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Abstract

Document parsing involves layout element
detection and recognition, essential for extract-
ing information. However, existing methods
often employ multiple models for these tasks,
leading to increased system complexity and
maintenance overhead. While some models
attempt to unify detection and recognition, they
often fail to address the intrinsic differences
in data representations, thereby limiting perfor-
mance in document processing. Our research
reveals that recognition relies on discrete
tokens, whereas detection relies on continuous
coordinates, leading to challenges in gradient
updates and optimization. To bridge this
gap, we propose the Gaussian-Kernel Cross-
Entropy Loss (GK-CEL), enabling generative
frameworks to handle both tasks simultane-
ously. Building upon GK-CEL, we propose
DocFusion, a unified document parsing model
with only 0.28B parameters. Additionally, we
construct the DocLatex-1.6M dataset to provide
high-quality training support. Experimental
results show that DocFusion, equipped with
GK-CEL, performs competitively across four
core document parsing tasks, validating the
effectiveness of our unified approach. The
model and datasets are publicly available at:
https://github.com/sc22mc/DocFusion

1 Introduction

Document parsing plays a significant role in ex-
tracting structured data from documents, making it
foundational for various downstream applications.
For example, in Retrieval-Augmented Generation
(RAG) workflows (Ren et al., 2023; Zhang et al.,
2022), extracting well-organized and contextually
rich information from documents can improve the
performance of large language models (LLMs)
(Zhao et al., 2024a; Dou et al., 2023). However,
real-world documents often embed information in

*Equal contribution
†Corresponding author

Tool Type Size DLA MER TR OCR

System
open-parse (2024) - ✓ ✗ ✓ ✓

LlamaParse (2024) - ✓ ✓ ✓ ✓

DeepDoc (2024) - ✓ ✗ ✓ ✓

MinerU (2024) - ✓ ✓ ✓ ✓

Model
DocYOLO(2024c) 20M ✓ ✗ ✗ ✗

ViTLP (2024) 253M ✓ ✗ ✓ ✓

UniMER (2024b) 325M ✗ ✓ ✗ ✗

Nougat (2023) 350M ✗ ✓ ✓ ✓

GOT (2024) 580M ✗ ✓ ✓ ✓

StructTable (2024) 938M ✗ ✗ ✓ ✗

DocFusion(Ours) 289M ✓ ✓ ✓ ✓

Table 1: Capabilities of document parsing tools. Model
refers to a single model, while System integrates multi-
ple models. DLA: Document Layout Analysis. MER:
Math Expression Recognition. TR: Table Recognition.
OCR: Optical Character Recognition. Compare with
multi-model systems, DocFusion achieves all four tasks
within a single model, requiring only 289M parameters.

complex structures, such as hierarchical layouts,
mathematical expressions, and tables, which pose
considerable challenges for automated parsing.

Existing methods can be categorized into two
main approaches: multi-module pipeline systems
and end-to-end page-level OCR models. Multi-
module pipeline systems decompose document
parsing tasks into independent modules, allowing
each module to adopt the best model. For example,
DocLayout-YOLO (Zhao et al., 2024c) has demon-
strated excellent performance in Layout analysis,
while UniMERNet (Wang et al., 2024b) achieves
SOTA results in Math Expression Recognition.
Although this approach improves performance
for specific tasks, integrating multiple models
into a single system increases overall complexity.
Moreover, these systems fail to fully exploit task-
level collaboration, leading to inefficiencies in
parameter usage. In contrast, end-to-end page-
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level OCR models, such as Nougat (Blecher
et al., 2023) and GOT (Wei et al., 2024), can
seamlessly integrate multiple recognition tasks.
While the outputs of these models demonstrate
a well-organized logical structure, the models
lack the ability to generate bounding boxes for
layout elements. As a result, they fail to preserve
the spatial relationships between documents and
their layouts, which is crucial for interpretability
in RAG workflows. Additionally, while these
models perform well on page-level images, it
struggles with specific layout elements, limiting
their flexibility in application. To address these
issues, this research focused on four key tasks:
document layout analysis (DLA), mathematical
expression recognition (MER), table recognition
(TR), and optical character recognition (OCR).

Several studies have attempted to apply genera-
tive frameworks to integrate object detection and
content recognition, achieving promising results
on natural images (Xiao et al., 2023). However,
extending such frameworks to document images
presents significant challenges due to the inherent
structural and representational differences between
these domains. Through experiments, we identify
the primary issue as the fundamental conflict
between the continuous nature of coordinate data
and the discrete nature of token generation, which
disrupts gradient updates during multi-task training
(discussed in Section 3.2). In natural scene
images, small deviations in coordinates and text are
generally tolerable. However, in document parsing,
even minor errors in LaTeX code can critically
impact compilation success rates. This imposes
stricter accuracy requirements when applying such
frameworks to document understanding tasks. To
address these challenges, we propose Gaussian-
Kernel Cross-Entropy Loss (GK-CEL), an im-
proved objective function designed to mitigate the
inconsistencies between discrete and continuous
data representations, enhancing the performance of
generative frameworks in document parsing.

MER and TR are essential for LaTeX-based doc-
ument processing, but existing datasets suffer from
inconsistent formatting and redundant characters,
where different writing styles generate identical
compiled outputs, introducing noise that hinders
model training (details are provided in Appendix
A.3). To address this, we propose DocLatex-
1.6M, a large-scale, high-quality dataset that en-
hances annotation consistency and improves model
training efficiency. Experiments demonstrate that

DocFusion trained on this dataset outperforms task-
specific models with fewer parameters.

Our contributions are summarized as follows:

• We propose DocFusion, a unified generative
multi-task model that standardizes task for-
mulations and achieves SOTA performance
across four key document parsing tasks.

• We propose GK-CEL to resolve the conflict
between continuous coordinate and discrete
token in the generative framework, enhancing
document parsing and offering a reference for
similar frameworks in other domains.

• Experimental results demonstrate that incor-
porating multi-task data significantly outper-
forms single-task setups, providing insights
into the benefits of multi-task learning in
document parsing.

• We constructed DocLatex-1.6M, a large-
scale, high-quality dataset with 1.5M LaTeX-
annotated math expressions and 100K tables,
offering a valuable resource for advancing
document parsing research.

2 Related Work

Document Parsing Models. Document parsing
models have seen remarkable progress across
various tasks. DLA has evolved from vision-based
methods (Wick and Puppe, 2018; Bao et al., 2021)
to multimodal approaches integrating textual
features (Xu et al., 2022; Huang et al., 2022). OCR
has transitioned from template matching (Smith,
2007) to deep learning-based solutions (Bušta
et al., 2017; Chen et al., 2021; Mosbah et al., 2024).
MER progressed from symbol segmentation
(Miller and Viola, 1998) to CNN-RNN hybrids (Le
et al., 2019) and Transformer-based models (Wang
et al., 2024b). Similarly, TR now employs methods
like grid segmentation and image-to-sequence
techniques to reconstruct structured data (Qasim
et al., 2019; Huang et al., 2023; Xia et al., 2024).
Page-level end-to-end OCR models like Nougat
(Blecher et al., 2023) and GOT (Wei et al.,
2024) simplify workflows by integrating multi
recognition tasks.

Modular Pipeline Systems. The advancements
in task-specific models have driven the develop-
ment of modular pipeline systems, which process
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<DLA>

<MER>

<OCR>

<TR>

Header<loc_897><loc_
122><loc_89><loc_928>
Text<loc_77><loc_32>
<loc_189><loc_56>
<loc_77><loc_32>
<loc_189><loc_56> ......

H=H_{\mathrm{DHM}}+H_{E}+H_{\Gamma}\,.

\begin{tabular}{|c|r|r|r|r|r|} 
\hline \hline $t$ & \ \ $t^{\perp}$ & \ \ $U$ & \ \
$\Gamma$ \ \ & \ \ $T_{\rm IMT}({\rm VO}_2)$ \ \ &
\ \ $E_{\rm IMT}({\rm VO}_2)$ \ \ \\\hline $0.25$ & 

$0.3$ & $2.5$ & $10^{-3}$ & $2.9 \times 10^{-2}$ 
& $10^{-3}$ - 10^{-2}$ \\ \hline
\end{tabular}

We consider a correlated insulator driven out of equi-
librium by a DC electric field and coupled to a heat sink. 
The total Hamiltonian of the electronic many-body sys-
tem, its non-equilibrium drive, and its dissipative envi-
ronment reads

DocFusion
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Figure 1: The model comprises three key components: a visual encoder, a text embedding layer and a Transformer
decoder. The image features extracted by the visual encoder and the instruction embeddings are combined and then
passed to the Transformer decoder, which produces the final output sequence.

complex document structures through specialized
modules. For instance, Open-Parse(Filimonov,
2024) performs well in incrementally parsing
complex layouts but lacks support for MER. Other
systems, such as DeepDoc(Yu, 2024) and Llama-
Parse(Liu, 2024), extend the scope of modular
pipelines to handle more diverse tasks. In
particular, MinerU(Zhao et al., 2024b) stands out
by supporting advanced features such as complex
layout parsing and Markdown conversion.

3 Method

We introduce the model architecture (3.1) and
explain how detection tasks are represented into
the generative framework. Then, we discuss the
challenges (3.2) of detection tasks within this
framework. Next, we explain the Gaussian-Kernel
Cross-Entropy Loss(3.3)

3.1 Architecture
As shown in Figure 1, the architecture of Doc-
Fusion consists of three main components: a
vision encoder, a text embedding layer, and a
Transformer decoder. Since the task instructions
are limited and predefined, no Transformer encoder
is included, task-specific prompts are directly
embedded, simplifying the architecture.

To unify the representation of object detection
and text recognition tasks, we adopt a coordinate

quantization representation (Xiao et al., 2023).
Specifically, images are quantized into a fixed
resolution (e.g., 1000×1000), and coordinates
are represented as discrete tokens (e.g., <loc_1>,
<loc_2>, ..., <loc_1000>). This approach en-
ables the use of a unified generative framework
for detection tasks. To address the challenges
posed by densely structured content, the vision
encoder incorporates a Dual Attention mechanism
(Ding et al., 2022), which captures interactions
across channel and spatial dimensions, enhancing
feature extraction for intricate document layouts.
Additionally, the traditional feed-forward network
(FFN) is removed, reducing both parameter count
and computational cost, further improving model
efficiency.

The vision encoder processes input images I ∈
RH×W×3 into visual features, flattened as token
embeddings V ∈ RNv×Dv . These embeddings
are projected to Dt, resulting in V′ ∈ RNv×Dt ,
to match the task-specific prompt embeddings
Tprompt ∈ RNt×Dt . The combined input X =
[V′;Tprompt] is then passed to the Transformer
decoder to generate predictions.

3.2 Challenges and Motivations

While representing object detection as text gener-
ation enables joint training of layout analysis and
page element recognition under a unified cross-
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Figure 2: The distribution of logits for a target token
after the loss has stabilized when using the Common
CE Loss.

entropy-based framework, it inherently forces con-
tinuous coordinates into discrete token spaces. This
mismatch creates several challenges, especially in
fine-tuning small coordinate adjustments, where
the model struggles to produce accurate gradients,
reducing training stability. As shown in Figure 2,
small unavoidable deviations in coordinate labels
smooth out the softmax distribution, preventing
the target token’s probability from forming a
sharp peak. This makes it harder for the model
to escape local optima and limits its learning
capacity. Additionally, traditional cross-entropy
loss, which is designed for discrete classification
tasks, does not handle continuous changes well,
further increasing inaccuracies during training.

In multi-task settings, these issues become
even more challenging. The conflict between
discrete loss functions and continuous coordinate
optimization can skew gradients, causing one
task to dominate at the cost of others. This
imbalance reduces performance in other tasks and
harms the model’s ability to predict coordinates
accurately, limiting its overall effectiveness in
complex document parsing tasks. Solving these
problems is critical to improving both localization
accuracy and training stability across tasks.

3.3 Gaussian-Kernel Design

To address these challenges, we propose the
Gaussian-Kernel Cross-Entropy Loss (GK-CEL).
As shown in Figure 3, it applies a one-dimensional
convolution with Gaussian-distributed weights
over the probability distribution, fine-tuning the
model’s sensitivity to small coordinate changes
while preserving the discrete treatment of cross-

……

……

Probability distribution

Common token probability distribution Position Index probability distribution

……
Convolved Probability Distribution

Figure 3: Illustration of Gaussian-Kernel Cross-Entropy
Loss.

entropy. This approach alleviates the mismatch
between discrete tokens and continuous coordi-
nates, improves gradient quality, and prevents the
coordinate prediction task from dominating the
optimization process. As a result, it enhances
localization accuracy and supports stable multi-task
training.

Let the model’s output logits be denoted as
Z ∈ RB×L×V , where B is the batch size, L is
the sequence length, and V is the vocabulary size.
The target labels are denoted as T ∈ NB×L. The
range of indices corresponding to coordinate tokens
is defined as [s, e], representing their positions in
the vocabulary.

The standard softmax probability distribution is
first computed as:

P = softmax(Z) (1)

A mask is then applied to zero out probabilities
outside the range [s, e], creating a modified
probability tensor P′:

P′
ijk =

{
Pijk, if k ∈ [s, e]

0, otherwise
(2)

where i represents the batch index, j represents
the sequence position, and k represents the vocabu-
lary index.

Next, a one-dimensional convolution kernel
K ∈ R1×1×n is constructed based on a Gaussian
distribution, where n is the kernel size (an odd
integer greater than 1), σ is the standard deviation
and p represents the position of each element in
the convolution kernel, measured as the offset from
the center, where the center is located at n+1

2 . The
range of p ∈ [1, n]. The kernel weights of each

7587



index are computed as:

Kp = exp

(
−(p− n+1

2 )2

2σ2

)
(3)

The kernel is then applied to P′ via one-
dimensional convolution:

C = conv1d(P′,K) (4)

The convolution result C is integrated back
into the original probability distribution P within
the index range [s, e], while retaining the original
probabilities outside this range:

P′′
ijk =

{
Cijk, if k ∈ [s, e]

Pijk, otherwise
(5)

The final objective function is computed as:

L = − 1

N

B∑

i=1

L∑

j=1

Mij logP
′′
ijTij

(6)

where Mij is a mask matrix that indicates whether
the target label at position (i, j) should contribute
to the loss calculation.The normalization factor N
is defined as the total number of valid targets.

4 Experiments

4.1 Training Datasets
In the training phase, the DLA task uses the
DocLayNet (Pfitzmann et al., 2022) dataset, which
contains 80,863 pages from 7 document types
and is manually annotated with 11 categories.
The images are split into 69,103/6,481/4,999
for training/validation/testing, respectively. The
OCR dataset is also sourced from DocLayNet,
which offers comprehensive annotations for layout
elements and their corresponding text, and is
widely regarded as a reliable resource in the
academic community. For the TR and MER tasks,
we used the DocLatex-1.6M dataset, which was
constructed in this work. Additionally, although
this work primarily focuses on document images,
we introduced the HME100K(Yuan et al., 2022),
a handwritten math expression dataset to enhance
the generalization ability of the MER task.

4.2 Evaluation Metrics
4.2.1 Evaluation Metrics for Recognition
We employ BLEU (Papineni et al., 2001) and
Edit Distance (Levenshtein, 1966) to evaluate

sequences. Additionally, CDM (Wang et al., 2024c)
and CSR were used to better assess the quality of
LaTeX-based outputs.
BLEU is used for evaluating generated text,
measuring n-gram overlap with reference texts.
Edit distance measures the minimum number of
operations insertions, deletions, or substitutions
required to transform one string into another.
CSR refers to the percentage of generated LaTeX
outputs that can be successfully compiled into PDF.
ExpRate (Li et al., 2022) measures the proportion
of samples where the predicted text matches the
reference text without any errors.
CDM evaluates MER by comparing image-
rendered expression at the character level with
spatial localization, ensuring fairness and accuracy
over text-based metrics like BLEU.

4.2.2 Evaluation Metrics for Detection
Since DocFusion adopts a novel approach in the
DLA task without relying on confidence scores, we
did not use the widely adopted Average Precision
but instead focus on the following metrics:
Precision measures the proportion of correctly
identified positive instances among all predicted
positives.
Recall measures the proportion of correctly identi-
fied positive instances among all actual positives.
F1-score balances precision and recall, serving as
their harmonic mean.
FPS measures the number of frames processed by
the model per second.

4.3 Selection of Baseline Models

For the MER task, we selected UniMERNet (Wang
et al., 2024b), the current state-of-the-art (SOTA)
model, and Texify (Paruchuri, 2023), which has
shown strong competitive performance in recent
evaluations. In the OCR task, we compared
several models, including the large-scale model
TextMonkey (Liu et al., 2024) and smaller models
such as Nougat (Blecher et al., 2023), for a multi-
scale evaluation. For the TR task, we evaluated
our approach against StructEqTable (Xia et al.,
2024), one of the most representative models in
current Table-to-Sequence methods. In the DLA
task, we compared our method with two major
object detection frameworks, YOLO and DETR
(e.g., DocLayout-YOLO (Zhao et al., 2024c),
Deformable-DETR (Zhu et al., 2020)). Although
GOT (Wei et al., 2024) is not capable of handling
the DLA task, it performs well in the other three
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Model size OCR MER TR

BLEU↑ EditDis↓ CDM↑ ExpRate↑ CSR↑ F1↑ CSR↑
LLaVA-NeXT (2024) 34B 69.1 27.2 - - - - -
Nougat (2023) 250M 71.6 21.4 - - - - -
TextMonkey (2024) 7B 73.3 21.9 - - - - -
Qwen-VL-MAX (2023) >72B 94.7 3.9 - - - - -
Qwen-VL-OCR (2023) - 95.9 4.1 - - - - -
Pix2tex (2022) - - - 76.5 41.7 95.9 - -
Texify (2023) 312M - - 88.6 71.7 97.8 - -
Mathpix - - - 88.9 79.1 98.3 - -
UniMERNet (2024b) 325M - - 99.0 89.5 99.7 - -
MixTex (2024) 85M - - - - - 46.2 27.4
StructEqTable (2024) 938M - - - - - 90.6 93.2
GOT (2024) 580M 96.8 2.2 87.7 67.3 97.8 86.9 81.6
DocFusion(Ours) 289M 97.4 1.8 98.7 94.2 99.8 92.1 92.5

Table 2: Comparison of DocFusion with other models on three recognition tasks in the document scene. Specifically,
DocLaynet(Pfitzmann et al., 2022) was used for OCR, DocGenome(Xia et al., 2024) for TR, and UniMER-1M(Wang
et al., 2024b) for MER. More details on the TR experiments can be found in Appendix B.2. Note: Nougat is primarily
designed for full-page recognition and tends to underperform on isolated tables or mathematical expressions.

Model Size DocLayNet DocLayNet-Scientific
FPS↑ NMS Conf

Precision↑ Recall↑ F1↑ Precision↑ Recall↑ F1↑
YOLOv10m (2024a) 16M 90.1 86.9 88.4 94.3 94.5 94.4 93.6 ✓ ✗

YOLOv11m (2024) 20M 90.5 87.4 88.9 95.1 94.9 95.0 100.8 ✗ ✗

YOLO-DocLayout (2024c) 20M 90.9 88.2 89.5 95.5 94.4 95.0 55.2 - ✗

DETR (2020) 41M 84.7 87.1 85.8 92.2 92.0 92.1 17.6 ✓ ✗

DETR-Deformable (2020) 41M 91.6 87.1 89.3 96.2 95.9 96.0 18.8 ✓ ✗

DocFusion(Ours) 289M 88.9 87.8 88.4 96.8 96.2 96.4 11.4 ✓ ✓

Table 3: The performance of the models on DLA, where DocLayNet-Scientific refers to the scientific document
subset of DocLayNet. NMS indicates that Non-Maximum Suppression is not required, while Conf means no
confidence adjustment is needed. The results of DETR and YOLO-series models in this table are computed at
multiple confidence levels, with the highest F1 score selected as the final result. Note: YOLO-DocLayout builds on
YOLOv10, which is NMS-free by design. However, due to structural changes, it is unclear whether it can still be
fully considered NMS-free.

recognition tasks, making it a relevant model for
comparison.

4.4 Implementation Details

We conducted our experiments using the PyTorch
framework on eight NVIDIA H100 GPUs, with an
initial learning rate of 1e-5, a per-GPU batch size of
12, and employing a cosine learning rate scheduler
to progressively adjust the model parameters.

4.5 Main Results

4.5.1 MER performance
We use the open-source UniMER-1M (Wang et al.,
2024b) as the evaluation dataset to assess the per-
formance on MER. Since DocFusion is specifically
designed for processing printed documents, the

primary evaluation focuses on the Simple Printed
Expression (SPE) and Complex Printed Expression
(CPE) subsets of UniMER-1M. As shown in
Table 2, DocFusion performs exceptionally well
across multiple evaluation metrics, particularly
in CSR and ExpRate. Notably, its ExpRate
surpasses the second-ranked UniMERNet by 5.2%,
demonstrating superior reliability in real-world
document parsing. The results presented here
merge the performance of both SPE and CPE,
with detailed separate results and handwritten
expressions provided in B.1.

4.5.2 TR performance

We selected DocGenome (Xia et al., 2024) as
the evaluation dataset because it offers a compre-
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Train Dataset
OCR MER TR DLA

BLEU↑ EditDis↓ CDM↑ CSRMER↑ F1↑ CSRTR↑ F1↑
Task-Specific 96.7 2.2 98.5 99.8 91.2 92.7 87.8

OCR+DLA 96.1 2.4 - - - - 88.9

OCR+MER+TR 97.1 1.8 98.9 99.9 92.3 94.6 -

Table 4: Ablation experiments on task collaboration, comparison of task performance when using Task-specific
training, where each task is trained independently, and other joint multi-task strategies.

hensive collection of 500K scientific documents
across various disciplines, covering a wide range
of document-oriented tasks. From this dataset, we
extracted 3,000 LaTeX-based table samples as the
test set. Using LatexNodes2Text, we extracted the
content of each table cell to compute F1 scores.
As shown in Table 2, DocFusion excels on this
benchmark, achieving F1 scores that surpass those
of the second-ranked model by 1.6%, while having
less than one-third of its parameter count. Note:
In this work, in order to maintain consistency with
MER and explore multi-task collaboration, we also
chose Latex as the output format for our TR task.
However, in the past, Latex was not mainstream
in Table-to-Sequence tasks, so there are fewer
models available for comparison. To provide more
comprehensive reference information, we have
included the F1 scores of other models that output
in HTML in the appendix B.2.

4.5.3 OCR performance
As mentioned in 4.1, DocLayNet (Pfitzmann et al.,
2022) supports not only DLA but also OCR eval-
uation. We selected 3,000 English image samples
from the dataset as the test set. As shown in Table 2,
DocFusion achieves exceptional performance in
both BLEU and EditDis. This outstanding result is
primarily attributed to DocFusion’s joint training
on three recognition tasks, which enhances its
efficiency and effectiveness in handling complex
document structures.

4.5.4 DLA performance
We use the test set from DocLayNet(Pfitzmann
et al., 2022) to evaluate the DLA task. In
terms of FPS, while DocFusion exhibits a slight
disadvantage in processing speed, it offers an out-
of-the-box solution that eliminates the need for hy-
perparameter tuning in practical applications. This
enables the model to achieve optimal performance
directly, without requiring further adjustments,

thereby compensating for its lower speed.

Regarding accuracy, DocFusion generates layout
element labels and coordinates by sequentially
predicting tokens without relying on confidence
scores. Given that the commonly used Average
Precision (AP) metric in object detection is based
on confidence scores, it is not directly applicable in
this evaluation. To ensure a fair comparison with
confidence-based models, we adopt an alternative
evaluation methodology. Specifically, for these
models, we compute Precision, Recall, and F1-
score at various thresholds and select the maxi-
mum F1-score across all thresholds as the final
evaluation metric. As shown in Table 3, DocFusion
demonstrates strong performance in the domain of
scientific document detection.

4.6 Ablation Study

4.6.1 OCR-Driven Enhancement of DLA

This section explores the impact of OCR on DLA
performance. As shown in Table 4, the results in
the DLA column from the first and second rows
indicate that adding the OCR task improves DLA
performance, with an F1 increase of up to 1.3%.
This result demonstrates the effectiveness of using
textual information in joint training. Compared
to independent training that relies only on visual
features, OCR significantly enhances the model’s
robustness. For example, tables and mathematical
expressions have distinct visual features, which can
often be effectively recognized by DLA models.
In contrast, text or titles have less distinctive
visual features, making it challenging to predict
their labels based on visual information alone.
By providing complementary textual information,
OCR strengthens the collaboration between visual
and semantic features, resulting in better overall
performance.
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Objective
Function

OCR MER TR DLA

BLEU↑ EditDis↓ CDM↑ CSRMER↑ F1↑ CSRTR↑ F1↑
CE 96.5 2.3 97.8 96.5 90.2 89.1 87.9

GK-CEL 97.4 1.8 98.7 99.8 92.1 92.5 88.4

Table 5: Ablation analysis of Gaussian-Kernel Cross-Entropy Loss was conducted on the same dataset across four
tasks: OCR, MER, TR, and DLA. CE represents training with the standard cross-entropy loss, while GK-CEL
denotes training with Gaussian-Kernel Cross-Entropy Loss.

Figure 4: Validation loss curves under identical
hyperparameter settings, where the only variation is
the choice of the objective function.

4.6.2 Collaboration of Recognition Tasks
In this section, we explore the collaboration among
the recognition tasks OCR, TR, and MER. As
shown in Table 4, the experimental results from the
first and third rows demonstrate that joint training
yields better performance compared to training
each task individually. Specifically, OCR achieves
a 0.4% improvement in BLEU score, MER sees
increases of 0.4% in CDM and 0.1% in CSR,
and TR benefits most significantly, with a 1.2%
improvement in F1 score for cell parsing and a
2.1% increase in CSR. This collaboration enables
the model to leverage shared information across
tasks, enhancing individual task performance and
improving overall document parsing capabilities.
These results demonstrate that multi-task col-
laboration effectively enhances performance by
leveraging shared information.

4.6.3 Results of improved objective function
In this section, we compared the original cross-
entropy and Gaussian-Kernel Cross-Entropy Loss
(Gk-CEL) in recognition and detection tasks. As
shown in Table 5, the results demonstrate that Gk-

CEL led to significant performance gains across
both task categories. In recognition tasks, the
BLEU score in the OCR task saw an improvement
of 0.9%. Additionally, the CDM metric in the MER
task increased by 0.9%, while the F1 score in the
TR task rose by 2.1%. Notably, for the CSR metric,
which assesses LaTeX compilation success, the
MER and TR tasks achieved gains of 3.4% and
3.8%, respectively, highlighting enhanced usability
and correctness of the LaTeX outputs. For the de-
tection task, the F1 score of the DLA task increased
by 0.5%. This improvement can be attributed to Gk-
CEL, which alleviates the issue of coordinate token
errors dominating the gradient. By addressing
this imbalance, the objective function not only
enhances the performance of recognition tasks
but also improves the accuracy of predicting
layout element categories in the detection task
itself. These results collectively show that Gk-
CEL effectively addresses key challenges in loss
minimization, ensuring that tasks such as DLA can
operate within a generative framework. It avoids
gradient dominance issues while achieving better
task balance in a multi-task learning setup.

5 Conclusion

In this work, we introduced DocFusion, the first
approach to integrate the four modules of a
document parsing pipeline into a unified model
by designing Gaussian-Kernel Cross-Entropy Loss
tailored to handle diverse data types across tasks.
Our method achieved SOTA performance on
multiple benchmarks. To enable downstream
applications, we re-annotated the widely used
DocLayNet dataset and constructed a large-scale
formula-to-LaTeX dataset, applying a unified
standardization process. Through detailed analysis,
we observed that DocFusion, as a lightweight
model, effectively integrates multiple tasks into
a single framework, demonstrating both efficiency
and versatility in handling complex document
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parsing challenges. In the future, we aim to extend
DocFusion to larger models and further improve
dataset standardization to enhance its performance
and applicability across broader tasks and domains.

Limitations

While this study primarily focuses on three recogni-
tion tasks using standard PDF screenshots, we have
enhanced the model’s generalization capabilities
by incorporating handwritten mathematical expres-
sions. However, the model still has limitations
in handling handwritten or other non-standard
table formats. For the detection task, although
the model demonstrates competitive performance
in both accuracy and usability, its processing
speed presents challenges for real-time or high-
throughput applications. This highlights the need
for further optimization in computational efficiency
to better meet diverse application demands.
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A Details of Datasets

A.1 DLA Dataset Reconstruction

Figure 5: The corresponding numbers were removed
from the annotated data for mathematical expression
detection.

In DocLaynet and other similar datasets, the
annotation of mathematical formulas has certain
limitations, as show in figure 5, the content of math
expression and numbering are typically annotated
within the same bounding box. This annotation
approach introduces noise in subsequent Mathe-
matical Expression Recognition (MER) tasks.

To address this issue, we extracted formulas
from arXiv LaTeX source files using regular ex-
pressions and assigned unique colors and bounding
boxes to each element. Then, we employed a fuzzy
matching algorithm to ensure annotation accuracy
and eliminate overlaps. Finally, we trained a
lightweight detection model and, combined with
manual verification, re-annotated pages contain-
ing formulas. These improvements significantly
enhance the dataset’s applicability to subsequent
MER tasks.

A.2 MER and TR Dataset
MER Dataset. The UniMER-1M (Wang et al.,
2024b) has significantly advanced MER research
but contains many redundant spaces in LaTeX
code. Although some spaces are syntactically
necessary, most are unnecessary, increasing
output length and computational overhead. To
address this, we constructed a new dataset by
extracting content from LaTeX files, normalizing
style variations and verifying accuracy through
re-rendering. Models trained on our dataset
produce LaTeX code that is approximately 34.2%
shorter for complex expressions and 37.5% shorter
for simple expressions on the UniMER-1M test set,
demonstrating improved efficiency.

TR Dataset. In the TR task of DocFusion,
we adopted LaTeX as the output format for two
main reasons: (1) to ensure consistency with
the MER task’s output format, enabling better
multi-task collaboration; and (2) because LaTeX
facilitates both the extraction of cell content and
the restoration of the original table layout. Existing
LaTeX-based TR datasets either lack sufficient
scale or fail to separate tables from captions,
conflicting with our DLA task. To overcome these
limitations, we constructed a high-quality TR
dataset with 100K samples by following a similar
approach to the MER dataset.

A.3 Latex-based data standardization

Issue Original Standardized
Bracket \{ \lbrace
Subsup a^1_2 a_2^1
Prime a′ a^{\prime}
Fraction \over \frac
Space \tabular{l c} \tabular{lc}

Table 6: Examples of LaTeX standardization for various
symbols and expressions.

We chose to standardize the output format as
LaTeX for two recognition tasks involving non-
plain-text elements. For MER, converting to LaTeX
was essential as it provides a precise representation
of mathematical formulas. For TR, in addition
to ensuring format consistency, converting to
LaTeX also allows for the restoration of the
original content through compilation, and enables
the extraction of cell elements using tools such
as LatexNodes2Text, thus enhancing processing
flexibility.

We used regular expressions to extract relevant
content from the LaTeX source files of research
papers. However, due to variations in author
writing styles, the same formula or table may
appear in multiple forms, increasing the complexity
of training. As show in table 6 , we analyzed
these different representations, standardized them
to eliminate ambiguities and ensured consistency.
To verify the accuracy of the standardized LaTeX
code, we re-rendered it into images, creating a high-
quality dataset that aligns with the actual input-
output content.
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Model size SPE CPE HWE

CDM↑ ExpRate↑ CSR↑ CDM↑ ExpRate↑ CSR↑ CDM↑ ExpRate↑ CSR↑
Pix2tex (2022) - 92.1 59.0 99.8 45.2 7.2 88.1 24.7 8.1 16.3
Texify (2023) 312M 98.7 89.8 99.8 69.8 35.6 94.3 49.9 21.3 25.8
GOT (2024) 580M 95.0 82.7 98.6 73.3 36.4 96.4 31.2 17.7 10.2
UniMERNet (2024b) 325M 99.7 95.6 99.9 97.6 77.4 99.2 94.7 65.3 98.1
DocFusion(Ours) 289M 99.7 97.3 99.9 96.9 88.1 99.5 94.1 72.1 99.3

Table 7: Supplementary details of MER. SPE refers to simple printed mathematical expressions, CPE refers to
complex printed mathematical expressions, and HWE refers to handwritten mathematical expressions.

B Other supplementary experiments

B.1 Details of MER Performance

we provide a detailed presentation of the main
experimental results for MER, showing the per-
formance of the relevant models on simple, com-
plex, and non-standard handwritten mathematical
expressions. For specifics, please refer to Table 7.

B.2 Other Table-to-Sequence Method

Methods F1 CSR
surya 37.4 -
ppstructure_table 78.1 -
Deepdoctection 53.7 -
RapidTable 87.9 -
MixTex 46.2 27.4
GOT 86.9 81.6
StructEqTable 90.6 93.2
DocFusion 92.1 92.5

Table 8: Due to differences in the method of extracting
cell contents, the fairness of the experiment cannot be
guaranteed, therefore, it is provided for reference only.

This study aims to explore multi-task collab-
oration, and therefore, the TR task also adopts
Latex as the output format to maintain consistency
with MER. However, Latex has not been the
mainstream approach for TR tasks in recent times,
resulting in a limited number of TR models
available for comparison in the main experiment.
To address this limitation, we incorporated other
methods based on HTML as the output format.
However, due to differences in sequence ex-
traction methods, ensuring a fair comparison
is challenging. Therefore, we have included
the supplementary experimental results in the
appendix for reference.

C Other optimization methods

The challenge of this experiment lies in effectively
optimizing continuous coordinate-type data within
a discrete generative framework. Since there are
inherent errors in coordinate annotations, these
errors are further amplified when training the
generative framework using cross-entropy loss,
especially when the framework performs multiple
tasks, which exacerbates the issue. To address
this problem, in addition to the Gaussian-Kernel
Cross-Entropy Loss introduced in the main text,
we employed several other optimization strategies,
including the basic adjustments of data ratios or
loss weights, as well as using soft-argmax to
continuously map discrete coordinate tokens.

C.1 Hyperparameters Adjustment Strategies
The root cause of the training difficulty lies in
the fact that the discrete coordinate tokens do
not effectively dominate the loss during training,
leading to poor gradient propagation and inefficient
parameter updates. To address this, one possible
solution is to adjust the data ratios or the loss
weights across different task types. However, while
this approach can improve training stability to some
extent, it is overly engineering-driven and does
not fundamentally solve the underlying issue of
inadequate gradient flow caused by the discrete
nature of the coordinate tokens.

C.2 Soft-argmax Strategies
The core issue lies in the fact that while multi-
task frameworks need to be discrete, coordinates
are inherently continuous. A natural solution to
this problem is to "smooth" the coordinate loss,
effectively making it continuous. This approach
offers an intuitive way to handle the challenge,
and we primarily use the soft-argmax technique to
obtain the position coordinates while maintaining
the gradient flow, followed by the computation of
the loss via Mean Squared Error (MSE).
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Model size
OCR MER TR DLA

BLEU↑ EditDis↓ CDM↑ CSRMER↑ F1↑ CSRTR↑ F1↑
DocFusion-base 289 97.4 1.8 98.7 99.8 92.1 92.5 88.4

DocFusion-large 738 97.2 1.9 99.1 99.8 92.4 92.5 89.1

Table 9: Ablation analysis of Gaussian-Kernel Cross-Entropy Loss was conducted on the same dataset across four
tasks: OCR, MER, TR, and DLA. CE represents training with the standard cross-entropy loss, while GK-CEL
denotes training with Gaussian-Kernel Cross-Entropy Loss.

Figure 6: Soft-argmax Loss

However, the difficulty arises during multi-task
training: after calculating the MSE, we need to
ensure that it remains within the same range as
other cross-entropy (CE) losses. The challenge
here is to maintain balance and prevent the MSE
loss from overwhelming the CE losses. Moreover,
if the hyperparameters of the soft-argmax are not
set appropriately, it can easily lead to gradient
explosion during training, further complicating the
optimization process.

Although this method aims to address the issue at
its core by making the coordinate loss continuous,
it still relies heavily on the correct setting of hyper-
parameters. Furthermore, it presents generalization
issues when applied to different tasks or datasets.

In comparison, the Gaussian-Kernel Cross-Entropy
Loss (GK-CEL) offers a more robust solution, as it
reduces the dependency on hyperparameters while
improving generalization performance.

C.3 Model Size Analysis
While model performance generally benefits from
increased parameter size, the advantages can
diminish in recognition-oriented tasks due to the
limited gains in accuracy relative to the added
computational cost. In the early stages of this
work, we trained a larger version of our model with
738M parameters. Although it achieved slightly
better performance on certain tasks—such as a
modest improvement on the DLA benchmark—the
gains were not substantial enough to justify the
significantly higher inference cost, especially given
the autoregressive nature of decoding.

As our primary goal is to demonstrate the
feasibility of a lightweight and unified model, we
chose to focus on the 289M version of DocFusion
in this paper. As shown in Table9, this smaller
model already delivers strong results across tasks,
including 97.4 BLEU on OCR and 99.8 CSR on
MER. We believe this better reflects the practical
trade-off between efficiency and performance.
Results from the larger variant will be included in
a future version to facilitate further exploration and
provide a reference for the research community.
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Figure 7: DLA Effect Presentation
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Input image：

Rendered 
Output Effect：

Figure 8: MER Effect Presentation
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Input image：

Rendered 
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Figure 9: TR Effect Presentation
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