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Abstract

Mental health is increasingly critical in contem-
porary healthcare, with psychotherapy demand-
ing dynamic, context-sensitive interactions that
traditional NLP methods struggle to capture.
Large Language Models (LLMs) offer signif-
icant potential for addressing this gap due to
their ability to handle extensive context and
multi-turn reasoning. This review introduces a
conceptual taxonomy dividing psychotherapy
into interconnected stages–assessment, diagno-
sis, and treatment–to systematically examine
LLM advancements and challenges. Our com-
prehensive analysis reveals imbalances in cur-
rent research, such as a focus on common dis-
orders, linguistic biases, fragmented methods,
and limited theoretical integration. We identify
critical challenges including capturing dynamic
symptom fluctuations, overcoming linguistic
and cultural biases, and ensuring diagnostic
reliability. Highlighting future directions, we
advocate for continuous multi-stage modeling,
real-time adaptive systems grounded in psycho-
logical theory, and diversified research cover-
ing broader mental disorders and therapeutic
approaches, aiming toward more holistic and
clinically integrated psychotherapy LLMs sys-
tems.

1 Introduction

Mental health plays an increasingly critical role
in current healthcare and social well-being. The
high prevalence of common psychological disor-
ders, such as depression and anxiety, has led to
a growing demand for accessible and effective
psychotherapy. The core of psychotherapy re-
sides in dynamic, contextual interpersonal inter-
actions—therapists should continuously assess and
adjust their intervention strategies (Wampold and
Imel, 2015) based on patients’ emotional fluctua-
tions, verbal expressions, and social backgrounds,
fostering a strong therapeutic alliance (Stubbe,
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Figure 1: The dynamic and interrelated network among
assessment, diagnosis, and treatment in psychotherapy.

2018) to achieve symptom resilience. This deep
and flexible process contrasts sharply with tradi-
tional NLP, which is typically limited to static or
single-task settings.

Large language models (LLMs) offer a new per-
spective to addressing this challenge. By leverag-
ing their capability to model extensive context and
perform multi-turn reasoning (Wang et al., 2024f;
Li et al., 2024b), LLMs can capture rich seman-
tics and emotional signals in dialogues (Ma et al.,
2025), enabling end-to-end language understand-
ing and generation (Wang et al., 2024c; Qian et al.,
2024). In assessment, LLMs can extract potential
symptom cues from vague and fragmented expres-
sions (Tu et al., 2024; Qiu et al., 2024). During di-
agnosis, they integrate subjective and objective pa-
tient information across multiple utterances (Chen
et al., 2023a; Ren et al., 2024). In therapeutic inter-
ventions, they adapt conversational strategies based
on patients’ real-time feedback, enabling more flex-
ible and human-like interactions compared to tra-
ditional scripted systems (Lee et al., 2024b,d). As
a result, LLMs have the potential to surpass the
conventional “discrete label recognition” paradigm,
evolving toward a model of continuous, progressive
clinical reasoning, enabling seamless connections
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across assessment, diagnosis, and treatment, align-
ing more closely with therapists’ cognitive process
and interaction flow.

However, existing research on applying LLMs
in this field remains somewhat fragmented. Many
studies have utilized LLMs for isolated tasks, such
as depression detection (Yang et al., 2023; Bao
et al., 2024) or diagnosis (Jiang et al., 2024c), re-
garding them as superior feature extractors. An-
other research line has focused on developing men-
tal health counseling chatbots (Chen et al., 2023b;
Zhang et al., 2024); however, these systems remain
limited to partial assistance due to insufficient in-
tegration with clinical workflows. In other words,
although LLMs hold the potential to span the entire
continuum from assessment to intervention, they
remain limited by the fragmented paradigms of
traditional NLP, preventing them from fully lever-
aging their dynamic, contextual capabilities.

To address these gaps, we introduce the first con-
ceptual taxonomy that divides the psychotherapy
process into three interconnected dimensions: As-
sessment, Diagnosis, and Treatment, and system-
atically review recent advancements and critical
challenges of applying LLMs at each stage. We
provide an extensive analysis of the current land-
scape from multiple perspectives, including the
distribution of research across different psychother-
apy stages, the coverage of mental disorders, the
diversity of linguistic resources, and the incorpo-
ration of psychotherapy theories. Moreover, we
critically evaluate the fragmented nature of exist-
ing approaches, highlighting the inadequacies in
capturing dynamic symptom representations, the
inherent limitations due to linguistic resource bi-
ases and problematic translations, and the diagnos-
tic risks affecting clinical acceptance. Building on
these findings, we outline essential future direc-
tions, emphasizing the need for continuous multi-
stage modeling for coherent patient state tracking,
real-time adaptability grounded explicitly in psy-
chological theory, and a broadened scope of mental
disorders and therapeutic frameworks. Through
this comprehensive review, we aim to offer detailed
methodological insights, guiding future research ef-
forts and facilitating the practical, continuous, and
theoretically-grounded integration of LLMs across
the full spectrum of psychotherapy.

Organization of This Survey. We present the
first comprehensive survey of recent advancements
in applying LLMs to psychotherapy. We introduce

a conceptual taxonomy that organizes psychother-
apy into three core components—Assessment, Di-
agnosis, and Treatment—and details their dynamic
interrelations (Section §2). We review how LLMs
are applied within these components, highlighting
their roles in facilitating assessments, refining di-
agnostic processes, and enhancing treatment strate-
gies (Section §3). We examine current research
trends, including symptom and language coverage
as well as the distribution of various models and
techniques (Section §4). Finally, we discuss open
challenges and outline promising directions for fu-
ture work (Section §5).

2 Conceptual Taxonomy

To establish a standardized framework for under-
standing psychotherapy, we propose a hierarchical
taxonomy aligned with the American Psycholog-
ical Association (APA)’s tripartite model of psy-
chotherapeutic processes1. As illustrated in Fig-
ure 1, this taxonomy organizes psychotherapy into
three core components: (1) Assessment, (2) Diag-
nosis, and (3) Treatment, with dynamic intercon-
nections2. Each component is detailed below.

2.1 Assessment

Definition. Psychological assessment constitutes
the systematic collection and interpretation of data
regarding an individual’s cognitive, emotional, and
behavioral functioning (Cohen et al., 1996; Ka-
plan and Saccuzzo, 2001). This process employs
psychometric tests, structured clinical interviews,
behavioral observations, and collateral information
to establish a multidimensional profile of psycho-
logical states (Groth-Marnat, 2009).

Significance. As the foundational stage of psy-
chotherapy, assessment provides the empirical ba-
sis for understanding a client’s unique psycholog-
ical landscape. It enables therapists to identify
symptom patterns (Phillips et al., 2007), track tem-
poral changes (Barkham et al., 1993), and con-
textualize subjective experiences within objective
frameworks (Groth-Marnat, 2009). The contin-
uous nature of psychological assessment allows
for real-time adjustments to therapeutic strate-
gies (Schiepek et al., 2016), ensuring interventions
remain responsive to evolving client needs.

1https://www.apa.org/topics/psychotherapy
2Throughout this taxonomy, the terms Assessment, Di-

agnosis, and Treatment specifically refer to the three core
components of psychotherapy.
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LLMs in
Psychotherapy

Assessment

Symptoms

Detection
So et al. (2024); Tu et al. (2024); Bao et al. (2024); Raihan et al. (2024); Xu et al. (2024);
Gyanendro Singh et al. (2024); Uluslu et al. (2024); Yang et al. (2024a); Mohammadi et al. (2024);
Qiu et al. (2024); Schirmer et al. (2024); Yang et al. (2023)

Severity Galatzer-Levy et al. (2023); Arcan et al. (2024); Aragon et al. (2024); Skianis et al. (2024);
Wang et al. (2024e)

Cognition Maddela et al. (2023); Qi et al. (2024); Wang et al. (2023); Chen et al. (2023c); Gollapalli et al. (2023); Jiang et al. (2024a)
Lim et al. (2024)

Behavior Li et al. (2024c); Hoang et al. (2024); Sun et al. (2024); Cohen et al. (2024)

Advanced Yang et al. (2024b); Wang et al. (2024d); Srivastava et al. (2024)

Diagnosis
Static Diagnosis Galatzer-Levy et al. (2023); Jiang et al. (2024c); Hengle et al. (2024); Lan et al. (2024c); Kuzmin et al. (2024)

Dynamic Diagnosis Chen et al. (2023a); Lan et al. (2024b); Ren et al. (2024); Lan et al. (2024a)

Treatment

LLM as a Virtual
Therapist

Xiao et al. (2024); Nie et al. (2025); Lee et al. (2024b); Sharma et al. (2024); Kim et al. (2024);
Lee et al. (2024c,d); Chen et al. (2024)

LLM as an Assistive
Tool

Welivita and Pu (2023); Sharma et al. (2023); Maddela et al. (2023); Moon and Bhattacharyya (2024); Lin et al. (2024);
Na (2024); Brown et al. (2024); Zhan et al.

LLM as Simulated
Patients for Clinician
Education

Chaszczewicz et al. (2024); Wang et al. (2024b); Yosef et al. (2024); Louie et al. (2024)

LLM for Evaluation
and Quality Analysis

Lee et al. (2024e); Zhang et al. (2024); Wang et al. (2024a); Chiu et al. (2024); Li et al. (2024a); Shapira and Alfi-Yogev (2024);
Sun et al. (2024); Cohen et al. (2024); Na et al. (2024); Nguyen et al. (2024); Zhang et al. (2025)

Figure 2: Taxonomy of Research on Large Language Models in Psychotherapy.

2.2 Diagnosis

Definition. Diagnosis represents the analytical
process of categorizing psychological distress us-
ing established nosological systems such as the
DSM-5 (American Psychiatric Association, 2022)
and ICD-11 (World Health Organization, 2019).
This involves differentiating normative emotional
responses from pathological conditions while con-
sidering cultural (Teo, 2010) and developmen-
tal (Kawa and Giordano, 2012) variables that influ-
ence symptom manifestation.

Significance. Diagnosis serves as the conceptual
bridge between assessment and treatment, provid-
ing a structured framework for intervention plan-
ning (Jensen-Doss and Hawley, 2011). By align-
ing clinical observations with standardized crite-
ria, it enhances communication among profession-
als (Craddock and Mynors-Wallis, 2014) and facil-
itates evidence-based decision-making (American
Psychiatric Association, 2006).

2.3 Treatment

Definition. Treatment includes evidence-based
interventions designed to reduce psychological
distress and improve functioning (American Psy-
chiatric Association, 2006). These interventions
work by building a therapeutic alliance (Elvins and
Green, 2008), restructuring cognition (Ezawa and
Hollon, 2023), and modifying behavior (Martin
and Pear, 2019), all typically grounded in well-
established theoretical orientations.

Significance. Treatment transforms the theories
and information gleaned from assessment and di-
agnosis into practical interventions (Prochaska and
Norcross, 2018) that directly address the client’s
psychological distress (Barlow, 2021) and foster
personal growth (Lambert, 2013).

2.4 Interrelations

The taxonomy’s components interact through three
dynamic processes (see Figure 1) that define psy-
chotherapy as a complex adaptive system:

Synthesizing (Assessment → Diagnosis) The
dialectical integration of observational data with
nosological frameworks enables diagnostic classifi-
cations to contextualize assessment findings, syn-
thesizing the patient’s various symptoms and be-
havioral patterns into a diagnostic result (Rencic
et al., 2016).

Framing (Diagnosis → Treatment) Diagnosis
functions as a framing mechanism, integrating com-
plex and diverse symptoms into a coherent classi-
fication that establishes a clear blueprint for treat-
ment (American Psychiatric Association, 2022).

Customization (Assessment → Treatment) A
process where treatment plans are continuously
refined based on assessment results, considering
individual differences without being constrained
by diagnostic labels, to enhance therapeutic effec-
tivenesss (Waszczuk et al., 2017).
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2.5 Scope of This Survey

Recent surveys at the intersection of artificial in-
telligence and mental health primarily cover broad
NLP-driven interventions (Malgaroli et al., 2023)
or generic AI applications in cognitive behavioral
therapy (Jiang et al., 2024b), without specific em-
phasis on LLMs. Other reviews explicitly focusing
on LLMs, such as the scoping review (Hua et al.,
2024, 2025) and the overview of general opportuni-
ties and risks (Lawrence et al., 2024), examine gen-
eral mental health rather than psychotherapy specif-
ically. In contrast, our survey explicitly targets re-
cent LLM applications within psychotherapy from
the emergence of ChatGPT in late 2022 through
October 2024, mainly including papers published
in computational linguistics conferences and re-
cent arXiv preprints. We adopt a slightly broad
definition of LLMs, primarily including language
models exceeding 7 billion parameters (Peng et al.,
2023; Zhao et al., 2025). Using the APA’s tripartite
model as a foundation, we manually classify each
paper according to psychotherapy-oriented com-
ponents—Assessment, Diagnosis, and Treatment–
clearly highlighting critical research gaps and fu-
ture directions distinct from previous reviews.

3 LLMs in Psychotherapy

3.1 Assessment

Symptom Detection leverages LLMs to identify
mental health conditions including depression, anx-
iety, PTSD, and suicidal ideation, demonstrating
robust performance and multidimensional applica-
bility across diverse scenarios. Yang et al. (2023)
systematically evaluated GPT-3.5, InstructGPT3,
and LLaMA models across 11 datasets, revealing
that emotion-enhanced chain-of-thought prompt-
ing improves interpretability yet remains inferior
to specialized supervised methods. So et al. (2024)
achieved 70.8% zero-shot symptom retrieval accu-
racy in Korean psychiatric interviews using GPT-
4 Turbo, while their fine-tuned GPT-3.5 attained
0.817 multi-label classification accuracy. Clinical
applications show particular promise, as Tu et al.
(2024) leveraged GPT-4 and Llama-2 to automate
PTSD assessments through information extraction
from 411 interviews, significantly enhancing diag-
nostic practicality.

Social media analysis benefits from approaches
like Bao et al. (2024)’s interpretable depression
detection framework, which demonstrated strong
performance across Vicuna-13B and GPT-3.5 envi-

ronments. Resource development advances include
Raihan et al. (2024)’s MentalHelp dataset with
14 million instances, validated through GPT-3.5
zero-shot evaluations. For suicidal ideation moni-
toring, Gyanendro Singh et al. (2024) and Uluslu
et al. (2024) achieved state-of-the-art evidence ex-
traction in the CLPsych 2024 shared task through
innovative prompting strategies. Open-source ini-
tiatives like MentaLLaMA by Yang et al. (2024a)
and Mental-LLM by Xu et al. (2024) enable multi-
symptom detection via instruction-tuned LLaMA
variants, though Mohammadi et al. (2024)’s Well-
Dunn framework reveals persistent gaps in GPT-
family models’ explanation consistency.

Cross-lingual adaptations include Qiu et al.
(2024)’s PsyGUARD system based on fine-tuned
CHATGLM2-6B for Chinese suicide risk assess-
ment, while Schirmer et al. (2024) demonstrated
domain-specific RoBERTa models outperforming
GPT-4 in cross-domain PTSD pattern analysis,
highlighting the critical balance between model
specialization and interpretability.

Symptom Severity focuses on estimating the
level of mental health condition intensity, partic-
ularly for depression, anxiety, and PTSD. Clini-
cal evaluations reveal Med-PaLM 2’s zero-shot de-
pression scoring attains clinician-level alignment
on interview data (Galatzer-Levy et al., 2023),
though with limited PTSD generalizability. When
benchmarked against specialized Transformers on
DAIC-WOZ dataset (Gratch et al., 2014), Chat-
GPT and Llama-2 exhibit moderate efficacy (Arcan
et al., 2024), suggesting domain-specific architec-
tures retain advantages in structured assessments.
Shifting attention to social media data, Aragon
et al. (2024) proposed a pipeline that retrieves
depression-relevant text, summarizes it according
to the Beck Depression Inventory (BDI) (Jackson-
Koku, 2016), and then utilizes LLMs to predict
symptom severity, achieving performance similar
to expert evaluations on certain measures. In a
similar vein, Wang et al. (2024e) introduced an
explainable depression detection system that lever-
ages multiple open-source LLMs to generate BDI-
based answers, reporting near state-of-the-art per-
formance without additional training data. Cross-
lingual extensions emerge through Skianis et al.
(2024)’s framework enabling severity prediction
across 6 languages and 2 mental conditions.

Cognition centers on identifying and understand-
ing maladaptive thinking patterns, such as cogni-
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Study Text Granularity Best Technique NLP Task Assessment Focus

Symptom Detection

Yang et al. (2023) Single Post Emotion Prompting BC/MCC/EG Multiple Symptoms
So et al. (2024) Multi-turn Dialogue Fine-Tuning MLC/IE/SUM Multiple Symptoms
Tu et al. (2024) Multi-turn Dialogue Few-Shot Prompting MLC/IE/SUM PTSD

Bao et al. (2024) Single Post Fine-Tuning MLC/EG Depression
Raihan et al. (2024) Single Post Few-Shot Prompting MCC Multiple Symptoms

Gyanendro Singh et al. (2024) Posts From One User Chain-of-Thought IE/SUM Suicidal Ideation
Uluslu et al. (2024) Posts From One User Role Prompting IE/SUM Suicidal Ideation
Yang et al. (2024a) Single Post Fine-Tuning BC/MCC/EG Multiple Symptoms

Xu et al. (2024) Single Post Fine-Tuning BC/EG Multiple Symptoms
Mohammadi et al. (2024) Single Post Few-Shot Prompting MLC Multiple Symptoms

Qiu et al. (2024) Single Post Fine-Tuning MLC Suicidal Ideation
Schirmer et al. (2024) Single Post Zero-Shot Prompting BC PTSD

Symptom Severity

Galatzer-Levy et al. (2023) Multi-turn Dialogue Zero-Shot Prompting TR Depression/PTSD
Arcan et al. (2024) Multi-turn Dialogue Zero-Shot Prompting TR Depression/Anxiety

Aragon et al. (2024) Posts From One User Zero-Shot Prompting TR Depression
Wang et al. (2024e) Posts From One User Zero-Shot Prompting TR Depression
Skianis et al. (2024) Single Post Zero-Shot Prompting TR/MCC Depression/Suicide

Cognition

Maddela et al. (2023) Single Sentence Few-Shot Prompting MLC Cognitive Distortions
Qi et al. (2024) Single Post Fine-Tuning MLC Cognitive Distortions

Wang et al. (2023) Single Sentence Few-Shot Prompting MCC Cognitive Distortions
Chen et al. (2023c) Single-turn Dialogue Zero-Shot Prompting BC/MCC/EG Cognitive Distortions

Gollapalli et al. (2023) Single Post Zero-Shot Prompting MLC Maladaptive Schemas
Jiang et al. (2024a) Single Post Zero-Shot Prompting MCC/SUM Cognitive Pathways
Lim et al. (2024) Single-turn Dialogue Multi-Agent Debate MCC Cognitive Distortions

Behavior

Li et al. (2024c) Single Post Zero-Shot Prompting MLC/EG Interpersonal Risk
Hoang et al. (2024) Sentence From Dialogue Few-Shot Prompting MCC MI-Adherent Behaviors

Sun et al. (2024) Sentence From Dialogue Zero-Shot Prompting MCC MI-Adherent Behaviors
Cohen et al. (2024) Sentence From Dialogue Zero-Shot Prompting MCC MI-Adherent Behaviors

Table 1: Comparison of Psychological Assessment Studies by Input Characteristics and Methodology. MLC:
Multi-Label Classification, IE: Information Extraction, SUM: Summarization, MCC: Multi-Class Classification,
BC: Binary Classification, TR: Text Regression, EG: Explanation Generation. Studies are categorized through text
granularity, optimal technical approach (Best Technique), NLP task formulation, and specific assessment focus.

tive distortions and early maladaptive schemas, us-
ing LLMs. Maddela et al. (2023) introduced a
cognitive distortion dataset and employed a few-
shot strategy with GPT-3.5 to generate, classify,
and reframe them, while Qi et al. (2024) con-
structed two Chinese social media benchmarks
for cognitive distortion detection and suicidal risk
assessment, demonstrating that fine-tuned LLMs
are more closely than zero-/few-shot methods to
supervised baselines. In a related effort, Wang
et al. (2023) released the C2D2 dataset containing
7,500 Chinese sentences with distorted thinking
patterns. Expanding on detection methods, Chen
et al. (2023c) proposed a Diagnosis of Thought
(DoT) prompting approach for GPT-4 and Chat-
GPT, which breaks down patient utterances into fac-
tual versus subjective content and supports the gen-

eration of interpretable diagnostic reasoning. Be-
yond cognitive distortions, Gollapalli et al. (2023)
investigated zero-shot approaches with GPT-3.5
to identify early maladaptive schemas in mental
health forums, highlighting challenges in label in-
terpretability and prompt sensitivity. Complemen-
tarily, Jiang et al. (2024a) presented a hierarchical
classification and summarization pipeline to extract
cognitive pathways from Chinese social media text,
underscoring GPT-4’s strong performance albeit
with occasional hallucinations. Finally, Lim et al.
(2024) introduced a multi-agent debate framework
for cognitive distortion classification, reporting sub-
stantial gains in both accuracy and specificity by
synthesizing multiple LLM opinions before form-
ing a final verdict.
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Behavior highlights how user actions–or in the
case of Motivational Interviewing (MI), language
itself–can serve as a measurable indicator of one’s
readiness for change. For instance, Li et al. (2024c)
introduced the MAIMS framework, employing men-
tal scales in a zero-shot setting to identify interper-
sonal risk factors on social media, thereby enhanc-
ing both interpretability and accuracy. In clinical
dialogues, Hoang et al. (2024) demonstrated how
LLMs can automatically detect a client’s motiva-
tional direction (e.g., change versus sustain talk)
and commitment level, offering valuable insights
for MI-based interventions. Extending such analy-
ses to bilingual settings, Sun et al. (2024) proposed
the BiMISC dataset and prompt strategies that en-
able LLMs to code MI behaviors across multiple
languages with expert-level performance. Lastly,
Cohen et al. (2024) presented MI-TAGS for auto-
mated annotation of global MI scores, illustrating
how context-sensitive modeling can approximate
human annotations in psychotherapy transcripts.

Advanced research has evolved beyond founda-
tional assessment tasks to emphasize novel method-
ological paradigms, bias mitigation, and domain-
specific summarization frameworks. For instance,
Yang et al. (2024b) introduced PsychoGAT—an
interactive, game-based approach that transforms
standardized psychometric instruments into engag-
ing narrative experiences, improving psychomet-
ric reliability, construct validity, and user satisfac-
tion when measuring constructs such as depres-
sion, cognitive distortions, and personality traits.
In parallel, Wang et al. (2024d) systematically in-
vestigated potential biases in various LLMs across
multiple mental health datasets, revealing that even
high-performing models exhibit unfairness related
to demographic factors. The authors proposed
fairness-aware prompts to substantially reduce such
biases without sacrificing predictive accuracy. Fur-
thermore, Srivastava et al. (2024) presented the
PIECE framework, which adopts a planning-based
approach to domain-aligned counseling summariza-
tion, structuring and filtering conversation content
before integrating domain knowledge.

3.2 Diagnosis

Static Diagnosis is based on a fixed set of data,
typically derived from complete dialogues or so-
cial media posts. Galatzer-Levy et al. (2023) high-
lighted the effectiveness of Med-PaLM 2 in psy-
chiatric condition assessment from patient inter-

views and clinical descriptions without special-
ized training. Similarly, Jiang et al. (2024c) show-
cased LLMs’ superior performance on depression
and anxiety detection on Russian datasets, partic-
ularly with noisy or small datasets. Hengle et al.
(2024) evaluated PLMs and LLMs on multi-label
classification in depression and anxiety, underscor-
ing the ongoing challenges in applying LMs to
mental health diagnostics. Besides, Lan et al.
(2024c) introduced DORIS, a depression detection
system integrating text embeddings with LLMs,
utilizing symptom features, post-history, and mood
course representations to make diagnostic predic-
tions and generate explanatory outputs. Kuzmin
et al. (2024) developed ADOS-Copilot for ASD
diagnosis through diagnostic dialogues, employing
In-context Enhancement, Interpretability Augmen-
tation, and Adaptive Fusion based on real-world
ADOS-2 clinic scenarios.

Dynamic Diagnosis involves real-time evalua-
tion based on ongoing, interactive conversations
between the patient and LLM, enabling more per-
sonalized and contextually relevant insights. Chen
et al. (2023a) simulated psychiatrist-patient inter-
actions with ChatGPT, in which the doctor chatbot
focused on role, tasks, empathy, and questioning
strategies, while the patient chatbot emphasized
symptoms, language style, emotions, and resis-
tance behaviors. Lan et al. (2024b) introduced the
Symptom-related and Empathy-related Ontology
(SEO), grounded in DSM-5 and Helping Skills The-
ory, for depression diagnosis dialogues. Ren et al.
(2024) dissected the doctor-patient relationship into
psychologist’s empathy and proactive guidance and
introduced WundtGPT that integrated these ele-
ments. Lan et al. (2024a) further presented the
AMC, a self-improving conversational agent sys-
tem for depression diagnosis through simulated
dialogues between patient and psychiatrist agents.

3.3 Treatment

LLM as a Virtual Therapist centers on lever-
aging LLMs to directly engage in therapeutic con-
versations, often adopting multi-turn dialogues that
incorporate recognized psychotherapeutic frame-
works. For instance, Xiao et al. (2024) proposed
HealMe to facilitate cognitive reframing and empa-
thetic support in line with established psychother-
apy principles. Likewise, Nie et al. (2025) intro-
duced CaiTI, a system embedded in everyday smart
devices that conducts assessments of users’ daily
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functioning and delivers psychotherapeutic inter-
ventions through adaptive dialogue flows. In a
similar vein, Lee et al. (2024b) presented CoCoA,
specializing in identifying and resolving cognitive
distortions via dynamic memory mechanisms and
CBT-based strategies, while Sharma et al. (2024)
proposed a step-by-step approach guiding users to
execute self-guided cognitive restructuring through
multiple interactive sessions. Beyond standard
CBT protocols, Kim et al. (2024) focused on aiding
psychiatric patients in journaling their experiences,
thereby offering richer clinical insights, whereas
Lee et al. (2024c) developed a multi-round CBT
dataset to refine LLMs for direct counseling-like
interactions. Additionally, multi-agent frameworks
like MentalAgora (Lee et al., 2024d) highlighted
personalized mental health support by integrating
multiple specialized agents, and Chen et al. (2024)
further explored “mixed chain-of-psychotherapies”
to combine various therapeutic methods, aiming to
enhance the emotional support and customization
delivered by chatbot interactions.

LLM as an Assistive Tool refrains from provid-
ing a holistic therapy role but instead offers targeted
support such as rewriting suboptimal counselor re-
sponses, generating controlled reappraisal prompts,
or aiding clinicians in specific tasks. For exam-
ple, Welivita and Pu (2023) proposed to rewrite re-
sponses that violate MI principles into MI-adherent
forms, ensuring more consistent therapeutic dia-
logue. Meanwhile, Sharma et al. (2023) and Mad-
dela et al. (2023) focused on generating single-turn
reframes of negative thoughts–often anchored in
cognitive distortions–through controlled language
attributes. On the detection side, Moon and Bhat-
tacharyya (2024) built a multimodal pipeline to
identify depression and provide CBT-style replies,
albeit with an emphasis on technological assistance
rather than full-fledged therapy. In the Chinese con-
text, Lin et al. (2024) combined cognitive distortion
detection with “positive reconstruction,” demon-
strating a single-round rewrite approach for nega-
tive or distorted statements, while Na (2024) show-
cased a structured Q&A format that offers profes-
sional yet succinct CBT-based responses. From a
knowledge-distillation angle, Brown et al. (2024)
demonstrated how smaller models could replicate
GPT-4’s MI-style reflective statements, and Zhan
et al. introduced a lighter-weight framework RE-
SORT to guide smaller LLMs toward effective cog-
nitive reappraisal prompts, thus enabling broader

accessibility of self-help tools.

LLM as Simulated Patients for Clinician Edu-
cation pivots toward generating synthetic yet re-
alistic patient behaviors or multi-level feedback to
train or support mental health practitioners. For in-
stance, Chaszczewicz et al. (2024) leveraged LLMs
to deliver multi-tier feedback on novice peer coun-
selors’ conversational skills, significantly reducing
the need for continuous expert oversight. Similarly,
Wang et al. (2024b) introduced LLM-driven patient
simulations that help trainees practice CBT core
skills in a controlled, repeatable setup. In the realm
of assessing therapy quality, Yosef et al. (2024)
showcased a digital patient system to evaluate MI
sessions, employing AI-generated transcripts to
differentiate novice, intermediate, and expert ther-
apeutic skill levels. Complementarily, Louie et al.
(2024) offered Roleplay-doh, a pipeline wherein do-
main experts craft specialized principles that guide
LLM-based role-playing agents, thereby providing
customizable training for new therapists.

LLM for Evaluation and Quality Analysis tar-
gets the appraisal of therapy dialogue, counselor
techniques, and treatment processes, typically with-
out delivering direct interventions to clients. For
instance, Lee et al. (2024e) augmented crisis coun-
seling outcome prediction by fusing annotated
counseling strategies with LLM-derived features,
achieving substantially improved accuracy. In the
Chinese context, Zhang et al. (2024) introduced
CPsyCoun, employing reports-based dialogue re-
construction and automated evaluation to verify
counseling realism and professionalism. Beyond
single-session analyses, Wang et al. (2024a) used
simulated clients to assess perceived therapy out-
comes, while Chiu et al. (2024) created the BOLT
framework for systematically comparing LLM-
based therapy behaviors with high- and low-quality
human sessions. Further extending to online coun-
seling, Li et al. (2024a) proposed an LLM-based
approach to measure therapeutic alliance, whereas
Shapira and Alfi-Yogev (2024) delineated therapist
self-disclosure classification as a new NLP task.
In the MI domain, Sun et al. (2024) and Cohen
et al. (2024) collected bilingual transcripts to sys-
tematically annotate therapist–client exchanges for
behavior coding and global scores, respectively.
Additionally, multi-session perspectives emerge in
Na et al. (2024), who proposed IPAEval to track
long-term progress from the client’s viewpoint, and
Nguyen et al. (2024) analyzed conversation redi-
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Figure 3: Distribution Analysis of The Current Landscape. Panel (a) indicates English is the predominant language
(70%), with Chinese also represented (24.2%). Panel (b) shows that 32% of studies address mental disorders, with
Depression and Anxiety being the most common topics within this group. Panel (c) reveals that 32.8% of studies
incorporate psychotherapy theories, where CBT is the most frequently applied.

rection and its impact on patient–therapist alliance
over multiple sessions. Finally, Iftikhar et al. (2024)
and Zhang et al. (2025) explored the disparities
between LLM- and human-led CBT sessions, high-
lighting gaps such as empathy and cultural nuance
while also introducing CBT-Bench to probe LLMs’
deeper psychotherapeutic competencies.

4 Current Landscape

4.1 Overview

Our survey encompasses a total of 69 studies in
the field of LLMs in psychotherapy. Specifically,
33 studies address assessment, 9 focus on diag-
nosis, and 32 concentrate on treatment, with 5
studies overlapping across these dimensions. Ap-
proximately 74% of the studies employed com-
mercial large language models, while about 77%
used prompt-based techniques. This distribution
highlights an imbalance in research focus across
different stages of the psychotherapy process and
reflects a heavy reliance on commercial models and
prompt technologies.

Figure 3 presents a comprehensive analysis of
the current research landscape in this field. Panel
(a) reveals a significant linguistic bias in existing
studies, with English-language corpora dominates.
While there are limited studies involving Korean
and Dutch languages, this highlights a substantial
gap in multilingual research approaches. Panel (b)
quantitatively demonstrates the distribution of men-
tal health research focuses. Mental disorder-related
studies constitute 32% of the total research cor-
pus (represented by the orange outer ring). Within
this subset, depression-focused research accounts
for 50% of mental disorder studies, followed by
anxiety-related research. This distribution indicates
a concerning imbalance, where common conditions

receive disproportionate attention while more com-
plex disorders, such as bipolar disorder, remain
understudied. The analysis of psychotherapy the-
ories in panel (c) uncovers another critical gap in
the field. Only 32.8% of the studies incorporate
psychotherapy theories in their methodological ap-
proach. Notably, emerging therapeutic frameworks,
such as humanistic therapy, are particularly under-
represented in current research applications.

4.2 Fragmented Approaches

Traditionally, LLM-based psychotherapy tools
have addressed assessment, diagnosis, and treat-
ment separately. Recently, a few studies have
started to explore integrative approaches spanning
multiple stages. Despite these emerging integrative
efforts, the systems remain limited, typically ad-
dressing only two stages without achieving full con-
tinuity. Additionally, fragmentation occurs not only
across these three dimensions but also at more gran-
ular levels; for example, some methodologies are
narrowly focused on assessing single disorders (Tu
et al., 2024; Bao et al., 2024), further limiting their
applicability and integration potential in broader
psychotherapy contexts.

4.3 Critical Issues and Risks

Dynamic Symptom Representation. Psy-
chotherapy commonly involves shifting symptoms,
comorbidities, and nuanced patient experiences,
making static or single-label predictions insuffi-
cient. Current models fail to adequately capture
multi-label conditions and temporal symptom
fluctuations, leading to incomplete or inaccurate
assessments (Lee et al., 2024a).

Linguistic Resource Bias and Translation Cri-
tique. Most psychotherapy-oriented LLMs are
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trained primarily on English datasets, with some re-
searchers attempting to expand linguistic coverage
through translation. However, recent studies high-
light significant cultural specificity in mental health
disorders (Watters, 2010; Abdelkadir et al., 2024),
making direct translation of datasets unreliable for
accurately capturing psychological nuances across
different cultures.

Diagnostic Risks. Current approaches to auto-
mated diagnosis often struggle to gain acceptance
among clinical practitioners due to concerns about
reliability and patient safety. Despite the psychol-
ogy community increasingly favoring transdiagnos-
tic methods (Dalgleish et al., 2020), a segment of
NLP researchers continues to emphasize diagnosis-
specific studies, indicating a notable divergence in
research priorities.

5 Future Directions

Continuous Multi-Stage Modeling. Psychother-
apy inherently involves continuous interactions that
progress through assessment, diagnosis, and inter-
vention phases. Existing research indicates that sev-
eral leading foundation models exhibit negligible
hallucination issues in the medical domain (Kim
et al., 2025), providing a promising foundation for
integrating these stages, as minimizing hallucina-
tions is crucial for ensuring the accuracy and relia-
bility required for continuous patient state tracking
across psychotherapy stages. Future models should
aim for an evolving representation of patient states,
ensuring consistency and coherence across the en-
tire therapeutic process rather than handling stages
as isolated segments.

Real-Time Adaptability Grounded in Psycholog-
ical Theory. The development of real-time adap-
tive strategies represents a significant step beyond
current static models. Current technical advance-
ments, such as retrieval-augmented generation and
long-context memory techniques (Jo et al., 2024),
provide the necessary technical foundations for
such strategies. Instead of simply reproducing pat-
terns found in pre-collected dialogue datasets, fu-
ture LLM applications should incorporate these ad-
vanced contextual memory mechanisms informed
by established psychological theories. Such sys-
tems would dynamically interpret patient cues, ad-
justing interventions immediately in response to
subtle shifts in emotional and cognitive states. This
approach significantly surpasses mere language-

style mimicry achieved through simple fine-tuning
on existing datasets, enabling deeper, theoretically-
informed therapeutic engagement.

Broadening Scope of Disorders and Therapeutic
Approaches. Future research should prioritize di-
versification in terms of both disorders addressed
and therapeutic methodologies employed. The cur-
rent focus on common disorders like anxiety and
depression has led to an imbalanced research land-
scape. There is a pressing need to incorporate un-
derrepresented conditions, such as bipolar disor-
der and personality disorders, alongside a broader
spectrum of psychotherapeutic frameworks, includ-
ing psychodynamic (Shedler, 2010) and existential-
humanistic approaches (Schneider and Krug, 2010).
Such expansion would help address existing blind
spots, contributing to a more inclusive and compre-
hensive application of LLMs in psychotherapy.

6 Conclusion

LLMs hold significant promise for revolutionizing
psychotherapy by enhancing assessment, diagno-
sis, and treatment. However, the current landscape
reveals critical limitations: research is often frag-
mented across these stages, exhibits notable biases
in linguistic and disorder coverage, and underuti-
lizes diverse psychotherapeutic theories. To over-
come these challenges, future work must focus on
creating continuous, multi-stage models that are
grounded in psychological theory and capable of
real-time adaptation to evolving patient states. Ex-
panding the scope of addressed disorders and ther-
apeutic modalities will be crucial for developing
LLM-driven psychotherapy tools.

Limitations

We remind the readers that this survey has the fol-
lowing limitations: 1) The studies reviewed pri-
marily focus on the application of LLMs in psy-
chotherapy, and there may be relevant research in
adjacent fields or interdisciplinary domains that
was not included. 2) Due to the rapidly evolving
nature of this area, some recent advancements may
not be captured. The scope of this survey is lim-
ited to the available literature and may overlook
emerging trends or unpublished findings. 3) While
we provide a taxonomy of LLM applications in
psychotherapy, this framework may not fully en-
compass the complexity of real-world clinical set-
tings or the diverse range of therapeutic approaches
currently in practice.
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