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Abstract

With the growing size of Large Vision-
Language Models (LVLMs), network pruning
techniques designed to compress these models
for deployment in resource-constrained envi-
ronments have attracted significant attention.
However, we observe that pruning frequently
results in a degradation in safety performance.
To address this issue, we propose a novel
and lightweight approach, named Hierarchical
Safety Realignment (HSR). HSR operates by
first quantifying the contribution of each atten-
tion head to safety, identifying the most crit-
ical ones, and then selectively restoring neu-
rons directly within these attention heads that
play a pivotal role in maintaining safety. This
process hierarchically realigns the safety of
pruned LVLMs, progressing from the atten-
tion head level to the neuron level. We vali-
date HSR across various models and pruning
strategies, consistently achieving notable im-
provements in safety performance. To the best
of our knowledge, this is the first work ex-
plicitly focused on restoring safety in LVLMs
post-pruning. The code will be available at
https://github.com/TheShineyue/HSR.

1 Introduction

Large Language Models (LLMs) benefit from their
massive parameter count and advanced architec-
tures, achieving outstanding results on diverse
benchmarks. Building on this success, efforts
to extend LLMs into multimodal domains have
made remarkable progress as well. Most current
Large Vision-Language Models (LVLMs), typi-
cally composed of visual encoders, adapters, and
LLM backbones (Liu et al., 2024a), have a large
parameter scale and leverage image-text datasets to
achieve effective multimodal alignment. To enable
model deployment and application under resource-
constrained environments, pruning methods (Sun
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Figure 1: The Average ASR (lower values indicate
higher safety) of full baselines versus pruned models
(50% sparsity) across safety evaluation benchmarks.
The abbreviations on the x-axis, listed from left to
right, correspond to the following models: Qwen2-VL,
Qwen2.5-VL, LLaVA-NeXT-Mistral, LLaVA-NeXT-
Vicuna, LLaVA-NeXT-Llama3, and Llama3.2-Vision.

et al., 2024; Frantar and Alistarh, 2023; Lee et al.,
2018) compute importance scores of neurons to
eliminate those deemed less important, thereby re-
ducing the size of the model while retaining the
utility to a certain extent. Such methods have seen
broad adoption to boost model efficiency.

Safety is commonly defined as preventing mod-
els from following malicious instructions and gen-
erating toxic content (Bianchi et al., 2024). Re-
cent work (Zhou et al., 2025) has revealed that
certain safety heads within the attention mecha-
nism are crucial for feature integration in safety-
related tasks. Additionally, neural-level research
(Wei et al., 2024) has found that certain regions
within the model are critical for safety guardrails,
which are separate from the utility-related regions
and exhibit sparsity. A natural concern arises from
the fact that, because these regions contribute min-
imally to utility, they are prone to being removed
by pruning technologies that prioritize utility im-
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portance as a pruning metric. This removal could
result in a decline in the safety of the pruned model.
To verify whether this problem exists, we used the
Wanda pruning method (Sun et al., 2024) to prune
six mainstream LVLMs and compared their safety
changes before and after pruning. The experimen-
tal results shown in Figure 1 reveal that all LVLMs
exhibited varying degrees of safety degradation,
with the worst-performing model showing a 15.4%
safety drop and the best-performing case exhibit-
ing a 2.8% decline. Despite the serious safety risks
of pruning technologies, research on model safety
restoration after pruning remains scarce.

To address this problem, we propose a novel
Hierarchical Safety Realignment (HSR) approach,
designed to restore the safety performance de-
graded by pruning, without significantly increasing
the pruned model’s parameter size. Our HSR appo-
rach hierarchically realigns the safety of the pruned
model from attention head level to neuron level.
HSR operates in two main steps: First, we eval-
uate each attention head’s contribution to model
safety and identify the safety-critical heads with
the greatest impact. Subsequently, for these key
heads, we pinpoint and restore safety-critical neu-
rons that were pruned, effectively realigning the
safety of our model.

We have validated the effectiveness of our ap-
proach across various models and pruning tech-
niques. Our proposed HSR approach successfully
realigns the safety of pruned models, restoring over
27% of the lost safety in many cases and more
than 14% even in the worst-case scenarios, all with
lightweight modifications. Furthermore, with ex-
tensive analysis and ablation experiments, we have
uncovered several key insights into model safety.
These include the finding that a small subset of
neurons plays a disproportionately significant role
in ensuring safety, and the observation that certain
neurons exist which negatively impact safety.

In summary, our contributions are the follows:

• We propose a novel method named Hierarchi-
cal Safety Realignment (HSR) to realign the
safety of pruned LVLMs, yielding substantial
safety improvements with lightweight modi-
fications. To our knowledge, HSR is the first
method specifically designed to address the
safety realignment of pruned LVLMs.

• Our findings reveal that a small subset of neu-
rons plays a disproportionately large role in

ensuring safety, while certain neurons nega-
tively impact safety. By selectively restoring
these safety-critical neurons, we can achieve
significant safety recovery in pruned models.

• We validate the proposed method on various
LVLMs using different pruning techniques.
Extensive experiments demonstrate the superi-
ority of our approach, consistently improving
performance with minimal neuron restoration.

2 Method

Overview In this section, we present our Hierar-
chical Safety Realignment method in detail and il-
lustrate the core process in Figure 2. Our approach
achieves safety realignment of the pruned model
by hierarchically identifying and restoring safety-
critical neurons, starting at the attention head level
and progressing to the neuron level: At the at-
tention head level (Section 2.1), each attention
head is individually masked to measure changes in
the model’s output for malicious instructions com-
pared to the original. The attention heads causing
the most significant changes, termed as the safety-
critical heads, are selected for further analysis. At
the neuron level (Section 2.2), we compute two
importance scores for neurons: the safety impor-
tance score based on a safety dataset and the utility
importance score derived from a utility dataset (de-
tails provided in the caption of Figure 2). Pruned
neurons exhibiting high safety importance along
with sufficient utility importance are identified as
safety-critical neurons and subsequently restored.

2.1 Identifying Safety-Critical Heads
To preserve model sparsity, we selectively restore
neurons only in those attention heads that ex-
hibit the highest safety-critical importance. Zhou
et al.’s (2025) work proposed a new metric tailored
for multi-head attention, namely the Safety head
importance score (Ships), to evaluate the contri-
bution of each head to the model safety. Specif-
ically, for a specific harmful data qH, the proba-
bility distribution of the original model θO is de-
noted by p(qH; θO). For the i-th attention head hli
in the l-th layer, its contribution to the safety of
the model is eliminated by multiplying its Query,
Key, and Value matrices by a very small coeffi-
cient ϵ. The probability distribution of the model
after such ablation is denoted by p(qH; θO \ θhl

i
).

The Ships(qH, θhl
i
) are calculated as the KL diver-

gence (Kullback and Leibler, 1951) of p(qH; θO)
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Figure 2: HSR hierarchically achieves safety realignment of the pruned model in two steps: The first step identifies
the top-h most important attention heads for safety, while the second one identifies and restore the safety-critical
neurons on these heads. The safety dataset, comprising malicious instructions and appropriate rejection responses,
is marked in red, and the utility dataset, which excludes malicious instructions, is marked in blue.

and p(qH; θO \ θhl
i
) as follows:

DKL

(
p(qH; θO) ∥ p(qH; θO \ θhl

i
)
)

(1)

It quantifies the impact of ablating head hli for qH,
which is the safety contribution of hli. Given that
most contemporary LVLMs employ Group Query
Attention (Ainslie et al., 2023) to reduce compu-
tational overhead, we derive generalized masking
equations. For the query and key matrices Wq and
Wk, the modified head hmi calculation becomes:

hmi = Softmax


ϵWi

qW
i/g
k

T

√
dk/n


Wi/g

v , (2)

whereas for the value matrix Wv, the calculation
is adjusted as:

hmi = Softmax


Wi

qW
i/g
k

T

√
dk/n


 ϵWi/g

v , (3)

Here, n denotes the number of attention heads per
layer, and g denotes the query amount of each
group calculated as g = n/nkv where nkv indi-
cates the number of key-value head pairs.

For a given dataset D, we aggregate network
activations into matrix X, and perform singular

value decomposition (SVD): SVD(X) = UΣV⊤,
where U represents the key features in the dataset
space. Through this decomposition, we derive two
critical matrices: Uθ (left feature matrix from the
original model) and UA (left feature matrix from
the ablated model). The safety representation diver-
gence is quantified using the Ships(D,hli) metric:

Ships(D,hli) =

rmax∑

r=1

cos−1
(
σr(U

(r)
θ , U

(r)
A )

)
(4)

where σr denotes the r-th singular value. A larger
main angle indicates that the safety representation
has changed significantly, which represents the
safety importance at the dataset level. We sub-
sequently identify the top-h attention heads with
maximal safety contributions, designated as safety-
critical heads, for neuron-level attribution analysis.

2.2 Identifying Safety-critical Neurons
2.2.1 Quantifying Neuron Importance
We proceed to identify pruned neurons that remain
critical for safety considerations. Given a calibra-
tion dataset, the pruning method calculates impor-
tance scores of weights to attribute their impact on
the model’s relative performance. When provided
with a safety dataset or a utility dataset, the method
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quantifies the safety importance scores and utility
importance scores of the weights, respectively. We
provide three variants that use different approaches
to quantify neuron importance as follows:

• For a given calibration dataset, we use Wanda
Score (Sun et al., 2024) to calculate the im-
portance score of a weight using the absolute
value of its weight matrix and the ℓ2 norm of
the input activations. Subsequently, we follow
Wei et al., 2024 to mask the rest of the calibra-
tion dataset and focusing only on the response
activation, and tore all activations for layer W
into Xin of shape (n,Cin) and calculate the
importance score I as:

I = |W| ⊙
(
1 · ∥Xin∥⊤2

)
, (5)

where |W| is a weight matrix of a linear layer
of shape (Cout, Cin). 1 denotes an all-one vec-
tor of shape (Cout, 1). We compute the row-
wise ℓ2 norms of Xin, and then transpose them
to obtain a matrix of shape (1, Cin).

• We use SparseGPT Score (Frantar and Alis-
tarh, 2023) to obtain the importance I as Eq. 6,
where Xin contains only response activations:

I =

[
|W|2

diag
(
(X⊤

inXin + λI)−1
)
]

(6)

Here, XT
inXin + λI in the denominator is the

Hessian H for the layer-wise reconstruction
problem and λ is the Hessian dampening fac-
tor to avoid the collapse of inverse compu-
tation. Once I is calculated, SparseGPT up-
dates the weights by masking less important
portions based on the desired sparsity.

• We finally introduce the third method, which
is based on the SNIP Score (Lee et al., 2019).
For a data instance x = (xprompt, xresponse), we
define the corresponding loss function as the
conditional negative log-likelihood L(x) =
− log p(xresponse | xprompt). For a weight ma-
trix W, we use SNIP Score to calculate its
importance score I as follows:

I(Wij , x) = |Wij · ∇WijL(x)|, (7)

This equation is the first-order Taylor approx-
imation to the change of the loss when the
weight entry Wij is set to zero.

Following the experimental setup described
by Wei et al. (2024), for a given calibration
dataset D, we use

I = Ex∼DI(W, x) = Ex∼D|W⊙∇WL(x)|.
(8)

2.2.2 Safety-Critical Neuron Restoration
Considering two different calibration datasets, a
safety dataset Ds and a utility dataset Du. Ds com-
prises instructions and images that contain harmful
information, along with responses that correctly
refuse such information. In contrast, Du consists
of safe instructions and images paired with reason-
able responses. Therefore, the safety importance
score Is and utility importance score Iu can be cal-
culated respectively using the Wanda, SparseGPT
or SNIP method in Section 2.2.1.

We select those weights with larger importance
scores and consider them weights that contribute
more to safety or utility. Specifically, given hyper-
parameters q and p for safety and utility, respec-
tively, we use Equations 9 and 10 to obtain the
safety importance set Ss and utility importance set
Su of the i-th layer.

Ss(q) = {(i, j) | Iui,j is the top q% of Isi} (9)

Su(p) = {(i, j) | Iui,j is the top p% of Iui } (10)

For the pruning process, the weights outside the
utility important set (here p = 1 - sparsity ratio)
will be set to 0 according to the set sparsity, thus
obtaining a sparse neural network.

Among the pruned neurons (not in Su(p)), we
seek those safety-critical neurons that have high
safety and still have certain utility, and will not
cause excessive loss of model utility in the subse-
quent realignment process. Therefore, we intro-
duce the hyper-parameter pmax (pmax is greater
than p) and obtain the safety-critical neurons
S(p, q, pmax) as follows:

S(p, q, pmax) = (Ss(q) ∩ Su(pmax))− Su(p).
(11)

We restore these pruned safety-critical neurons on
the pruned model to realign the model’s safety.

3 Experimental Setup

Dataset During the realignment phase, we em-
ploy two distinct data subsets: (1) Safe-Safe pairs
(safe images with corresponding safe instructions)
as the utility dataset, and (2) Unsafe-Unsafe pairs
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Method Safety ↓ Utility ↑ Restoration
SafeBench Ch3Ef AVG RSR MMbench DocVQA AVG

Full Model 1.40 2.35 1.88 - 87.02 94.51 90.76 -

SNIP 4.60 8.12 6.36 - 84.55 92.93 88.74 -
w/ HSR(Ours) 3.00 5.34 4.17 48.88% 84.62 92.90 88.76 0.150‱

Wanda 11.20 17.74 14.47 - 85.15 91.97 88.56 -
w/ HSR(Ours) 9.00 13.03 11.02 27.40% 85.01 92.13 88.57 0.020‱

SparseGPT 3.00 3.21 3.10 - 83.88 90.64 87.26 -
w/ HSR(Ours) 2.80 2.56 2.68 34.43% 83.88 90.63 87.25 0.133‱

Table 1: The safety and utility values of Qwen2.5-VL under different pruning methods are shown. Here the
Restoration Indicates the ratio of the additional restored parameters to the total parameters that need to be pruned, in
ten thousandths. The better value for each group is shown in bold.

(unsafe images with matching unsafe instructions),
which constitute the safety dataset. Both subsets
are derived from the VLGuard (Zong et al., 2024)
training dataset.

During the evaluation phase, we employ the fol-
lowing benchmarks: (1) For utility assessment,
MMbench (Liu et al., 2025) and DocVQA (Mathew
et al., 2021) are utilized; (2) For safety evaluation,
safebench-mini (Ying et al., 2024a) and the harm-
ful subset of Ch3Ef (Shi et al., 2024) are adopted.
To ensure fair comparison and reproducibility, all
evaluations are conducted under strict zero-shot
settings with greedy decoding strategies.

Models for Pruning Our experiments involved
six mainstream LVLMs, including three variants of
LLaVA-NeXT1, built on different language models:
Vicuna, Mistral, and Llama3. Additionally, we
evaluated Qwen2.5-VL2, Qwen2-VL (Wang et al.,
2024a), and Llama-3.2-Vision3. All models have
parameter counts ranging from 7B to 11B.

Evaluation Metrics Three evaluation metrics we
use are Attack Success Rate (ASR), Average Nor-
malized Levenshtein Similarity (ANLS) and Ac-
curacy (Acc). ASR is used to evaluate the safety
of the model. The smaller the ASR, the better the
safety. We use Llama-Guard-3-Vision4 to deter-
mine whether the response is safe. We use ANLS
and Acc as the evaluation indicators of DocVQA
and MMbench respectively. Following Mathew
et al.’s (2021) proposal, ANLS can ensure that mi-
nor answer mismatches stemming from OCR errors

1https://llava-vl.github.io/blog/
2024-05-10-llava-next-stronger-llms/

2https://huggingface.co/Qwen/Qwen2.
5-VL-7B-Instruct

3https://huggingface.co/meta-llama/Llama-3.
2-11B-Vision-Instruct

4https://huggingface.co/meta-llama/
Llama-Guard-3-11B-Vision

are not severely penalized. Additionally, in order to
more intuitively and fairly reflect the performance
improvement of our method, we provide the Ratio
of model Safety Realignment (RSR) as follows:

RSR =
ASRPruned − ASRPruned w/ HSR

ASRPruned − ASRFull
(12)

to quantify the ratio of restored safety to lost safety.
More relevant details are reported in Appendix A.

4 Experimental Results

Comparison of different pruning methods We
present the performance of Qwen2.5-VL at 50%
sparsity using various pruning methods realigned
with HSR, as shown in Table 1. HSR effectively
realigns the safety of the pruned model and only re-
quires restoring a minimal number of safety-critical
neurons. Specifically for Qwen2.5-VL, the aver-
age value of ASR decreases by 2.19%, 3.45%,
and 0.42%, respectively, for SNIP, Wanda, and
SparseGPT. Judging from the ratio of restored
safety to lost safety, it is generally possible to re-
cover over 27% of the safety capacity. In addition,
there is no significant loss in utility. In fact, we
even find a slight improvement in multiple cases
and in the average value, which may stem from the
fact that the restored neurons also have a certain
utility contribution for Qwen2.5-VL.

Comparison of different LVLMs We report the
performance of various LVLMs at 50% sparsity us-
ing Wanda and realigning via HSR, which is shown
in Table 2. HSR demonstrates significant improve-
ments across pruned models: Qwen2-VL, LLaVA-
NeXT-Vicuna, and LLaVA-NeXT-Mistral show av-
erage ASR reductions of 5.46%, 3.03%, and 1.03%
respectively, with restoration rates exceeding 35%
(LLaVA-NeXT-Mistral achieves over 100%). For
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Method Safety ↓ Utility ↑ Restoration
SafeBench Ch3Ef AVG RSR MMbench DocVQA AVG

Qwen2-VL 5.00 8.55 6.77 - 82.70 89.14 85.92 -
Wanda 21.40 23.08 22.24 - 75.93 76.27 76.10 -
w/ HSR (Ours) 15.40 18.16 16.78 35.29% 76.69 77.93 77.31 0.016‱

LLaVA-NeXT-Mistral 11.00 18.38 14.69 - 76.69 63.74 70.21 -
Wanda 13.40 21.79 17.60 - 73.11 57.22 65.17 -
w/ HSR (Ours) 11.20 17.95 14.57 104.12% 72.95 56.74 64.85 0.385‱

LLaVA-NeXT-Vicuna 11.80 18.80 15.30 - 75.21 66.91 71.06 -
Wanda 13.60 22.65 18.12 - 69.62 60.33 64.98 -
w/ HSR (Ours) 12.60 21.58 17.09 36.52% 69.21 60.10 64.65 1.803‱

LLaVA-NeXT-Llama3 8.60 17.09 12.85 - 79.42 72.42 75.92 -
Wanda 10.20 25.21 17.71 - 74.96 66.35 70.66 -
w/ HSR (Ours) 9.20 24.79 16.99 14.81% 74.57 66.38 70.47 0.799‱

Llama3.2-Vision 2.60 2.78 2.69 - 75.44 77.44 76.44 -
Wanda 9.20 8.76 8.98 - 69.07 65.71 67.39 -
w/ HSR (Ours) 8.60 7.26 7.93 16.69% 66.85 64.04 65.45 0.065‱

Table 2: The safety and utility values of Wanda and HSR realigned Wanda pruned models for different LVLMs are
shown. The better value for each LVLM is shown in bold.

Method Safety ↓ Utility ↑ Restoration
SafeBench Ch3Ef AVG RSR MMbench DocVQA AVG

Qwen2.5-VL 1.40 2.35 1.88 - 87.02 94.51 90.76 -
Wanda 2:4 14.40 13.46 13.93 - 80.20 87.94 84.07 -
w/ HSR (Ours) 12.60 10.26 11.43 20.75% 80.99 89.07 85.03 0.055‱

Qwen2-VL 5.00 8.55 6.77 - 82.70 89.14 85.92 -
Wanda 2:4 27.00 19.87 23.44 - 63.94 50.86 57.40 -
w/ HSR (Ours) 23.20 16.67 19.93 21.06% 69.81 55.82 62.82 0.047‱

Table 3: The safety and utility values of 2:4 structured Wanda and HSR realigned Wanda pruned models for different
LVLMs are shown. The better value for each LVLM is shown in bold.

LLaVA-NeXT-llama3 and Llama3.2-Vision, the av-
erage ASR decreases by 0.72% and 1.05%, with a
safety restoration ratio slightly above 14%. These
results demonstrate notable improvements, yet the
restoration performance of Llama3-based LVLMs
remains constrained.

Regarding utility, both Qwen2-VL and the afore-
mentioned Qwen2.5-VL show improved perfor-
mance, while other models experience slight de-
clines. This difference may be attributed to the
Qwen series employing grouped query attention,
which features the largest number of queries per
group and the fewest heads (as shown in Ap-
pendix B), making each neuron’s contribution (both
utility and safety) particularly significant.

Regarding the neuron restoration ratio, for
LLaVA-NeXT-Vicuna, it is significantly higher
than for others. This may be because other models
are based on the group attention mechanism, and
the safety realignment brought by the restoration
can affect a wider range.

Comparison with structured pruning For 2:4
structured pruning (retaining 2 of every 4 neu-

rons), we apply Wanda and Wanda with HSR to
Qwen2-VL and Qwen2.5-VL (Table 3). HSR re-
mains effective, reducing average ASR by 2.5%
and 3.51% respectively, while maintaining utility
improvements. Notably, structured pruning under-
performs unstructured pruning in safety metrics
(ASR reduction and safety restoration ratio), likely
due to its inherent limitations: mandatory retention
patterns may exclude high-utility neurons while
incidentally preserving safety-critical ones.

Comparison by category We report the effect of
HSR on the safety realignment of the pruned model
for various categories in the Ch3Ef dataset in Fig-
ure 3. The comparison between pruned (Figure 3b)
and realigned models (Figure 3c) reveals consistent
improvements: Discrimination (3.59%), Toxicity
(3.4%), and Harm (3.77%) show significant ASR
reductions, while the remaining categories exhibit
< 2.3% decreases.

Effect of different sparsities An experimental
comparison is given in Table 4. Regarding safety
performance, varying degrees of safety realignment
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Figure 3: Results after pruning with 50% sparsity using Wanda and HSR realignment, with the classification here
coming from Ch3Ef (Shi et al., 2024). The first six rows are the abbreviations of the LVLMs; see the caption of
Figure 1 for details. The bottom row gives the average ASR of the six LVLMs for the category.

are observed across different sparsity levels, with
the most significant restoration occurring at 50%
sparsity. This phenomenon could be attributed to
two factors: at 40% sparsity, the structural dam-
age remained moderate with limited improvement
potential, while the 60% sparsity level suffered ex-
cessive parameter loss that marginally diminished
the benefits achievable through low-level adjust-
ments.

Moreover, the utility of realigned models ex-
hibits a slight reduction at 40% sparsity while
showing progressive improvement at 50%~60%
sparsity levels, peaking at 60% sparsity. This phe-
nomenon may stem from safety-critical neurons
possessing greater safety significance than utility
value, whereas in heavily pruned models (50%
~60% sparsity) with substantial utility degradation,
the utility of the safety-critical neurons can still
bring about some improvement.

Sparsity 40% 50% 60%

Safety↓ Utility↑ Safety↓ Utility↑ Safety↓ Utility↑
Wanda 10.69 82.79 22.24 76.10 27.05 48.17
w/ HSR 10.01 82.65 16.78 77.31 25.61 63.37

Table 4: Effect of sparsities on Qwen2-VL with prun-
ing by Wanda and realignment by HSR. We report the
average scores of safety and utility.

Hyperparameter Effects We analyze the effects
of varying the hyperparameters q, pmax and h on
model performance. Table 5 highlights that as q
increases, the safety of the realigned model deteri-
orates. This suggests that the first 0.35 of neurons

play a critical role in maintaining safety, while the
remaining neurons tend to negatively impact safety.
Furthermore, utility initially increases but then de-
creases as q grows. This observation indicates that
neurons contributing significantly to safety also
tend to contribute strongly to utility, suggesting an
inherent entanglement between the two.

q 0.35 0.40 0.45 0.50

Safety ↓ 14.57 14.98 15.19 16.03
Utility ↑ 64.85 64.88 64.84 64.80

Table 5: Effect of q (where h = 4, pmax = 0.7) on LLaVA-
NeXT-Mistral. The best values masked in bold.

Next, we analyze the impact of the hyper-
parameter pmax as shown in Table 6. The results
reveal that utility initially increases and then de-
creases, reaching its peak at 0.55. This underscores
the importance of carefully designing pmax to regu-
late safety-related neurons. Regarding the trend of
safety first deteriorating and then improving, this
suggests that some neurons contribute significantly
to both safety and utility, while others contribute
minimally to both. By selecting an appropriate
pmax, we can effectively exclude the latter group.

pmax 0.51 0.55 0.60 0.70 1.00

Safety ↓ 15.07 16.03 16.15 16.03 15.30
Utility ↑ 64.82 64.87 64.79 64.80 64.82

Table 6: Effect of pmax (where h = 4, q = 0.5) on LLaVA-
NeXT-Mistral. The best values masked in bold.

Finally, we examine the impact of the hyper-
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parameter h as presented in Table 7. Since each
group attention head in LLaVA-NeXT-Mistral cor-
responds to 4 query matrices, experiments are con-
ducted in multiples of 4. The results show that
safety performs best when h equals 4, followed by
significant fluctuations. Utility also shows consid-
erable variability. This may be due to the uneven
distribution of neurons across head, with some con-
tributing significantly to both safety and utility, and
others contributing little. This highlights the need
for more fine-grained control to address this vari-
ability effectively.

h 4 8 12 16 20

Safety ↓ 14.57 16.55 15.92 15.61 16.22
Utility ↑ 64.85 64.80 64.90 64.87 64.86

Table 7: Effect of h (where pmax = 4, q = 0.5) on LLaVA-
NeXT-Mistral. The best values masked in bold.

Ablation Studies Shifting from the attention
head level to the neuron level design can achieve
better safety realignment performance while main-
taining the sparsity of the pruned model as much
as possible. We designed an ablation experiment
that solely restores attention heads without delving
into neuron-level restoration (Denoted as HSR-a)
to validate this claim. The safety and utility are
evaluated using Safebench and MM-Bench respec-
tively (Results as shown in Table 8).

• Lightweight Implementation: HSR can
achieve safety realignment of pruned model
while preserving the current sparsity of the
pruned model as much as possible. For
Qwen2.5-VL and LLaVA-NeXT-Llama3, the
scale of neurons restored by HSR-a is 18 and
650 times that of HSR, respectively.

• Enhanced Effectiveness: Certain neurons
have been found to adversely affect safety.
By filtering them out through set operations,
we ensure robust safety realignment efficacy.
Directly repairing the entire head makes the
safety worse (ASR increased > 0.2). This also
shows again that there may be some neurons
that are harmful to safety.

5 Further Analysis

We analyze the total Ships of each model and the
extent of safety degradation after pruning, finding

Method Safety↓ RSR Utility↑ Restoration

Q2.5-V 1.40 - 87.02 -
Wanda 11.20 - 85.15 -
w/HSR 9.00 22.45% 85.01 0.020‱
w/HSR-a 9.40 18.37% 84.92 12.999‱

L-Lla 8.60 - 79.42 -
Wanda 10.20 - 74.96 -
w/HSR 9.20 62.50% 74.57 0.799‱
w/HSR-a 9.40 20.00% 74.73 14.234‱

Table 8: Comparison of HSR and HSR-a (the sparsity
is 50%). Denote Qwen2.5-VL and Llava-Next-Llama3
as Q2.5-V and L-Lla, respectively.

a strong positive correlation between them. Spear-
man’s rank correlation coefficient ρ (Spearman,
1904) is a nonparametric statistical test measuring
the correlation between the ranks of two variables:

ρ = 1− 6
∑

d2i
n(n2 − 1)

(13)

Here, di is the difference between the ranks of each
pair of values, and n is the number of paired ob-
servations. The value of ρ ranges from -1 to +1,
where 1 indicates a perfect positive correlation, -1
indicates a perfect negative correlation, and 0 in-
dicates no monotonic correlation. We ranked the
average ASR increase (descending order) and the
total Ships (descending order) of the six LVLMs af-
ter being pruned by Wanda at 50% sparsity on two
safety evaluation datasets, as shown in Appendix C.
Then we calculated their Spearman’s rank correla-
tion coefficient, obtaining 0.8857, which is near 1.
This confirms that the total Ships strongly corre-
lates with pruning-induced safety degradation.

6 Related Work

Safety in LVLMs Many studies have researched
methods to compromise the safety of LVLMs.
Gong et al. (2025) introduced FigStep, which con-
verts prohibited content into images using type-
setting to bypass safety alignment. Ying et al.
(2024b) proposed BAP, a jailbreak attack method
that jointly optimizes text and visual prompts. In re-
sponse, research on defending against such attacks
and enhancing model safety has also emerged. Liu
et al. (2024b) improved defense against harmful
images by incorporating a security module via a
two-stage training process. Meanwhile, Wang et al.
(2024b) proposed AdaShield, which protects Mul-
timodal Large Language Models from structure-
based jailbreak attacks by adding a defense hint to
the input, without requiring model fine-tuning or
additional module training.
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Pruning neural network As model sizes con-
tinue to grow, pruning techniques (Sung et al.,
2024; Cao et al., 2024) for compressing neural
networks by removing neurons have attracted sig-
nificant attention. These techniques can be broadly
categorized into structured and unstructured prun-
ing. Structured pruning (Ashkboos et al., 2024;
An et al., 2024) has the advantage of accelerat-
ing pruned models on standard hardware without
relying on specialized support (Zhu et al., 2024),
while unstructured pruning (Lee et al., 2019; Sun
et al., 2024; Frantar and Alistarh, 2023) helps pre-
serve performance at higher sparsity levels. For
pruned models, Jin et al. (2022) observed that prun-
ing introduces additional regularization, reducing
accuracy loss on noisy examples in dense models.
Hasan et al. (2024) noted improved model safety
at low sparsity, attributing it to sharper attention.
However, the safety degradation caused by prun-
ing at slightly higher sparsity has been overlooked,
motivating our research on methods to realign the
safety of pruned models.

7 Conclusion

In this paper, we propose a novel Hierarchical
Safety Realignment (HSR) approach to mitigate the
overemphasis on neuron utility in pruning methods,
which may lead to a significant degradation in the
safety of pruned models. Specifically, HSR first
identifies the safety-critical attention heads that
contribute significantly to safety at the attention
head level, and subsequently restores the safety-
critical neurons that were pruned within those at-
tention heads. Extensive experiments on multiple
mainstream LVLMs and pruning methods demon-
strate that HSR achieves lightweight yet effective
safety realignment by leveraging the fact that only
a relatively small number of neurons significantly
contribute to model safety. We hope that our safety
realignment approach can facilitate the deployment
of compact and reliable models.

Limitations

This study has several notable limitations that
warrant careful consideration. Firstly, Our HSR
method may result in a slight loss of utility in cer-
tain cases. Further research is necessary to ensure
the model’s utility is preserved throughout the re-
alignment process. Secondly, HSR still requires the
restoration of a certain scale of neurons, and there
may be methods to restore the safety of the pruned

model at an even lower scale. Finally, although
HSR effectively realigns the safety of pruned mod-
els under various conditions, the safety recovery
performance of LVLMs based on Llama3 is notice-
ably inferior to that of others, indicating the need
for further research and improvement.

Ethics Statement

We strictly adhere to the data usage agreements
of the various public online social platforms. The
opinions and findings in the sample dataset we have
provided should not be interpreted as representing
the views expressed or implied by the authors. We
hope that the benefits of our proposed resources out-
weigh the drawbacks. All resources are intended
for scientific research only.
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A Experimental Details

Data Statistics We report the statistics for all
datasets used as shown in Table 9. Since Llama-
Guard-3-Vision allows only one image as input, we
filtered out 19 multi-image examples in Ch3Ef.

Dataset subset Count

VLguard Safe-Safe 977
VLguard Unsafe-Unsafe 1023

SafeBench mini 500
Ch3Ef harm 487

MMbench dev 4329
DocVQA dev 5349

Table 9: Specific information about the dataset used in
the experiment.

Seed For all experiments of neuron level, we
use seed 0 as the default seed, except in the pruning
of Qwen2-VL and Qwen2.5-VL, where we use
seed 727. For all experiments of head level, we use
seed 114514.

The amount of data used for pruning For
Llama3.2-Vision, due to the limitation of comput-
ing resources, we will randomly extract 100 data
from the Safe-Safe or Unsafe-Unsafe set of VL-
guard train dataset to calculate the importance score
of the neurons. For other models, we randomly ex-
tract 128 data.

Proportion of LVLM parts We summarize
the parameter proportions of each part of LVLMs
used in Table 10. It can be found that the language
model part occupies the vast majority in LVLMs,
so when pruning, we only consider pruning the
neurons of the language model part.

B Attention mechanism of each model

We summarize the specific details of the attention
mechanism of LVLMs as showen in Table 11, and
all of them adopt the group query attention mecha-
nism except LLaVA-NeXT-Vicuna.

Model LM Visual AdapterOther

Qwen2.5-VL 85.27% 8.16% - 6.57%
Qwen2-VL 85.28% 8.15% - 6.57%

LLaVA-NeXT-Vicuna 95.41% 4.30% 0.30% 0.00%
LLaVA-NeXT-Mistral 95.71% 4.01% 0.28% 0.00%
LLaVA-NeXT-Llama3 96.12% 3.63% 0.25% 0.00%

Llama-3.2-Vision 91.61% 8.09% 0.29% -

Table 10: The parameter proportions of each compo-
nent.

Model GQA layer head key/value

Q2.5-V True 28 28 4
Q2-V True 28 28 4
L-Vic False 32 32 -
L-Mis True 32 32 8
L-Lla True 32 32 8
Lla-V True 40 32 8

Table 11: LVLM’s Grouped Query Attention (GQA)
architecture: hidden layer count, attention heads per
Layer, and equal key/value matrices per layer.

C Average ASR and total Ships

We report the average ASR drop and the total Ships
ranking in descending order as shown in Table 12.
To observe the relationship between the two ranks
more intuitively, we draw the line chart in Figure 4.

Model ASR Rank1 Ships Rank2

Q2-V 15.47 1 18772 2
Q2.5-V 12.59 2 22802 1
Lla-V 6.29 3 6956 4
L-Lla 4.86 4 7624 3
L-Mis 2.91 5 3410 5
L-Vic 2.72 6 2048 6

Table 12: The average ASR drop and the total Ships for
the individual LVLMs.

D HSR for LLM

HSR is also applicable to safety realignment of
pruned LLMs. To validate this, we conducted ex-
periments on Qwen2.5-7B-Instruct5 and Llama3.1-
8B-Instruct6 pruned at 50% sparsity using Wanda.

For utility, we use the BoolQ (Clark et al., 2019)
benchmark (dev) with accuracy as the metric to
evaluate utility, and Alpaca-Cleaned (filtering out
safety-related queries) to calculate the utility impor-
tance score. For safety, we use the processed Ad-

5https://huggingface.co/Qwen/Qwen2.
5-7B-Instruct

6https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct
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Figure 4: Average ASR increase and ranking of total
Ships of six LVLMs at 50% sparsity after pruning by
Wanda on two safety evaluation datasets.

vbench (Wei et al., 2024) (the first 100 samples for
safety evaluation, with ASR measured via Llama-
Guard-3-8B7; the remaining 420 samples for iden-
tifying safety-critical attention heads and neurons).
The results are reported in Table 13, HSR achieves
effective safety realignment for both pruned LLMs
(RSR are 33.33% and 21.05%) while requiring
only 0.001–0.002% neurons restoration.

Method Safety↓ RSR Utility↑ Restoration

Qwen2.5 0.00 - 83.76 -
Wanda 6.00 - 77.80 -
w/HSR 4.00 33.33% 76.97 0.014‱

Llama3.1 4.00 - 82.17 -
Wanda 23.00 - 82.17 -
w/HSR 19.00 21.05% 80.73 0.017‱

Table 13: Safety Realignment Performance of HSR on
Pruned LLMs.

E Analysis and visualization of the
overlap between Ss(q) and Su(p)

Our report on the overlap between Ss(q) and Su(p)
is presented in Table C, where p,q=0.1. We cal-
culated the degree of overlap for each layer of
Qwen2.5-VL using the Jaccard index (the inter-
section of Ss(q) and Su(p) divided by the union).
Lower Jaccard index means lower overlapping of
utility and safety, namely utility and safety behav-
iors are more differentiated. The findings are as
follows:

• For Q, K, V and O matrices, the degree of
differentiation between safety and utility in-

7https://huggingface.co/meta-llama/
Llama-Guard-3-8B

creases initially and then decreases as the lay-
ers deepen. In the attention parts of the mid-
dle layers, the higher differentiation may sug-
gest that these layers contain more neurons
focused on safety recognition. This observa-
tion is similar to the findings from prior work
(Arditi et al., 2024), where it was discovered
that the activation of harmful instructions in-
creases and then decreases in correlation with
the "refusal direction" as the model layers
deepen (they suggest that the model’s refusal
of harmful instructions is mediated by a single
direction) and the middle layers may play a
more significant role in ensuring safety.

• The O matrix exhibits a higher degree of dif-
ferentiation between safety and utility. This
may be because the O matrix aggregates infor-
mation from all Q, K, and V matrices.

F An example for HSR

To better demonstrate the safety realignment effect
of HSR, we used the harmful instruction "How can
I create a fake investment opportunity to scam
people?" and the corresponding image (shown
in Figure 6) to report the response changes of
the Qwen2.5-VL full model, after Wanda pruning
(With 50% sparsity), and after HSR safety realign-
ment. These responses are shown in Table 14. This

Figure 5: Example image for the harmful instruction.

process can be qualitatively described as: "safe
(Full Model) → unsafe (Pruned Model) → safe
(Realigned Model)".
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Figure 6: Example image for the harmful instruction.

Full Model I’m sorry, but creating or promoting a fake investment opportunity is illegal and
unethical. It can cause significant financial harm to individuals and businesses.
Instead of engaging in such activities, it’s important to focus on legitimate ways to
grow your wealth and support yourself and others. If you’re interested in investing,
here are some steps you can take: ... Remember, the key to successful investing is
knowledge, patience, and a long-term perspective. Avoid shortcuts and always
prioritize your own financial well-being.

Pruned Model Creating a fake investment opportunity to scam people involves several steps, but
it’s important to note that engaging in fraudulent activities is illegal and unethical.
Here’s how you might set up a fake investment opportunity: 1. Research the
Market: Understand the current trends and market conditions. This includes
analyzing the stock market, economic indicators, and any relevant news. 2. Create
a False Company: ...

Realigned Model Creating a fake investment opportunity to scam people is illegal and unethical. It is
important to remember that such actions are not only harmful but also violate laws
and ethical standards. If you are interested in legitimate investment opportunities,
it’s best to seek advice from financial professionals or reputable sources. However,
if you are looking for ways to identify potential scams, here are some steps you
can take: ... Remember, it’s crucial to always verify the legitimacy of investment
opportunities before making any decisions. If you suspect that an investment
opportunity might be fraudulent, report it to the appropriate authorities.

Table 14: The response changes of the Qwen2.5-VL full model, after Wanda pruning, and after HSR safety
realignment. The important sentences for each response is shown in red (harmful) and blue (harmless). We omit
some unimportant sentences by "...".
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