
Findings of the Association for Computational Linguistics: ACL 2025, pages 7418–7432
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

SEE: Continual Fine-tuning with Sequential Ensemble of Experts

Zhilin Wang♠∗, Yafu Li♠ , Xiaoye Qu♠†, Yu Cheng♡†
♠ Shanghai AI Laboratory ♡Chinese University of Hong Kong

{linzwcs,yafuly}@gmail.com, quxiaoye@pjlab.org.cn
chengyu@cse.cuhk.edu.hk

Abstract

Continual fine-tuning of large language mod-
els (LLMs) suffers from catastrophic forget-
ting. Rehearsal-based methods mitigate this
problem by retaining a small set of old data.
Nevertheless, they still suffer inevitable perfor-
mance loss. Although training separate experts
for each task can help prevent forgetting, ef-
fectively assembling them remains a challenge.
Some approaches use routers to assign tasks
to experts, but in continual learning, they of-
ten require retraining for optimal performance.
To address these challenges, we introduce the
Sequential Ensemble of Experts (SEE) frame-
work. SEE removes the need for an additional
router, allowing each expert to independently
decide whether a query should be handled. The
framework employs distributed routing, and
during continual fine-tuning, SEE only requires
the training of new experts for incoming tasks
rather than retraining the entire system. Experi-
ments reveal that the SEE outperforms prior ap-
proaches, including multi-task learning, in con-
tinual fine-tuning. It also demonstrates remark-
able generalization ability, as the expert can
effectively identify out-of-distribution queries,
which can then be directed to a more general-
ized model for resolution. This work highlights
the promising potential of integrating routing
and response mechanisms within each expert,
paving the way for the future of distributed
model ensembling. The code is available at url.

1 Introduction

Large language models (LLMs) have demonstrated
impressive performance across various scenar-
ios (Touvron et al., 2023; OpenAI et al., 2024;
Guo et al., 2025; Li et al., 2025; Qu et al., 2025).
However, they often require further refinement or
the ability to learn new tasks for real-world appli-
cations. In these scenarios, LLMs are typically

* Work was done during Zhilin Wang’s internship at Shang-
hai AI Laboratory.

† Corresponding authors.

...

MismatchMatch

<<neg>><<neg>>
<<pos>> Someone was running from 
 the cops and got into a wreck.

Skip

Query:
Leaving my shift Thursday day
shift I arrived the same time as
my partner just after six that
evening and before long the
radio erupted in dispatch tones
... 
Question: What may have caused
the radio to erupt with dispatch
tones?

Experts

Someone was running from  the
cops and got into a wreck.

Base
Model

Sequential Routing—Exception

Sequential Routing—Default

Figure 1: The inference process in the SEE framework
involves a query being passed sequentially through a
series of experts until it matches one, which then gener-
ates a response. If an expert fails to produce a special
indicator, the query is routed to the base model, which
is considered to possess the best generalization ability.

trained through a sequence of tasks performed
successively, a process known as continual fine-
tuning (Luo et al., 2024). As a subclass of con-
tinual learning, continual fine-tuning also suffers
catastrophic forgetting, whereby LLMs tend to lose
previously acquired knowledge as they assimilate
new information (Kirkpatrick et al., 2017; Wu et al.,
2024; Shi et al., 2024; Qu et al., 2025).

While there have been many studies on alleviat-
ing catastrophic forgetting, rehearsal-based meth-
ods prove to be the most effective way in continual
fine-tuning (Zhang et al., 2023). These methods
work by combining new data with a subset of pre-
vious data (de Masson d’ Autume et al., 2019; Rol-
nick et al., 2019), or synthesized instances from the
prior data distribution (Huang et al., 2024). How-
ever, despite their effectiveness in preserving prior
knowledge, these methods still experience some

7418

https://github.com/Linzwcs/SEE


inevitable performance loss.

Although training separate experts for each task
can prevent forgetting, organizing these experts
effectively remains a challenge. The methods of
organizing multiple models to create a more power-
ful model are commonly called Mixture of Experts
(MoE) (Zhu et al., 2024; Qu et al., 2024). However,
these methods typically operate on a fixed set of
tasks and domains (Lu et al., 2023; Jiang et al.,
2023) and introduce additional routers to manage
the models (Jang et al., 2023; Lu et al., 2024). Ex-
cept for their inefficiency in incremental scenarios,
recent work (Lv et al., 2025) also suggests that the
separations between the router’s decision-making
and experts’ execution may lead to suboptimal ex-
pert selection and ineffective learning.

To this end, we propose a framework referred
to as the Sequential Ensemble of Experts (SEE),
which combines the rehearsal-based method with
MoE. SEE comprises a base model and a sequence
of experts, each proficient in recognizing questions
within its specialized domain and generating pre-
cise responses accordingly. These experts are de-
rived from the base model, such as Llama2, and are
further specialized for specific tasks through LoRA
training. When a new task arrives, SEE combines
the new data with a small subset of instances from
previous tasks, similar to rehearsal-based methods,
and reconstructs the dataset to generate both posi-
tive and negative instances. A new expert is then
trained through supervised fine-tuning (SFT) on
these instances and appended to the end of the ex-
pert sequence. SEE integrates all experts via a
distributed routing mechanism called sequential
routing, as illustrated in Figure 1.

Empirical experiments on task sequences from
the SuperNI dataset show that SEE outperforms
previous rehearsal-based methods and matches or
exceeds multi-task learning (MTL) performance.
Besides, SEE further outperforms rehearsal-based
methods on MMLU (Hendrycks et al., 2021) and
exhibits astonishing knowledge preservation and
out-of-distribution (OOD) generalization ability.
Moreover, when regarded as a single model, the
perplexity of SEE proves lower than MTL on tasks
during continual learning. Additionally, while SEE
uses special indicators to identify a query, our anal-
ysis demonstrates that introducing additional to-
kens as indicators is more efficient than using to-
kens from the vocabulary for constructing indica-
tors. Although SEE can theoretically utilize sam-

ples not included in the continual learning process
to construct negative instances, this would signifi-
cantly degrade routing accuracy, thus highlighting
the essence of rehearsal. Finally, we demonstrate
that the additional latency introduced by sequential
routing is affordable.

2 Preliminaries

Continual Fine-tuning Let M denote the LLM.
The model undergoes continual fine-tuning across
N stages, with each stage i involving updates based
on the instruction dataset D(i) corresponding to
task Ti (Luo et al., 2024). Formally, the update
process at each stage is defined as:

Mi = Update(Mi−1, D
(i)) (1)

where M0 denotes the initial model.

Rehearsal-based Methods As extensively dis-
cussed in the literature (de Masson d’ Autume et al.,
2019; Rolnick et al., 2019), Rehearsal-based meth-
ods involve sampling a subset of instances from
earlier stages to expand the training data for the
current stage. Formally, the augmented training set
is expressed as:

D(t) ∪
t−1∑

i=1

(
τD(i)

)
(2)

where τ denotes the rehearsal ratio, representing
the proportion of training instances sampled from
previous stages. At stage i, the model Mi is up-
dated as follows:

Mi = Update(Mi−1, D
(t) ∪

t−1∑

i=1

(
τD(i)

)
) (3)

The rehearsal-based methods can effectively miti-
gate the issue of catastrophic forgetting in LLMs,
as demonstrated in prior studies (Scialom et al.,
2022; Mok et al., 2023).

3 Methods

In contrast to previous research, our work integrates
the concept of MoE with rehearsal-based methods.
For each task Ti, we assign a specific expert Ei to
handle it. These experts are able to assess whether
a query falls within their scope of responsibility.
If so, they proceed to generate the response. SEE
integrates the experts and the base model through
a process of sequential routing. An overview of
SEE is shown in Figure 2, and it can be divided
into three main steps: (1) Task Reconstruction, (2)
Expert Training, and (3) Inference.

7419



<<neg>>
LoRA

L1 L2 LN-1... LN

Task N̂

Lk

Sequential Routing

<<pos>>

Match Expert Replace
with Lk-1

Sequential Routing
Continue 
Generate

Continual Training Inference

Lk

Query

Expert k

Response
Sequential Routing

Start with Expert N

Task N

Each Sample  from Task N:  
Query +    <<pos>>  +  Response  

             new Response
Task Reconstruction Task N̂

Subset sample from Task 1...N-1:  
Query +     <<neg>>     
              new Response

Generate using the base model

Exception

Figure 2: Overview of the SEE Framework: The SEE framework operates in three steps when a new task is
introduced: (1) Task Reconstruction: Current data are combined with sampled instances from previous tasks to
guide expert routing and responses. (2) SFT: A new expert is trained using a new LoRA on the reconstructed task.
(3) Inference: All experts are integrated into a MoE system through sequential routing, enabling powerful inferences
by leveraging the entire system.

Task Reconstruction At stage i, we reconstruct
each task dataset Di to enable the experts to clarify
their responsibilities. Initially, each sample x in
Di can be represented as a tuple (q, r), where q
is the query and r is the corresponding response.
We transform each x into x̂, which consists of the
tuple (q, opos, r), by adding a special positive indi-
cator opos. Additionally, we sample τ% of the data
from previous tasks, as in rehearsal-based meth-
ods, but ignore the response r and add a negative
indicator oneg. The final constructed D̂i consists
of positive samples {(q, opos, r)j}nj=1 from the cur-
rent task and a small portion of negative samples
{(q, oneg)j}mj=1 from previous tasks:

D̂i = {(q, opos, r)j}nj=1 ∪ {(q, oneg)j}mj=1 (4)

SFT We frame both the decision-making and
generation processes of the experts within the
paradigm of standard supervised fine-tuning. Mul-
tiple LoRA adapters are used as expert weights,
enabling the base model M0 to specialize into task-
specific experts. Starting with the initial model
M0, a new LoRA adapter Li is introduced when-
ever a new task Ti arises. The expert for this task
is represented as E(M0,Li). Next, we obtain the
dataset D̂i and maximize the following optimiza-
tion goal:

max
Li

1

n+m

(
n∑

i=1

E(M0,Li)

(
r(i), o(i)pos | q(i)

)

+
m∑

i=1

E(M0,Li)

(
o(i)neg | q(i)

))

(5)

Given a query, the expert first determines
whether the question falls under its responsibil-
ity and decides whether to provide an answer. By
sequentially ensembling all experts, we can handle
various tasks through sequential routing.

Inference After continuing fine-tuning on
N tasks, we obtain N experts, denoted as
(E(Mθ,L1), . . . , E(Mθ,LN )), where the i-th expert
specializes in task Ti. When a question is posed,
the expert E(Mθ,LN ) generates an indicator to
decide whether to continue generating a response.
If the indicator is oneg, the expert E(Mθ,LN ) stop
generating and routes the query to the expert
E(Mθ,LN−1) We iteratively repeat this process
until an expert generates opos. Once this happens,
the expert is chosen to generate the final response.
If an expert fails to produce an indicator, we route
the query to the base model M0 and let it to
answer the question. This entire routing process
is referred to as Sequential Routing. By applying
sequential routing, we combine all individual
experts into a more powerful model.

4 Experiments

4.1 Setup
The setup of our experiments mainly follows the
paper (Huang et al., 2024).

Dataset Our experiments are conducted using
the SuperNI (Wang et al., 2022) dataset, a com-
prehensive and extensive benchmark designed for
instruction tuning. To simulate a typical contin-
ual learning process, we select a subset of 10 tasks

7420



from SuperNI, representing a range of domains and
tasks. Each task includes 2,000 instances for train-
ing and 500 instances for evaluation. Additional
details can be found in Appendix A or the refer-
enced paper (Huang et al., 2024). For simplicity,
the default continual learning order for the {5, 10}
SuperNI tasks is as follows: QA → QG → SA →
Sum. → Trans. (→ DSG → Expl. → Para. → PE
→ POS).

Base LLMs Following (Huang et al., 2024), we
utilize three base LLMs: Llama-2-7B (Touvron
et al., 2023), Llama-2-7B-Chat (Touvron et al.,
2023), and Alpaca-7B (Taori et al., 2023) in our
experiments. However, we also provide the re-
sults of the latest models, including Llama3.1-8B,
Qwen2.5-7B, and Mistral-7B-v0.3, in Appendix C.

Baselines We primarily compare the SEE method
with the following baselines:

• Multi-task Learning (MTL): The most com-
monly used baseline, where all tasks are
trained simultaneously.

• Average Single-task Learning (AvgSTL):
For each task, AvgSTL trains a dedicated
model and assesses its performance. The final
results are derived by averaging the perfor-
mance across all tasks.

• Non-rehearsal: A naive baseline where the
LLM is fine-tuned with only the instruction
data T (t) at each stage t.

• RandSel(τ ) (Scialom et al., 2022): A baseline
where we randomly sample τ = {1, 10}% of
the original instruction data for each previous
task. As noted in (Scialom et al., 2022), the
capabilities of language models can be effec-
tively preserved with τ = 1%.

Additionally, we include the KmeansSel (Huang
et al., 2024) and SSR (Huang et al., 2024) methods
in our experiments.

Evaluation Metrics Following Huang et al.
(2024), we evaluate LLM performance on Su-
perNI tasks using the ROUGE-L metric (Lin, 2004),
which aligns closely with human evaluation (Wang
et al., 2022). The following ROUGE-L-based met-
rics are selected for our experiments, where a

(i)
t j

denotes the ROUGE-L score for task j at stage i:

• Average ROUGE-L (AR): The average LLM
performance across all T tasks at stage T :

AR =
1

T

T∑

i=1

a
(T )
i (6)

• Backward Transfer (BWT): Assesses the
impact of learning new tasks on previous ones
by comparing final performance a

(T )
i to per-

formance during stage i:

BWT =
1

T − 1

T−1∑

i=1

(a
(T )
i − a

(i)
i ) (7)

Negative BWT indicates catastrophic forget-
ting of previously learned knowledge.

On the other hand, we do not use Forward trans-
fer metric (Lopez-Paz and Ranzato, 2017) to eval-
uate generalization abilities. In our design, this
ability is tied to the base model. Thus, We employ
a different instruction tuning dataset and evaluate
how effectively it can be routed to the base model.

Training Details We set the LoRA rank to 8 and
the dropout rate to 0.1. The Adam optimizer is
used with an initial learning rate of 2× 10−4. The
global batch size is 32 in our all experiments. The
input and output lengths are configured to 1,024
and 512, respectively. Each LLM is trained for 3
epochs, with evaluation conducted using the final
checkpoint.

4.2 Results on 5 SuperNI Tasks
We present the experimental results on five SuperNI
tasks in Table 1. The table clearly demonstrates
that SEE methods consistently outperform previ-
ous rehearsal-based approaches in both AR and
BWT metrics across nearly all model configura-
tions and task sequences, even when only 1% of
queries from previous tasks are retained. More-
over, the additional parameters enable SEE to not
only compete with, but potentially surpass MTL
in the AR metric—traditionally considered the up-
per bound for continual learning in a single LLM.
In contrast, AvgSTL exhibits lower performance
compared to MTL. This trend aligns with previous
research (Caruana, 1997; Ruder, 2017), which sug-
gests that models trained on multiple tasks simulta-
neously can improve generalization and outperform
those trained on tasks in isolation.

While higher BWT scores generally indicate re-
duced catastrophic forgetting, for the SEE model,

7421



Model Order 1 Order 2 Order 3 Avg.

AR BWT AR BWT AR BWT AR BWT

Llama-2-7B

AvgSTL 52.95 - 52.95 - 52.95 - 52.95 -
MTL 53.05 - 53.05 - 53.05 - 53.05 -
Non-rehearsal 17.67 -44.09 15.25 -47.09 24.16 -35.99 19.03 -42.39
RandSel(1%) 51.16 -2.34 49.21 -4.36 48.63 -5.37 49.67 -4.02
KMeansSel(1%) 50.20 -3.12 49.75 -4.11 50.12 -3.61 50.02 -3.61
RandSel(10%) 50.81 -2.32 50.04 -3.31 50.11 -3.42 50.32 -3.02
KMeansSel(10%) 50.44 -3.03 50.61 -2.32 49.89 -3.53 50.31 -2.96
SSR 52.61 -0.23 51.70 -1.22 52.16 -0.93 52.16 -0.79
SEE(1%) 52.86 -0.47 53.19 -0.38 53.37 -0.13 53.14 -0.33
SEE(10%) 53.40 -0.00 52.94 -0.01 53.44 -0.00 53.26 -0.00

Llama-2-7B-chat

AvgSTL 52.13 - 52.13 - 52.13 - 52.13 -
MTL 52.81 - 52.81 - 52.81 - 52.81 -
Non-rehearsal 23.87 -36.31 30.96 -27.41 42.06 -13.50 32.30 -25.74
RandSel(1%) 51.28 -1.96 49.77 -3.70 49.41 -4.29 50.15 -3.32
KMeansSel(1%) 51.82 -1.25 50.71 -2.44 50.22 -3.42 50.92 -2.37
RandSel(10%) 50.59 -2.57 50.72 -2.45 50.24 -2.87 50.52 -2.63
KMeansSel(10%) 50.81 -2.55 51.39 -1.42 50.22 -2.84 50.81 -2.27
SSR 52.52 -0.23 52.49 -0.35 52.73 0.05 52.58 -0.18
SEE(1%) 52.85 -0.09 52.77 -0.04 53.03 -0.05 52.88 -0.06
SEE(10%) 53.13 -0.00 53.15 -0.00 52.93 -0.01 53.07 -0.00

Alpaca-7B

AvgSTL 51.78 - 51.78 - 51.78 - 51.78 -
MTL 52.79 - 52.79 - 52.79 - 52.79 -
Non-rehearsal 17.24 -44.21 45.40 -9.03 35.60 -21.45 32.75 -24.90
RandSel(1%) 51.61 -0.93 49.08 -4.68 49.01 -4.85 49.90 -3.49
KMeansSel(1%) 51.37 -1.53 50.53 -2.68 50.15 -3.17 50.68 -2.46
RandSel(10%) 50.91 -1.82 50.88 -2.11 49.98 -3.59 50.59 -2.51
KMeansSel(10%) 50.78 -2.05 51.20 -1.76 49.76 -3.48 50.58 -2.43
SSR 52.52 -0.14 51.74 -1.21 52.33 -0.51 52.20 -0.62
SEE(1%) 52.50 -0.00 52.71 -0.01 52.44 -0.00 52.55 -0.00
SEE(10%) 52.50 -0.00 52.66 -0.00 52.55 -0.00 52.57 -0.00

Table 1: Final results on 5 SuperNI tasks under 3 types of continual learning orders. More details about task
orders can be found in Appendix B. The results of the latest models, including Llama3.1-8B, Qwen2.5-7B, and
Mistral-7B-v0.3, are presented in Appendix C.

which does not inherently ’forget’ knowledge, they
reflect improved accuracy in routing instances. As
shown in Table 1, even with a limited number of in-
stances from previous tasks, the SEE model demon-
strates its ability to effectively learn to route queries.
This success can be attributed to the distinct pat-
terns often present in the instructions of different
tasks. Consequently, the SEE model proves to be
particularly well-suited for applications in Contin-
ued Fine-tuning.

The value of τ plays a crucial role in both the
performance of each expert within the SEE model
and the extent of forgetting across the entire sys-
tem. As illustrated in Table 1, the BWT values
for the SEE(1%) model are lower than those for
SEE(10%), suggesting that providing a greater
number of instances from previous tasks helps SEE

develop a more effective routing strategy. However,
while SEE(10%) achieves near ’zero forgetting,’ its
AR values do not show as significant an improve-
ment as those of SEE(1%), and in certain cases,
they even experience a slight decline. This indi-
cates that incorporating more instances from previ-
ous tasks may negatively impact the performance
of experts on their respective tasks.

4.3 Results on 10 SuperNI Tasks

We further investigate the performance of SEE in
continuous learning across 10 tasks sequentially,
and the results based on Llama2 are presented in
Table 2. Despite the increase in tasks, the table
shows that SEE outperforms previous rehearsal-
based methods in both AR and BWT metrics. Be-
sides, in the AR metric, SEE(1%) proves to be

7422



Model AR BWT

Llama-2-7b

AvgSTL 65.63 -
MTL 64.69 -
Non-rehearsal 17.33 -53.64
RandSel(1%) 60.64 -5.69
KMeansSel(1%) 60.51 -5.39
RandSel(10%) 61.49 -4.03
KMeansSel(10%) 60.93 -3.90
SSR 63.23 -1.56
SEE (1%) 64.64 -0.56
SEE (10%) 66.19 –0.00

Table 2: Final results for Llama-2-7B on 10 SuperNI
tasks. The results of the latest models are presented in
Appendix C.

qa qg sum trans dsg para
Task Name

20

30

40

50

60

70

R
ou

ge
-L

sa expl pe pos
Task Name

60

70

80

90

100
SEE(10%) MTL AvgSTL

Figure 3: The ROUGE-L scores for SEE (10%), MTL,
and AvgSTL across the 10 SuperNI tasks are presented
in two figures, separated according to the magnitude of
the values for clearer comparison.

competitive with MTL, while SEE(10%) delivers a
1.5% improvement over the MTL baseline.

Comparing the BWT values in Table 1 and Ta-
ble 2, it is evident that increasing the number of
tasks leads to a decrease in the BWT value, indi-
cating a greater challenge in retaining knowledge.
Despite this, SEE(10%) still achieves “zero for-
getting”. It demonstrates the potential of SEE to
effectively extend to continuous learning with a
larger number of tasks.

Figure 3 presents an analysis of the performance
across individual tasks. This figure compares
the ROUGLE-L scores of SEE(10%), MTL, and
AvgSTL. As shown, MTL demonstrates lower per-
formance on the sa and pos tasks, both of which
are classification tasks. This may be due to task
conflicts (Javaloy and Valera, 2022; Mueller et al.,
2022), where learning one task negatively impacts
performance on another. Additionally, SEE(10%)
outperforms AvgSTL in most of the generation
tasks, highlighting that the introduction of routing
capabilities enhances the generative performance
for these tasks.

5 Analysis

Generalization While the SEE model has
demonstrated outstanding performance in tasks
during continuous fine-tuning, it is also essential
to assess its generalization. In our design, the
generalization ability of the SEE depends on two
key factors: the average generalization ability of
the experts and the accuracy with which the SEE
routes out-of-distribution (OOD) queries to the
base model. The former refers to the scenario
where an OOD query is incorrectly routed to an
expert, in which case SEE’s generalization abil-
ity is determined by the average generalization
ability of the experts. The latter reflects SEE’s
ability to correctly identify OOD tasks. To assess
this, we evaluate SEE’s average expert performance
on MMLU (Hendrycks et al., 2021) and the stan-
dard performance of SEE. We compare their per-
formance against that of the base model, MTL, and
RandSel. The experiment is based on Llama-2-7B
and the results are presented in Figure 4.

MTL RandSel(1%) RandSel(10%) SEE(1%)-AE SEE(10%)-AE SEE(10%)
Model

40

41

42

43

44

45

46

47

Ac
cu

ra
cy

(%
)

Llama2-7B

Figure 4: The performance of different methods after
continuous learning of 10 SuperNI tasks on the MMLU
benchmark. SEE(10%)-AE and SEE(1%)-AE represent
the average performance of experts in SEE.

As shown in Figure 4, the base model Mθ

achieves the highest accuracy. The average per-
formance of the experts in SEE is similar to that of
RandSel. However, It is important to consider the
OOD routing accuracy when evaluating the actual
performance of SEE. Specifically, 99.72% of in-
stances are routed to the base model in SEE(10%),
while this percentage is 99.52% in SEE(1%). As
a result, the actual performance of the SEE frame-
work significantly exceeds that of other methods,
demonstrating its superior generalization ability.

Perplexity across 10 SuperNI tasks Treating
SEE as a unified model, we compute the perplex-
ity for each instance (q, r). First, the instance is
transformed into (q, opos, r), where opos represents
a positive indicator. This transformed instance is
then routed to the relevant expert within SEE. Then,

7423



the perplexity is computed by the selected expert.
We evaluate the perplexity of SEE(10%) across 10
SuperNI tasks and compare the results with those
of MTL, which, in other hand, computes the per-
plexity using the original (q, r) pairs. Figure 5 il-
lustrates that SEE achieves lower perplexity across
the 10 SuperNI tasks, highlighting the effectiveness
of the SEE framework.

Impact of τ on Routing and Performance To
further investigate the impact of τ on SEE, we
introduce two additional SEE models with τ values
of 5% and 20% for continuous learning on the 10
SuperNI tasks. We then plot the variations in the
AR metric and F1 score of routing with τ , and the
results are shown in Figure 6.

The figure shows that as τ increases, both the
AR metric and routing accuracy improve steadily.
In particular, SEE(20%) significantly outperforms
both the MTL and AvgSTL methods. Moreover,
SEE(20%) achieves near-perfect routing. A more
detailed analysis of the routing performance for
each task can be found in Appendix D. These re-
sults highlight the efficiency of SEE and its poten-
tial to be extended to a larger number of tasks.

Essence of Rehearsal The SEE framework uti-
lizes sequential routing to ensemble all experts.
Each expert must determine whether a question
falls under its responsibility and decide whether to
produce a response. While SEE samples negative
instances from previous tasks to acquire this capa-
bility, it also brings up the question of whether
using data from unrelated tasks (called pseudo-
negative sampling) could have the same effect. To
test this, following the setup of SEE(10%), we
replace the negative samples from previous tasks
with an equal number of instances from Alpaca-
52k, perform the experiments on the 10 SuperNI
tasks setup, and compare their performance before
and after the changes. Since the performance of

20 40 60 80 100
Perplexity

0.00

0.01

0.02

0.03

0.04

Pr
op

or
tio

n

model
SEE(10%)
MTL

Figure 5: Comparison of the perplexity distribution
between SEE and MTL across 10 SuperNI tasks.

1% 5% 10% 20%
SEE ratio %

65.0

65.5

66.0

66.5

AR

Methods
SEE
MTL
AvgSTL

1% 5% 10% 20%
SEE ratio %

98.6

98.8

99.0

99.2

99.4

99.6

99.8

Av
g.

 F
1-

sc
or

e(
%

)

Figure 6: Impact of τ on SEE: The left plot shows how
the AR metric increases as τ grows, while the right
illustrates the improvement in routing accuracy.

SEE on OOD data mainly depends on the accuracy
of instance routing to the base model (RB-Acc.),
we evaluate the two versions of SEE on MMLU
using this metric.

Model MMLU SuperNI

RB-Acc. AR R-F1(%)

SEE(10%) 99.72 66.19 99.80
- w/pseudo 99.57 46.40 47.22

Table 3: Performance comparison of SEE and SEE with
pseudo-Negative sampling.

Table 3 compares SEE(10%) and its pseudo-
negative sampling variant on the MMLU and 10
SuperNI tasks, using the Llama2-7B model. It
shows that, without instances from previous tasks,
the F1-score of routing (R-F1) drops significantly,
leading to a substantial degradation in the AR met-
ric. However, the performance of MMLU remains
unchanged. These findings highlight the impor-
tance of rehearsal for SEE when solving tasks in
continuous fine-tuning sequences.

Special token indicators While the SEE frame-
work introduces additional tokens as special indi-
cators, we further investigate whether these can be
replaced with in-vocabulary tokens. To explore this,
we propose two variants of special indicators: 1) Se-
mantic Indicators, and 2) Non-Semantic Indicators.
Semantic indicators are tokens that carry specific
semantic meaning, whereas non-semantic indica-
tors lack such meaning. In this experiment, we
use "Yes" and "No" as semantic indicators, while
"«pos»" and "«neg»" serve as non-semantic indica-
tors. We evaluate the performance of these variants
on 10 SuperNI tasks. To further explore the impact
of indicator type, we categorize the 10 tasks into
two groups: Generation and Classification. As be-
fore, we set τ to 10% and use Llama2 as the base
model. The results are presented in Table 4.

7424



Indicator Type Generation Classification

AR Acc.(%)

Additional 58.62 98.25
No-Semantic 58.61 97.25
Semantic 58.41 95.05

Table 4: The performance of SEE(10%) based on
Llama2-7B across three indicator types in the 10 Su-
perNI tasks. The tasks are categorized into Generation
and Classification.

The table shows that indicator type primarily af-
fects the performance of classification tasks, with
minimal impact on generation tasks. In classifica-
tion, the SEE framework with a semantic indicator
yields the lowest accuracy, while SEE with a no-
semantic indicator also performs worse than when
additional indicators are used. Therefore, introduc-
ing new special tokens as indicators to the vocabu-
lary proves more effective for the SEE framework.

The Advantages of Combining Generation and
Routing Compared to using encoder-only mod-
els as routers, the expert in SEE framework excels
in handling OOD scenarios. When a query does not
correspond to a specific learning task, the experts
typically avoid generating a specialized indicator.
In such cases, SEE directs the query to the base
model, regarded as the most generalized model in
the system. Furthermore, this base model can be
substituted with more powerful models, further im-
proving the overall generalization capability of the
SEE framework. This approach, however, is not
feasible with encoder-only models such as BERT.
Moreover, integrating both generation and routing
within a single expert not only reduces the parame-
ter count but also streamlines the training pipeline,
resulting in a more efficient and compact solution.

Extra Overhead of SEE While the sequential
routing of SEE introduces additional overhead, we
demonstrate that this cost remains entirely afford-
able. To quantify this, we calculate the additional
latency introduced by the SEE framework com-
pared to standard LLMs. It can be expressed as:

ExtraOverhead =
1

2
× 1

1 + N
M−1 × TPOT

TTFT

(8)

where TTFT denotes the Time to First Token,
representing the initial prefix processing latency;
TPOT is the Time Per Output Token, the average
time required to generate each token; N is the total
number of output tokens; and M is the number of
experts.

As shown in previous work (Zhong et al., 2024),
when serving an LLM with 13B parameters under
a synthetic workload with an input length of 512
and an output length of N = 64 on an NVIDIA
A100 (80GB), the ratio TPOT/TTFT is approxi-
mately 1/10. Assuming the presence of M = 10
experts, the additional overhead introduced by SEE
is approximately 0.29.

Even with a long input prefix and a short re-
sponse, this results in only 0.29 additional latency.
As the output length increases, this latency over-
head can be reduced to a very low level. For in-
stance, when the output length equals the input
length (e.g., 512 tokens), the ratio TPOT/TTFT
exceeds 1/10, and the additional overhead drops
to less than 0.075. In many real-world scenar-
ios, LLMs typically generate outputs significantly
longer than the input, the relative overhead in-
troduced by SEE can be expected to further de-
crease. The detailed calculations can be found in
Appendix E.

6 Related Work

Continue learning Existing approaches to con-
tinue learning can be divided into regularization-
based, architecture-based, and rehearsal-based
methods. Regularization-based methods constrain
the inner distribution of LLMs to remain close to
the original state by adding auxiliary loss or con-
trolling parameter updates (Kirkpatrick et al., 2017;
Cha et al., 2021; Huang et al., 2021; Zhang et al.,
2022). However, these methods require manually
tuned hyperparameters, limiting their applicabil-
ity. Rehearsal-based methods maintain a history
buffer with a subset of previous datasets (de Mas-
son d’ Autume et al., 2019; Rolnick et al., 2019) or
synthetic instances (Huang et al., 2024), replayed
during future training. While effective at mitigating
catastrophic forgetting, they cannot fully preserve
prior knowledge. Architecture-based methods in-
troduce new parameters for each dataset and learn
them independently, potentially avoiding knowl-
edge loss (Xu and Zhu, 2018; Huang et al., 2019;
Razdaibiedina et al., 2023). However, managing
these additional parameters remains challenging.
In our framework, we use rehearsal with queries
from previous tasks and organize additional param-
eters as expert weights, selecting them via sequen-
tial routing.

Mixture of experts The basic concept of MoE
involves assembling an ensemble of experts to im-

7425



prove performance (Jacobs et al., 1991; Jordan
and Jacobs, 1994). Prior work on expert ensem-
bles primarily focuses on fixed domains, tasks,
and experts, achieving strong results (Lu et al.,
2023; Jiang et al., 2023), but these methods are
ill-suited for incremental scenarios or require addi-
tional routers (Jang et al., 2023). Furthermore, (Lv
et al., 2025) highlights the overlooked issue that
separating the router’s decision-making from the
experts’ execution may lead to suboptimal expert
selection and ineffective learning. Recently, MoE
has been applied to transformer architectures (Dai
et al., 2024; Jiang et al., 2024), with models pro-
posed to mitigate catastrophic forgetting. Building
on GLaM (Du et al., 2022), Lifelong MoE (Chen
et al., 2023) expands experts incrementally while
freezing previous ones. Some studies replace the
standard MoE layer with LoRA-MoE for model
editing (Yang et al., 2024; Wang and Li, 2024)
or to retain world knowledge in multi-task learn-
ing (Dou et al., 2024). However, these methods
still struggle with catastrophic forgetting during
continual fine-tuning. Our method, based on the
MoE concept, sequentially assembles experts in
continual fine-tuning, eliminating the need for an
additional router and introducing a distributed rout-
ing mechanism called sequential routing.

7 Conclusion

In this work, we propose the Sequential Ensemble
of Experts (SEE), which is specifically designed to
adapt to continuous fine-tuning. SEE resolves the
separation between the router’s decision-making
and the experts’ execution by integrating routing
and response mechanisms within each expert. It
employs a distributed routing method called se-
quential routing, improving the system’s scalability.
Our experiments demonstrate SEE’s effectiveness
in handling both continual learning tasks and out-
of-distribution instances, paving the way for future
advancements in distributed model ensembling.

Limitations

While SEE demonstrates remarkable performance
in continual fine-tuning, the increasing number of
parameters as the task count grows calls for further
consideration. Additionally, similar to rehearsal-
based approaches, the volume of rehearsal data also
expands proportionally with the number of tasks.
These challenges are not unique to SEE and have
been acknowledged by other methods, underscor-

ing the necessity for continued advancements in
this area. Finally, this work does not consider large
reasoning models (OpenAI; Guo et al., 2025; Yan
et al., 2025), which exhibit distinct behaviors that
contribute to improved performance.

Acknowledgement

We extend our gratitude to all the reviewers for their
valuable feedback and suggestions, which greatly
contributed to enhancing the quality of the paper.
This work was supported by the Shanghai Artificial
Intelligence Laboratory. We sincerely appreciate
their support andresources, which contributed to
the successful completion ofthis research.

References
Rich Caruana. 1997. Multitask learning. Machine

learning, 28:41–75.

Sungmin Cha, Hsiang Hsu, Taebaek Hwang, Flavio P.
Calmon, and Taesup Moon. 2021. CPR: Classifier-
Projection Regularization for Continual Learning.
ArXiv:2006.07326 [cs].

Wuyang Chen, Yanqi Zhou, Nan Du, Yanping Huang,
James Laudon, Zhifeng Chen, and Claire Cu. 2023.
Lifelong Language Pretraining with Distribution-
Specialized Experts. ArXiv:2305.12281 [cs].

Damai Dai, Chengqi Deng, Chenggang Zhao, R. X.
Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li,
Panpan Huang, Fuli Luo, Chong Ruan, Zhifang Sui,
and Wenfeng Liang. 2024. DeepSeekMoE: Towards
Ultimate Expert Specialization in Mixture-of-Experts
Language Models. ArXiv:2401.06066.

Cyprien de Masson d’ Autume, Sebastian Ruder, Ling-
peng Kong, and Dani Yogatama. 2019. Episodic
Memory in Lifelong Language Learning. In Ad-
vances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Wei
Shen, Limao Xiong, Yuhao Zhou, Xiao Wang, Zhi-
heng Xi, Xiaoran Fan, Shiliang Pu, Jiang Zhu, Rui
Zheng, Tao Gui, Qi Zhang, and Xuanjing Huang.
2024. LoRAMoE: Alleviating World Knowledge
Forgetting in Large Language Models via MoE-Style
Plugin. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1932–1945, Bangkok,
Thailand. Association for Computational Linguistics.

Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong,
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,
Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret
Zoph, Liam Fedus, Maarten Bosma, Zongwei Zhou,
Tao Wang, Yu Emma Wang, Kellie Webster, Marie

7426

https://doi.org/10.48550/arXiv.2006.07326
https://doi.org/10.48550/arXiv.2006.07326
http://arxiv.org/abs/2305.12281
http://arxiv.org/abs/2305.12281
http://arxiv.org/abs/2401.06066
http://arxiv.org/abs/2401.06066
http://arxiv.org/abs/2401.06066
https://proceedings.neurips.cc/paper_files/paper/2019/hash/f8d2e80c1458ea2501f98a2cafadb397-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/f8d2e80c1458ea2501f98a2cafadb397-Abstract.html
https://doi.org/10.18653/v1/2024.acl-long.106
https://doi.org/10.18653/v1/2024.acl-long.106
https://doi.org/10.18653/v1/2024.acl-long.106


Pellat, Kevin Robinson, Kathleen Meier-Hellstern,
Toju Duke, Lucas Dixon, Kun Zhang, Quoc V. Le,
Yonghui Wu, Zhifeng Chen, and Claire Cui. 2022.
GLaM: Efficient Scaling of Language Models with
Mixture-of-Experts. ArXiv:2112.06905.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, et al. 2025. Deepseek-r1: Incentiviz-
ing reasoning capability in llms via reinforcement
learning.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language
understanding. Proceedings of the International Con-
ference on Learning Representations (ICLR).

Jianheng Huang, Leyang Cui, Ante Wang, Chengyi
Yang, Xinting Liao, Linfeng Song, Junfeng Yao, and
Jinsong Su. 2024. Mitigating Catastrophic Forgetting
in Large Language Models with Self-Synthesized Re-
hearsal. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1416–1428, Bangkok,
Thailand. Association for Computational Linguistics.

Shenyang Huang, Vincent François-Lavet, and Guil-
laume Rabusseau. 2019. Neural Architecture Search
for Class-incremental Learning. ArXiv:1909.06686
[cs].

Yufan Huang, Yanzhe Zhang, Jiaao Chen, Xuezhi
Wang, and Diyi Yang. 2021. Continual Learning
for Text Classification with Information Disentan-
glement Based Regularization. ArXiv:2104.05489
[cs].

Robert Jacobs, Michael Jordan, Steven Nowlan, and
Geoffrey Hinton. 1991. Adaptive mixtures of local
experts. Neural Computation, 3:79–87.

Joel Jang, Seungone Kim, Seonghyeon Ye, Doyoung
Kim, Lajanugen Logeswaran, Moontae Lee, Kyung-
jae Lee, and Minjoon Seo. 2023. Exploring the Ben-
efits of Training Expert Language Models over In-
struction Tuning. ArXiv:2302.03202 [cs].

Adrián Javaloy and Isabel Valera. 2022. Rotograd: Gra-
dient homogenization in multitask learning. In Inter-
national Conference on Learning Representations.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lam-
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2024. Mix-
tral of Experts. ArXiv:2401.04088.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. 2023.
LLM-Blender: Ensembling Large Language Mod-
els with Pairwise Ranking and Generative Fusion.
ArXiv:2306.02561 [cs].

Michael I Jordan and Robert A Jacobs. 1994. Hierarchi-
cal mixtures of experts and the em algorithm. Neural
computation, 6(2):181–214.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A. Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, Demis Hassabis, Clau-
dia Clopath, Dharshan Kumaran, and Raia Hadsell.
2017. Overcoming catastrophic forgetting in neural
networks. Proceedings of the National Academy of
Sciences, 114(13):3521–3526. Publisher: Proceed-
ings of the National Academy of Sciences.

Yafu Li, Xuyang Hu, Xiaoye Qu, Linjie Li, and
Yu Cheng. 2025. Test-time preference optimization:
On-the-fly alignment via iterative textual feedback.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

David Lopez-Paz and Marc’Aurelio Ranzato. 2017.
Gradient episodic memory for continual learning. Ad-
vances in neural information processing systems, 30.

Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin,
Zheng Yuan, Chang Zhou, and Jingren Zhou.
2023. Routing to the Expert: Efficient Reward-
guided Ensemble of Large Language Models.
ArXiv:2311.08692 [cs].

Zhenyi Lu, Chenghao Fan, Wei Wei, Xiaoye Qu, Dan-
gyang Chen, and Yu Cheng. 2024. Twin-merging:
Dynamic integration of modular expertise in model
merging. Advances in Neural Information Process-
ing Systems, 37:78905–78935.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou,
and Yue Zhang. 2024. An Empirical Study of Catas-
trophic Forgetting in Large Language Models During
Continual Fine-tuning. ArXiv:2308.08747.

Ang Lv, Ruobing Xie, Yining Qian, Songhao Wu,
Xingwu Sun, Zhanhui Kang, Di Wang, and Rui Yan.
2025. Autonomy-of-experts models.

Jisoo Mok, Jaeyoung Do, Sungjin Lee, Tara Taghavi,
Seunghak Yu, and Sungroh Yoon. 2023. Large-scale
lifelong learning of in-context instructions and how to
tackle it. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 12573–12589, Toronto,
Canada. Association for Computational Linguistics.

David Mueller, Nicholas Andrews, and Mark Dredze.
2022. Do text-to-text multi-task learners suffer from
task conflict? In Findings of the Association for Com-
putational Linguistics: EMNLP 2022, pages 2843–
2858, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

7427

http://arxiv.org/abs/2112.06905
http://arxiv.org/abs/2112.06905
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948
https://doi.org/10.18653/v1/2024.acl-long.77
https://doi.org/10.18653/v1/2024.acl-long.77
https://doi.org/10.18653/v1/2024.acl-long.77
https://doi.org/10.48550/arXiv.1909.06686
https://doi.org/10.48550/arXiv.1909.06686
https://doi.org/10.48550/arXiv.2104.05489
https://doi.org/10.48550/arXiv.2104.05489
https://doi.org/10.48550/arXiv.2104.05489
https://doi.org/10.1162/neco.1991.3.1.79
https://doi.org/10.1162/neco.1991.3.1.79
https://doi.org/10.48550/arXiv.2302.03202
https://doi.org/10.48550/arXiv.2302.03202
https://doi.org/10.48550/arXiv.2302.03202
https://openreview.net/forum?id=T8wHz4rnuGL
https://openreview.net/forum?id=T8wHz4rnuGL
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2401.04088
https://doi.org/10.48550/arXiv.2306.02561
https://doi.org/10.48550/arXiv.2306.02561
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
http://arxiv.org/abs/2501.12895
http://arxiv.org/abs/2501.12895
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.48550/arXiv.2311.08692
https://doi.org/10.48550/arXiv.2311.08692
http://arxiv.org/abs/2308.08747
http://arxiv.org/abs/2308.08747
http://arxiv.org/abs/2308.08747
http://arxiv.org/abs/2501.13074
https://doi.org/10.18653/v1/2023.acl-long.703
https://doi.org/10.18653/v1/2023.acl-long.703
https://doi.org/10.18653/v1/2023.acl-long.703
https://aclanthology.org/2022.findings-emnlp.206
https://aclanthology.org/2022.findings-emnlp.206


OpenAI. Introducing openai o3 and o4-
mini. https://openai.com/index/
introducing-o3-and-o4-mini/.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button,
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany
Carey, Chelsea Carlson, Rory Carmichael, Brooke
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben
Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai,
Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Ful-
ford, Leo Gao, Elie Georges, Christian Gibson, Vik
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott
Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-
man, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-

ell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,
Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin
Sokolowsky, Yang Song, Natalie Staudacher, Fe-
lipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret
Zoph. 2024. Gpt-4 technical report.

Xiaoye Qu, Daize Dong, Xuyang Hu, Tong Zhu,
Weigao Sun, and Yu Cheng. 2024. Llama-moe
v2: Exploring sparsity of llama from perspective of
mixture-of-experts with post-training. arXiv preprint
arXiv:2411.15708.

Xiaoye Qu, Yafu Li, Zhaochen Su, Weigao Sun, Jianhao
Yan, Dongrui Liu, Ganqu Cui, Daizong Liu, Shux-
ian Liang, Junxian He, et al. 2025. A survey of
efficient reasoning for large reasoning models: Lan-
guage, multimodality, and beyond. arXiv preprint
arXiv:2503.21614.

Anastasia Razdaibiedina, Yuning Mao, Rui Hou, Ma-
dian Khabsa, Mike Lewis, and Amjad Almahairi.
2023. Progressive Prompts: Continual Learning for
Language Models. ArXiv:2301.12314 [cs].

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timo-
thy P. Lillicrap, and Greg Wayne. 2019. Experience
Replay for Continual Learning. ArXiv:1811.11682
[cs].

Sebastian Ruder. 2017. An overview of multi-task learn-
ing in deep neural networks.

Thomas Scialom, Tuhin Chakrabarty, and Smaranda
Muresan. 2022. Fine-tuned language models are
continual learners. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 6107–6122, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Haizhou Shi, Zihao Xu, Hengyi Wang, Weiyi Qin,
Wenyuan Wang, Yibin Wang, Zifeng Wang, Sayna

7428

https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
http://arxiv.org/abs/2303.08774
https://doi.org/10.48550/arXiv.2301.12314
https://doi.org/10.48550/arXiv.2301.12314
https://doi.org/10.48550/arXiv.1811.11682
https://doi.org/10.48550/arXiv.1811.11682
http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1706.05098
https://doi.org/10.18653/v1/2022.emnlp-main.410
https://doi.org/10.18653/v1/2022.emnlp-main.410


Ebrahimi, and Hao Wang. 2024. Continual Learn-
ing of Large Language Models: A Comprehensive
Survey. ArXiv:2404.16789.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models.

Renzhi Wang and Piji Li. 2024. LEMoE: Advanced
Mixture of Experts Adaptor for Lifelong Model Edit-
ing of Large Language Models. In Proceedings of
the 2024 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2551–2575, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo-
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva
Naik, Arjun Ashok, Arut Selvan Dhanasekaran,
Anjana Arunkumar, David Stap, Eshaan Pathak,
Giannis Karamanolakis, Haizhi Lai, Ishan Puro-
hit, Ishani Mondal, Jacob Anderson, Kirby Kuznia,
Krima Doshi, Kuntal Kumar Pal, Maitreya Patel,
Mehrad Moradshahi, Mihir Parmar, Mirali Purohit,
Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma,
Ravsehaj Singh Puri, Rushang Karia, Savan Doshi,
Shailaja Keyur Sampat, Siddhartha Mishra, Sujan
Reddy A, Sumanta Patro, Tanay Dixit, and Xudong
Shen. 2022. Super-NaturalInstructions: Generaliza-
tion via declarative instructions on 1600+ NLP tasks.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5085–5109, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Tongtong Wu, Linhao Luo, Yuan-Fang Li, Shirui Pan,
Thuy-Trang Vu, and Gholamreza Haffari. 2024. Con-
tinual Learning for Large Language Models: A Sur-
vey. ArXiv:2402.01364 [cs].

Ju Xu and Zhanxing Zhu. 2018. Reinforced Continual
Learning. ArXiv:1805.12369 [cs].

Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu
Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang. 2025.
Learning to reason under off-policy guidance.

Shu Yang, Muhammad Asif Ali, Cheng-Long Wang,
Lijie Hu, and Di Wang. 2024. MoRAL: MoE
Augmented LoRA for LLMs’ Lifelong Learning.
ArXiv:2402.11260 [cs].

Han Zhang, Sheng Zhang, Yang Xiang, Bin Liang, Jin-
song Su, Zhongjian Miao, Hui Wang, and Ruifeng
Xu. 2022. CLLE: A Benchmark for Continual Lan-
guage Learning Evaluation in Multilingual Machine

Translation. In Findings of the Association for Com-
putational Linguistics: EMNLP 2022, pages 428–
443, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Zihan Zhang, Meng Fang, Ling Chen, and Mohammad-
Reza Namazi-Rad. 2023. CITB: A Benchmark for
Continual Instruction Tuning. In Findings of the
Association for Computational Linguistics: EMNLP
2023, pages 9443–9455, Singapore. Association for
Computational Linguistics.

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu,
Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao Zhang.
2024. Distserve: Disaggregating prefill and decoding
for goodput-optimized large language model serving.

Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan,
Jingqi Tong, Conghui He, and Yu Cheng. 2024.
Llama-moe: Building mixture-of-experts from llama
with continual pre-training. In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing, pages 15913–15923.

A Details of the Selected 10 SuperNI
Tasks

Table 8 provides an overview of the 10 SuperNI
tasks selected for our primary experiments. To sim-
plify the discussion, we use abbreviations to refer
to these tasks throughout the paper. The SuperNI
dataset can be accessed at https://github.com/
allenai/natural-instructions for further ref-
erence.

B More Details of Experiments on 5
SuperNI Tasks

We assess the performance of various methods
across 5 SuperNI tasks, each with different con-
tinuous fine-tuning sequences. Table 5 outlines
the 3 specific continual learning orders for the five
SuperNI tasks used in our experiments.

Order Task Sequence

1 QA → QG → SA → Sum. → Trans.
2 Trans. → SA → QA → Sum. → QG
3 Sum. → QG → Trans. → QA → SA

Table 5: Continual learning orders on 5 SuperNI tasks.

C Results of the Latest Models

To demonstrate the efficiency of our method on
the latest models, we present the AR scores of the
Qwen2.5-7B, Mistral-7B-v0.3, and Llama3.1-8B
models. We evaluate them in both 5-task and 10-
task settings, with the results shown in Table 6 and
Table 7.

7429

http://arxiv.org/abs/2404.16789
http://arxiv.org/abs/2404.16789
http://arxiv.org/abs/2404.16789
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://doi.org/10.18653/v1/2024.emnlp-main.149
https://doi.org/10.18653/v1/2024.emnlp-main.149
https://doi.org/10.18653/v1/2024.emnlp-main.149
https://doi.org/10.18653/v1/2022.emnlp-main.340
https://doi.org/10.18653/v1/2022.emnlp-main.340
http://arxiv.org/abs/2402.01364
http://arxiv.org/abs/2402.01364
http://arxiv.org/abs/2402.01364
https://doi.org/10.48550/arXiv.1805.12369
https://doi.org/10.48550/arXiv.1805.12369
http://arxiv.org/abs/2504.14945
https://doi.org/10.48550/arXiv.2402.11260
https://doi.org/10.48550/arXiv.2402.11260
https://doi.org/10.18653/v1/2022.findings-emnlp.30
https://doi.org/10.18653/v1/2022.findings-emnlp.30
https://doi.org/10.18653/v1/2022.findings-emnlp.30
https://doi.org/10.18653/v1/2023.findings-emnlp.633
https://doi.org/10.18653/v1/2023.findings-emnlp.633
http://arxiv.org/abs/2401.09670
http://arxiv.org/abs/2401.09670
https://github.com/allenai/natural-instructions
https://github.com/allenai/natural-instructions


Methods Llama3.1-8B Mistral-7B-v0.3 Qwen2.5-7B
Base Instruct Base Instruct Base Instruct

AvgSTL 51.64 52.19 52.38 51.96 51.37 51.43
MTL 51.67 51.92 51.77 52.33 51.38 51.38
SEE(1%) 51.97 52.05 51.48 51.76 51.19 51.65
SEE(10%) 52.14 52.30 51.74 52.31 51.36 51.80

Table 6: AR results of the latest models on five SuperNI tasks in the default order.

Methods Llama3.1-8B Mistral-7B-v0.3 Qwen2.5-7B
Base Instruct Base Instruct Base Instruct

AvgSTL 65.43 65.49 65.77 65.74 64.34 64.67
MTL 65.84 65.54 65.43 65.06 64.62 64.77
SEE(1%) 65.36 65.59 65.80 65.85 64.68 64.94
SEE(10%) 65.68 65.55 65.76 65.86 64.85 64.80

Table 7: AR results of the latest models on ten SuperNI tasks.

D Impact of τ on SEE

We conduct a comprehensive evaluation of the in-
fluence of various values of τ on the performance
of our SEE framework across 10 distinct SuperNI
tasks. The detailed routing F1-scores for each
model on every task are presented in Figure 7, offer-
ing a thorough analysis of the model’s performance
under different configurations.

qa qg sa sum trans
Task Name

96

98

100

F1
-S

co
re

SEE(1%)
SEE(5%)

SEE(10%)
SEE(20%)

dsg expl para pe pos
Task Name

96

98

100

F1
-S

co
re

Figure 7: Details of the F1-score for each task on 10
SuperNI tasks.

E Extra Overhead Analysis

Although the increase in the number of tasks intro-
duces additional computational overhead, this extra
cost is still affordable. To demonstrate this, we cal-
culate the additional latency of the SEE framework
compared to LLMs. The latency of LLMs is given
by:

Latency0 = TTFT + TPOT ×N

where:

• TTFT is the Time to First Token (the initial
prefix latency),

• TPOT is the Time Per Output Token (the
average time per output token),

• N is the number of output tokens.

In the SEE framework, extra latency is intro-
duced due to multiple prefixing operations. Sup-
pose we have M experts, labeled as 1, 2, . . . , M.
Assuming the probability of a query hitting any ex-
pert or being out-of-distribution (OOD) is uniform,
we define X as the random variable representing
the query routing results.

X 1 2 . . . M Exception
P 1

M+1
1

M+1 . . . 1
M+1

1
M+1

To route to Experti, i prefixing operations are
required. Additionally, exceptions may occur in
each expert, which causes the expected number of
routing steps to be (1 +M)/2. Therefore, the ex-
pected number of routing steps for the SEE frame-
work can be calculated as:

E[X] =
M∑

i=1

1

M + 1
× i+

1

M + 1
× 1 +M

2

7430



Simplifying this, we get:

E[X] =
M

2
+

1

2
=

M + 1

2

Thus, the latency for the SEE framework is:

Latency1 = TTFT × M + 1

2
+ TPOT ×N

Now, we can calculate the extra overhead as:

ExtraOverhead =
Latency1 − Latency0

Latency0

Substituting the expressions for Latency1 and
Latency0, we get:

ExtraOverhead =
TTFT × M−1

2

TTFT + TPOT ×N

This simplifies to:

ExtraOverhead =
1

2
× 1

1 + N
M−1 × TPOT

TTFT

As shown in (Zhong et al., 2024), when serv-
ing an LLM with 13B parameters under a syn-
thetic workload with input length = 512 and output
length N = 64 on an NVIDIA 80GB A100, the ratio
TPOT/TTFT approximates 1/10. Assuming we
have M = 10 experts, the extra overhead is:

ExtraOverhead =
1

2
× 1

1 + 64
10−1 × 1

10

= 0.29

Even with a long input prefix and a short re-
sponse, this results in only 0.29 additional latency
compared to traditional LLMs.

When the output length increases, this latency
can be reduced to a very low level. For example,
when the output length is equal to the input length
(e.g., 512 tokens), the ratio of TPOT/TTFT ex-
ceeds 1/10, and the additional overhead is:

ExtraOverhead <
1

2
× 1

1 + 512
10−1 × 1

10

= 0.075

7431



Abbr. Category Name NLU task

QA Question Answering task024_cosmosqa_answer_generation -
QG Question Generation task074_squad1.1_question_generation -
SA Sentiment Analysis task1312_amazonreview_polarity_classification +
Sum. Summarization task511_reddit_tifu_long_text_summarization -
Trans. Translation task1219_ted_translation_en_es -
DSG Dialogue Sentence Generation task574_air_dialogue_sentence_generation -
Expl. Explanation task192_hotpotqa_sentence_generation -
Para. Paraphrasing task177_para-nmt_paraphrasing -
POS POS Tagging task346_hybridqa_classification +
PE Program Execution task064_all_elements_except_first_i -

Table 8: Details of the selected 10 SuperNI tasks.

7432


