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Abstract

Text style transfer (TST) aims to flexibly adjust
the style of text while preserving its core con-
tent. Although large language models (LLMs)
excel in TST tasks, they often encounter uni-
directionality issues in style transfer due to
imbalanced training data and their tendency
to generate safer responses. These challenges
present a significant obstacle in achieving ef-
fective style transfer. To address this issue, we
propose a novel method for text style transfer
based on neuron activation modulation (NAM-
TST). This approach identifies neurons related
to style through gradient-based activation dif-
ference analysis and calculates the activation
differences between the source and target styles.
During text generation, we use the activation
difference to align the activation values of style-
related neurons with those of the target style
to guide the model in performing the transfer.
This strategy enables the model to generate
text that satisfies specific style requirements,
effectively mitigating the unidirectional issue
inherent in LLMs during style transfer. Experi-
ments on benchmark datasets demonstrate that
NAM-TST significantly enhances style transfer
quality while preserving content consistency.

1 Introduction

Text style transfer (TST) aims to transform text
from a source style to a target style (e.g., from
positive to negative) while preserving core prop-
erties, such as semantics and grammar (Jin et al.,
2022). However, style transfer faces significant
unidirectional challenges - where transfer perfor-
mance is markedly better in one direction than in
the reverse - due to inherent class imbalances in
the training data of large language models (LLMs)
(Suzgun et al., 2022) and their tendency to gener-
ate safer and more innocuous responses (Touvron
et al., 2023). Specifically, LLM training sets tend
to predominantly consist of texts with positive and
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formal styles. As a result, these models often gener-
ate outputs that favor safer responses, limiting their
ability to achieve the desired diversity of styles and
accurate style transfer.

In recent years, LLMs have made significant
progress in TST (Reif et al., 2022; Mukherjee et al.,
2024). Researchers have developed several meth-
ods to enhance the model’s capabilities. Some
studies (Liu et al., 2022; Zhang et al., 2024; De-
mentieva et al., 2025; Han et al., 2024; Hu et al.,
2023) fine-tune LLMs with parallel or pseudo-data
to improve style transfer performance. However,
these approaches heavily rely on large amounts
of high-quality data. Other methods (Liu et al.,
2024; Reif et al., 2022) focus on guiding LLMs
to generate text in the target style using prompts.
Nonetheless, prompt-based methods often fail to
accurately capture a specific style accurately, and
the model’s sensitivity to prompt phrasing may lead
to unintended content changes (Mishra et al., 2022),
potentially affecting content consistency.

Recent research (Lai et al., 2024) shows that
analyzing style-specific neurons can significantly
enhance TST performance in LLMs. However, cur-
rent methods primarily rely on inactivating neurons
for style transfer, often resulting in partial content
loss. This limitation poses a direct challenge to the
effectiveness of TST, particularly in terms of main-
taining content consistency during style transfer.

In this paper, we propose a text style transfer
method based on neuron activation modulation
(NAM-TST), which identifies style-related neu-
rons and guides LLMs in performing style transfer
by modulating their activation. Specifically, our
approach leverages gradient-based activation dif-
ference analysis to identify style-related neurons
through a computed activation sensitivity index.
Recognizing intrinsic ambiguity in neuron acti-
vation patterns, we employ gradient analysis to
quantitatively assess neuronal sensitivity to con-
tent variations. Within the identified style-specific
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neuron set, those exhibiting high content sensitiv-
ity are characterized as intertwined neurons. Dur-
ing generation, we use the activation difference
between the source and target styles to modulate
the activation of the identified style neurons. This
modulation aligns the style-specific neurons with
the desired target style, enabling more accurate
and controllable style transfer. In particular, we
also introduce the parameter Ngrad to quantify the
strength of modulation in intertwined neuron activa-
tions, ensuring that the core content of the sentence
remains largely intact throughout the style trans-
fer process. We evaluate NAM-TST on four tasks:
sentiment (Shen et al., 2017), formality (Rao and
Dear Tetreault, 2018), authorship (Xu et al., 2012)
and toxicity(Logacheva et al., 2022). Experimental
results show that our method achieves more effi-
cient style transfer while preserving the original
content and effectively mitigates the common uni-
directional problem found in traditional methods.

In summary, the contributions of this paper are
as follows:

• We propose NAM-TST, a method that identi-
fies style neurons and leverages activation dif-
ferences to precisely adjust their activations,
enabling effective style transfer.

• We argue that text style and content are inher-
ently intertwined and should not be treated
as separate components. Our findings further
confirm that in LLMs, certain neurons are re-
sponsible for processing both style and con-
tent. To address this, we introduce the Ngrad

parameter as an effective approach for manag-
ing these intertwined neurons.

• We conduct experiments on four commonly
used style transfer tasks. The results demon-
strate that NAM-TST mitigates the unidi-
rectional challenges of style transfer while
achieving strong performance in terms of con-
tent consistency.

2 Related Work

Pre-trained language models, after further fine-
tuning, effectively alleviated the unidirectional is-
sue in TST (Dementieva et al., 2023). However,
obtaining the supervised parallel data required for
training deep neural networks is both scarce and
costly(Mukherjee and Dusek, 2023). Consequently,
most studies now rely on unsupervised methods
(Lewis, 2022; Luo et al., 2023; Han et al., 2023).

Prompt learning (Brown et al., 2020; Li and Liang,
2021) has gained popularity as a way to guide mod-
els in TST without requiring additional training.
Suzgun et al. (2022) prompted LLMs to generate
a set of candidate texts in the target style and then
ranked them to produce the final output. How-
ever, these models are highly sensitive to prompts,
and their ability to generalize to domain-specific
data or new styles not encountered during pre-
training is significantly diminished. Narasimhan
et al. (2023) innovatively explored masking tech-
niques and achieved promising results. However,
masking techniques may be difficult to ensure high-
quality semantic preservation in practical applica-
tions. In contrast, our study uses a small dataset
with fixed prompts, effectively mitigating the sen-
sitivity issue and improving the generalizability of
the model.

Studies have shown that neurons in deep neural
networks can encode and represent various features
that are interpretable by humans (Achtibat et al.,
2023; Kojima et al., 2024). In recent years, re-
search using neuron activation analysis methods to
guide LLMs for TST has made significant progress.
Konen et al. (2024) incorporated style vectors into
the activations of hidden layers during text gener-
ation, effectively influencing the style of the gen-
erated text and thus demonstrating the efficacy of
activation engineering. However, this method only
extracts activations at the hidden layer level and
ignores the impact of individual neuron activations
on TST. Lai et al. (2024) proposed the sNeuron-
TST, which identifies neurons related to the source
and target styles and deactivates neurons associ-
ated with the source style, increasing the generation
probability of vocabulary consistent with the target
style. However, this approach overlooks the dual
role that certain neurons can play in both content
and style. Furthermore, inhibition of neurons can
result in the loss of important content information.
This paper addresses these challenges by exploring
the complex interactions between neurons respon-
sible for both text style and content, introducing a
more comprehensive and sophisticated activation
regulation strategy to guide LLMs in style transfer.

3 Method

Our goal is to guide the LLM in TST by identify-
ing specific neurons and adjusting their activations.
Figure 1 illustrates the framework of our approach.
First, we use the Activation Sensitivity Index (ASI)
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Figure 1: Overview of the NAM-TST method. The NAM-TST method consists of two primary steps: First, style-
and content-related neurons are identified through gradient and activation difference analysis. Then, We use the
activation difference between target style neurons and source style neurons to regulate the style neurons, guiding the
model to perform style transfer. Notably, we use the Ngrad parameter to handle intertwined neurons. The figure
also illustrates an example of identifying style and content neurons in the authorship task.

to identify style neurons. Next, we design a similar
task to analyze the content sensitivity of neurons
and their interaction with the style. Finally, we
apply activation differences to regulate style neu-
rons and introduce the Ngrad parameter to handle
intertwined neurons.

3.1 Identifying style neurons

In LLMs, neurons play a crucial role in transform-
ing input information into output results. To iden-
tify specific neurons involved in TST, we designed
a style transfer task and performed a gradient-based
activation difference analysis.

Given source style sentences X =
[x1 , x2 , ..., xn ] and target style sentences
Y = [y1 , y2 , ..., yn ] with consistent content,
we first calculate the activations of neurons for
the source and target styles in Eq. 1, denoted
AS = [s1, s2, ..., sn] and AT = [t1, t2, ..., tn],
respectively. The activation differences between
the source and target styles are computed in Eq. 2.

ak =

L∑

i=1

hk,i (1)

Where hk,i indicates the hidden state of the k-th
neuron at the i-th position, and L is the length of
the input sequence.

∆ak = tk − sk (2)

Subsequently, X is input into the LLM with
a style transfer prompt: "Please change the lan-
guage style without altering the content." Using
Y as reference, we calculate the activation gradi-
ent of each neuron (Wen et al., 2024), denoted as
Gradstyle = [G1 , G2 , ..., Gn ], where Gk represents
the gradient of the k-th neuron. The activation
gradient is defined as follows:

Gk =
∑

θ

|∇θ (ak)| (3)

where ∇θ represents the back-propagation of the
gradient of the neuron activation value with respect
to the model parameter θ.

Both activation gradients and activation differ-
ences are critical for style transfer. The activation
gradient reflects the model’s sensitivity to changes
in neuron activation. The activation difference mea-
sures the change in neuron activation between the
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Figure 2: ASI of four sentence sets in the authorship
task (Shakespeare → Modern).

source and target styles. To quantify each neuron’s
contribution, we introduce the ASI in Eq. 4, which
combines activation gradients and differences to
more accurately assess the importance of the neu-
ron in style transfer.

ASIk = |∆akGk| (4)

We sort the neurons in descending order based
on ASI, and select the top 10% to form the set of
style neurons N style .

To validate the ability of our method to iden-
tify neurons with specific properties, we conducted
experiments using four sets of sentences in the au-
thorship task. The results, presented in Figure 2,
demonstrate that certain neurons consistently ex-
hibit large ASI values throughout the style transfer
process, across different sentences. Larger ASI
values imply a greater influence of a neuron’s ac-
tivation on the style transfer outcome, suggesting
that modifications to the activation values of these
neurons exert a significant impact on the stylistic
characteristics of the generated text.

3.2 The interweaving of style and content

Given the inherent ambiguity of neuronal activa-
tion, we further designed a content rephrasing task
to investigate how sensitive neurons are to content.
In this task, a set of sentences with consistent style
but varying content is input into the LLM along
with a content rewriting prompt ("Please rewrite
the sentence content while preserving the language
style"). The gradients obtained, analogous to those
in the previous style transfer task, are then ana-
lyzed to pinpoint neurons related to the content,
thus forming the set N content .

Figure 3: The proportion of intertwined neurons among
style neurons, where there are 409 style neurons in total.
The blue part indicates the number of intertwined neu-
rons. The horizontal axis represents the styles: formal,
informal, shakespeare, modern, negative, positive, toxic
and neutral.

After identifying the style and content neurons,
we further analyzed their interrelationship. We
refer to these neurons, which encode both style
and content information, as "intertwined neurons",
N intertwined = N style ∩N content . As shown in Figure 3,
the experimental results from the four datasets re-
veal the proportion of intertwined neurons within
the style neurons. It can be observed that approx-
imately a quarter of style neurons are sensitive to
content. This finding underscores the complexity
of neuron roles in large language models, where
some neurons cannot be strictly categorized as pro-
cessing either style or content. Instead, activation
of these neurons represents a combination of both
style and content attributes, highlighting the in-
tertwined nature of style and content in the text
generation process.

3.3 Regulation of style neuron activation

Instead of deactivating style neurons (Lai et al.,
2024), we modify their activations to enhance the
transfer of stylistic features. Specifically, given
a source style sentence X and a target style sen-
tence Y, both are input into the model, where the
activation of the style neurons is calculated, and
the activation difference is derived, as described in
Eq. 1, 2.

Since intertwined neurons serve dual purposes,
transmitting style information while preserving
content accuracy, directly adjusting their activa-
tions may lead to content loss. To mitigate this
issue, we introduce a normalized weight parameter,
Ngrad to regulate the activations of different neurons.
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Style Transfer Accuracy
Intertwined neurons Modern Shakespeare

✕ 69.2 80.2
✓ 72.6 82.4

Content Preservation
Intertwined neurons Modern Shakespeare

✕ 0.465 0.563
✓ 0.464 0.562

Table 1: Experiments testing the impact of intertwined
neurons on the authorship benchmark. The style indi-
cated in the task (e.g. Modern) indicates the source, and
its pair is the target style. Style transfer accuracy and
content preservation are defined in Section 4.3.

When handling intertwined neurons, we use their
sensitivity to content to control the magnitude of
the activation difference.

Ngrad =
1

log10(Gk −Gmin + ϵ)
(5)

Where Gk is the gradient of the intertwined
neuron during sentence content rewriting (Section
3.2). Gmin is the minimum gradient value in all
intertwined neurons, ensuring reasonable gradient
bounds, while ϵ is a constant.

During inference, we modify the activation of
a neuron to match the target style depending on
whether it is an intertwined neuron, as follows:

ak =

{
ak + λ∆ak, k /∈ Nintertwined

ak + λ∆akNgrad, k ∈ Nintertwined
(6)

Where ak is the current activation of the style
neuron. The weighting parameter λ controls the
strength of the activation’s influence on the model’s
output.

We further investigate the impact of intertwined
neurons through experiments on the authorship
style transfer task, as shown in Table 1. The results
indicate that when the activation of the intertwined
neurons remains unchanged, the style transfer ef-
fect is suboptimal, and the style transfer accuracy is
low. However, after applying Ngrad processing, the
style transfer effect is further improved while con-
tent consistency is maintained. This shows that our
method can effectively leverage the characteristics
of intertwined neurons to generate higher quality
style transfer results.

4 Experiments

4.1 Datasets
We conducted experiments on four style transfer
tasks. Sentiment: We use the YELP dataset (Shen
et al., 2017), which consists of two nonparallel cor-
pora containing positive and negative sentiments,
respectively. Authorship: Xu et al. (2012) de-
veloped a human-labeled dataset that enables text
conversion between Shakespeare’s original works
and their modernized counterparts. Formality: We
use the family and relationship domains from the
GYAFC dataset (Rao and Dear Tetreault, 2018),
which contains paired corpora of formal and infor-
mal sentences. Toxicity: ParaDetox (Logacheva
et al., 2022) is a parallel dataset for text detoxifica-
tion. The statistics of the datasets can be found in
Appendix A. We employ Yelp-clean, Shakespeare-
clean and GYAFC-clean from existing study1 (Suz-
gun et al., 2022) as test data. They contain 500
sentences in each style.

4.2 Implementation
Based on previous work (Lai et al., 2024), we con-
ducted experiments using the 8B model of LLaMA-
3 (Meta, 2024) in neuron identification, activation
extraction, and text generation. To verify the ef-
fectiveness of our method on different architec-
ture models, we also use Qwen-2.5-7B for experi-
ments (Appendix B). For calculating the activation
differences, we analyzed 500 pairs of sentences,
which included both the source and target styles.
To achieve improved text style transfer, we set the
value of λ to 5. Our method was implemented on a
machine equipped with 1 NVIDIA 3090 GPU. The
gradient calculation process for identifying neurons
took approximately 1-2 hours.

4.3 Evaluation Metric
Previous studies on style transfer typically evalu-
ated models based on three criteria: content preser-
vation, style transfer strength, and fluency. Fol-
lowing prior research (Lai et al., 2024; Suzgun
et al., 2022), we use the following metrics to assess
our methods: Content Preservation: We com-
pute two BLEU scores—reference BLEU (rBLEU)
and self BLEU (sBLEU)—using the SacreBLEU
implementation (Post, 2018). Furthermore, we em-
ploy BLEURT metrics (Sellam et al., 2020) for
comparison, which serve as our primary metric for

1https://github.com/suzgunmirac/
prompt-and-rerank/tree/main/datasets
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Style Transfer Accuracy(ACC) ↑
Authorship Sentiment Formality Toxicity

shakespeare modern negative positive formal informal toxic neutral
LLaMA-3 63.80 43.80 52.80 76.40 11.20 80.00 47.67 29.04

APE 55.80 44.60 48.00 78.90 12.20 74.00 47.57 28.44
AVF 55.60 44.40 47.90 79.20 12.40 76.00 47.57 28.44

PNMA 53.74 37.58 41.71 75.39 8.70 73.85 42.43 23.79
sNeuron-TST 73.40 45.14 54.73 77.93 14.40 80.80 55.36 31.98

NAM-TST(Ours) 82.40 72.60 70.00 82.80 28.00 92.60 70.42 34.24
Content Preservation(BLEURT) ↑

Authorship Sentiment Formality Toxicity
shakespeare modern negative positive formal informal toxic neutral

LLaMA-3 0.307 0.320 0.084 0.136 0.527 0.089 0.132 0.345
APE 0.328 0.461 0.078 0.193 0.449 0.069 0.156 0.376
AVF 0.344 0.426 0.095 0.207 0.440 0.043 0.157 0.376

PNMA 0.334 0.417 0.085 0.197 0.433 0.002 0.139 0.360
sNeuron-TST 0.324 0.386 0.133 0.199 0.478 0.073 0.157 0.329

NAM-TST(Ours) 0.562 0.464 0.625 0.589 0.567 0.678 0.508 0.420
Fluency ↓

Authorship Sentiment Formality Toxicity
shakespeare modern negative positive formal informal toxic neutral

LLaMA-3 197.62 136.03 125.98 177.01 87.69 92.53 113.84 191.30
APE 250.65 133.92 126.73 151.06 89.93 94.27 133.12 188.34
AVF 220.30 126.42 130.17 151.33 89.36 96.63 131.10 191.29

PNMA 260.52 135.00 129.49 154.85 90.85 103.61 136.27 194.71
sNeuron-TST 151.71 134.86 110.48 174.46 81.46 90.79 85.65 172.26

NAM-TST(Ours) 109.98 189.64 135.61 159.64 69.97 62.67 95.34 126.65

Table 2: Experiments are conducted on four benchmarks—formality, sentiment, authorship and toxicity—while
comparing the performance with other neural-based methods. The style indicated in the task (e.g. Modern) indicates
the source, and its pair is the target style. Bold indicates the best results. The results of other systems are replicated
from previous studies (Lai et al., 2024).

evaluating content preservation. Style Transfer
Accuracy: We use a classifier-based approach that
assesses the predicted polarity probability. We train
a binary classifier on the relevant corpus to estimate
the proportion of generated outputs that align with
the desired target styles. This is quantified using
accuracy (ACC). Fluency: We measure fluency
using a pre-trained GPT-2 (Radford et al., 2019)
model to compute the average perplexity (PPL).

A good style transfer system should jointly op-
timize all metrics. To assess the overall quality of
the generated output, we propose using the widely
recognized geometric mean (GM) across all three
dimensions:

GM = 3

√
Style · Content

F luency
(7)

4.4 Baseline
We compare NAM-TST with the following ap-
proaches:

LLaMA-3 (Meta, 2024): Used as a baseline
without fine-tuning.

Prompt-based Methods: Prompt-and-Rerank
(Suzgun et al., 2022): A state-of-the-art prompt-
based TST method with re-ranking. Zero-

shot/Few-shot Inference (Reif et al., 2022): Using
a fixed prompt template for TST, leveraging prompt
syntax and semantics.

Neural Methods: APE(Tang et al., 2024): Us-
ing activation probability entropy to identify the
style neurons. AVF(Tan et al., 2024): Using activa-
tion value frequency and set a threshold to identify
the style neurons. PNMA (Kojima et al., 2024):
Finding neurons that activate in source style sen-
tences but do not activate on target style sentences.
sNeuron-TST (Lai et al., 2024): Achieves style
transfer by deactivating source style neurons.

Supervised Methods: Several supervised ap-
proaches are also compared.

4.5 Result

Compared to other neural methods, the perfor-
mance of NAM-TST in authorship, sentiment, for-
mality and toxicity tasks is shown in Table 2.
NAM-TST demonstrates strong performance in
style transfer. Specifically, NAM-TST shows an
average improvement of 10% over other methods
in sentiment, formality and toxicity tasks. In the
authorship task, the improvement is even more no-
table, with an average gain of 18%. Our method
also performs well in content preservation, signif-
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icantly better than existing neural methods. This
result underscores the importance of precisely tun-
ing neuron activations to close the performance gap
between source and target styles, highlighting the
robust capabilities of the method in style transfer.

We also compared NAM-TST with other TST
methods presented in Table 3, evaluating them us-
ing the same metrics on the Yelp-clean dataset
(Positive → Negative) (Suzgun et al., 2022). The
results show that NAM-TST, using only a small
sample of data, achieves performance comparable
to that of supervised methods, while significantly
outperforming them in terms of fluency. As an
unsupervised method, NAM-TST is able to demon-
strate good style transfer capabilities under the con-
straints of fixed prompts, and significantly outper-
forms other methods in terms of content preserva-
tion. In general, the geometric mean (GM) score
outperforms all baseline methods, demonstrating
that NAM-TST achieves superior overall perfor-
mance in the style transfer task.

Method ACC↑ rBLEU↑ sBLEU↑ PPL↓ GM↑
Supervised Text Style Transfer

BackTrans[1] 95 2.0 46.5 158 2.4
MultiDecoder[2] 46 13.0 39.4 373 1.5
DeleteOnly[3] 85 13.4 33.9 182 2.2

DeleteAndRetrieve[3] 90 14.7 36.4 180 2.3
UnpairedRL[4] 49 16.8 45.7 385 1.6

B-GST[5] 81 21.6 46.5 158 2.6

Unsupervised Text Style Transfer
LLM_Aug-0S-FirstChoice[6] 85 5.3 9.2 33 2.7

LLM_5S-FirstChoice[6] 93 6.7 11.2 43 2.7
LLM_Aug-0S-Best-sBLEU[6] 63 19.8 45.1 55 3.3

LLM_5S-Best-sBLEU[6] 78 23.2 48.3 77 3.3
Prompt-and-Rerank(GPT-2)[7] 87 14.8 28.7 65 3.1
Prompt-and-Rerank(GPT-J)[7] 87 23.0 47.7 80 3.4

NAM-TST(Ours) 83 22.6 61.1 73 3.6

Table 3: Comparison of NAM-TST and other meth-
ods on the YELP-clean dataset (Positive → Negative).
GM is our main metrics, which measure the overall
style-transfer quality of generations. References: [1]
(Prabhumoye et al., 2018), [2] (Fu et al., 2018), [3] (Li
et al., 2018), [4] (Xu et al., 2018), [5] (Sudhakar et al.,
2019), [6] (Reif et al., 2022), [7] (Suzgun et al., 2022).
The results of other systems are replicated from previous
studies(Suzgun et al., 2022).

4.6 Further Analysis and Discussion

Alleviating the unidirectionality of style transfer.
As shown in Figure 4, we compare NAM-TST with
other neural methods and analyze the differences
in style transfer accuracy between the two direc-
tions in four benchmark tasks. The length of the
histogram reflects the accuracy gap between the

Figure 4: Comparison of unidirectionality degree: We
compare our method with existing neural methods
across four benchmark tasks, focusing on the difference
in style transfer accuracy between the two directions.
This difference reflects the degree of unidirectionality
in the style transfer process.

two transfer directions, thus indicating the severity
of the unidirectional problem. A shorter histogram
length suggests a less pronounced unidirectional
issue during the style transfer process. Clearly,
our method exhibits the shortest histogram length,
demonstrating its effectiveness in alleviating the
unidirectional problem. Notably, on more chal-
lenging tasks, such as formal to informal, modern
to shakespeare, negative to positive and neutral to
toxic, the style transfer accuracy of our method
improves on average by approximately 15% com-
pared to other neural methods. By adopting a more
flexible and bidirectional approach, NAM-TST ef-
fectively reduces the accuracy gap between the two
conversion directions, significantly overcoming the
inherent limitations of unidirectional adaptation
commonly observed in traditional style transfer
models.

Effect of λ. When adjusting neuron activations,
the weight of the activation difference, λ, plays a
crucial role in controlling the style transfer effect.
As the value of λ increases, the impact of the acti-
vation difference increases, leading to an improved
style transfer effect. We conducted experiments on
the Shakespeare (Modern → Shakespeare) dataset
and plotted the relationship between the activation
weight (λ) and the ACC and BLEURT scores, as
shown in Figure 5. As λ increases, the ACC im-
proves, indicating a more pronounced style transfer
effect. At the same time, the BLEURT score de-
creases slightly, by approximately 0.01, with mini-
mal impact on the content.
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Transfer direction Sentences before and after transfer

Modern to Shakespeare
Original sentence: the groans you used to make are still ringing in my old ears.
LLaMA-8B: The groans that you made were still ringing in my old ears.
NAM-TST(Ours): The groans that were once made by thee, still ring within mine aged ears.

Formal to Informal
Original sentence: Doing that does seem rather feminine.
LLaMA-8B: That seems like something a girl would do.
NAM-TST(Ours): That seems kinda girly.

Negative to Positive
Original sentence: my husband got a reuben sandwich, he hated it.
LLaMA-8B: My husband got a reuben sandwich, but he didn’t like it.
NAM-TST(Ours): My husband got a reuben sandwich, but he loved it.

Neutral to Toxic
Original sentence: you idea about offensive art is always questionable and irrelevant.
LLaMA-8B: You idea about offensive art is always questionable and irrelevant.
NAM-TST(Ours): You idea about offensive art is dumb and irrelevant.

Table 4: Examples of transfer results in more challenging transfer directions, comparing our method with LLaMA,
across the four benchmarks of formality, sentiment, authorship and toxicity.

Figure 5: Effects of different λ on style transfer ac-
curacy (ACC) and content preservation (BLEURT) on
authorship task(Modern → Shakespeare).

The effect of sample size on activation dif-
ference. The activation difference plays a crucial
role in guiding large language models for text style
transfer. To determine the optimal sample size for
stable and reliable results, we conducted an experi-
ment using the Shakespeare, Yelp, ParaDetox, and
GYAFC datasets to calculate neuron average activa-
tion differences at various sample sizes. As shown
in Figure 6, the average activation differences sta-
bilize when the sample size reaches approximately
100 in the Shakespeare and GYAFC datasets. For
the Yelp and ParaDetox datasets, the average acti-
vation differences remain stable once the sample
size reaches 500, with only minimal fluctuations
thereafter.

This finding highlights a key advantage of our
approach: unlike supervised methods that typically
rely on large annotated datasets, our approach is
capable of achieving stable and reliable results

Figure 6: The effect of sample size on the activation
difference is explored through experiments on the Shake-
speare, Yelp, ParaDetox and GYAFC dataset. The mean
activation difference is computed across all neurons.

with significantly smaller sample sizes. By tak-
ing 500 samples as standard, we ensure that the
computed activation differences are consistent and
robust, demonstrating the efficiency of our method
under small datasets, especially in areas where data
acquisition is both challenging and expensive.

4.7 Case Study

To further validate the effectiveness of our method
in mitigating the one-way transfer problem in large
models, we conducted case studies on four bench-
mark tasks. Table 4 presents the transfer results for
more challenging directions, such as formal to in-
formal, modern to shakespeare, negative to positive
and neutral to toxic, and compares our approach
with LLaMA-8B(Meta, 2024). The experimental
results indicate that style transfer using our method
results in more stylistically distinctive sentences,

7742



effectively alleviating the one-way transfer issue in
the model.

Specifically, in the Shakespearean style transfer
task, our method effectively generates stylistically
appropriate archaic terms (e.g., "thee"), whereas
LLaMA produces sentences with minimal stylis-
tic modification, failing to achieve effective style
transfer. For formal-to-informal conversion, our
method successfully incorporates authentic collo-
quial expressions (e.g., "kinda", "gonna") while
preserving semantic coherence. The model demon-
strates robust performance in sentiment transfer
by accurately converting strongly negative terms
(e.g., "hate") to their positive counterparts (e.g.,
"love"). In the neutral-to-toxic conversion task,
our method reliably generates characteristic toxic
language markers (e.g., "dumb").

5 Conclusion

This paper introduces a novel text style transfer
method, NAM-TST, which uses the activation sen-
sitivity index to identify style-related neurons and
explores the intrinsic relationship between style
and content. By precisely adjusting the activation
of style neurons, NAM-TST effectively guides the
style transfer process. Experimental results demon-
strate that NAM-TST outperforms existing neuron
analysis methods on four distinct tasks, excelling in
both style transfer and content preservation. These
findings underscore the great potential of NAM-
TST in advancing text generation and achieving
more controllable style regulation in natural lan-
guage processing.

Limitations

However, we acknowledge certain limitations of
NAM-TST: (1) Since the activation of neurons in
the last layer of the model has the greatest impact
on output, this study focuses on the activation char-
acteristics of neurons in the last layer and does
not explore the potential influence of neurons in
other layers. Future work can extend the analy-
sis to deeper layers, where complex patterns of
style and content characteristics may emerge. (2)
The complexity of the neuron activation patterns
presents a challenge in capturing them intuitively,
which requires careful experimentation to deter-
mine the optimal weights to regulate the activation
of style neurons. In future research, we plan to
enhance the weight adjustment process by incorpo-
rating more complex strategies, such as adaptive

or learned weight mechanisms. This will allow
better style transfer and content preservation, en-
abling our method to adapt to a wider range of style
transfer tasks.

Ethics Statement

Text style transfer has been widely applied across
various domains, but its deployment—especially
with large language models trained on datasets con-
taining uncontrolled biases—carries inherent risks.
These include potential misuse, such as distorting
facts, committing plagiarism, or generating harm-
ful and misleading content. The primary goal of
this paper is to showcase the academic contribu-
tions and practical utility of the proposed frame-
work. We underscore the critical importance of
ensuring the ethical use and responsible deploy-
ment of such technologies. Achieving this requires
the implementation of robust safeguards and re-
view mechanisms to effectively mitigate the risk of
abuse.
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A Datasets

All style data used for neuron identification are
obtained from publicly available datasets. Follow-
ing prior work on text style transfer, we use two
common datasets: Yelp, Shakespeare, GYAFC and
ParaDetox. The statistics of the four datasets are
shown in Table 5.

B Effectiveness of different model

To verify the effectiveness of our method on dif-
ferent architecture models, we use Qwen-2.5-7B
for experiments. The results shown in Table 6
demonstrate that our method performs well on the
Qwen-2.5-7B model, confirming its strong adapt-
ability across different architectures. Notably, in
the challenging formal-to-informal and neutral-to-
toxic transfer tasks, the style transfer accuracy im-
proved by an average of 11.6%, highlighting the
method’s ability to address unidirectional issues in
traditional models.
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Dataset Task Train Valid Test
Yelp positive ↔ negative 100k 1000 500

Shakespeare shakespeare ↔ modern 27k 500 500
GYAFC informal ↔ formal 52k 500 500

ParaDetox toxic ↔ neutral 18k 2000 2000

Table 5: Data statistics on four benchmarks containing the size of train/valid/test set.

Style Transfer Accuracy ↑
Authorship Sentiment Formality Toxicity

shakespeare modern negative positive formal informal toxic neutral
Qwen 87.5 73.0 68.6 85.6 39.2 99.0 98.6 39.7

NAM-TST(Ours) 92.2 83.2 71.4 89.8 45.0 99.0 99.0 57.6
Content Preservation(BLEURT) ↑

Authorship Sentiment Formality Toxicity
shakespeare modern negative positive formal informal toxic neutral

Qwen 0.587 0.511 0.621 0.615 0.592 0.636 0.594 0.541
NAM-TST(Ours) 0.584 0.512 0.622 0.612 0.589 0.639 0.598 0.497

Fluency ↓
Authorship Sentiment Formality Toxicity

shakespeare modern negative positive formal informal toxic neutral
Qwen 88.71 117.38 101.22 118.33 54.07 69.45 93.67 89.69

NAM-TST(Ours) 87.70 120.37 98.26 117.99 54.66 67.35 85.92 105.43

Table 6: Experiments are conducted on four benchmarks—formality, sentiment, authorship and toxicity—while
comparing the performance with Qwen-2.5-7B model. Bold indicates the best results.
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