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Abstract

Large language models (LLMs) have made sig-
nificant strides in natural language processing
by leveraging their ability to comprehend and
reason with factual knowledge. However, a sig-
nificant amount of factual knowledge is stored
in structured data, which has unique character-
istics not typically encountered in the unstruc-
tured texts used for pretraining LLMs. To eval-
uate the capability of LLMs in handling facts
structurally stored, we introduce a benchmark
called StructFact, which includes meticulously
annotated factual questions, spanning five tasks
that reflect the intrinsic properties of structured
data. This benchmark aims to delineate the
strengths and limitations of LLMs in reasoning
with structured data for knowledge-intensive
tasks in practical applications. Extensive exper-
iments conducted on 10 common LLMs have
yielded several insights, one notable finding
being that these models struggle significantly
with the heterogeneity of structured data during
reasoning. Our data and codes are available1.

1 Introduction

Large Language Models (LLMs) have revolution-
ized various downstream natural language process-
ing (NLP) tasks with their impressive capabilities
to comprehend and reason on textual data. Previous
studies have demonstrated that factual knowledge
can be stored within LLMs as a knowledge base,
serving knowledge-sensitive tasks such as fact-
checking and question-answering (Kojima et al.,
2022; Tirumala et al., 2022; Hu et al., 2023). Com-
pared to the traditional method of retrieving knowl-
edge from knowledge bases, reasoning over factual
knowledge with LLMs can introduce difficult-to-
correct errors due to deviations in inference param-
eters (Sui et al., 2024). Additionally, LLMs are

∗ Both authors contributed equally to this research.
† Corresponding authors.

1https://github.com/EganGu/StructFact

pretrained on serialized data, overlooking the struc-
tural nature of factual knowledge storage, e.g., ta-
bles (Hu et al., 2023; Cui et al., 2024). Therefore,
effectively using structured data to infer factual
knowledge with LLMs remains challenging.

Compared to unstructured data, certain unique
characteristics of structured data affect the ability
of LLMs to understand and reason about factual
knowledge (Fang et al., 2024). These characteris-
tics include: (1) Heterogeneity. structured knowl-
edge consists of diverse data types (e.g., texts, nu-
merics, dates). Misunderstandings or biases of
any type can lead to inaccuracies in the factual
knowledge. (2) Topological Interdependencies.
Most LLMs are based on the Transformer architec-
ture (Vaswani et al., 2017) and are trained with a
next-word prediction loss objective, primarily de-
signed to process continuous text data. Extracting
relevant interdependencies from complex topologi-
cal structures is a significant challenge for LLMs
in understanding and reasoning about facts. (3) Or-
der Invariance. A key assumption in pretraining is
that the order of words significantly impacts their
semantics (Chen et al., 2024b). However, in struc-
tured data, the permutation of entities (e.g., rows
or columns in a table) does not alter the underly-
ing factual knowledge. (4) Sparsity. To maintain
the same performance in sparse structured data
(e.g., missing values or incomplete descriptions)
as in data-rich scenarios, LLMs need to accurately
utilize the general knowledge learned during pre-
training and avoid non-factual imputations. (5)
Lack of Prior Knowledge. Structured data holds
domain-specific knowledge not exposed during pre-
training, challenging the accurate application of
general reasoning to downstream tasks without dis-
tortion (Colon-Hernandez et al., 2021; Zhao et al.,
2023a; Li et al., 2024a). These characteristics of
structured data impact the ability of LLMs to rea-
son about factual issues, limiting their real-world
applications, especially in high-risk domains such
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Geography-Time Reasoning

Q: Is DC closer to the U.S. 
capital in 1792 than NY is?

A: No 

Arithmetic 
Calculation

Q: Are the White Blood 
Cell (WBC) counts within 

the normal range?
A: No 

Multi-hop 
Reasoning

Q: Is the Eiffel Tower in the host 
city of the 2024 Olympics?

A: Yes

Combining Structural 
and Unstructural

Q: Is Joe Biden’s running mate 
in 2024 Kamala Harris?

A: Not Sure Enough
Q: Could nuts be the cause of the 

allergy?
A: Yes

Composition Understanding

Figure 1: StructFact evaluates LLMs’ reasoning ability over structured factual knowledge across five tasks.

as healthcare and finance. To enable LLMs to ef-
fectively utilize knowledge embedded in structured
data and enhance reliable reasoning, it is essential
to examine their capabilities based on the specific
characteristics of structured data.

In light of these characteristics, we specifically
focus on the structural challenge posed in previ-
ous works represented by the Pinocchio bench-
mark (Hu et al., 2023), and analyze the reason-
ing capabilities of LLMs on structured data from
the perspective of five factual tasks: Arithmetic
Calculation, Geography-Time Reasoning, Multi-
hop Reasoning, Composition Understanding, Com-
bining Structured and Unstructured. We develop
StructFact, a benchmark comprising 13,407 fac-
tual queries and corresponding evidence in various
structures (i.e., tables, lists, and graphs), covering
diverse data types, knowledge domains, timeliness,
and regions. We categorized these questions into
five factual tasks and provided fine-grained dif-
ficulty annotations based on the specific focus of
each task to facilitate a multifaceted analysis. Addi-
tionally, to specifically test the capability of LLMs
to reason over fresh structured facts not encoun-
tered during pretraining in real-world applications,
we have developed StructFact-Unseen.

Through explorations with StructFact, we exam-
ine how 10 commonly used LLMs understand and
reason with factual knowledge stored in structured
data. For instance, in tasks that rely on heteroge-
neous data, LLMs heavily depend on the order of
information for understanding. We aim for Struct-
Fact to serve as a compass in exploring the bound-
aries of LLMs in knowledge-sensitive tasks involv-
ing structural facts, while also advancing their prac-
tical applications in real-world scenarios.

2 Dataset Construction

To assess LLMs’ reasoning abilities over structured
facts, we define five tasks based on characteristics
of structured data and carefully curate factual ques-
tions supported by diverse data types.

2.1 Tasks
Arithmetic Calculation. Given the substantial
amount of numerical facts stored in structural data,
such as the health report in Figure 1, LLMs are
required to perform arithmetic calculations over
such heterogeneity (i.e., text and numeric) (IBM,
2024; Amazon Web Services, 2024). Models such
as Graph Neural Networks (GNNs) seamlessly han-
dle arithmetic calculations by inferring arithmetic
rules from numerical patterns through their struc-
tural architecture, while LLMs are based on the
transformer architecture which is designed for un-
structured data. Moreover, structured data con-
taining numbers (e.g., clinical sheets) is usually
confidential and lacks prior inclusion in the LLMs’
knowledge base.To evaluate the capability of han-
dling the lack of piror knowledge and heterogenity,
especially numerical types, StructFact includes fac-
tual questions from simple numerical matching to
difficult computational analysis.

Geography-Time Reasoning. Geographic and
temporal information often appears simultaneously
in structured data and can be presented in various
formats. Geographical data encompass geographic
coordinates (such as latitude and longitude), city
names, and country names, whereas temporal data
include dates and time periods. This heterogeneity
challenges LLMs to precisely interpret and align
these diverse formats. For example, to determine
whether Washington D.C. or New York was closer
to the U.S. capital in 1792, as shown in Figure
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1, LLMs must combine the year information of
the U.S. capital with the geographic coordinates of
these cities. To evaluate the proficiency of LLMs
in geography-time reasoning, we integrate factual
knowledge pertaining to geographical, temporal,
and geography-time entities.

Multi-hop Reasoning. Factual knowledge in
structural data involves entities dispersed across
multiple sources (Li et al., 2023). In Figure 1, the
query from the tourist llama involves structured
knowledge about the Olympics and travel guides.
However, language models typically generate an-
swers by gathering factual knowledge separately,
thereby overlooking the topological interdependen-
cies (Yang et al., 2023). When gathering data from
multiple sources, models should recognize the or-
der invariance of structural data. Unlike textual
data, which is order-dependent, the order of entities
within a similar topological structure should not af-
fect the inherent factual knowledge. In StructFact,
we include questions where knowledge is spread
across multiple discontinuous structured sources.

Composition Understanding. Reasoning about
factual knowledge in structural data suffers from
the sparsity issue due to missing values or incom-
plete descriptions. Beyond that, LLMs are expected
to accurately reason through these sparse infor-
mation while without misinterpreting topological
interdependencies. As Figure 1 displays, to an-
swer the question “Is Joe Biden’s running mate
in 2024 Kamala Harris?”, LLMs have to compre-
hend the header “2024 U.S. Election”, which spans
multiple columns with a missing value denoted
by “N/A”. To assess whether LLMs comprehend
structural compositions, StructFact includes fac-
tual questions about components with missing data,
complex structures, and incomplete descriptions.

Combining Structured and Unstructured.
Given the sparsity and lack of prior knowledge of
the domain-specific information in structured data,
LLMs needs to fully leverage the factual knowl-
edge learned from textual contexts. The knowledge
presented in unstructured data (e.g., table captions)
often provides an important context for understand-
ing the knowledge in structured data. Moreover,
the general knowledge base of LLMs aids in reason-
ing domain-specific knowledge within structured
data. As exemplified in Figure 1, general knowl-
edge of nut proteins helps infer the cause of the
allergy from the shopping receipt. To assess how
structured data combined with their unstructured
contexts in LLMs, StructFact includes factual ques-

tions that require factuality verification spanning
both structured and unstructured evidences.

2.2 Data Construction and Annotation

Fact verification underpins practical applications
across diverse fields such as political news and pub-
lic health (Li et al., 2025a; Si et al., 2024). The
knowledge contained within structured data is usu-
ally manually curated and is considered a reliable
evidence source for verification (Kim et al., 2023).
Verifying facts entails analyzing evidence from
structured data to determine if the given statement
is factual (Fact.), non-factual (Non-fact.) or not
enough information (NEI). The evidence in Struct-
Fact includes freshly crawled structured knowledge
and established structured data sources. Specifi-
cally, we include structured data from WiKipedia
pages crawled with our developed tool2, as well as
tables from FEVEROUS (Aly et al., 2021), Tab-
Fact (Chen et al., 2020b), SQA (Iyyer et al., 2017),
and ToTTo (Parikh et al., 2020), lists from FEVER-
OUS (Aly et al., 2021), and knowledge graphs from
FactKG (Kim et al., 2023) and TGQA (Xiong et al.,
2024). Additionally, we will periodically update
StructFact-Unseen with fresh structured data in our
released repository to evaluate newer LLMs.

Binary questions serve as an effective tool for
probing the complex capabilities of LLMs (Ope-
nAI, 2023; Burns et al.). For example, (Benara
et al., 2024) leverage the yes/no question asked to
LLMs to learn an interpretable embedding. With
structured data serving as the evidences, we either
had 12 English-specialized students craft binary
questions or converted existing questions into a
binary format. For each piece of structured data
that requires newly crafted questions, annotators
are first instructed to create one binary question for
each of the five tasks. They are then required to
assess these questions based on question clarity, an-
swer correctness, and task alignment, scoring each
aspect on a scale from 1 to 10. Lastly, we meticu-
lously select questions that have a correct answer
and an average score of over 7 for the other two cri-
teria. The answer options provided—Yes, No, and
Not Sure Enough—correspond to the categories
Fact, Non-fact, and NEI, respectively.

Lastly, the binary questions derived from the
structured evidence are annotated with one of five
tasks: Arithmetic Calculation, Geography-Time
Reasoning, Multi-hop Reasoning, Composition Un-

2https://anonymous.4open.science/r/WikiCrawler-1B83
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derstanding, and Combining Structured and Un-
structured Data. Annotators are paid according to
the quality and quantity of their annotations. De-
tailed statistics for StructFact are in Table 2.

2.3 Quality Control

To ensure data quality, we conduct a two-phase
verification. First, we divided the 12 annotators
into three groups of four to cross-validate a ran-
dom sample of 500 questions annotated by another
group. We calculated the Cohen’s Kappa score to
quantify the consistency between each pair of anno-
tation groups, resulting in an average score of 0.92.
The Fleiss’ Kappa score is also used to evaluate
the consistency across multiple groups of annota-
tors, yielding a final score of 0.83. Both scores
indicate high-quality annotations. Then, two au-
thors randomly select 50 questions per task and
carefully review the questions, answers, and task
annotations to eliminate duplicates, commonsense
contradictions, and other inconsistencies.

3 Main Results

To examine the factual reasoning capabilities of
LLMs on structured data, we conduct experiments
with StructFact across 10 LLMs trained through
pretraining, instruction tuning, and reinforcement
learning with human feedback (RLHF). Given the
bias of LLMs towards “Yes” answer (Pezeshkpour
and Hruschka, 2024; Zheng et al., 2024a,b), we
replaced the Fact./Non-Fact./NEI options with
A/B/C, respectively3 and report each model’s aver-
age performance with respect to weighted accuracy
and F1 score over three runs with varied option or-
ders. Detailed descriptions of the prompting strate-
gies and selected LLMs can be found in Figure 13,
Appendix F and K.1, respectively.

3.1 Different Prompts

In Table 1, our prompts (see Appendix K.1) ad-
here to the input formats used in previous stud-
ies (Singha et al., 2023; Sui et al., 2024; Wang et al.,
2024b), where factual questions from StructFact
are combined with corresponding structured data
and fed into these LLMs, prompting the models to
answer the questions. From the results reported in
Table 1, we conclude the following findings.

3For pretrained LLMs, due to their weak instruction-
following capabilities, outputs beyond ‘A/B/C’ are consid-
ered misclassifications, such as a response of ‘None’, and
categorized as False Negatives.

Overall

Arithmetic Calc.

Composition Und.

Geography-Time
Reas.

Struct. & Unstruct.

Multi-hop Reas.

0% 25% 50% 75% 100%

Pred Fact.
Gold Fact.

Pred NEI
Gold NEI

Pred Non-Fact.
Gold Non-Fact.

Figure 2: The distribution of three types of responses
across five tasks, averaged across 10 LLMs.

• From an overall standpoint, the ability to com-
prehend instructions, facilitated by either a
larger parameter size or instruction tuning,
contributes more significantly to a model’s rea-
soning over structured data than pre-training
knowledge alone. GPT-3.5-turbo, despite its out-
dated knowledge cutoff in 2021, achieves com-
petitive performance thanks to its large parameter
size. Also, models with instruction tuning ex-
hibit superior results compared to the pretrained
models. The results obtained by LLaMA-3-8B
Instruct, Gemma-2-9B, and Qwen2-7B Instruct
outperform their corresponding pretrained mod-
els, with an average accuracy improvement of
22.93%. Those pretrained LLMs perform even
below the level of random guessing (33.33%) in
the zero-shot setting without CoT, as they strug-
gle to follow instructions.

• For pre-trained models, both the Chain of
Thought (CoT; (Wei et al., 2022)) and few-
shot strategies helps in utilizing their factual
knowledge. In a zero-shot setting without CoT,
the performance of pre-trained models falls be-
low random guessing (with a probability of 33%);
incorporating few-shot learning and CoT results
in an average F1 score improvement of 5.53%.
The CoT strategy has even negative impact on
some instruction-tuned models (e.g., LLaMA-
3-8B Instruct), and few-shot examples yield
limited improvements. More complex prompt-
ing strategies (Appendix L) also result in modest
gains in instruction-tuned models.

3.2 Different Tasks

We further analyze the reasoning performance of
the selected 10 LLMs on structured data from the
standpoint of the five tasks. From the results in
Table 3, we have the following observations.
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Models Zero-shot w/o CoT Zero-shot w/ CoT Few-shot w/o CoT Few-shot w/ CoT Overall

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

Qwen2-7B 29.94 37.73 46.77 50.61 44.69 49.51 52.74 56.63 43.53 48.62
LLaMA-3-8B 28.39 33.32 26.66 35.03 26.43 33.22 49.02 50.29 32.63 37.97
Gemma-2-9B 22.83 26.36 43.72 49.58 34.89 40.19 55.97 56.19 39.35 43.08

Qwen2-7B Instruct 46.67 52.40 43.22 51.47 44.18 50.24 43.40 51.95 44.37 51.52
LLaMA-3-8B Instruct 60.62 58.23 43.37 50.19 61.07 59.15 49.54 57.80 53.65 56.34
Gemma-2-9B It 42.66 49.64 47.63 56.97 45.92 53.50 49.78 58.87 46.50 54.75
GLM-4-9B Chat 56.23 59.04 48.44 57.36 54.91 58.15 52.37 60.11 52.99 58.67
Mistral-7B Instruct 47.63 50.45 40.52 49.75 55.78 57.41 46.96 55.49 47.72 53.28

GPT-3.5-turbo 59.84 60.76 59.90 63.94 52.30 56.84 63.91 66.52 59.00 62.02
GPT-4o-mini 65.12 67.08 62.96 68.11 61.44 65.03 64.96 69.58 63.62 67.45

Table 1: Performance of 10 LLMs on the StructFact benchmark using various prompts.

Tasks Distribution

Fact. Non-Fact. NEI Overall

Arithmetic Calc. 1,438 1,235 69 2,742
Geography-Time Reas. 1,602 1,717 112 3,431

Multi-hop Reas. 1,694 1,621 79 3,394
Composition Und. 683 925 24 1,632

Struct. and Unstruct. 1,226 913 69 2,208

Total 6,643 5,411 353 13,407

Table 2: The statistics of our StructFact benchmark.

• LLMs perform inferior on the tasks of geography-
time reasoning and arithmetic calculation, with
average weighted F1 scores of 44.93% and
46.85%, respectively. This underperformance
can be attributed to the limitations of LLMs
in processing heterogeneous evidence, i.e., rea-
soning collectively over dates, numbers, and/or
texts within structured data sources.

• Among the five factual tasks, LLMs perform rel-
atively well on the tasks of Composition Under-
standing and Combining Structured and Unstruc-
tured data. We have carried out case studies to-
wards these two tasks, with examples provided
in Appendix J. After a detailed examination of
the cases, we conclude that this benefit stems
from LLMs utilizing their in-context learn-
ing and extensive commonsense knowledge to
overcome the sparsity issue in the structured
evidence for these two tasks.

• We further analyze the distribution of three labels
in Figure 2 and observed that the proportions of
predicted NEI labels are generally higher than
those of the gold labels across the five tasks, the
proportions of factual and non-factual responses
vary between different tasks. This indicates that,
akin to human behaviors (Tversky and Kahne-
man, 1981), LLMs demonstrate caution when
accepting or rejecting factual queries, when
comparing to the ambiguous answer.

w/ data w/o dataw/ shuffled data

Precision Recall

Figure 3: Performance of GPT-4o-mini under different
settings of structured evidence.

4 Analysis

Building on the main results, we perform in-depth
analyses from various perspectives to assess the
LLMs’ abilities in completing the five tasks, with
GPT-4o-mini (which achieves best in experiments)
as the representative model. Analyses of other
LLMs are included in Appendix L.

4.1 Resilience to Evidence
We first investigate whether the ability of LLMs
to answer factual questions is influenced by the
presence of structured evidence. To this end, we
categorize the resilience of LLMs to evidence into
three levels, ranging from stringent to adaptable:
(i) efficiently understanding and reasoning with the
provided structured data as evidence, (ii) adapting
to irrelevant interventions in the structure of the
evidence data, and (iii) accurately recalling prior
general knowledge without the support of struc-
tured data. We expect LLMs to maintain strong
performance across all three levels, indicating re-
markable resilience.

To this end, we assess the performance of GPT-
4o-mini under three distinct conditions: (i) with
structured data provided as corresponding evidence
for the factual questions (denoted as “w/ data” in
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Models Arithmetic Calc. Geography-Time Reas. Multi-hop Reas. Composition Und. Struct. & Unstruct.

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

Qwen2-7B 27.12 34.60 28.22 34.77 29.31 38.66 31.68 39.51 35.78 43.17
LLaMA-3-8B 27.77 32.25 28.12 31.99 28.07 33.98 28.51 33.91 30.00 34.95
Gemma-2-9B 17.01 23.47 21.30 24.00 25.92 27.56 26.39 27.83 25.10 28.82

Qwen2-7B Instruct 52.41 54.01 41.41 47.41 41.96 49.87 50.67 56.25 52.02 57.76
LLaMA-3-8B Instruct 53.63 46.20 54.66 50.51 68.00 68.89 65.70 66.12 63.46 58.73
Gemma-2-9B It 49.37 51.40 34.89 40.88 37.69 47.74 49.28 56.04 49.16 57.38
GLM-4-9B Chat 54.59 52.69 47.74 51.63 60.37 64.53 65.05 65.74 58.56 61.99
Mistral-7B Instruct 52.64 51.87 43.77 46.30 43.36 47.45 46.94 49.79 54.48 57.81

GPT-3.5-turbo 57.70 57.90 57.42 58.82 62.82 63.26 63.79 64.09 58.79 60.28
GPT-4o-mini 63.93 64.15 59.92 62.96 67.56 69.66 71.88 72.44 65.94 68.50

Overall 45.62 46.85 41.75 44.93 46.51 51.16 50.00 53.17 49.33 52.94

Table 3: Performance of 10 LLMs on the StructFact across five tasks in the zero-shot w/o CoT setting.

Fact. Non-Fact. NEI
Predicted

Fa
ct

.
No

n-
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.
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I

Go
ld

3954 1904 785

1261 4706 444

126 156 71

w/ data

Fact. Non-Fact. NEI
Predicted

Fa
ct

.
No

n-
Fa

ct
.

NE
I

3310 1529 1804

1563 2805 2043

117 79 157

w/o data

Figure 4: Confusion matrices of performance under the
settings w/ and w/o structured data as evidence.

Figure 3), (ii) with the structured data shuffled (de-
noted as “w/ shuffled data” in Figure 3), and (iii)
without any structured data as evidence (denoted as
“w/o data” in Figure 3). The first condition aligns
with the zero-shot without the CoT setting in the
main results (Table 1). In the second condition, we
exploit the order invariance property of structured
data to introduce semantically irrelevant interven-
tions by shuffling the rows and columns in tables
and the elements in lists in our StructFact bench-
mark. For the third condition, since all factual
questions in our framework are supported by struc-
tured data from Wikipedia, we anticipate that the
LLM will rely on its pretraining knowledge to ef-
fectively handle scenarios where evidence is absent.
We assess the resilience to evidence of the LLM
across the five tasks under these three conditions,
and depict in Figure 3 and Table 23.

Transitioning from the original structured data
(w/ data) to shuffled structured data (w/ shuffled
data) results in only a marginal performance de-
crease, with the largest decline of 3.2% in preci-
sion in the Multi-hop Reasoning task, where order
invariance matters. This demonstrates the strong
adaptability of LLMs to the order invariance
characteristic of structured data, and also vali-
dates our task categorization.

Transitioning from evidence-rich scenarios (w/

data) to the evidence-absence scenario (w/o data),
the LLM’s performance drops significantly, espe-
cially in the tasks of Arithmetic Calculation and
Combining Structured and Unstructured, which un-
derscores the lack of prior knowledge characteristic.
We further analyze this performance drop with the
confusion matrices in Figure 4 and attribute it to the
uncertainty and a higher tendency for the model to
classify facts or non-facts as NEI. This shows that
LLMs do not possess adequate prior knowledge
of facts contained in real-world structured data.

4.2 Fine-grained Studies of Different Tasks

In this section, we fine-grainedly assess GPT-4o-
mini’s reasoning on structures across five tasks.
See Appendix H for the fine-grained categorization
defined for each task.

4.2.1 Arithmetic Calculation

To assess whether large language models (LLMs)
are capable of capturing and memorizing arithmetic
rules, we categorize the questions in the arithmetic
calculation task into three levels of mathematical
problems depending on varying degrees of arith-
metic difficulty: numerical matching, numerical
comparison, and computational analysis. For in-
stance, the factual question “Are the White Blood
Cell (WBC) counts within the normal range?” as
illustrated in Figure 1, falls under the numerical
comparison category. Figure 5(a) presents the per-
formance of GPT-4o-mini across these three cat-
egories of mathematical problems. This suggests
that LLMs manage basic numerical tasks like
matching and comparison effectively, but strug-
gle with complex computational analyses, such
as statistics analysis.
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(a) Arithmetic Calculation (b) Multi-hop Reasoning

(c) Composition Understanding (d) Structured and Unstructured

(e) Geography-Time Reasoning

Figure 5: Fine-grained analysis of performance over the
five tasks under zero-shot w/o CoT setting.

4.2.2 Geography-Time Reasoning
As shown in Table 3, LLMs exhibit inadqequate
performance in the Geography-Time Reasoning
task. We conducted a detailed analysis of GPT-
4o-mini’s performance across different named en-
tity categories. In Figure 5(e), we classified the
Geography-Time Reasoning questions in Struct-
Fact into three categories: (i) temporal, which in-
cludes questions about dates (DATE), and times
(TIME); (ii) geographical, encompassing questions
related to political regions such as countries and
cities (GPE), as well as locations such as mountains
and rivers (LOC), and artificial landmarks (FAC);
and (iii) geography-time, which involves questions
containing both geographical and temporal entities
(DATE+GPE, DATE+LOC, DATE+FAC). Overall,
the LLM performs consistently at understand-
ing and reasoning with geography-time knowl-
edge than with data that only involves tempo-
ral or geographical entities. The varying perfor-
mance across different entity types suggests that
the LLM is more effective with entities that offer
detailed granularity in geographical dimensions.

4.2.3 Multi-hop Reasoning
To investigate the capability of LLMs in recogniz-
ing and combining knowledge from various discon-
tinuous sources of structured data, we categorized
factual questions in the Multi-hop Reasoning task
at a more fine-grained level based on the number

of hops required to arrive at an answer. A “hop”
refers to the step in which the LLM needs to in-
fer knowledge by combining knowledge from two
data sources. In particular, in our analysis, each
source is defined as a Wikipedia element (e.g., cells,
headers, captions in tables, or items in lists) that
serves as evidence supporting the gold answer. Fig-
ure 5(b) reveals a clear trend: as reasoning tasks
become more complex, requiring an increasing
number of hops, the LLMs’ effectiveness in rea-
soning over factual knowledge from structured
data diminishes. Notably, there is a significant
performance decline after 5-hop questions, with a
13.65% decrease in F1 score observed in questions
with more than 5 hops.

4.2.4 Composition Understanding
To answer whether LLMs can accurately reason fac-
tual knowledge from challenging compositions in
structured data, we categorize these compositions
into three types of irregularities: (i) complex struc-
ture, where compositions involve intricate depen-
dencies such as a single table cell spanning multiple
columns; (ii) missing values, where cells contain
unknown values; and (iii) incomplete descriptions,
where cells have ambiguous or insufficient descrip-
tions. Figure 5(c) illustrates illustrates that the pri-
mary bottleneck in enhancing LLMs’ performance
in understanding special composition within struc-
tures lies in addressing the challenges of missing
values and incomplete descriptions. This challenge
is associated with the characteristics of lack of
prior, indicating that accurately aligning general
knowledge in LLMs with the domain-specific
knowledge in structured data remains a signifi-
cant obstacle for LLMs.

4.2.5 Combine Structured and Unstructured
A prominent strength of LLMs in factual reason-
ing is their ability to comprehend knowledge in
textual data. When extending this capability to
tasks that involve structured data, it becomes im-
perative to assess whether LLMs can effectively
combine factual knowledge extracted from unstruc-
tured contexts with reasoning applied to structured
data. Therefore, beyond the original unstructured
context provided as evidence in the Combining
Structured and Unstructured task, we assess the
capability of LLMs in scenarios with enhanced un-
structured context, as well as in situations where
unstructured context is absent. The results shown
in Figure 5(d) illustrate that the performance of
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Accuracy F1 Score
Seen Unseen

Figure 6: Performance of GPT-4o-mini with structured
data seen and unseen during pretraining.

LLMs can be slightly improved by the availability
of enhanced contexts when handling factual rea-
soning over structured data. It is noteworthy that in
non-factual tasks, LLMs performed slightly better
when provided with the enhanced unstructured con-
text, compared to the original ones. The substantial
decrease in performance when unstructured con-
text is absent suggests that LLMs are particularly
dependent on this unstructured context for this
task, especially in non-factual circumstances.

4.3 StructFact-Unseen

To assess the performance of large language mod-
els (LLMs) on data not encountered during their
pretraining, we constructed StructFact-Unseen to
periodically crawl the most recent structured data
from new Wikipedia pages. The current StructFact-
Unseen dataset, used in this submission, covers
the period from December 15, 2024, to January
14, 2025. Please see Table 8 for the pretraining
knowledge cutoff dates of each selected LLM.

From Figure 6, it is clear that the language model
(LLM) demonstrates a modest reduction in perfor-
mance when processing structured data not pre-
viously encountered during its pretraining phase,
compared to data it has been exposed to before. The
LLM particularly maintains generalizable perfor-
mance in tasks challenged by heterogeneous data,
such as arithmetic calculation and geography-time
reasoning. This generalization ability may be at-
tributed to the domain-specific factual knowledge
required for these tasks, which cannot be readily de-
duced using the general knowledge acquired from
previously encountered data. Notably, there is a sig-
nificant decline in performance on the StructFact-
Unseen dataset for multi-hop reasoning. This sug-
gests that LLMs may rely more on their intrinsic
knowledge base, rather than the structured evi-
dence provided, to excel in multi-hop reasoning.

5 Related Work

Extensive benchmarks and empirical studies con-
ducted towards investigating the performance of
LLMs over structured data. Form the perspective
of instruction-tuning, researchers investigates dif-
ferent prompting strategies in understanding (Guo
et al., 2023; Liu et al., 2023a; Tan et al., 2024)
and question answering (Qi et al., 2022; Liu
et al., 2023b; Slack and Singh, 2023; Bhandari
et al., 2024). For example, Liu et al. (2023b)
find that integrating textual and symbolic reasoning
in TQA can be enhanced by the self-consistency
strategy. Moreover, the performance of LLMs
also varies across different formats of the struc-
tured data. Singha et al. (2023) transforms ta-
bles into eight formats, including but not limited to
HTML, JSON, and Markdown. From the perspec-
tive of data, researchers designs analysis on the
basis of self-supervised components in the struc-
tures (Singha et al., 2023; Zhao et al., 2023b; Sui
et al., 2024). For example, Zhao et al. (2023b)
conduct component-level perturbation (e.g, col-
umn adding), Sui et al. (2024) investigate via
seven structural understanding tasks (e.g., cell
lookup and row retrieval) based on different com-
ponents. Additionally, LLM capability evaluations
consider structured knowledge from the scientific
domains (Ghosh et al., 2024; Wang et al., 2021)
to the financial domain (Hollmann et al., 2025).
Different from existing works, StructFact offers
deeper insights by annotating tasks based on char-
acteristics inherent in structured data. We further
compare StructFact with other public datasets con-
taining structured knowledge in Appendix B.

6 Conclusions

In this work, we present StructFact, a benchmark
specifically developed to assess the factual reason-
ing abilities of LLMs over structured data. Struct-
Fact comprises 13,407 questions spanning five fac-
tual tasks built upon the characteristics of struc-
tured data. We tested 10 LLMs with StructFact and
observed that they struggle with reasoning over het-
erogeneous structured data, especially in complex
arithmetic operations. Additionally, their dimin-
ished resilience to evidence highlights the ongoing
challenge of effectively leveraging their knowledge
base for reasoning with structured facts. Our work
underscores the pressing need to develop advanced
techniques that help LLMs to better comprehend
and reason over structured data. With the vast
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wealth of structured knowledge, we believe this
will enhance reliable reasoning and pave the way
for broader uses of LLMs in the future.

7 Limitations

While this study offers a valuable benchmark for
evaluating LLMs’ reasoning capabilities with struc-
tured data, it presents this data in a uniform for-
mat—markdown for tables and triplets for graphs.
The omission of other structured formats such as
JSON and XML could limit the generalization and
applicability of StructFact. Second, the uneven dis-
tribution of fine-grained labels in each task could
affect the analysis. Additionally, the lack of inten-
tionally corrupted data could limit the persuasive-
ness of the resilience analysis in section 4.1.
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Appendix

A Implementation Details

We use 32GB memory with Ubuntu 20.04 LTS (a
open-source Operating System using the Linux ker-
nel and based on Debian) and 4 Nvidia A800 with
80GB memory for inference. we adopt vllm (Kwon
et al., 2023) 0.5.4 to speed up inference. All mod-
els share a set of hyperparameters, as detailed in
Table 4.

Hyperparameter Value
top_p 0.95
temperature 0.6
max_generation_token
(w/o CoT)

10

max_generation_token
(w/ CoT)

512

max_evidence_token 2500

Table 4: Hyperparameters of LLMs

B Comparisons to Other Datasets and
Empirical Studies

We compare our proposed StructFact to a wide
range of publicly available datasets that contain
structured factual knowledge, summarized in Table
5. Additionally, we conduct a comparison with
the analyses in previous empirical studies of LLMs
from the perspective of five distinct characteristics
of structured data in Table 6. It can be found in
these two tables that our StructFact provides a com-
prehensive benchmark for testing the capabilities
of LLMs on structured factual knowledge.

C Future Directions

Apart from our findings, we propose future direc-
tions to advance LLM use in knowledge-sensitive
tasks involving structured data.

The performance of LLMs diminishes as the
availability of structured evidence shifts from
abundant to absent. Given the limited improve-
ments achieved through prompt engineering on
instruction-tuned models, incorporating an addi-
tional structure-aware module may offer a more ef-
fective approach for learning from structured data.
Such specialized modules enable task-adaptive
learning and knowledge transfer while keeping
computational and time costs manageable. Fur-
thermore, LLMs show considerable potential in
leveraging unstructured knowledge to complement
structured data. A key challenge in this process is

avoiding the distortion of precise knowledge con-
tained within the structured data. Future research
could explore the use of reinforcement learning to
iteratively correct distortions in reasoning.

D Generation Randomness

To assess the randomness of generation, we con-
ducted zero-temperature experiments on the 10
LLMs and reported the results in Table 7.

E Evaluation Protocol

In this paper, we use six different metrics for evalu-
ating the reasoning performance of LLMs on struc-
tured knowledge. We formulate all the evaluation
metrics used in this section.

• Accuracy.

Acc. =
TP + TN

TP + TN + FP + FN
(1)

where TP , TN , FP , FN represent the num-
ber of true positive, true negative, false posi-
tive, and false negative, respectively.

• Weighted F1 score.

F1 =

N∑

i=1

ni

N
F1i (2)

where ni is the number of samples in label i,
N is the number of all samples, F1i is the F1
score for label i.

• Balanced accuracy.

BA =
1

N

N∑

i=1

(TPRi), TPR =
TP

TP + FN

(3)
where TPRi is the true positive rate of label
i.

• Macro F1 score.

MacroF1 =
1

N

N∑

i=1

F1i (4)

• Precision.

Prec. =
TP

TP + FP
(5)

• Recall.

Recall =
TP

TP + FN
(6)

F Detailed Introduction to selected LLMs

Meta’s Llama series, including Llama 2 and Llama
3 (2023), released in 2023 and 2024, are designed
for various tasks like text generation and program-
ming. Llama3 is designed to be more intelligent,
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Dataset Task Source Evidence/Data Type Answer Type Domain

ToTTo (Parikh et al., 2020) Generation Wikipedia Table General
TaKG (Qi et al., 2022) Generation Wikipedia Table, Graphs, Text General

WebNLG (Gardent et al., 2017) Generation DBPedia Graphs General
DART (Nan et al., 2021) Generation Wikipedia Table, Graphs General

LOTNLG (Zhao et al., 2023a) Generation Wikipedia Table General

SQA (Iyyer et al., 2017) Question Answering Wikipedia Table Span General
NQ-tables (Herzig et al., 2021) Question Answering Wikipedia Table Span General
HybridQA (Chen et al., 2020c) Question Answering Wikipedia Table, Text Span General

WikiTableQuestion(WTQ) (Pasupat and Liang, 2015) Question Answering Wikipedia Table, Text Span General
FetaQA (Nan et al., 2022) Question Answering Wikipedia Table, Text Span General
TAT-QA (Zhu et al., 2021) Question Answering Wikipedia Table, Text Span General

Open-WikiTable (Kweon et al., 2023) Question Answering Wikipedia Table, Text, SQL Span General
WebSRC (Chen et al., 2021) Question Answering Web pages HTML Span/Boolean General
OTTQA (Chen et al., 2020a) Question Answering Wikipedia Table, Text Multiple Choice General

MATH (Hendrycks et al., 2021a) Question Answering Exam Text Span Mathematics
GSM8K (Cobbe et al., 2021) Question Answering Exam Text Span Mathematics

TSQA (Li et al., 2021) Question Answering Exam Table Multiple Choice Geography
ROBUT (Zhao et al., 2023b) Question Answering WTQ, WIKISQL-WEAK (Zhong et al., 2018), and SQA Table Span General

SUC (Sui et al., 2024) Question Answering Wikipedia Table Span General
MiMoTable (Li et al., 2025b) Question Answering Baidu Wenku, Google Search Table Span General
TableBench (Wu et al., 2024) Question Answering Wikipedia Table Span General

DocTabQA (Wang et al., 2024a) Question Answering Securities and Exchange Commission Table Span Finance
FREB-TQA (Zhou et al., 2024) Question Answering WTQ,WikiSQL,SQA,TAT (Zhu et al., 2021) Table Span General
SciTabQA (Ghosh et al., 2024) Question Answering SciGen (Moosavi et al., 2021) Table Span General
GraphWiz (Chen et al., 2024a) Question Answering Self-developed Graph Span N/A

GLBench (Li et al., 2024b) Question Answering citation networks, web links, and social networks Graph Span General

FEVEROUS (Aly et al., 2021) Fact-checking Wikipedia Table, List, Text Fact/Non-Fact/NEI General
TabFact (Chen et al., 2020b) Fact-checking Wikipedia Table Fact/Non-Fact General
Infotabs (Gupta et al., 2020) Fact-checking Wikipedia Table Fact/Non-Fact/NEI General
Fact-KG (Kim et al., 2023) Fact-checking WebNLG (Gardent et al., 2017),DBPedia Graphs Fact/Non-Fact General

Semeval 2021 Task 9 (Wang et al., 2021) Fact-checking Scientific Articles Table, Text Fact/Non-Fact/NEI Science
PubHealthTab (Akhtar et al., 2022) Fact-checking PubHealth (Kotonya and Toni, 2020), Wikipedia HTML Fact/Non-Fact Healthcare

StructFact Fact-checking Wikipedia Table, List, Graphs, Test Fact/Non-Fact/NEI General

Table 5: A comprehensive comparison of various benchmarks with structural facts.

Dataset Characteristics of Structured Data Other Research Question
Heterogeneity Topological Interdependencies Order Invariance Sparsity Lack of Prior Knowledge

Zhao et al. (2023b) ✓ ✓

Sui et al. (2024) ✓ ✓

Liu et al. (2023b) ✓ Symbolic reasoning
Zhou et al. (2024) ✓ ✓ Question-related components
Ghosh et al. (2024) ✓ Scientific reasoning
Zhao et al. (2023a) ✓ Table-to-text capability

Li et al. (2025b) reasoning difficulty, different domain
Wu et al. (2024) ✓ ✓ ✓ Prompting strategies

(Singha et al., 2023) ✓ Different formats
Guo et al. (2023) ✓ ✓ Prompting strategies

Chen et al. (2024a) ✓ ✓ Instruction following
Li et al. (2024b) ✓ Prompting strategies

StructFact ✓ ✓ ✓ ✓ ✓

Table 6: Distribution of various characteristics of structured data across existing empirical studies that investigate
the capabilities of LLMs.
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Methods
Zero-shot w/o CoT Zero-shot w/ CoT Few-shot w/o CoT Few-shot w/ CoT Overall

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

Qwen2-7B 38.12 48.51 45.21 48.34 52.15 55.89 50.18 53.97 46.41 51.68
LLaMA-3-8B 27.89 32.01 25.98 33.82 28.76 35.04 47.33 48.71 32.49 37.40
Gemma-2-9B 31.45 34.77 42.06 47.12 43.15 47.92 53.14 54.32 42.45 46.03

Qwen2-7B Instruct 46.30 52.15 43.01 50.26 44.67 50.83 42.95 51.18 44.23 51.11
LLaMA-3-8B Instruct 60.88 58.55 42.05 49.73 60.32 58.97 49.12 57.32 53.09 56.14
Gemma-2-9B It 43.01 49.27 47.21 56.05 45.12 53.06 49.32 58.01 46.17 54.10
GLM-4-9B Chat 56.85 59.57 47.93 56.84 54.45 57.68 51.84 59.43 52.77 58.38
Mistral-7B Instruct 48.01 50.12 39.87 49.12 55.15 56.82 46.35 54.78 47.34 52.71

GPT-3.5-turbo 59.92 60.96 59.02 63.11 52.37 57.00 63.01 66.22 58.58 61.82
GPT-4o-mini 65.32 67.41 62.15 67.58 61.89 65.32 64.48 69.12 63.46 67.36

Table 7: Performance of 10 LLMs on StructFact using various prompts (temperature=0).

faster, and more versatile, making it suitable for a
wide range of applications. Qwen2 (2024a) (2024b)
is a strong language models developed by Alibaba
Cloud, showing state-of-the-art performance in sev-
eral benchmarks, especially in coding and math-
ematics. ChatGLM3 (2024) is the latest gener-
ation of pre-trained dialogue models developed
by Zhipu AI in collaboration with Tsinghua Uni-
versity’s Knowledge Engineering Group (KEG).
Developed by OpenAI, GPT-4o-mini (2024) is
its most cost-efficient small model in the GPT
series, featuring enhanced context understanding
and text generation capabilities, scoring 82% on
MMLU (Hendrycks et al., 2021b). Gemma2 (2024)
is Google’s latest iteration of open large language
models (LLMs), building on the success of the
original Gemma series. Coming with two sizes, 9
billion and 27 billion parameters, each size has a
base model (pre-trained) and an instruction-tuned
version.

Model Name Company Cut-off Date Release Date
Qwen2-7B Alibaba 2023 February 2024
LLaMA-3-8B Meta March 2023 April 2024
Gemma-2-9B Meta - July 2024
Qwen2-7B-Instruct Alibaba 2023 February 2024
LLaMA-3-8B Instruct Meta March 2023 Apirl 2024
Gemma-2-9B It Meta - July 2024
GLM-4-9B Chat Zhipu AI - June 2024
Mistral-7B Instruct Mistral AI - September 2023
GPT-3.5 Turbo OpenAI September 2021 November 2022
GPT-4o mini OpenAI October 2023 May 2024

Table 8: Table of the selected LLMs, companies, knowl-
edge cut-off dates, and released dates.

G Ethical Statement

We affirm that our StructFact benchmark is con-
structed using open-source datasets and adheres
to the CC-BY-4.0 license. To uphold privacy and

confidentiality, we have ensured that our dataset
contains no direct or indirect sensitive personal in-
formation. Users accessing our StructFact should
ensure that no personally identifiable information
or toxic content is included.

Our research postulate that our StructFact bench-
mark is under an environment devoid of possible
attacks. However, given that the structured data in
our proposed benchmark is sourced from publicly
editable WikiPedia pages, it is inherently vulnera-
ble to various threats, including adversarial attacks.
Intended attacks, such as data poisoning, involve
malicious actors deliberately inserting false or mis-
leading information or altering existing structured
data. These actions can compromise the integrity
of the data, distorting the knowledge within LLMs
and undermining accurate factual reasoning. Unin-
tentional attacks, such as accidental data deletion
or incorrect data entry, also pose significant risks.
These errors can degrade both the quality and struc-
ture of the data, potentially leading LLMs to draw
incorrect inferences, thus might compromising the
overall factuality of the benchmark.

Moreover, while the questions in our StructFact
benchmark reflect real-world facts, they do not orig-
inate from practical applications. Therefore, we
offer StructFact as a resource to guide users in their
inferences, without claiming to provide absolute
assertions. We advise against using StructFact as
a basis for developing models intended to verify
facts in real-world applications.

H Task Categorization for Fine-Grained
Analysis

To perform a fine-grained analysis of LLMs’ rea-
soning capabilities over structured data, we refined

7536



each major task into specific subcategories. This
section outlines the methodologies employed for
task refinement.

H.1 Arithmetic Calculation
Following Hendrycks et al. (2021a); Chen et al.
(2020b), we refined the Arithmetic Calculation task
into three distinct subcategories based on the com-
plexity and nature of mathematical reasoning re-
quired:

1. Numerical Matching: Tasks involving the di-
rect matching and verification of a specific value
within the data, typically a precise, singular
number, without any calculations or statistical
analyses.

• Example: "Is the number of gold medals won
by China in the 2024 Olympics 22?"

2. Numerical Comparison: Tasks requiring the
comparison of numerical values to determine
size, quantity, or order, including comparisons
involving superlatives.

• Example: “Did China win more gold
medals than any other country in the 2024
Olympics?”

3. Computational Analysis: Tasks necessitating
calculations, statistical methods, or logical rea-
soning to perform aggregations, averages, per-
centage calculations, or other mathematical anal-
yses. This includes basic arithmetic operations
(addition, subtraction, multiplication, and divi-
sion) and conditional judgments.

• Example 1: “Does the percentage of gold
medals won by China exceed 10% of the total
in the 2024 Olympics?”

• Example 2: “Did China win 4 more gold
medals than France in the 2024 Olympics”

To annotate the dataset according to these re-
fined categories, we established precise definitions
and guidelines for each subcategory. We then em-
ployed GPT-4o for automatic labeling of the tasks,
followed by independent reviews from three ex-
perts. Discrepancies identified by the majority of
experts were manually corrected. This combina-
tion of automated labeling and expert validation
ensured both efficiency and high accuracy, aligning
with best practices in semi-automated annotation
workflows.

H.2 Geography-time Reasoning
We focused on identifying and categorizing named
entities related to temporal and spatial informa-
tion within the questions. Utilizing the Named
Entity Recognition (NER) tool from SpaCy, specif-
ically the en_core_web_sm model4, we automat-
ically recognized entities in the text. Based on
the NER tags assigned by SpaCy, we refined the
questions into:
• Temporal Entities: Questions containing tempo-

ral entities such as dates (DATE) and times (TIME).

• Spatial Entities: Questions involving spatial en-
tities, including geopolitical entities (GPE), natu-
ral locations like mountains and rivers (LOC), and
facilities or artificial landmarks (FAC).

• Spatiotemporal Entities: Questions that contain
both temporal and spatial entities, such as combi-
nations of DATE+GPE, DATE+LOC, or DATE+FAC.

H.3 Multi-hop Reasoning
Multi-hop Reasoning refers to the process of link-
ing and integrating information from multiple
sources or steps to arrive at a final answer (Yang
et al., 2018; Ho et al., 2020; Trivedi et al., 2022). It
requires the system to go beyond simple, one-step
reasoning (single-hop) by making logical connec-
tions across various pieces of information that are
distributed across multiple documents, sentences,
or structured data points.

In our work, we refined the Multi-hop Reason-
ing task by categorizing questions based on the
number of reasoning steps, or "hops," required to
derive the correct answer. Each "hop" is defined as
a step where the model must integrate information
from two distinct data sources within the structured
data, such as table cells, headers, captions, or list
items. Using a rule-based method, we classified
the questions into six categories: 1-hop, 2-hop, 3-
hop, 4-hop, 5-hop, and greater than 5 hops. This
systematic classification allowed us to assess the
complexity of the reasoning required and analyze
the model’s capacity to perform multi-hop reason-
ing over structured data.

H.4 Composition Understanding
Inspired by Singha et al. (2023), We examined the
model’s ability to reason over structured data com-
positions with irregularities. Specific categoriza-
tion rules were defined to identify different types
of compositional challenges:

4https://spacy.io/usage/models
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1. Complex Structures: Compositions involving
intricate dependencies, such as a single table
cell spanning multiple columns or rows, nested
tables, or hierarchical lists.

2. Missing Values: Instances where the structured
data contains unknown or missing values, re-
quiring the model to handle incomplete data.

3. Incomplete Descriptions: Cases where the
structured data includes ambiguous or insuffi-
cient descriptions, such as unclear column head-
ers or labels.

Two experts manually annotated the dataset ac-
cording to these categories and conducted a cross-
review to ensure consistency and resolve discrep-
ancies. This rigorous annotation process enhanced
the reliability of our categorization.

H.5 Combining Structured and Unstructured
Data

Given the wide existence of semi-structured
data (Chen et al., 2020c; Pasupat and Liang, 2015;
Nan et al., 2022), the Combining Structured and
Unstructured Data task aimed to assess the model’s
ability to integrate information from both struc-
tured data (e.g., tables) and accompanying unstruc-
tured textual context. We designed three experi-
mental conditions:

• Original Unstructured Context: Using the orig-
inal unstructured context provided in the dataset
alongside the structured data.

• Enhanced Unstructured Context: Augmenting
the unstructured context by generating additional
descriptions of the structured data using GPT-
4o, including details such as table formats and
relevant contextual information to provide extra
background knowledge.

• No Unstructured Context: Removing all un-
structured context, leaving only the structured
data for the model to process.

By varying the availability and richness of un-
structured context, we aimed to analyze how dif-
ferent levels of contextual information affect the
model’s ability to reason over structured data.

I Model Confidence

Towards reliable reasoning outcomes, we also
concern about the confidence of LLMs’ outputs.
Specifically, We used the probability of the model’s
first token output corresponding to the predicted
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Figure 7: Confidence distribution of answers.

label as the confidence score. Figure 7 illustrates
that the model shows higher confidence with its
predicted facts, compared to those are predicted
as non-factual. For NEI responses, whether pre-
dicted correctly or not, the confidence remains low
with only minor variations. Notably, the models
exhibit uncertainty in their incorrect answers, as
evidenced by a significant drop in confidence, espe-
cially for factual and non-factual predictions. This
indicates that the model’s confidence levels are
somehow aligned with the accuracy of their pre-
dictions, which could be useful for gauging the
reliability of the model’s answer.

J Case Study

Please see figures 8 to 12 for case studies for each
task and the responses from different LLMs.

K Prompt Strategies Analysis

K.1 Detailed Introduction to Employed
Prompts

Each LLM in our main result decipted in Table
1 is experimented with different prompting strate-
gies: Zero-shot without CoT (Kojima et al., 2022),
Zero-shot with CoT, Few-shot with CoT, Few-shot
with CoT. All the strategies used in this paper be-
gin with an instruction denoted as p = “You will
be given with a question. Please response with

‘Yes’, ‘No’, or ‘Not Sure Enough’.” For any in-
put question qi ∈ Q, structural data di ∈ D the
model LLM(·) is expected to generate an answer
yi ∈ Y = {‘Yes’,‘No’,‘Not Sure Enough’}.
Each question is categorized into one task t from
the five aforementioned reasoning tasks in T . Ex-
amples of the prompts used in our experiments are
shown in Figure 14.

K.1.1 Prompts in Main Results
Prompt with Zero-shot. In the prompting strategy
with zero-shot setting, the LLM is expected to
output the answer yi to the question qi directly,
formally, yi = LLM(p, qi, di). For example, the
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factual answer yi = "No" should be responded
from the LLMs when being asked with the
question qi = "Is London-
-the host city of the 2024 Olympic Games?",
together with the table of Olympic Games host
cities denoted by di.

Prompt with Few-shot. In the few-shot prompt-
ing strategy, to guide the LLM to correctly reason,
we include an example question qx and structural
data dx together with prompt p for question qi,
where the example question qx and question qi fall
in the same task, i.e., qx, qi ∈ t. This process is for-
mulated as yi = LLM(p∥qx∥dx, qi, di). The LLM
is expected to answer with yi = "Yes" when given
question qi = "Has Paris hosted the Olymp-
-ic Games three times?" and the table of
Olympic Games host cities di.

Prompt with Chain of Thought (CoT). In the
prompting strategy with CoT (Kojima et al., 2022),
a two-stage prompt is employed to derive the rea-
soning process along with with the answer. To
guide the LLM in carefully considering the pro-
cess of determining the answer yi, the prompt-
ing sentence s = "Let’s think step by step"
is added to the question qi, formally, yi =
LLM(p, qi∥s, di).

K.1.2 Prompts in Evidence Resilience
Analysis

Prompt with Shuffled Structured Data. To inves-
tigate the performances of LLMs towards differ-
ent prompting context, we shuffle the structure of
data. Specifically, we shuffle the rows/columns
in tables, and the elements in lists. Formally,
for question qi, the output can be presented as
yi = LLM(p, qi, d

′
i), where d′i denotes the shuf-

fled data.
Prompt without Structured Data. Given that

the structural data is sourced from Wikipedia, it
is assumed that LLMs have been exposed to these
data during their training phase. Therefore, we are
also interested in the ability of LLMs to answer
factual questions qi without being provided with
the contextual structural data di. The process un-
der this strategy can be formulated as f5 : yi =
LLM(p, qi).

Prompt with self-refinement. The self-refinement
strategy is designed to enhance the performance of
LLMs by prompting them to iteratively providing
feedback to its previous responses. Formally, the
process at n-th round of refinement can be pre-
sented as yni = LLMn(p, qi, di, r

n−1
i ), where ri

represents the LLM’s response in the last round. In
our experiments, due to constraints on computing
resources and time, we set n=1.

Prompt with self-consistency. The self-
consistency strategy is designed to enhance the
performance of LLMs by employing majority vot-
ing on multiple rounds of queries. Assume the
response from the model at the n-th round as yn,
the final prediction of LLM can be formualted
as yfinal = argmaxcj

∑k
j=1 counts(yn = cj),

where c denotes the available choices of the predic-
tion label, i.e., ‘Fact.’, ‘Non-Fact.’, and ‘NEI’ in
this paper.

Prompt with format instructions. We also pro-
vide instructions of the formats of the structured
data to the zero-shot prompts. Given format in-
structions as f , which illustrates how the structured
data looks like, the process can be formulated as
yi = LLM(p∥f, pi, di).

K.2 Analysis towards Other Prompting
Strategies

Given the successes of other CoT strategies and
input data format instructions (Slack and Singh,
2023), we are interested in exploring their impact
on reasoning about factual knowledge within struc-
tured data. We include three prompting strategies:
(i) self-refinement (Madaan et al., 2024), which
guides the LLM to iteratively evaluate and refine
its previous responses to reach the correct answer,
(ii) self-consistency (Wang et al., 2023), which
mitigates hallucination through majority voting on
multiple responses from the LLM, and (iii) format
instructions, which prompts with descriptions of
the format of the inputted structured data. There
are the following notable observations from the re-
sults in Table 9. i) Self-consistency marginally
improves performance across five tasks, with an
overall enhancement of 0.23%, compared to the
zero-shot results without CoT in Table 1. ii) Format
descriptions help the LLM better interpret numeri-
cal compositions, leading to a 1.02% improvement
in accuracy on Arithmetic Calculation tasks. De-
tailed results under these strategies please refer to
Table 9.

L Supplementary Results

L.1 Comprehensive Results

Results for Different Prompts under Other Met-
rics:

Please refer to Tables 10 and 11.

7539



Results for Different Tasks under Other Met-
rics:

Please refer to Tables 12 to 22.

L.2 Analysis of Other LLMs
Model Responses Distributions:

Please refer to Figure 15.
Model Resilience to Evidence:

Please refer to Table 23 and Figure 16.
Fine-grained Studies of Different Tasks:

Please refer to Figures 17 to 20.
Model Confidence Analysis:

Please refer to Figure 21.
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Task: Arithmetic Calculation
Q: Is the number of employees at PGNiG SA 33,071?
A: Yes
| Rank in 2011 | Name of concern      | Location of headquarters | Revenue (Thou.  PLN) | Profit (Thou.  PLN) | Employees |
| ---------------- | ------------------------- | ------------------------------ | -------------------- | ------------------- | --------- |
| 1.                   | PKN Orlen SA          | Plock                                 | 79 037 121          | 2 396 447     | 4,445    |
| 2.                   | Lotos Group SA        | Gdansk                              | 29 258 539          | 584 878         | 5,168    |
| 3.                   | PGE SA                     | Warsaw                             | 28 111 354           | 6 165 394  | 44,317  |
| 4.                   | Jeronimo Martins      | Kostrzyn | 25 285 407           | N/A                   | 36,419  |
| 5.                   | PGNiG SA                 | Warsaw                             | 23 003 534           | 1 711 787          | 33,071  |
| 6.                   | Tauron Group SA      | Katowice                           | 20 755 222           | 1 565 936        | 26,710  |
| 7.                   | KGHM Polska Miedz SA | Lubin                         | 20 097 392           | 13 653 597        | 18,578   |
| 8.                   | Metro Group Poland   | Warsaw                            | 17 200 000           | N/A               | 22,556   |
| 9.                   | Fiat Auto Poland SA   | Bielsko-Biala                   | 16 513 651           | 83 919               | 5,303    |
| 10.                 | Orange Polska             | Warsaw                            | 14 922 000           | 1 785 000     | 23,805   |

LLaMA-3-8B
1) The question asks us to find out the number of fans that attended this game.
2) We know that there are 14 games in this season.
3) We know that the number of fans that attended the first game is 24,487.
4) We know that the number of fans that attended the second game is 48,477.
5) We know that the number of fans that attended the third game is 40,387. …
A: NEI

LLaMA-3-8B Instruct
Let's analyze the question and the given data step by step.
The question asks if the number of employees at PGNiG SA is 33,071. To answer this question, we need to find the row in the 
table that corresponds to PGNiG SA and check the value in the "Employees" column.
After scanning the table, we find the row with the name "PGNiG SA" in the "Name of concern" column, and the corresponding 
value in the "Employees" column is indeed 33,071.
A: Yes

GPT-4o-mini
To answer the question about whether the number of employees at PGNiG SA is 33,071, I will refer to the structured data 
provided. 
In the table, the entry for PGNiG SA shows that it has 33,071 employees. This value is directly listed in the table under the 
"Employees" column for PGNiG SA. 
Since the data clearly states that the number of employees at PGNiG SA is indeed 33,071, I can confidently answer the question.
A: Yes

Figure 8: Case Study of Arithmetic Calculation.

Task: Spatiotemporal Cognition
Q: Was the Khotan Mosque 
completed in 1870 and is it located in 
Khotan, Xinjiang, China?
A: Yes
Data:
* Islam in China
* List of mosques in China
|  ناتوخ دجسم   |  

|--------------|-------------|  
| Religion        |                     |
| Affiliation     | Sunni Islam |
| Location       |                      |
| Location       | China           |
| Architecture |                      |
| Type             | Mosque        |
| Completed   | 1870             |

Qwen-2-7B
The provided data mentions that the Khotan Mosque was completed 
in 1870 and is located in Khotan, Xinjiang, China.
A: Yes

Qwen-2-7B Instruct
Based on the structured data provided, the Khotan Mosque is indeed 
located in China, and it was completed in 1870. However, the data 
does not specify the exact location within China as "Khotan, 
Xinjiang." Since Khotan is a city in Xinjiang, it can be inferred that the 
mosque is located in Xinjiang, China. However, the data does not 
explicitly state "Khotan" as part of the location.
A: NEI

GPT-4o-turbo
From the structured data provided, it is clear that the Khotan Mosque 
was completed in 1870 and is located in China. However, the data does 
not specify that the mosque is located in Khotan, Xinjiang. While it 
might be inferred from the name "Khotan Mosque" that it is located in
Khotan, Xinjiang, the data does not explicitly confirm this location. 
Therefore, taking into account the explicit information given in the 
data, we can only confirm the completion year and the country, but not 
the specific location within China.
A: NEI

Figure 9: Case Study of Geography-time Reasoning.
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Figure 10: Case Study of Multi-hop Reasoning.
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Task: Composition Understanding
Q: Was The Sounds of the Sounds of Science given an A rating by 
Stylus?
A: No
|   Review scores   |
|-----------------|-------------|
| Source          | Rating      |
| Allmusic |             |
| Pitchfork Media | (8.0/10)    |
| Stylus          | (B)         |
| Dusted Magazine | (favorable) |

Gemma-2-9B 
We don't have enough information about the review score for The 
Sounds of the Sounds of Science by Stylus. The given data only 
includes a rating of (B) for Stylus. Therefore, we cannot determine if 
the review score was A or not.
A: NEI

Gemma-2-9B It
Based on the provided data, Stylus gave The Sounds of the Sounds of 
Science a rating of (B). There is no information suggesting that it 
received an A rating from Stylus.
A: No

GPT-4o-mini
To determine if "The Sounds of the Sounds of Science" was given an A 
rating by Stylus, we need to look at the structured data provided. The 
relevant entry for Stylus shows a rating of (B). Since an A rating is 
higher than a B rating, it implies that the album did not receive an A 
rating from Stylus.
A: No

Figure 11: Case Study of Composition Understanding.

Task: Combining Structured and Unstructured
Q: Are there two varieties of Sorbus hupehensis with 
narrow leaflets (Sorbus hupehensis var. hupehensis) and 
broad leaflets (Sorbus hupehensis var. paucijuga), even 
though its leaves are colored green on above and beneath 
are paler?
A: Yes
|   Sorbus hupehensis |
|------------------------------|---------------|
| Scientific classification |                    |
| Kingdom:                      | Plantae        |
| (unranked):                    | Angiosperms |
| (unranked):                    | Eudicots     |
| (unranked):                    | Rosids |
| Order:                            | Rosales      |
| Family:               | Rosaceae    |
| Genus:                 | Sorbus        |
| Subgenus:             | Sorbus        |
| Species:                 | S. hupehensis |
| Binomial name             |               |
* Sorbus hupehensis var. hupehensis. Leaves with 9-17 
narrow leaflets. Most of the species' range.
* Sorbus hupehensis var. paucijuga (D.K.Zang & 
P.C.Huang) L.T.Lu. Leaves with 7-9 broad leaflets. 
Shandong Province.

LLaMA-3-8B
There are two varieties of Sorbus hupehensis with narrow leaflets (Sorbus hupehensis var. 
hupehensis) and broad leaflets (Sorbus hupehensis var. paucijuga), even though its leaves are 
colored green on above and beneath are paler.
A: NEI

LLaMA-3-8B Instruct
The question asks if there are two varieties of Sorbus hupehensis with narrow leaflets and broad 
leaflets. According to the provided data, we see that Sorbus hupehensis var. hupehensis has leaves 
with 9-17 narrow leaflets, while Sorbus hupehensis var. paucijuga has leaves with 7-9 broad 
leaflets. This suggests that there are indeed two varieties of Sorbus hupehensis with distinct leaf 
characteristics.

However, the question also mentions that the leaves of Sorbus hupehensis are colored green on 
above and beneath, but are paler beneath. This information does not provide any contradictory 
evidence to the existence of the two varieties. Therefore, based on the provided data, I conclude 
that the answer is...
A: Yes

GPT-4o-turbo
The question asks whether there are two varieties of Sorbus hupehensis characterized by different 
leaf structures, specifically narrow and broad leaflets. The provided data distinctly mentions two 
varieties:
1. Sorbus hupehensis var. hupehensis, which has 9-17 narrow leaflets.
2. Sorbus hupehensis var. paucijuga, which has 7-9 broad leaflets.

The question also mentions the color of the leaves (green above and paler beneath), but this 
characteristic does not affect the classification of the varieties based on leaf structure. Therefore, 
the color of the leaves is irrelevant to determining the existence of the two varieties based on the 
leaflet width.

Based on the provided data, it is clear that there are indeed two varieties of Sorbus hupehensis, 
each defined by the width of the leaflets as described.
A: Yes

Figure 12: Case Study of Combining Structured and Unstructured.

Given a question and related structured data, 

please provide your answer.

Choose one of the following options as your 

answer: A) Yes B) No C) Not sure enough. You 

only need to output the option ("A", "B" or 

"C").

{examples}

Q: Did Bolt run under 10 seconds?

A: Yes …

Now, consider the following data and question:

Data: 

Q: Are the White Blood Cell (WBC) counts within 

the normal range?

A: 

Few-shot w/o CoT
Given a question and related structured data, please first 

provide an explanation for how you arrived at your answer.

Then, choose one of the following options as your final answer:

A) Yes B) No C) Not sure enough. You should first output the 

explanation, followed by the selected option ("A", "B", or "C").

{examples}

Q: Did Bolt run under 10 seconds?

A: Yes …

Now, consider the following data and question:

Data: 

Q: Are the White Blood Cell (WBC) counts within the normal 

range?

Let’s think step by step.

A: 

Few-shot w/ CoT

Given a question and related 

structured data, please provide 

your answer.

Choose one of the following 

options as your answer: A) Yes B) 

No C) Not sure enough

You only need to output the option 

("A", "B" or "C"). Now, consider 

the following data and question:

Data: 

Q: Are the White Blood Cell (WBC) 

counts within the normal range?

A: 

Zero-shot w/o CoT
Given a question and related structured 

data, please first provide an explanation 

for how you arrived at your answer.

Then, choose one of the following options 

as your final answer: A) Yes B) No C) Not 

sure enough. You should first output the 

explanation, followed by the selected 

option ("A", "B", or "C").

Data: 

Q: Are the White Blood Cell (WBC) counts 

within the normal range? 

Let’s think step by step.

A: 

Zero-shot w/ CoT

Test Result Reference Range

WBC 15000 4000 - 11000

Test Result Reference Range

WBC 15000 4000 - 11000
Test Result Reference Range

WBC 15000 4000 - 11000

Test Result Reference Range

WBC 15000 4000 - 11000

Figure 13: Prompts used in different settings (main differences with zero-shot w/o CoT are marked in orange).
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Use your knowledge to answer the 
following question:
Q: Are the White Blood Cell (WBC) counts 
within the normal range?
A: 

w/o Data

w/o Data CoT
Use your knowledge to answer the 
following question.
Answer with "Yes" or "No" and provide 
supporting evidence. If you cannot 
determine the answer, respond with "Not 
sure enough."

Q: Are the White Blood Cell (WBC) counts 
within the normal range?
Let's think step by step.
A:

Please review the question based on the structural data 
and related answer.

Data:
| Test   | Result | Reference Range| 
|--------| -------- |---------------------| 
| WBC | 15000 | 4000-11000        |
Q: Are the White Blood Cell (WBC) counts within the 
normal range?
A: No. The WBC count in the data is 15,000, which is 
above the normal reference range of 4,000 to 11,000.

Please provide feedback and suggest any corrections 
or additional information that could enhance the 
answer's accuracy, relevance to the data, or clarity. 
Conclude with your refined answer with only "Yes," 
"No," or "Not sure enough".
Feedback:

Self-Refinement

Given structural data and a related 
question, please provide your answer. 
The given data is in markdown 
format. Columns in the table are 
separated by ' | ', rows are separated 
by '\n', and list elements start with '*'.
Only answer with "Yes" or "No." If 
you cannot determine the answer, 
respond with "Not sure enough."
Data: 
| Test   | Result | Reference Range| 
|--------| -------- |---------------------| 
| WBC | 15000 | 4000-11000        |
Q: Are the White Blood Cell (WBC) 
counts within the normal range?
A: 

Format Instruction

Figure 14: Examples of different prompting strategies.

Models Methods
Arithmetic Calc. Spatiotemporal Cogn. Multi-hop Reas. Composition Und. Struct. & Unstruct. Overall

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

GPT-4o-mini
Self-Refine. 58.03 60.73 54.44 60.08 51.61 58.81 66.91 68.17 56.51 63.37 55.36 60.38
Self-Consis. 62.80 63.49 59.84 63.02 58.30 63.92 66.91 67.35 62.30 67.06 60.83 63.69
Format Instruct. 62.82 63.44 58.53 61.95 57.52 63.10 66.67 67.16 61.37 66.38 60.03 63.03

LLaMA3-8B Instruct
Self-Refine. 58.05 57.74 54.87 55.40 64.71 66.75 61.20 59.46 69.83 70.94 60.23 60.44
Self-Consis. 62.52 56.96 55.33 51.38 71.00 68.54 61.19 57.51 73.30 70.86 63.26 58.95
Format Instruct. 61.95 55.85 51.35 46.00 68.41 66.38 60.20 54.04 71.21 68.72 60.75 55.76

Gemma-2-9B It
Self-Refine. 49.56 53.86 35.18 43.16 43.62 53.69 61.69 64.01 50.63 59.93 43.41 51.04
Self-Consis. 51.31 53.81 33.09 39.19 44.81 54.58 60.20 62.91 52.19 60.74 43.52 49.87
Format Instruct. 53.79 55.33 34.19 40.31 45.75 55.33 59.46 61.74 53.24 61.64 44.88 50.97

Qwen2-7B-Instruct
Self-Refine. 52.24 55.50 36.87 43.32 44.66 53.88 57.21 59.93 51.39 59.54 44.95 51.34
Self-Consis. 55.18 57.62 40.95 47.56 47.61 56.30 57.46 61.66 53.88 61.58 48.20 54.24
Format Instruct. 56.50 58.43 37.48 43.72 48.61 57.07 57.46 61.28 54.55 62.15 47.51 53.29

Table 9: Performance of GPT-4o-mini using different prompting strategies across five factual tasks.

Methods
Zero-shot w/o CoT Zero-shot w/ CoT Few-shot w/o CoT Few-shot w/ CoT Overall

BA MF1 BA MF1 BA MF1 BA MF1 BA MF1

Qwen2-7B 23.06 19.97 39.69 26.00 35.85 25.69 38.86 28.70 34.37 25.09
LLaMA-3-8B 20.65 17.57 19.17 17.94 25.29 19.66 35.16 26.76 25.07 20.48
Gemma-2-9B 14.97 12.87 32.50 24.51 14.55 11.51 39.56 29.92 25.40 19.70

Qwen2-7B Instruct 43.51 27.29 40.87 24.53 43.81 29.25 41.45 24.66 42.41 26.43
LLaMA-3-8B Instruct 39.48 32.00 39.65 25.10 40.23 32.48 42.64 28.03 40.50 29.40
Gemma-2-9B It 44.34 27.74 44.58 25.94 45.11 34.52 44.51 26.81 44.64 28.75
GLM-4-9B Chat 42.88 38.49 43.25 26.78 42.47 38.17 44.65 28.41 43.31 32.96
Mistral-7B Instruct 39.77 26.97 41.31 24.16 42.46 30.52 43.20 27.17 41.69 27.20

GPT-4o-Mini 46.96 44.92 46.46 42.86 47.08 42.90 46.89 43.71 46.85 43.60
GPT-4-Turbo 48.02 45.19 48.14 43.13 47.72 43.63 48.59 43.15 48.12 43.77

Table 10: Balanced accuracy and Macro F1 of 10 LLMs on the StructFact benchmark using various prompts.
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Methods
Zero-shot w/o CoT Zero-shot w/ CoT Few-shot w/o CoT Few-shot w/ CoT Overall

Prec. Recall Prec. Recall Prec. Recall Prec. Recall Prec. Recall

Qwen2-7B 58.64 31.82 62.33 49.40 59.71 45.39 64.49 54.80 61.29 45.35
LLaMA-3-8B 52.78 29.72 55.78 27.65 53.25 32.13 58.83 55.64 55.16 36.28
Gemma-2-9B 51.77 22.67 58.18 42.76 53.72 17.31 61.93 61.14 56.40 35.97

Qwen2-7B Instruct 65.11 47.85 66.63 41.27 66.79 44.88 66.67 41.01 66.30 43.75
LLaMA-3-8B Instruct 62.84 62.92 64.04 43.01 63.44 63.39 67.71 45.43 64.51 53.69
Gemma-2-9B It 70.37 43.53 69.03 41.08 71.10 44.81 70.67 43.03 70.29 43.11
GLM-4-9B Chat 64.82 52.56 68.24 42.58 65.38 52.97 68.44 47.10 66.72 48.80
Mistral-7B Instruct 62.68 50.90 65.58 37.33 63.29 60.13 66.40 43.80 64.49 48.04

GPT-4o-Mini 68.00 60.80 70.27 54.20 68.82 55.06 70.43 56.35 69.38 56.60
GPT-4-Turbo 68.76 60.67 71.27 53.31 69.80 56.01 71.35 53.18 70.29 55.79

Table 11: Precision and recall of 10 LLMs on the StructFact benchmark using various prompts.

Methods
Arithmetic Calc. Spatiotemporal Cogn. Multi-hop Reas. Composition Und. Struct. & Unstruct.

Prec. Recall Prec. Recall Prec. Recall Prec. Recall Prec. Recall

Qwen2-7B 58.11 28.30 55.32 28.24 68.87 34.05 65.94 38.31 69.78 41.26
LLaMA-3-8B 54.34 28.48 49.83 28.36 63.72 29.61 53.61 34.08 63.42 34.00
Gemma-2-9B 51.77 15.98 48.47 21.45 67.26 30.55 60.43 25.87 61.55 25.92

Qwen2-7B Instruct 61.48 54.58 66.00 40.52 71.62 47.91 70.20 57.46 73.95 53.33
LLaMA-3-8B Instruct 57.41 62.28 62.58 54.78 69.43 70.61 61.54 60.94 72.15 73.28
Gemma-2-9B It 60.51 51.36 73.96 33.03 81.38 44.73 71.58 59.95 82.41 52.46
GLM-4-9B Chat 63.06 59.27 63.75 46.70 70.01 50.67 67.78 63.93 73.41 56.80
Mistral-7B Instruct 61.48 55.37 59.07 43.44 70.98 52.03 62.60 54.98 73.77 59.07

GPT-4o-Mini 64.51 62.52 67.79 60.13 75.06 58.04 68.80 67.42 75.06 62.10
GPT-4-Turbo 64.16 61.76 68.71 61.93 75.03 54.90 70.78 70.15 77.18 61.59

Overall 59.68 47.99 61.55 41.86 71.34 47.31 65.33 53.31 72.27 51.98

Table 12: Precision and recall of 10 LLMs on the StructFact benchmark across five factual tasks under the zero-shot
w/o CoT setting.

Methods
Arithmetic Calc. Spatiotemporal Cogn. Multi-hop Reas. Composition Und. Struct. & Unstruct.

BA MF1 BA MF1 BA MF1 BA MF1 BA MF1

Qwen2-7B 19.42 18.07 23.62 19.35 22.30 19.48 27.85 23.99 27.13 21.99
LLaMA-3-8B 20.35 17.12 21.08 17.39 18.61 16.23 32.55 21.59 22.01 18.34
Gemma-2-9B 11.08 10.58 15.57 12.84 18.50 14.40 16.96 14.42 15.33 12.74

Qwen2-7B Instruct 40.04 30.66 44.59 29.03 43.23 25.79 40.16 34.04 44.43 29.72
LLaMA-3-8B Instruct 37.14 35.27 39.92 31.00 38.34 37.48 38.26 37.28 40.23 39.96
Gemma-2-9B It 38.61 32.89 44.50 29.55 45.61 33.09 55.90 37.33 48.18 35.80
GLM-4-9B Chat 38.22 36.99 44.85 37.61 40.91 34.71 41.31 42.14 44.53 38.48
Mistral-7B Instruct 38.64 26.56 38.69 25.59 39.45 25.58 34.91 30.13 41.78 28.08

GPT-4o-Mini 41.68 41.14 49.20 46.20 46.31 41.15 52.58 52.69 46.86 42.68
GPT-4-Turbo 41.05 40.17 50.43 47.09 47.20 39.42 58.31 60.05 49.42 43.67

Overall 32.62 28.95 37.25 29.56 36.05 28.73 39.88 35.37 37.99 31.15

Table 13: Balanced accuracy and Macro F1 of 10 LLMs on the StructFact benchmark across five factual tasks under
the zero-shot w/o CoT setting.
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Methods
Arithmetic Calc. Spatiotemporal Cogn. Multi-hop Reas. Composition Und. Struct. & Unstruct.

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

Qwen2-7B 57.65 57.56 39.63 42.68 52.11 59.05 59.21 59.50 55.22 61.00
LLaMA-3-8B 28.50 37.79 24.15 31.16 28.98 39.88 30.10 38.53 32.33 43.38
Gemma-2-9B 45.35 50.28 37.92 42.52 44.35 52.43 44.03 48.90 47.74 54.98

Qwen2-7B Instruct 53.92 56.87 31.66 39.43 39.74 49.90 51.24 55.54 45.18 55.02
LLaMA-3-8B Instruct 50.37 54.01 36.13 42.62 40.61 49.98 51.49 54.39 49.30 57.93
Gemma-2-9B It 48.75 53.66 33.91 43.30 40.61 51.25 57.46 60.31 44.87 55.46
GLM-4-9B Chat 53.57 58.14 35.52 45.05 39.00 49.17 56.22 59.62 45.09 55.43
Mistral-7B Instruct 43.93 50.87 32.00 40.89 34.94 44.83 50.00 55.88 40.95 51.28

GPT-4o-Mini 59.10 61.50 50.89 59.04 51.64 60.06 65.18 66.46 56.22 64.12
GPT-4-Turbo 58.44 61.04 51.71 60.26 49.48 57.78 64.93 65.93 52.64 61.56

Overall 49.96 54.17 37.35 44.70 42.15 51.43 52.99 56.51 46.95 56.02

Table 14: Accuracy and F1 score of 10 LLMs on the StructFact benchmark across five factual tasks under the
zero-shot w/ CoT setting.

Methods
Arithmetic Calc. Spatiotemporal Cogn. Multi-hop Reas. Composition Und. Struct. & Unstruct.

Prec. Recall Prec. Recall Prec. Recall Prec. Recall Prec. Recall

Qwen2-7B 60.38 57.65 61.86 39.63 70.62 52.11 66.14 59.21 71.26 55.22
LLaMA-3-8B 57.51 28.50 52.43 24.15 66.28 28.98 57.02 30.10 67.36 32.33
Gemma-2-9B 58.46 45.35 55.55 37.92 67.74 44.35 57.02 44.03 69.66 47.74

Qwen2-7B Instruct 61.87 53.92 69.06 31.66 73.41 39.74 67.39 51.24 75.92 45.18
LLaMA-3-8B Instruct 60.99 50.37 63.89 36.13 69.48 40.61 63.20 51.49 74.34 49.30
Gemma-2-9B It 61.11 48.75 71.34 33.91 77.50 40.61 66.14 57.46 78.25 44.87
GLM-4-9B Chat 64.25 53.57 69.49 35.52 74.36 39.00 65.64 56.22 76.37 45.09
Mistral-7B Instruct 62.24 43.93 64.62 32.00 72.72 34.94 65.04 50.00 74.37 40.95

GPT-4o-Mini 64.24 59.10 72.71 50.89 76.01 51.64 68.24 65.18 76.66 56.22
GPT-4-Turbo 64.22 58.44 74.82 51.71 76.52 49.48 67.30 64.93 77.91 52.64

Overall 61.53 49.96 65.58 37.35 72.46 42.15 64.31 52.99 74.21 46.95

Table 15: Precision and recall of 10 LLMs on the StructFact benchmark across five factual tasks under the zero-shot
w/ CoT setting.

Methods
Arithmetic Calc. Spatiotemporal Cogn. Multi-hop Reas. Composition Und. Struct. & Unstruct.

BA MF1 BA MF1 BA MF1 BA MF1 BA MF1

Qwen2-7B 36.98 26.80 40.23 23.88 39.31 26.03 37.19 28.95 42.11 25.92
LLaMA-3-8B 19.80 18.25 18.81 17.00 17.94 16.90 18.92 18.46 20.44 19.13
Gemma-2-9B 31.21 24.49 33.22 23.59 31.07 23.50 28.77 24.23 34.96 25.27

Qwen2-7B Instruct 36.21 26.54 41.80 22.07 41.48 23.18 35.79 27.41 43.30 23.86
LLaMA-3-8B Instruct 34.25 25.21 41.18 23.77 37.35 22.84 32.38 26.36 45.42 26.09
Gemma-2-9B It 36.29 25.70 46.34 24.21 46.42 25.20 51.45 35.83 46.82 25.81
GLM-4-9B Chat 38.35 28.25 42.97 24.81 45.16 24.60 47.18 31.43 46.62 26.48
Mistral-7B Instruct 36.19 24.77 40.53 22.61 43.70 22.41 36.69 28.33 45.62 24.15

GPT-4o-Mini 40.26 40.38 48.84 42.82 46.16 40.34 46.80 46.44 47.69 41.38
GPT-4-Turbo 42.68 41.29 50.38 43.69 48.17 39.82 53.91 49.44 48.18 41.04

Overall 35.22 28.17 40.43 26.84 39.68 26.48 38.91 31.69 42.12 27.91

Table 16: Balanced accuracy and Macro F1 of 10 LLMs on the StructFact benchmark across five factual tasks under
the zero-shot w/ CoT setting.
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Methods
Arithmetic Calc. Spatiotemporal Cogn. Multi-hop Reas. Composition Und. Struct. & Unstruct.

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

Qwen2-7B 50.19 54.03 39.36 44.78 46.28 54.34 50.75 53.96 50.23 57.83
LLaMA-3-8B 30.30 37.95 29.45 34.63 36.58 46.16 30.35 37.67 35.85 45.21
Gemma-2-9B 17.43 23.45 15.98 20.19 18.65 25.42 18.41 25.58 18.46 24.95

Qwen2-7B Instruct 54.35 57.82 36.45 43.11 44.58 53.43 57.21 60.90 49.14 57.50
LLaMA-3-8B Instruct 63.37 58.22 55.42 53.08 70.17 68.47 63.68 60.77 73.30 72.09
Gemma-2-9B It 55.12 56.73 34.22 41.49 45.62 55.37 63.19 64.72 50.75 60.11
GLM-4-9B Chat 60.39 59.73 44.69 49.17 53.96 60.11 63.93 63.60 58.41 64.52
Mistral-7B Instruct 61.35 60.78 52.10 52.54 66.71 68.99 63.68 61.93 68.38 70.15

GPT-4o-Mini 60.38 62.24 52.50 58.28 52.55 59.80 66.42 67.15 54.84 62.19
GPT-4-Turbo 60.38 61.88 55.38 61.06 51.63 58.24 66.42 66.91 54.98 63.15

Overall 51.33 53.28 41.55 45.83 48.67 55.03 54.40 56.32 51.43 57.77

Table 17: Accuracy and F1 score of 10 LLMs on the StructFact benchmark across five factual tasks under the
few-shot w/o CoT setting.

Methods
Arithmetic Calc. Spatiotemporal Cogn. Multi-hop Reas. Composition Und. Struct. & Unstruct.

Prec. Recall Prec. Recall Prec. Recall Prec. Recall Prec. Recall

Qwen2-7B 59.91 50.19 57.40 39.36 68.94 46.28 61.30 50.75 69.95 50.23
LLaMA-3-8B 53.94 30.30 49.07 29.45 66.43 36.58 55.05 30.35 65.39 35.85
Gemma-2-9B 54.89 17.43 48.64 15.98 64.74 18.65 65.32 18.41 66.72 18.46

Qwen2-7B Instruct 64.18 54.35 67.43 36.45 73.35 44.58 71.91 57.21 74.64 49.14
LLaMA-3-8B Instruct 58.19 63.37 63.33 55.42 68.70 70.17 64.32 63.68 73.42 73.30
Gemma-2-9B It 62.17 55.12 73.25 34.22 80.08 45.62 71.86 63.19 81.23 50.75
GLM-4-9B Chat 62.74 60.39 65.13 44.69 70.68 53.96 70.20 63.93 74.36 58.41
Mistral-7B Instruct 61.39 61.35 61.66 52.10 71.83 66.71 65.70 63.68 73.17 68.38

GPT-4o-Mini 65.42 60.38 67.54 52.50 76.16 52.55 68.91 66.42 76.72 54.84
GPT-4-Turbo 64.26 60.38 70.50 55.38 76.40 51.63 67.73 66.42 78.20 54.98
Overall 60.71 51.33 62.40 41.55 71.73 48.67 66.23 54.40 73.38 51.43

Table 18: Precision and recall of 10 LLMs on the StructFact benchmark across five factual tasks under the few-shot
w/o CoT setting.

Methods
Arithmetic Calc. Spatiotemporal Cogn. Multi-hop Reas. Composition Und. Struct. & Unstruct.

BA MF1 BA MF1 BA MF1 BA MF1 BA MF1

Qwen2-7B 36.48 26.20 34.27 24.48 35.19 24.32 57.21 30.75 36.01 25.16
LLaMA-3-8B 23.39 18.58 26.25 19.28 26.55 20.46 22.82 18.56 25.00 19.54
Gemma-2-9B 14.01 11.48 14.54 10.91 14.74 11.74 12.36 12.65 15.24 11.31

Qwen2-7B Instruct 42.22 31.10 43.03 32.05 43.52 32.24 54.20 42.54 45.12 32.96
LLaMA-3-8B Instruct 36.66 35.01 41.74 31.90 37.46 36.98 40.16 39.54 41.87 42.13
Gemma-2-9B It 40.02 35.09 45.79 31.18 46.99 34.38 61.71 47.96 44.61 35.25
GLM-4-9B Chat 38.28 37.16 44.50 36.40 39.18 35.47 44.21 43.11 45.03 39.22
Mistral-7B Instruct 39.92 35.92 43.07 29.12 42.08 34.00 43.79 43.40 43.94 34.62

GPT-4o-Mini 42.76 41.79 47.27 42.27 46.73 39.86 55.97 53.10 49.30 40.46
GPT-4-Turbo 41.90 41.22 49.54 44.33 48.96 39.64 45.09 44.99 47.29 41.07

Overall 35.56 31.36 39.00 30.19 38.14 30.91 43.75 37.66 39.34 32.17

Table 19: Balanced accuracy and Macro F1 of 10 LLMs on the StructFact benchmark across five factual tasks under
the few-shot w/o CoT setting.
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Methods
Arithmetic Calc. Spatiotemporal Cogn. Multi-hop Reas. Composition Und. Struct. & Unstruct.

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

Qwen2-7B 57.98 58.50 47.25 49.93 58.91 64.52 61.19 62.20 61.66 66.44
LLaMA-3-8B 56.03 55.56 48.52 46.85 60.50 63.71 54.97 54.24 65.22 66.91
Gemma-2-9B 60.02 58.96 53.72 52.45 68.17 69.11 62.94 62.50 70.94 71.31

Qwen2-7B Instruct 51.68 55.78 31.88 39.99 41.24 51.29 52.74 58.31 44.62 54.55
LLaMA-3-8B Instruct 52.21 57.44 40.64 49.51 42.44 52.08 53.23 57.34 48.74 58.37
Gemma-2-9B It 53.86 57.52 34.86 44.45 42.03 52.95 61.44 63.33 45.07 55.99
GLM-4-9B Chat 56.36 59.70 39.08 47.86 46.19 55.65 60.45 63.31 51.28 60.48
Mistral-7B Instruct 48.49 54.83 38.30 46.84 43.53 52.71 58.21 61.53 48.05 57.49

GPT-4o-Mini 62.36 63.52 52.88 60.49 53.66 61.60 70.15 70.40 57.11 64.72
GPT-4-Turbo 60.03 62.38 50.98 59.20 48.95 57.88 66.42 67.97 51.70 61.01

Overall 55.90 58.42 43.81 49.76 50.56 58.15 60.17 62.11 54.44 61.73

Table 20: Accuracy and F1 score of 10 LLMs on the StructFact benchmark across five factual tasks under the
few-shot w/ CoT setting.

Methods
Arithmetic Calc. Spatiotemporal Cogn. Multi-hop Reas. Composition Und. Struct. & Unstruct.

Prec. Recall Prec. Recall Prec. Recall Prec. Recall Prec. Recall

Qwen2-7B 61.01 57.98 63.75 47.25 72.32 58.91 69.20 61.19 73.67 61.66
LLaMA-3-8B 56.82 56.03 59.04 48.52 67.47 60.50 60.35 54.97 69.66 65.22
Gemma-2-9B 58.77 60.02 61.26 53.72 70.30 68.17 65.10 62.94 72.25 70.94

Qwen2-7B Instruct 62.31 51.68 68.47 31.88 73.24 41.24 67.83 52.74 75.82 44.62
LLaMA-3-8B Instruct 64.28 52.21 68.66 40.64 73.38 42.44 63.49 53.23 75.91 48.74
Gemma-2-9B It 63.13 53.86 72.82 34.86 78.73 42.03 67.84 61.44 79.02 45.07
GLM-4-9B Chat 63.87 56.36 68.98 39.08 75.07 46.19 69.23 60.45 76.90 51.28
Mistral-7B Instruct 64.16 48.49 65.57 38.30 72.79 43.53 65.79 58.21 74.63 48.05

GPT-4o-Mini 64.77 62.36 72.79 52.88 76.08 53.66 71.00 70.15 76.38 57.11
GPT-4-Turbo 65.18 60.03 72.94 50.98 78.59 48.95 70.02 66.42 78.80 51.70

Overall 62.43 55.90 67.43 43.81 73.80 50.56 66.99 60.17 75.30 54.44

Table 21: Precision and recall of 10 LLMs on the StructFact benchmark across five factual tasks under the few-shot
w/ CoT setting.

Methods
Arithmetic Calc. Spatiotemporal Cogn. Multi-hop Reas. Composition Und. Struct. & Unstruct.

BA MF1 BA MF1 BA MF1 BA MF1 BA MF1

Qwen2-7B 36.38 27.26 39.40 27.52 38.25 28.76 38.74 30.34 41.33 29.97
LLaMA-3-8B 33.82 25.66 36.34 25.64 33.19 26.29 44.65 29.37 36.41 28.65
Gemma-2-9B 36.45 27.61 40.59 28.89 38.58 29.72 47.59 33.37 41.84 32.09

Qwen2-7B Instruct 37.95 26.50 40.97 22.27 41.58 23.80 37.52 29.18 46.30 24.26
LLaMA-3-8B Instruct 36.26 27.89 45.20 27.38 42.27 25.74 34.38 28.20 45.90 27.54
Gemma-2-9B It 38.08 27.32 45.93 24.73 46.63 26.56 50.37 37.23 45.33 26.06
GLM-4-9B Chat 37.39 28.48 44.61 26.39 48.13 27.40 46.04 36.53 48.93 31.90
Mistral-7B Instruct 38.88 27.36 43.15 25.80 45.75 25.82 38.37 34.12 44.68 26.94

GPT-4o-Mini 41.51 41.51 49.39 43.89 47.84 41.21 46.62 47.22 45.37 41.44
GPT-4-Turbo 43.31 42.05 49.59 42.99 49.79 40.50 55.17 50.34 50.68 41.24

Overall 38.00 30.16 43.52 29.55 43.20 29.58 43.95 35.59 44.68 31.01

Table 22: Balanced accuracy and Macro F1 of 10 LLMs on the StructFact benchmark across five factual tasks under
the few-shot w/ CoT setting.
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Figure 15: Responses Distributions of Different Models.
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Figure 16: Accuracy and F1 score of GPT-4o-mini under different settings of structured evidence.
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Table 23: GPT-4o-mini’s evidence resilience across different factual tasks under zero-shot settings without CoT
prompts. The percentage of decrease with respect to the setting with original structured data (w/ data) is shown in
brackets.

Settings Metrics
Arithmetic Calc. Geography-Time Reas. Multi-hop Reas. Composition Und. Struct. & Unstruct.

Score (%) Decr.(%) Score Decr.(%) Score Decr.(%) Score Decr.(%) Score Decr.(%)

w/ data
Acc 63.93 - 59.92 - 67.56 - 71.88 - 65.94 -
F1 64.15 - 62.96 - 69.66 - 72.44 - 68.50 -
Prec. 64.39 - 67.16 - 76.29 - 73.10 - 72.89 -
Recall 63.93 - 59.92 - 67.56 - 71.88 - 65.94 -

w/ shuffled data
(rows)

Acc 62.68 (-1.99) 58.39 (-2.57) 64.81 (-4.12) 70.62 (-1.75) 63.18 (-4.25)
F1 63.43 (-1.17) 61.73 (-1.96) 67.12 (-3.66) 71.16 (-1.77) 66.38 (-3.04)
Prec. 64.77 (+0.58) 66.44 (-1.09) 75.76 (-0.70) 71.87 (-1.66) 73.31 (+0.57)
Recall 62.68 (-1.99) 58.39 (-2.57) 64.81 (-4.12) 70.62 (-1.75) 63.18 (-4.25)

w/ shuffled data
(columns)

Acc 61.19 (-4.22) 58.35 (-2.63) 65.04 (-3.73) 68.50 (-4.73) 63.87 (-3.12)
F1 61.94 (-3.41) 61.66 (-2.08) 67.52 (-3.03) 69.42 (-4.19) 66.82 (-2.46)
Prec. 63.79 (-0.93) 66.31 (-1.28) 76.11 (-0.23) 70.62 (-3.39) 72.63 (-0.35)
Recall 61.19 (-4.22) 58.35 (-2.63) 65.04 (-3.73) 68.50 (-4.73) 63.87 (-3.12)

w/ shuffled data
(rows and columns)

Acc 54.78 (-14.31) 56.30 (-6.04) 58.86 (-12.88) 67.19 (-6.53) 59.25 (-10.15)
F1 59.01 (-8.01) 57.21 (-9.13) 62.18 (-10.73) 67.26 (-7.15) 63.14 (-7.83)
Prec. 60.98 (-5.30) 64.07 (-4.60) 73.09 (-4.20) 70.33 (-3.79) 70.64 (-3.09)
Recall 56.78 (-11.18) 56.30 (-6.04) 59.86 (-11.40) 67.19 (-6.53) 58.25 (-11.66)

w/o data
Acc 25.89 (-38.04) 49.11 (-10.81) 53.33 (-14.23) 51.65 (-20.23) 55.43 (-10.51)
F1 32.59 (-31.56) 52.85 (-10.11) 60.23 (-9.43) 57.79 (-14.65) 59.67 (-8.83)
Prec. 51.25 (-13.14) 59.30 (-7.86) 70.38 (-5.91) 67.96 (-5.14) 66.36 (-6.53)
Recall 25.89 (-38.04) 49.11 (-10.81) 53.33 (-14.23) 51.65 (-20.23) 55.43 (-10.51)
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Figure 17: Performance of Different Models on Arithmetic Calculation.
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Figure 18: Performance of Different Models on Multi-hop Reasoning.
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Figure 19: Performance of Different Models on Composition Understanding.
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Figure 20: Performance of Different Models on geography-time Reasoning.

7551



0.80 0.85 0.90 0.95 1.00
Confidence

0

2

4

6

8

De
ns

ity
Correct Answer

0.80 0.85 0.90 0.95 1.00
Confidence

Incorrect Answer
Prediction

Fact.
Non-Fact.
NEI

(a) Llama3-8B Instruct

0.80 0.85 0.90 0.95 1.00
Confidence

0

5

10

15

20

De
ns

ity

Correct Answer

0.80 0.85 0.90 0.95 1.00
Confidence

Incorrect Answer
Prediction

Fact.
Non-Fact.
NEI

(b) Gemma2-9B It

0.80 0.85 0.90 0.95 1.00
Confidence

0

2

4

6

8

10

12

De
ns

ity

Correct Answer

0.80 0.85 0.90 0.95 1.00
Confidence

Incorrect Answer
Prediction

Fact.
Non-Fact.
NEI

(c) Qwen2-7B-Instruct

Figure 21: Confidence of Different Models.
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