieved
a mean accuracy of 39.50% and an F1-Score of
35.94, and tended to over-predict entailment. Fine-
tuning AlephBERT on HebNLI dataset or the
LCHAIM train set individually showed no im-
provement in performance. However, fine-tuning
with HebNLI followed by LCHAIM showed per-
formance gains. This resulted in a mean accu-
racy and F1-Score of 42.60% and 41.32 respec-
tively. This suggests the shorter, more simple task
of HebNLI does not contribute towards the harder,
longer-premise LCHAIM test set performance on
its own, but can provide a foundation for further
fine-tuning. Therefore, including the long-premise
data from LCHAIM is essential for better perfor-
mance in the longer premise tasks. With that said,
performance was still considerably lower then the
84.97% mean accuracy human performance.
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Model Acc. F1 Entailment Contradiction Neutral
P R F1 P R F1 P R F1

AlephBERT 53.50 5342 56.14 5522 5531 56.11 59.38 57.84 4623 4557 4540
AlephBERT-HebNLI 78.73 78.68 78.21 83.88 8095 80.81 78.17 7947 77.01 73.62 75.28
AlephBERT-LCHAIM 3642 31.02 36.68 61.18 45.86 36.08 41.36 38.54 36.00 0.03 0.06
AlephBERT-ALL 7828 7824 77.771 82.56 80.01 8039 78.82 79.60 76.54 72.89 74.67
LongHero 47.17 46.74 4822 5822 5275 5051 4755 4999 41.22 3443 3752
LongHero-HebNLI 7452 73.86 76.68 81.13 8130 7236 7446 7697 7280 6257 67.25
LongHero-LCHAIM 3730 3146 37.22 79.80 51.12 38.77 14.10 21.66 32.06 15.04 21.60
LongHero-ALL 83.93 83.78 87.41 86.84 87.13 84.19 85.01 84.60 79.78 79.48 79.63

Table 4: Performance results for different models using the shorter-premise HebNLI test set. Metrics include overall
accuracy, F1 score, precision (P), recall (R), and F1 scores for each class: Entailment, Contradiction, and Neutral.
-HebNLI indicates fine-tuning using HebNLI, -LCHAIM indicates fine-tuning using LCHAIM, and -ALL indicates
sequential fine-tuning with LCHAIM and then HebNLI. Numbers in bold indicate the best performing model setting.

LongHero, which is designed to handle longer
contexts, achieved a mean accuracy and an F1-
Score of 34.53% and 33.74 respectively. This
model had also calibration issues similar to Ale-
phBERT. It is worth noting the English equiva-
lent models (BERT-base, and Longformer) did
not experience these calibration issues when con-
sidering the English version of this dataset (Liu
et al., 2021a). The best results were seen with the
fine-tuned LongHero using both HebNLI and then
LCHAIM, with a mean accuracy and F1 Score of
52.17% and 52.20 respectively. For comparison,
performance over the shorter HebNLI dataset were
significantly higher than the performance over the
LCHAIM test set considering the sequentially fine-
tuned AlephBERT and LongHero. These models
showed a 25-30% higher mean accuracy and F1
Score on the HebNLI test set. With caution, we
hypothesize this is an indicator of the complexity
of the reasoning in the LCHAIM dataset.

GPT-40 performed best with a mean accuracy
of 60.12% in 2-shot learning, but still did not sig-
nificantly surpass the smaller Gemma-9B. Both
Gemma-9B and Dicta-LM-2.0-7B showed no im-
provement with few-shot learning compared to
zero-shot learning.

Complex Reasoning and Morphological Rich-
ness We hypothesize that the LCHAIM dataset
is a long reach to Hebrew models because, unlike
previous NLI benchmarks, it contains tasks that
require complex reasoning (for example temporal
reasoning shown in Figure 3). Furthermore, we
show that morphological richness of samples in the
test set is inversely correlated with performance.
This finding aligns with our hypothesis, and pre-
vious research claiming morphologically rich lan-

guages like Hebrew are more difficult for language
models than non morphologically rich languages
like English.

NI'YIN NI'I7'VS 7¥ TIV'A NI127 D'ONIY (D' 7¥ 01MI10o'an P
JNIYIIND 7¥ QNI D7INY 0120 2*wn7 T N1 TIV'N wnnenvi

N NINNAN NINNSNNYT NOININAN ' TAT7 NNOTY X' DNR'WN 7Y 1T ND'ON
'7V N1 NT'N2 NNSIVIL,N'YTAN NNI0D'NN 7w 19- N NNAN N'7'NNni 18-
TI'WIIND NI7'YON 17N 2 NNINN NIN INANY D'VINZA DAINI00N T
N7TN71 N7 NM1V0NN ,18- N NINAN 10 197 .NYIN1 M7201 NN
.ONI7751 DTN "N7 NIRAD {7907 NND! N7 N'NI,190 M1 DIw1 BYND
NN 7Y 79N 17IN IN,NDI0I7'9N 7W NTN 7Y NT{7ONT NI 0NN DT

P: Today's historians aim to build a record of human activities
and use this documentation to gain a deeper understanding of
humanity. This conception of their mission is fairly recent,
dating back to the 18th and early 19th century development of
scientific history, and has been largely fostered by professional
historians who have adopted the assumption that the study of
natural and inevitable human activity. Before the end of the
18th century, history was not taught in almost any schools, and
it did not attempt to provide an interpretation of human life as
awhole. This is more suited to the role of religion, of
philosophy, or perhaps even of poetry.

N1107 T2 NAWNI NN N7 NNI0onn 17- 0 nnna tH1
NIYIIND
H1: In the 17th century history would not have been
considered as a way of understanding humanity.

v Entailment Contradiction Neutral

Figure 3: Sample from the LCHAIM dataset which
requires temporal reasoning to solve.

Like ConTRoL, Hebrew models struggle to
achieve human performance with LCHAIM. Un-
like ConTRoL, Hebrew models show bad calibra-
tion, which could indicate specific complexities in
Hebrew.

7 Conclusion

This study introduced the LCHAIM dataset, a
benchmark for long-premise NLI task in Hebrew,
that focuses on complex reasoning types like coref-
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erential, temporal, and analytical reasoning. Our
experiments show that current state-of-the-art mod-
els perform far below human levels. The LCHAIM
dataset provides a tough challenge for future re-
search, underscoring the need for better models
and methods. By making LCHAIM and our code
available, we hope to encourage further exploration
and advancements in Hebrew NLU research.

Limitations

While this study advances one’s knowledge about
Hebrew NLI, several limitations should be ac-
knowledged. A more granular evaluation could
offer deeper insights into how models handle spe-
cific reasoning and morphological challenges in
Hebrew NLI tasks. Another limitation is the fact
the dataset was only evaluated manually by random
sampling, and it relies on back-translation filtering,
which generally preserves original semantics and
maintains high quality, though minor translation
issues might still exist. Also, future work should
dive deeper into challenges posed by advanced rea-
soning and morphological richness.
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A Hyperparameters Optimization Details

Hyperparameters were optimized through an exten-
sive grid search across a variety of configurations to
achieve optimal model performance. Batch sizes of
8, 16, and 32 were tested, while learning rates rang-
ing from le™> to 5e~> (specifically 1e=®, 2e~?,
3e°, 4e 5, 5e~°) were explored to determine the
optimal convergence rate. Gradient accumulation
steps of 1, 2, and 4 were also evaluated. These
combinations enabled us to systematically test dif-
ferent hyperparameter settings and identify the best
configuration for each model.

B Large Language Models (LLMs)
Details

Dicta-LM-2.0-7B Dicta LM 2.0 (Shmidman
et al., 2024) is a Hebrew LLM with a custom tok-
enizer, continuously pre-trained from Mistral-7B-
v0.1 (Jiang et al., 2023) and later fine-tuned. The
pertaining is done using a Hebrew corpus, and fur-
ther supervised fine tuning is performed using cus-
tom Hebrew datasets.

Gemma-9B The Gemma-9B model (Team et al.,
2024) is a multilingual transformer decoder trained
on an 8192-token context. It employs Multi-Query
Attention (Shazeer, 2019) for efficiency, Rotary
Positional Embeddings (RoPE) (Su et al., 2024)
for compact representation, and GeGLU (Shazeer,
2020) with RMSNorm (Zhang and Sennrich, 2019)
for stable training.

GPT-40 GPT-4o is a state-of-the-art multimodal
LLM developed by OpenAl (Hurst et al., 2024).
This model is closed-source, and benefits from ex-
tensive pre-training.

C Prompt Structure and Classification
Guidelines

We provide the models with a Hebrew prompt for
classifying the relationship between a premise and
a hypothesis (Figure 4). The English translation
mirrors the Hebrew prompt.

The are prompted to classify the premise-
hypothesis relationship in a single letter as ¢ (Con-
tradiction): Hypothesis contradicts the premise. e
(Entailment): Hypothesis follows from the premise.
n (Neutral): Hypothesis neither contradicts nor fol-
lows.

and an hypothesis, classify
whether the hypothesis
contradicts the premise (c),
entails the premise () or is
neutral towards it (n). You
must answer with the one
letter representing the
relation between the

/English version | Hebrew version\
( will provide a premise 2

TNRY VOWMY TPDD T2 TR IR
INID VAWM ORI AND? VXN
a1, (D) APOD IMRIT DR

X2 IR (1) 7P0ON MMRIT

X?1 11?092 MRIT DX MO
TOY (3) IPOD2 MR AT
NPMIRT DA NIYEAR2 NIV
VOWNIT PW WP DR MR

) 4 hvoothesi 7252 vopLY

g;elymlse and hypothesis MWD MIRNIT
Examples of a response: :n:m;
Answer: e —
Answer: ¢ ! 5
Answer: n po—
Classify for the ! 5

following premise and X377 UOWAT FpODA By MY
hypothesis. _—

Premise: o
o} {p}
Hypothesis: s
h} th}
) S Wwn
NS )

Figure 4: Prompt used for the NLI task. Left side shows
the English translation, right side shows the original
Hebrew. The prompt instructs the model to classify the
relationship between a given premise and hypothesis as
either contradiction (c), entailment (e), or neutral (n),
using a single letter for the response.
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