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Abstract

Despite the commendable progress of recent
LLM-based data synthesis methods, they face
two limitations in generating table instruction
tuning data. First, they can not thoroughly ex-
plore the vast input space of table understand-
ing tasks, leading to limited data diversity. Sec-
ond, they ignore the weaknesses in table under-
standing ability of the target LLM and blindly
pursue the increase of data quantity, resulting
in suboptimal data efficiency. In this paper, we
introduce a progressive and weakness-guided
data synthesis framework tailored for table in-
struction tuning, named TableDreamer, to miti-
gate the above issues. Specifically, we first syn-
thesize diverse tables and related instructions
as seed data, and then perform an iterative ex-
ploration of the input space under the guidance
of the newly identified weakness data, which
eventually serve as the final training data for
fine-tuning the target LLM. Extensive experi-
ments on 10 tabular benchmarks demonstrate
the effectiveness of the proposed framework,
which boosts the average accuracy of Llama3.1-
8B-instruct by 11.62% (49.07% → 60.69%)
with 27K GPT-4o synthetic data and outper-
forms state-of-the-art data synthesis baselines
which use more training data. The code
and data is available at https://github.com/
SpursGoZmy/TableDreamer.

1 Introduction

Table understanding technique aims to enable
models to automatically comprehend tables and
complete various table-related tasks (Lu et al.,
2025; Shigarov, 2023). With the recent advance-
ment of large language models (LLMs), the domi-
nant paradigm for table understanding has shifted
to instruction tuning general LLMs with tabular
task data, leading to the rise of powerful Tabular
LLMs (Zhang et al., 2024a; Li et al., 2023).

†This work was done during an internship at Baidu Inc.
‡ Corresponding author: Zheng Lin.
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Figure 1: The comparison of performance and training
data volume between TableDreamer and previous table
instruction tuning data synthesis methods over 10 tabu-
lar benchmarks.

In early work on tabular LLMs, instruction-
tuning samples were manually collected by human
annotators or converted from public datasets using
fixed instruction templates. However, the reusing
of existing datasets often leads to poor task and data
diversity, while human annotation also faces the
challenge of prohibitively expensive cost. There-
fore, researchers turned to employ LLMs to gen-
erate table instruction tuning data. For instance,
Zhang et al. (2024b) uses GPT-3.5 to generate ques-
tions based on benchmark tables, which serve as the
training data for fine-tuning CodeLlama (Rozière
et al., 2024). The resulting TableLLM model out-
performs general LLMs on several tabular bench-
marks, demonstrating the potential of synthetic
data in table instruction tuning.

Although existing data synthesis approaches
have achieved commendable performance, they
still face two limitations in generating table instruc-
tion tuning data. First, existing data synthesis
methods are unable to fully explore the vast
input space composed of input tables and in-
structions, leading to limited data diversity. On
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the one hand, general data generation methods like
Self-Instruct (Wang et al., 2023) primarily focus
on generating unstructured text data, and they did
not adequately consider the unique characteristics
of structured tables (e.g., diverse table structures,
different table formats). As a result, they tend to
produce simple tables and instructions of limited
tabular tasks. On the other hand, existing studies on
tabular LLMs only explore how to synthesize more
instructions based on directly available tables from
public datasets to improve instruction diversity, but
they lack the ability to synthesize more diversified
tabular data, which also limits the diversity of the
final table instruction tuning data.

Second, existing data synthesis methods ig-
nore the LLM’s weaknesses in table understand-
ing ability, resulting in suboptimal efficiency of
synthetic data. The combination of the input ta-
ble and the instruction allows us to easily create a
large amount of table instruction tuning data, e.g.,
we can utilize an LLM to generate dozens of ques-
tions based on a single table. However, published
studies have indicated that merely pursuing an in-
crease in the quantity of instruction tuning data
does not necessarily yield performance improve-
ment (Zhou et al., 2023a; Si et al., 2023). Given the
vast input space for table understanding tasks, it
is more efficient to synthesize valuable data points
that expose the deficiencies of the target LLM,
rather than blindly increase the amount of synthetic
data, which may result in both a waste of training
resources and a decline in model performance.

To address these issues, we introduce a progres-
sive and weakness-guided data synthesis frame-
work for table instruction tuning, named Table-
Dreamer, which can not only generate diverse ta-
bles and instructions from scratch, but can also con-
tinuously explore the input space under the guid-
ance of newly identified weakness data to more
effectively enhance the model performance. As
illustrated in Figure 2, our framework consists of
two stages. In stage 1, we first synthesize various
table titles of different topics and subtopics, and
then employ the LLM to create diverse tables. In
stage 2, based on synthetic tables and tabular task
descriptions, a group of seed data is generated and
will undergo data evolution in three directions. The
synthesized new samples are evaluated by LLM-as-
a-judge to identify weakness-exposing data, which
is used as the seed data for the next round of data
evolution. This process can be iterated multiple
times, with the accumulated weakness data serving

as the final table instruction tuning data.
We compare TableDreamer with a series of

data synthesis methods, general LLMs and tabular
LLMs on 10 tabular benchmarks. As shown in Fig-
ure 1, experimental results demonstrate the effec-
tiveness of the proposed framework, which boosts
the average accuracy of Llama3.1-8B-instruct by
11.62% (49.07% → 60.69%) with 27K GPT-4o
synthetic data and outperforms the state-of-the-art
data synthesis baselines that use more training data
(100K+). We also demonstrate the effectiveness
of TableDreamer as data augmentation for the few-
shot learning scenario, where only a small number
of original training samples are available (e.g., 20
samples for each benchmark). Extensive ablation
experiments are conducted to reveal the contribu-
tions of different components in the framework
(e.g., the influence of weakness data selection and
data evolution). We hope this work could establish
a strong base for future research on the table in-
struction tuning data synthesis and help researchers
improve models’ table understanding ability espe-
cially with limited annotation budget.

We conclude our contributions as follows:
1) We introduce a data synthesis framework

TableDreamer tailored for table instruction tuning
with better data diversity and efficiency, mitigating
the limitations of current approaches.

2) We construct and release 27K table instruc-
tion tuning data, which include diverse tables and
instructions of a wide range of tabular tasks that
the current open-source community lacks.

3) We make a systematic investigation of ex-
isting methods to show the effectiveness of Table-
Dreamer, which outperforms strong baselines on 10
tabular benchmarks including recent tabular LLMs.

2 Related Work

2.1 Table Instruction Tuning

In addition to directly prompting LLMs to fulfill
tabular tasks (Chen, 2023; Wang et al., 2024b),
researchers are increasingly dedicated to develop-
ing tabular LLMs with carefully constructed ta-
ble instruction tuning data. TableLlama (Zhang
et al., 2024a) collected 2.6M instruction-tuning
pairs from 14 academic tabular datasets, and
TableBenchLLM (Wu et al., 2024) even spent
$12,000 US dollars on hiring annotators for an-
swering labeling and quality checking. Besides,
LLM-based data synthesis methods were also
adopted to generate table instruction tuning data.
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Figure 2: The overview of the proposed TableDreamer framework, which includes two stages. In stage 1, we first
synthesize table titles based on different topics and subtopic, and then employ the LLM to generate diverse tables
covering a wide range of key table attributes such as table structures and sizes. In stage 2, starting from a group
of seed data, we perform an iterative exploration of the input space under the guidance of the newly discovered
weakness data, which eventually serve as the table instruction tuning data.

User ID U001 U002 U003 U004 U005 U006 U007

Age 34 29 41 37 25 30 36

Country USA UK Germany Canada Brazil Australia India

Preferred 
Tool

Tool A Tool B Tool C Tool D Tool B Tool A Tool C

Use Case
Transacti
on 
Tracking

Market 
Analysis

Complian
ce

Asset 
Manage
ment

Transacti
on 
Tracking

Market 
Analysis

Complian
ce

Satisfacti
on (1-10)

8 7 6 9 5 7 8

Tool 
Customiz
ation

Yes No Yes Yes No Yes Yes

Subscript
ion Type

Premium Basic Business
Enterpris
e

Basic Premium
Enterpris
e

Plastic Bottles Jute Bags
Bioplastic 

Containers
Foil Paper Wax Paper

Material Plastic Glass Composite Aluminium

Manufacturing 
Emissions (kg 

CO2)
8.2 5.5 4.3 7

Transportation 
Emissions (kg 

CO2)
1.9 2.1 1.2 1.4

Recycling 
Emissions (kg 

CO2)
0.7 0.9 0.5 0.8

Total Emissions 
(kg CO2)

10.8 8.5 6 9.2

Year

Region
Overall 

Growth 

Rate

North America Europe

USA Canada Mexico UK Germany France

2015 $200 $50 $30 $40 $60 $55 $700 

2016 $260 $70 $35 $45 $80 $60 $893 

2017 $310 $85 $40 $65 $100 $75 $1,078 

2018 $350 $95 $45 $70 $120 $90 $1,232 

2019 $390 $110 $50 $75 $140 $95 $1,425 

2020 $440 $130 $55 $80 $160 $100 $1,555 

2021 $480 $145 $60 $90 $180 $110 $1,725 

2022 $520 $160 $65 $100 $200 $120 $1,935 

2023 $570 $180 $70 $110 $220 $130 $2,135 

2024 $620 $200 $75 $120 $240 $140 $2,415 

2025 $680 $220 $80 $130 $260 $150 $2,685 

Subject ID Age Gender
Sleep 

Quality

Memory 

Test 1

Memory 

Test 2

Reaction 

Time (ms)

Sleep 

Duration 

(hrs)

1001 25 M Good 85 88 320 7.5

1002 30 F Fair 72 75 340 6

1003 22 F Excellent 92 95 280 8

1004 35 M Poor 60 65 350 5

1005 28 F Good 87 89 300 7

1006 45 M Fair 74 77 330 6.5

1007 32 F Excellent 93 94 275 8.5

1008 27 M Poor 63 68 345 5.5

1009 40 F Good 88 90 310 7.2

Retailer Country
Online Sales 

(in $)

Brick-and-
Mortar 

Sales (in $)

Total Sales 
(in $)

Online Sales 
Growth (%)

Brick-and-
Mortar 
Sales 

Growth (%)

Zara USA 450000 650000 1100000 8.5 5

H&M UK 300000 380000 680000 7.5 4.2

Uniqlo Japan 520000 590000 1110000 10 6

Primark Ireland 270000 750000 1020000 9.1 4.9

ASOS UK 500000 0 500000 12 0

Next UK 285000 415000 700000 7.9 3.7

Nordstrom USA 610000 790000 1400000 9.5 6.5

Urban 
Outfitters

USA 315000 435000 750000 5.5 4

Survey ID
Participant 

Name
Age Gender

Time Since 

Stroke 

(months)

Aphasia 

Severity

101 John Smith 67 Male 18 Moderate

102 Anna Brown 58 Female 14 Severe

103 Sarah Johnson 72 Female 24 Mild

104 David Lee 63 Male 30 Moderate

105 Emily White 52 Female 16 Severe

106
Michael 

Green
70 Male 22 Moderate

107 Linda Carter 65 Female 20 Mild

108 Chris Brown 74 Male 19 Severe

109 Megan Scott 60 Female 12 Moderate

110 Richard King 68 Male 11 Mild

Challenge Region Severity (1-5)
Technology 

Used

Long-term 

Strategy

Raw Material 

Shortage

North 

America
4 AI Forecasting Diversification

Port Congestion Asia 5 IoT Tracking Port Expansion

Labor Shortages Europe 3 Robotics
Workforce 

Training

Transportation 

Costs

South 

America
4

Route 

Optimization
Green Logistics

Exchange Rate 

Fluctuations
Oceania 3 ERP Systems

Financial 

Diversification

Filter out the challenges with a severity level of 4 or higher, translate 

them into French, and evaluate the effectiveness of the technologies 

mentioned in each challenge. Include your evaluation in the table 

along with the translated text.

Instruction

Challenges Faced by the Global Apparel Industry Due to Supply Chain 

Disruptions, 2021

Table title

Flat Table

Region

Transport Infrastructure

Roads Railways

Subsidy 

Amount ($ 

million)

Projects

Subsidy 

Amount ($ 

million)

Projects

Region A 45 12 30 8

Region B 50 14 28 7

Region C 48 13 35 9

Region D 55 16 32 10

Region E 52 15 20 6

Region F 60 18 31 9

Region G 58 17 29 8

Calculate the average subsidy amount for the 

'Roads' category across all regions. What is the 

percentage difference between the highest and 

lowest values?

Instruction

Rural Infrastructure Subsidies

Table title

Hierachical Table

Item_id: Breadth_evolution-
new_instruction_data_4935_round_2

Based on the table, compare the revenue growth of 

enterprises that employ organic farming with those that 

implement renewable energy use, integrated pest 

management, and agroforestry ……

Instruction

Sustainability Practices Adopted by Rural Enterprises 

and Their Correlation with Business Growth

Table title

Enterprise 

Name

Green 

Fields 

Co.

Farm 

Fresh Ltd.

EcoFarmer

s SA

AgriLife 

Pvt.

Country USA UK
South 

Africa
India

Sustainability 

Practice

Organic 

Farming

Renewable 

Energy 

Use

Rainwater 

Harvesting

No-till 

Farming

Current 

Revenue 

(USD)

123000 76000 145000 134000

Revenue 

Growth (%)
44.706 16.923 55.914 31.373

Horizontal Table

Depth_evolution-
adding_constrains_data_1535_round_2

First, identify the last row of the table, focusing on the details starting 

from the third column. Your goal is to extract information from the 

fields that represent age, aphasia severity, peer support group 

attendance, sessions attended, improvement……

Instruction

Evaluating the Impact of Peer Support in Aphasia Rehabilitation 

Frameworks: Insights from Patient Surveys

Table title

Flat Table

Region

Transport Infrastructure

Roads Railways

Subsidy Amount 

($ million)
Projects

Subsidy Amount 

($ million)
Projects

Region A 45 12 30 8

Region B 50 14 28 7

Region C 48 13 35 9

Region D 55 16 32 10

Region E 52 15 20 6

Region F 60 18 31 9

Region G 58 17 29 8

Calculate the average subsidy amount for the 'Roads' 

category across all regions. What is the percentage 

difference between the highest and lowest values?

Instruction

Rural Infrastructure Subsidies

Table title

Hierachical Table

Based on the table, compare the revenue growth of enterprises 

that employ organic farming with those that implement 

renewable energy use, integrated pest management, and 

agroforestry ……

Instruction

Sustainability Practices Adopted by Rural Enterprises and 

Their Correlation with Business Growth

Table title

Enterprise Name
Green 

Fields Co.

Farm Fresh 

Ltd.

EcoFarmers 

SA
AgriLife Pvt.

Country USA UK South Africa India

Sustainability 

Practice

Organic 

Farming

Renewable 

Energy Use

Rainwater 

Harvesting

No-till 

Farming

Current Revenue 

(USD)
123000 76000 145000 134000

Revenue Growth 

(%)
44.706 16.923 55.914 31.373

Horizontal Table

Select the retailers from the dataset with a 'Brick-and-Mortar Sales 

Growth (%)' of under 5% and return their 'Total Sales' figures in 

descending order.

Instruction

Comparison of Online vs Brick-and-Mortar Sales in the Fashion 

Industry, Q1 2023

Table title

Flat Table

Examine the relationship between work stress level and sleep 

disruption events. Which subjects with a work stress level above 5 

report the most sleep disruption events? Explain any patterns or 

anomalies you find.

Instruction

Impact of Sleep Quality on Memory

Table title

Flat Table

E-

commerce 

Segments

Emerging Trends

Technology Integration Sustainability Customer Preferences

IoT AI Driven
Green 

Packaging

Carbon 

Footprint

Personaliza

tion

Convenienc

e

Online 

Retail

High Medium Low Medium High Medium

Medium High Medium Low High High

Low Medium High Medium Medium Medium

Medium Low Medium High Low High

Examine the relationship between personalization trends and 

convenience across all segments. Which segment shows the strongest 

impact from these customer preferences, and what operational 

strategies are influenced as a result?

Instruction

Emerging Trends in E-commerce Supply Chain and Their Impact on 

Operational Strategies

Table title

Hierachical Table

Considering the data from 2015 to 2020, analyze the relative growth 

patterns in consumer spending across North America, Europe, Asia, 

and Other Regions. Which region’s consumer spending shows the 

most consistent increase year over year? ……

Instruction

Annual Increase in Consumer Spending on Sustainable Household 

Products from 2015 to 2025 by Region

Table title

Hierachical Table

Determine the average emissions for each type of packaging, 

considering manufacturing, transportation, and recycling 

emissions. Provide the most and least emission-intensive 

packaging types.

Instruction

Food Industry Packaging Lifecycle Emissions

Table title Enterprise Name
Green 

Fields Co.

Farm Fresh 

Ltd.

EcoFarmers 

SA
AgriLife Pvt.

Country USA UK South Africa India

Sustainability 

Practice

Organic 

Farming

Renewable 

Energy Use

Rainwater 

Harvesting

No-till 

Farming

Current Revenue 

(USD)
123000 76000 145000 134000

Revenue Growth 

(%)
44.706 16.923 55.914 31.373

Horizontal Table

Based on the data, provide a general profile for users who 

prefer 'Tool A'. Include the average age, average satisfaction 

rating, and the most common use case for these users.

Instruction

Blockchain Analytics User Preferences

Table title

Horizontal Table

Figure 3: Example of TableDreamer synthetic data. The
synthetic table are clipped due to space limitation.

TableGPT (Li et al., 2023) proposed a Synthesis-
then-Augment framework which uses GPT-3.5
to generate instructions based on public tables
and then performs data augmentations such as
instruction paraphrasing for better data diversity.
TableLLM (Zhang et al., 2024b) introduced a sim-
ilar distant supervision approach which first syn-
thesizes instructions and selects high-quality re-
sponses with the cross-way Validation of different
reasoning methods. However, compared with other

areas like code and math, data synthesis for table
instruction tuning is still in infancy, with numerous
issues deserving further exploration. In this paper,
we introduce a novel data synthesis method, and
also conduct a comprehensive investigation of rel-
evant baselines, providing valuable insights about
this emergent yet promising direction.

2.2 LLM-based Data Synthesis

The large amount of high-quality human-collected
data has facilitated the development of deep learn-
ing in recent years. Nevertheless, purely depending
on human data always involves a trade-off between
data quality and quantity due to factors such as
costs or privacy issues (Long et al., 2024). Given
the excellent ability to output human-like text, the
advanced LLMs offer an alternative data source
with synthetic data generation to mitigate draw-
backs of human data. One of most prominent appli-
cation of LLM-based data generation is to synthe-
size large-scale and diverse instruction tuning data
in a cost effective way (Wang et al., 2023; Taori
et al., 2023; Xu et al., 2023; Li et al., 2024b). Based
on a handful human-created instructions as the ini-
tial seed data, Self-instruct (Wang et al., 2023) syn-
thesizes new instructions by prompting an LLM
with randomly selected instructions from the can-
didate pool as few-shot demonstrations. Mag-
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pie (Xu et al., 2024) leverages the autoregressive
nature of LLMs and elicits instructions from fine-
tuned LLMs by feeding them a pre-query chat tem-
plate. Unlike textual tasks, table understanding
tasks poses new challenges for LLM-based data
synthesis due to the hybrid input of unstructured
text and structured table. Unfortunately, existing
approaches usually simplify the problem setting
by ignoring the demand for synthesizing diverse
tables and can only generate questions using pub-
lic benchmark tables. By contrast, we take a step
further and explore how to synthesize both tables
and relevant instructions from scratch.

3 TableDreamer Framework

3.1 Problem Definition

Given a table T including its metadata like the
table title and a user instruction Inst about the
table, the table understanding problem requires the
model f(·) to output a response R that correctly
complete the specified table-related tasks in the
instruction, i.e., R = f(T, Inst). The goal of the
table instruction tuning data synthesis is to obtain
a synthetic training dataset Dsyn of N triples for
fine-tuning LLMs, i.e., Dsyn = {(Insti, Ti, Ri) |
i = 1, 2, . . . , N}. Existing data synthesis methods
often simplify the problem setting by assuming that
tables are always directly available, and thus only
focus on generating table-related instructions. By
contrast, we retain the original setting and endeavor
to synthesize diverse tables and instructions from
scratch without relying on any public datasets.

3.2 Table Generation

Existing general data synthesis methods like self-
instruct can not fully capture the complexity and
diversity inherent in structured tabular data, leading
to limited variety of synthesized tables. Therefore,
we meticulously design a table synthesis prompt
that fully considers the important table attributes.
First of all, various topics, subtopics and cor-
responding table titles of different domains are
elicited from an established LLM, which then serve
as the guidance for generating table content of dif-
ferent domains. For example, given the topic ‘Sci-
ence and Technology’ and the subtopic ‘AI Applica-
tions’, a viable table title could be ‘Detailed Analy-
sis of AI Integration in Auto. Vehicles, 2022’.

On this basis, we further incorporate key table
attributes in the prompt to enhance the diversity of
synthetic tables. (1) table type. We randomly sam-

User ID U001 U002 U003 U004 U005 U006 U007

Age 34 29 41 37 25 30 36

Country USA UK Germany Canada Brazil Australia India

Preferred 
Tool

Tool A Tool B Tool C Tool D Tool B Tool A Tool C

Use Case
Transacti
on 
Tracking

Market 
Analysis

Complian
ce

Asset 
Manage
ment

Transacti
on 
Tracking

Market 
Analysis

Complian
ce

Satisfacti
on (1-10)

8 7 6 9 5 7 8

Tool 
Customiz
ation

Yes No Yes Yes No Yes Yes

Subscript
ion Type

Premium Basic Business
Enterpris
e

Basic Premium
Enterpris
e

Plastic Bottles Jute Bags
Bioplastic 

Containers
Foil Paper Wax Paper

Material Plastic Glass Composite Aluminium

Manufacturing 
Emissions (kg 

CO2)
8.2 5.5 4.3 7

Transportation 
Emissions (kg 

CO2)
1.9 2.1 1.2 1.4

Recycling 
Emissions (kg 

CO2)
0.7 0.9 0.5 0.8

Total Emissions 
(kg CO2)

10.8 8.5 6 9.2

Year

Region
Overall 

Growth 

Rate

North America Europe

USA Canada Mexico UK Germany France

2015 $200 $50 $30 $40 $60 $55 $700 

2016 $260 $70 $35 $45 $80 $60 $893 

2017 $310 $85 $40 $65 $100 $75 $1,078 

2018 $350 $95 $45 $70 $120 $90 $1,232 

2019 $390 $110 $50 $75 $140 $95 $1,425 

2020 $440 $130 $55 $80 $160 $100 $1,555 

2021 $480 $145 $60 $90 $180 $110 $1,725 

2022 $520 $160 $65 $100 $200 $120 $1,935 

2023 $570 $180 $70 $110 $220 $130 $2,135 

2024 $620 $200 $75 $120 $240 $140 $2,415 

2025 $680 $220 $80 $130 $260 $150 $2,685 

Subject ID Age Gender
Sleep 

Quality

Memory 

Test 1

Memory 

Test 2

Reaction 

Time (ms)

Sleep 

Duration 

(hrs)

1001 25 M Good 85 88 320 7.5

1002 30 F Fair 72 75 340 6

1003 22 F Excellent 92 95 280 8

1004 35 M Poor 60 65 350 5

1005 28 F Good 87 89 300 7

1006 45 M Fair 74 77 330 6.5

1007 32 F Excellent 93 94 275 8.5

1008 27 M Poor 63 68 345 5.5

1009 40 F Good 88 90 310 7.2

Retailer Country
Online Sales 

(in $)

Brick-and-
Mortar 

Sales (in $)

Total Sales 
(in $)

Online Sales 
Growth (%)

Brick-and-
Mortar 
Sales 

Growth (%)

Zara USA 450000 650000 1100000 8.5 5

H&M UK 300000 380000 680000 7.5 4.2

Uniqlo Japan 520000 590000 1110000 10 6

Primark Ireland 270000 750000 1020000 9.1 4.9

ASOS UK 500000 0 500000 12 0

Next UK 285000 415000 700000 7.9 3.7

Nordstrom USA 610000 790000 1400000 9.5 6.5

Urban 
Outfitters

USA 315000 435000 750000 5.5 4

Survey ID
Participant 

Name
Age Gender

Time Since 

Stroke 

(months)

Aphasia 

Severity

101 John Smith 67 Male 18 Moderate

102 Anna Brown 58 Female 14 Severe

103 Sarah Johnson 72 Female 24 Mild

104 David Lee 63 Male 30 Moderate

105 Emily White 52 Female 16 Severe

106
Michael 

Green
70 Male 22 Moderate

107 Linda Carter 65 Female 20 Mild

108 Chris Brown 74 Male 19 Severe

109 Megan Scott 60 Female 12 Moderate

110 Richard King 68 Male 11 Mild

Challenge Region Severity (1-5)
Technology 

Used

Long-term 

Strategy

Raw Material 

Shortage

North 

America
4 AI Forecasting Diversification

Port Congestion Asia 5 IoT Tracking Port Expansion

Labor Shortages Europe 3 Robotics
Workforce 

Training

Transportation 

Costs

South 

America
4

Route 

Optimization
Green Logistics

Exchange Rate 

Fluctuations
Oceania 3 ERP Systems

Financial 

Diversification

Filter out the challenges with a severity level of 4 or higher, translate 

them into French, and evaluate the effectiveness of the technologies 

mentioned in each challenge. Include your evaluation in the table 

along with the translated text.

Instruction

Challenges Faced by the Global Apparel Industry Due to Supply Chain 

Disruptions, 2021

Table title

Flat Table

Region

Transport Infrastructure

Roads Railways

Subsidy 

Amount ($ 

million)

Projects

Subsidy 

Amount ($ 

million)

Projects

Region A 45 12 30 8

Region B 50 14 28 7

Region C 48 13 35 9

Region D 55 16 32 10

Region E 52 15 20 6

Region F 60 18 31 9

Region G 58 17 29 8

Calculate the average subsidy amount for the 

'Roads' category across all regions. What is the 

percentage difference between the highest and 

lowest values?

Instruction

Rural Infrastructure Subsidies

Table title

Hierachical Table

Item_id: Breadth_evolution-
new_instruction_data_4935_round_2

Based on the table, compare the revenue growth of 

enterprises that employ organic farming with those that 

implement renewable energy use, integrated pest 

management, and agroforestry ……

Instruction

Sustainability Practices Adopted by Rural Enterprises 

and Their Correlation with Business Growth

Table title

Enterprise 

Name

Green 

Fields 

Co.

Farm 

Fresh Ltd.

EcoFarmer

s SA

AgriLife 

Pvt.

Country USA UK
South 

Africa
India

Sustainability 

Practice

Organic 

Farming

Renewable 

Energy 

Use

Rainwater 

Harvesting

No-till 

Farming

Current 

Revenue 

(USD)

123000 76000 145000 134000

Revenue 

Growth (%)
44.706 16.923 55.914 31.373

Horizontal Table

Depth_evolution-
adding_constrains_data_1535_round_2

First, identify the last row of the table, focusing on the details starting 

from the third column. Your goal is to extract information from the 

fields that represent age, aphasia severity, peer support group 

attendance, sessions attended, improvement……

Instruction

Evaluating the Impact of Peer Support in Aphasia Rehabilitation 

Frameworks: Insights from Patient Surveys

Table title

Flat Table

Region

Transport Infrastructure

Roads Railways

Subsidy Amount 

($ million)
Projects

Subsidy Amount 

($ million)
Projects

Region A 45 12 30 8

Region B 50 14 28 7

Region C 48 13 35 9

Region D 55 16 32 10

Region E 52 15 20 6

Region F 60 18 31 9

Region G 58 17 29 8

Calculate the average subsidy amount for the 'Roads' 

category across all regions. What is the percentage 

difference between the highest and lowest values?

Instruction

Rural Infrastructure Subsidies

Table title

Hierachical Table

Based on the table, compare the revenue growth of enterprises 

that employ organic farming with those that implement 

renewable energy use, integrated pest management, and 

agroforestry ……

Instruction

Sustainability Practices Adopted by Rural Enterprises and 

Their Correlation with Business Growth

Table title

Enterprise Name
Green 

Fields Co.

Farm Fresh 

Ltd.

EcoFarmers 

SA
AgriLife Pvt.

Country USA UK South Africa India

Sustainability 

Practice

Organic 

Farming

Renewable 

Energy Use

Rainwater 

Harvesting

No-till 

Farming

Current Revenue 

(USD)
123000 76000 145000 134000

Revenue Growth 

(%)
44.706 16.923 55.914 31.373

Horizontal Table

Select the retailers from the dataset with a 'Brick-and-Mortar Sales 

Growth (%)' of under 5% and return their 'Total Sales' figures in 

descending order.

Instruction

Comparison of Online vs Brick-and-Mortar Sales in the Fashion 

Industry, Q1 2023

Table title

Flat Table

Examine the relationship between work stress level and sleep 

disruption events. Which subjects with a work stress level above 5 

report the most sleep disruption events? Explain any patterns or 

anomalies you find.

Instruction

Impact of Sleep Quality on Memory

Table title

Flat Table

E-

commerce 

Segments

Emerging Trends

Technology Integration Sustainability Customer Preferences

IoT AI Driven
Green 

Packaging

Carbon 

Footprint

Personaliza

tion

Convenienc

e

Online 

Retail

High Medium Low Medium High Medium

Medium High Medium Low High High

Low Medium High Medium Medium Medium

Medium Low Medium High Low High

Examine the relationship between personalization trends and 

convenience across all segments. Which segment shows the strongest 

impact from these customer preferences, and what operational 

strategies are influenced as a result?

Instruction

Emerging Trends in E-commerce Supply Chain and Their Impact on 

Operational Strategies

Table title

Hierachical Table

Considering the data from 2015 to 2020, analyze the relative growth 

patterns in consumer spending across North America, Europe, Asia, 

and Other Regions. Which region’s consumer spending shows the 

most consistent increase year over year? ……

Instruction

Annual Increase in Consumer Spending on Sustainable Household 

Products from 2015 to 2025 by Region

Table title

Hierachical Table

Determine the average emissions for each type of packaging, 

considering manufacturing, transportation, and recycling 

emissions. Provide the most and least emission-intensive 

packaging types.

Instruction

Food Industry Packaging Lifecycle Emissions

Table title Enterprise Name
Green 

Fields Co.

Farm Fresh 

Ltd.

EcoFarmers 

SA
AgriLife Pvt.

Country USA UK South Africa India

Sustainability 

Practice

Organic 

Farming

Renewable 

Energy Use

Rainwater 

Harvesting

No-till 

Farming

Current Revenue 

(USD)
123000 76000 145000 134000

Revenue Growth 

(%)
44.706 16.923 55.914 31.373

Horizontal Table

Based on the data, provide a general profile for users who 

prefer 'Tool A'. Include the average age, average satisfaction 

rating, and the most common use case for these users.

Instruction

Blockchain Analytics User Preferences

Table title

Horizontal Table

Figure 4: The top 25 most prevalent root verbs (the inner
circle) and their top 5 direct nouns (the outer circle) in
the synthetic instructions of TableDreamer-27K.

ple one table type from three common candidates
including flat tables, horizontal tables and hierar-
chical tables (Cheng et al., 2022; Liu et al., 2024;
Gupta et al., 2020). (2) table size. We randomly
choose the row number and the column number
of the table within an appropriate range to create
tables of various sizes. (3) header structure. For
hierarchical tables with multi-level row headers
and column headers, we randomly appoint the ex-
pected row header and column header structure
from common combinations. For instance, a hier-
archical table could have a 3-level column header
and 2-level row header. (4) cell relation. There
may be dependency relations between different ta-
ble cells, e.g., in a business revenue table, the value
of ‘net profit’ should be the difference between the
‘revenue’ and the ‘cost’. Thus, we require the LLM
to utilize markdown formulas to represent such re-
lations in the target cells if necessary, which can be
automatically extracted and computed by scripts to
obtain the final results. (5) table format. We use
the HTML format to represent the synthesized hier-
archical tables in order to accurately reflect merged
cells and hierarchical headers and the Markdown-
style format to represent flat and horizontal tables.

Taking into account the above table attributes,
we employ the LLM as a table generator to syn-
thesize diverse tables, which are further processed
to compute results of potential formulas and are
filtered to remove invalid tables such as incomplete
tables with missing cells.
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3.3 Instruction Tuning Data Generation

To provide a better foundation for instruction gen-
eration, we collect 20 different table understanding
tasks and their descriptions from published stud-
ies (Ruan et al., 2024; Sui et al., 2024; Zhao et al.,
2022, 2023b), such as table-based numerical rea-
soning, table structure understanding and so on.
The full list of seed tabular tasks are shown in the
Table 11. On the basis of synthetic tables and the
task descriptions, we use the LLM to generate a set
of task instructions which serve as the initial seed
instructions for subsequent data evolution.

Input Space Exploration. To achieve a more
comprehensive exploration of the input space,
each sample in the seed data will undergo LLM-
based data evolution in three directions respectively,
thereby synthesizing more diverse data.

Instruction Complication. Inspired by pre-
vious instruction generation methods (Xu et al.,
2023; Luo et al., 2024), we devise different evolu-
tion strategies to create more complex instructions
based on the original table and the instruction. For
instance, ‘increasing the task number’ will create
new instructions that ask the LLM to complete
multiple tabular tasks at once, and ‘adding the rea-
soning steps’ will generate multi-step problems. As
LLMs’ capabilities continue to improve, increas-
ing the difficulty of input instructions assists us in
uncovering the potential weaknesses in the table un-
derstanding ability of state-of-the-art LLMs, which
enables us to enhance the model’s capabilities in a
more targeted manner.

Instruction Generalization. Considering that
the instructions in the seed data are primarily lim-
ited to 20 predefined tabular tasks, we use the LLM
to synthesize instructions of new tasks that are dif-
ferent from the original ones. We find that the
LLM could create instructions of interesting and
creative tabular tasks, e.g., analyzing the original
table and providing recommendations, translating
several columns into a new language and so on.
Such task instructions are often not included in
the public table-related datasets but can greatly im-
prove the diversity of the instruction tuning data. In
addition to generating new tabular task instructions,
we also generate instructions that possess the same
task type to the original one in order to improve
model robustness towards instruction variations.

Table Generalization. Prior studies have found
that current LLMs lack the robustness towards con-
tent and structural perturbations of input tables (Liu

et al., 2024; Zhou et al., 2024; Singha et al., 2023).
For instance, LLMs may experience significant per-
formance fluctuations with changes in table for-
mats and the order of rows and columns. This
robustness is crucial for the practical application
of tabular LLMs, as input tables from real-world
users can vary greatly. To this end, we design table
evolution strategies to create more table variations
based on previously synthesized tables, e.g., chang-
ing the original table format, modifying the table
header, reordering rows and columns and so on.
This table generalization further improves the table
diversity in the final training data which helps the
model learn to maintain its performance despite
these perturbations.

Weakness Data Identification. Although the in-
put space exploration can generate a large variety
of data, some of these samples may already be well-
handled by the target LLM. Fine-tuning with such
data could yield little performance improvements
while consuming additional training resources.
Thus, we utilize the LLM-as-a-judge (Zheng et al.,
2023) to evaluate the response from the target LLM
and identify samples where the target LLM under-
performs. Concretely, given the response from the
target LLM (e.g., Llama3.1-8B-instruct) and the
reference response from a more powerful LLM
(e.g., GPT-4o), an LLM rates the correctness of the
model response on a 5-point likert scale, with lower
scores indicating poorer performance. The samples
with scores below 3 points are considered as weak-
ness data, which will be used as the seed data for
the next round of input space exploration and thus
guide the overall data synthesis direction towards
valuable data points that expose the model’s defi-
ciencies in table understanding ability. This itera-
tive process between the input space exploration
and the weakness detection can be performed mul-
tiple times, and the accumulated weakness data
together with reference responses are used as the
final table instruction tuning data.

3.4 Dataset Statistics and Cases

Unless otherwise specified, we use GPT-4o to syn-
thesize tables, instructions and corresponding re-
sponses and select the Llama3.1-8B-instruct as the
target LLM for weakness data detection. Starting
from 3,272 seed data over 1,541 synthetic tables,
we perform 2 rounds of iterative data synthesis pro-
cess, ending in 27,083 instruction tuning data over
7,950 tables after filtering the invalid samples (e.g.,
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failed data evolution results), which is denoted as
TableDreamer-27K. Besides, we also replace GPT-
4o with Llama3.1-70B-instruct to synthesize 27K
training data, which is used for a fair comparison
with other data synthesis baselines that we also
reimplemented with Llama3.1-70B-instruct. Fig-
ure 3 demonstrates an example of the synthetic
data. The diversity of the generated 27K instruc-
tions from GPT-4o is illustrated in Figure 4, where
we plot the top 25 most prevalent root verbs and
their top 5 direct nouns that appear at least 15
times. We can find that TableDreamer could gener-
ate diverse instructions and tables that encompass
a broad range of tabular tasks and domains. More
statistics, examples and comparison between dif-
ferent synthetic table instruction tuning datasets
are given in App. A. The detailed data evolution
strategies and prompts are shown in App. B.1.

4 Experiments

4.1 Experimental Setup

Benchmarks. We select 9 public benchmarks:
TABMWP (Lu et al., 2023), WTQ (Pasupat
and Liang, 2015), HiTab (Cheng et al., 2022),
AIT-QA (Katsis et al., 2021), TabMCQ (Jauhar
et al., 2016), TabFact (Chen et al., 2020), In-
foTabs (Gupta et al., 2020), FeTaQA (Nan et al.,
2022) and QTSumm (Zhao et al., 2023a), which
cover three tasks including table question answer-
ing (TQA), table-based fact verification (TFV)
and table-to-text generation (T2T). The original
question and the table in these benchmarks are
serialized into an input text with various instruc-
tion templates and four common table formats
(HTML, Markdown, csv, tsv) for evaluating the
LLM’s robust table understanding ability. Besides,
we also consider the synthetic benchmark from
TableGPT (Li et al., 2023) which contains many
unusual tabular tasks such as data imputation and
thus can be used to evaluate the model’s out-of-
distribution (OOD) generalization ability. All se-
lected benchmarks are shown in Table 9.

Evaluation Metrics. For TQA, TFV and
TableGPT benchmarks, the input instructions ask
LLMs to output the final answer in the JSON for-
mat, which can be automatically extracted with reg-
ular expressions to compute exact match accuracy.
For T2T benchmarks that are hard to accurately
evaluate the correctness of the model response with
automatic text generation metrics like BLEU (Pap-
ineni et al., 2002), we use LLM-as-a-judge evalua-

tion, where GPT-4o-mini determines the accuracy
of the model’s responses based on the gold answer.
The zero-shot setting is adopted for 9 public bench-
marks except the TableGPT, as it provides test data
in zero-shot and few-shot settings. Thus we report
the average accuracy of two settings.

Baselines. We consider baselines of four gen-
res. (1) General LLMs such as Llama3.1-8B-
instruct (Grattafiori et al., 2024) and Mistral-7B-
Instruct-v0.3 (Jiang et al., 2023). (2) General
Instruction Tuning Data Synthesis Methods
including the Self-Instruct (Wang et al., 2023),
Dynasour (Yin et al., 2023), Evol-Instruct (Xu
et al., 2023), GenQA (Chen et al., 2024) and
Magpie (Xu et al., 2024). (3) Data Synthesis
Methods for Table Instruction Tuning. We con-
sider traditional tabular question generation meth-
ods including the OmniTab (Jiang et al., 2022),
ReasTap (Zhao et al., 2022) and UCTR-ST (Li
et al., 2024c), as well as recent LLM-based syn-
thetic data from the TableGPT (Li et al., 2023)
and the TableLLM (Zhang et al., 2024b), which
use GPT-3.5 to generate instructions based on
public tables. (4) Tabular LLMs including the
TableBenchLLM (Wu et al., 2024) which is fine-
tuned from Llama3.1-8B-base with 20K manually
collected data, and the TableLLM (Zhang et al.,
2024b) which is fine-tuned from CodeLlama-7B
with 80K synthetic data. We also evaluate the pow-
erful TableGPT2-7B (Su et al., 2024) that is fine-
tuned from Qwen2.5-7B-instruct (Yang et al., 2024)
with 2.36M in-house query-table-output tuples. Im-
plementation details are given in the Appendix B.2.

4.2 Results and Analysis
Main Results. Performance of general LLMs.
As shown in Table 1, recent LLMs demonstrate
varying proficiency in the table understanding abil-
ity, with the Llama3.1-8B-instruct exhibiting the
best performance while models like Baichuan2-7B-
Chat showing comparatively weaker performance.
Their performance difference is likely due to the
construction table-related fine-tuning data during
the post-training stage. Moreover, we can find that
small language model can also possess great table
understanding ability, e.g., MiniCPM3-4B achieves
better performance than large models like GLM4-
9B-Chat, which opens up new possibilities for de-
veloping powerful and efficient tabular LLMs.

Performance of tabular LLMs. Compared
with general LLMs, recent tabular LLMs such as
TableBenchLLM exhibit surprisingly poorer per-
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Method # IFT Data
TQA TFV T2T

TableGPT
Ave.
Acc.TABMWP WTQ HiTab AIT-QA TabMCQ TabFact InfoTabs FeTaQA QTSumm

LLM
Baichuan2-7B-Chat - 30.31 4.60 1.58 10.95 41.59 14.39 19.83 57.86 30.24 18.14 22.95

GLM4-9B-Chat - 39.87 20.30 8.94 36.98 43.57 11.99 11.16 77.73 55.19 42.53 34.83
DeepSeek-V2-Lite-16B-Chat - 49.01 15.65 7.67 29.94 63.45 29.75 37.11 64.20 35.81 29.36 36.19

Phi3.5-mini-3.8B - 59.45 19.26 7.99 35.02 64.72 35.60 43.37 77.75 57.14 8.05 40.83
MiniCPM3-4B - 50.53 34.06 20.93 55.34 72.98 28.09 42.33 68.55 42.39 40.79 45.60

Mistral-7B-Instruct-v0.3 - 37.92 25.71 16.41 52.05 57.82 47.80 42.68 78.63 55.57 44.26 45.88
InternLM2.5-7B-Chat - 50.22 32.59 13.51 51.46 36.25 45.07 47.33 81.43 62.86 39.52 46.02

Yi-1.5-9B-Chat - 31.45 38.23 14.02 51.85 55.97 46.15 46.22 82.03 59.18 42.15 46.73
Llama3.1-8B-Instruct - 53.39 36.53 11.35 43.63 75.31 53.87 48.94 78.98 66.98 21.68 49.07

General Instruction Tuning Data Synthesis Methods
Self-Instruct 100K 46.68 28.98 13.77 48.92 80.27 52.92 45.07 81.13 53.48 43.13 49.44

Dynasour 132K 49.71 28.59 20.11 43.44 59.66 50.70 41.01 57.56 42.57 13.40 40.67
GenQA 100K 59.87 41.06 21.63 57.14 70.35 55.01 39.38 67.05 56.49 32.94 50.09

Evol-Instruct 100K 54.61 31.83 12.37 45.20 73.27 54.12 45.61 83.02 62.77 42.55 50.54
Magpie 100K 57.11 34.66 13.89 47.16 76.96 51.21 43.83 80.02 76.90 40.59 52.23

Table Instruction Tuning Data Synthesis Methods
OmniTab 100K 17.53 22.67 18.84 35.02 50.63 16.37 3.14 5.04 4.82 18.38 19.24
ReasTap 100K 11.22 19.54 9.96 20.54 48.49 15.66 5.70 7.14 4.92 20.67 16.38
UCTR 43K 17.61 12.03 8.84 17.31 35.76 20.96 20.35 15.23 7.51 7.09 16.27

TableGPT-syn-data 66K 25.21 16.13 9.13 24.26 47.52 19.70 25.29 46.03 36.64 47.23† 29.71
TableLLM-syn-data 80K 46.10 42.24† 13.92 39.72 25.46 29.24 31.31 79.08† 55.94 23.74 38.68

Tabular LLM
TableBenchLLM (Llama3.1-8B) 20K 25.83 18.50† 12.31 29.74† 30.41 23.97† 17.33 48.27† 42.30 16.78 26.54

TableLLM (CodeLlama-7B) 80K 43.11 37.86† 15.67 45.40 24.87 30.47 27.55 67.35† 37.66 15.14 34.51
TableGPT2 (Qwen2.5-7B)‡ 2.36M 56.35 49.35 38.26 73.97 85.71 60.42 54.87 84.72 64.10 70.25 63.80

Ours
TableDreamer (Llama3.1-70B-Instruct) 27K 60.57 42.47 17.25 56.75 82.99 57.32 49.98 84.67 75.12 33.03 56.02

TableDreamer (GPT-4o) 27K 64.61 54.66 22.88 53.22 84.29 63.09 57.65 84.37 75.97 46.20 60.69

Table 1: Evaluation results on 10 tabular task benchmarks. † indicates that the model’s fine-tuning data includes
training samples from the corresponding dataset. ‡: we only list the performance of the TableGPT2 as its training
data already contains these common benchmark datasets and the data volume also far exceeds others.

formance on the benchmarks where they should be
experts, even after being fine-tuned with the corre-
sponding training dataset. Moreover, they can not
effectively handle the unseen tabular tasks in the
TableGPT benchmark. This shows that these tab-
ular LLMs actually possess limited generalization
ability especially out-of-distribution generalization,
which is consistent with the findings from Deng
and Mihalcea (2025). After a careful inspection,
we find that this is due to the insufficient diversity in
their instruction tuning data, e.g., the training data
of TableBenchLLM only contain flat tables with a
fixed Python dictionary-style table format and the
instructions are primally limited to pre-defined tab-
ular tasks. As a result, they can only perform well
under the in-distribution setting, which highly con-
strains their application scenarios. By contrast, the
TableGPT2 delivers the best overall results particu-
larly on the TableGPT benchmark, showcasing the
effectiveness of the 2.36M in-house high-quality
training data, which includes not only public tabu-
lar datasets but also substantial synthetic data that
are further refined by human annotators.

Performance of data synthesis methods. General
instruction tuning data synthesis methods could
be successfully extended to generate table instruc-

tion tuning data and bring considerable perfor-
mance boost. For instance, fine-tuning with 100K
Magpie synthetic data boosts the average accu-
racy from 49.07% to 52.23%. The traditional
question generation approaches such as ReasTap
obtain the worst performance because they can
only generate simple table-related questions ei-
ther through predefined question templates or by
converting SQL queries. In comparison, although
the LLM-based synthetic data from TableGPT and
TableLLM can enhance the in-distribution model
performance, e.g., fine-tuning with TableGPT syn-
thetic data achieves the best result on the corre-
sponding TableGPT benchmark, they still fail to
improve the out-of-distribution table understanding
capability on other benchmarks, which eventually
yield a degenerated overall performance.

Effectiveness of TableDreamer. With Llama3.1-
70B-instruct as the data synthesis LLM, Table-
Dreamer improves the average accuracy of
Llama3.1-8B-instruct by 6.95% (49.07% →
56.02%) ands surpasses other baselines without
using any data from the public benchmarks, which
validates the effectiveness of the proposed frame-
work. The performance boost increases to 11.62%
with the GPT-4o synthetic data due to better data
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# Available Train Data
of Each Dataset

TQA TFV T2T Held-out
Ave. Acc

TABMWP WTQ HiTab TabFact InfoTabs FeTaQA QTSumm AIT-QA TabMCQ
Llama3.1-8B-Instruct 53.39 36.53 11.35 53.87 48.94 78.98 66.98 43.63 75.31 50.01

20 55.91 37.43 12.81 56.50 47.62 84.57 72.24 46.77 76.96 52.44
w/ TableDreamer-27K 64.88 56.23 24.17 60.46 53.38 83.87 76.62 53.42 83.28 59.94

△ 8.97 18.80 11.36 3.96 5.76 -0.70 4.38 6.65 6.32 7.50
50 56.18 37.75 14.78 56.34 47.88 83.23 69.48 51.07 77.84 52.23

w/ TableDreamer-27K 70.89 56.37 26.90 60.68 47.22 83.37 74.95 61.64 83.86 60.05
△ 14.71 18.62 12.12 4.34 -0.66 0.14 5.47 10.57 6.02 7.82

100 56.77 40.69 23.28 48.04 45.25 77.57 55.43 55.77 68.12 49.58
w/ TableDreamer-27K 70.96 54.37 36.04 57.07 46.00 81.38 73.28 64.18 84.15 59.87

△ 14.19 13.68 12.76 9.03 0.75 3.81 17.85 8.41 16.03 10.30
200 66.43 40.01 32.61 61.66 52.29 71.34 40.82 57.72 76.48 52.17

w/ TableDreamer-27K 76.59 50.59 41.94 63.33 57.44 78.43 72.26 59.29 84.64 62.94
△ 10.16 10.58 9.33 1.67 5.15 7.09 31.44 1.57 8.16 10.77

Table 2: Evaluation results under the few-shot learning setting, where only a limited number of training samples
from 7 datasets (the first 7 columns) are available and TableDreamer data is used as additional training data.

Mehtod # IFT Data TQA TFV T2T TableGPT Ave. Acc
Llama3.1-8B-Instruct - 44.04 51.41 72.98 21.68 49.07

w/ TableDreamer 27K 55.93 60.37 80.17 46.20 60.69
w/o Flat Tables

17K
51.41 52.02 74.85 40.59 55.13

△ -4.53 -8.36 -5.33 -5.61 -5.56
w/o Hier. Tables

17K
49.24 52.54 76.37 46.79 55.08

△ -6.69 -7.83 -3.80 +0.59 -5.61
w/o Hori. Tables

18K
54.58 51.40 78.07 45.38 57.72

△ -1.35 -8.98 -2.11 -0.82 -2.97
w/o Data Evolution

3K
47.71 49.50 71.28 38.68 51.88

△ -8.22 -10.87 -8.90 -7.52 -8.82
w/o Inst. Gene.

18K
52.32 51.77 78.26 40.89 56.26

△ -3.61 -8.60 -1.91 -5.31 -4.44
w/o Inst. Comp.

18K
50.83 51.25 73.95 39.82 54.44

△ -5.10 -9.12 -6.22 -6.38 -6.26
w/o Table Gene.

19K
50.20 54.29 76.19 42.35 55.43

△ -5.73 -6.09 -3.98 -3.85 -5.26
w/o Weakness Iden.

34K
53.12 51.72 75.82 42.12 56.28

△ -2.81 -8.65 -4.35 -4.08 -4.41

Table 3: Ablation experiment results. We report average
accuracy on four task types. △ stands for the perfor-
mance gap between the Llama3.1-8B-Instruct finetuned
with TableDreamer data and its variants. ‘Hier.’ and
‘Hori.’ stands for hierarchical and horizontal tables.
‘Inst. Gene.’, ‘Inst. Comp.’, ‘Table. Gene.’ and ‘Weak-
ness Iden.’ represents three data evoluation directions
and weakness data identification respectively.

quality. Notably, TableDreamer achieves a strong
result (46.20%) on the TableGPT benchmark and is
comparable to the model fine-tuned with TableGPT
training data (47.23%), which showcases its effec-
tiveness in improving the out-of-distribution table
understanding capability. Moreover, TableDreamer
obtains superior results with better data efficiency
than data synthesis baselines, and is even competi-
tive with the powerful TableGPT2 fine-tuned with
2.36M high-quality data.

TableDreamer as Data Augmentation. As
shown in the Table 2, fine-tuning the model with
very little labeled data offers limited improve-
ment compared with the original performance, and

adding TableDreamer synthetic data can bring a sig-
nificant performance boost across various few-shot
learning settings, which demonstrates its effective-
ness in mitigating the scarcity of annotated table
instruction tuning data.

Ablation Study. (1) Ablation of synthetic tables.
We remove one type of tables and related instruc-
tion tuning data from the total data to analyze their
influence, respectively. As presented in Table 3,
removing each type of synthetic tables will cause
negative effects due to the degenerated table diver-
sity. We also observe the similar phenomenon in
the main experiments where the fine-tuning with
TableGPT-syn-data (only including flat tables) re-
sults in poor performance on tables of different
types (e.g., hierarchical tables from HiTab). Com-
pared with others, removing horizontal tables leads
to a lower performance decrease which may be
because most benchmarks only contain flat or hi-
erarchical tables. (2) Ablation of data evolution.
We remove the data generated from different data
evolution directions. We can find that all three
data evolution directions make substantial contri-
butions to the final model performance, and ‘w/o
Instruction Complication’ causes a more signifi-
cant performance decline than others, which high-
lights the importance of complex instructions in
enhancing the model’s table understanding ability.
Unsurprisingly, ‘w/o Data Evolution’ causes the
worst performance as we only fine-tuned the model
with 3K seed data. This shows that, simply us-
ing LLMs to synthesize instructions of pre-defined
types, which is the common practice of recent tab-
ular LLMs, is insufficient to improve the model
performance, and we need to thoroughly explore
the vase input space for better data diversity. (3)
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Figure 5: The performance improvement as the TableDreamer synthetic data (from GPT-4o) continues to accumulate.

Ablation of weakness data identification. We use all
generated data from data evolution for fine-tuning
rather than the selected weakness data. Despite us-
ing more synthetic data (34K), the model actually
suffers a performance drop of 4.41, which suggests
that choosing the weakness-exposing data is more
conducive to model performance than blindly in-
creasing the data volume.

Effect of Data Size. Since TableDreamer synthe-
sizes instruction tuning data through an iterative
collaboration between input space exploration and
weakness data identification, we investigate the per-
formance improvement resulting from the accumu-
lation of synthetic data. To this end, we fine-tuned
the Llama3.1-8B-Instruct with the initial seed data
(3K), the accumulated synthetic data after the first
round (10K, including seed data) and the total data
after the second round (27K), respectively. From
the results in Figure 5, we can observe that the av-
erage performance continues to improve with the
growth of synthetic data, which demonstrates the
scalability of the method.

Performance of Recent R1-style Reasoning Mod-
els The recent emerging reasoning LLMs (o1 and
R1-style) have achieved significant progress on
complicated math, code, and other tasks that de-
mand human-level complex reasoning ability. How-
ever, their capability to understand structured tabu-
lar data has not been thoroughly investigated. To
fill the gap, we evaluate representative reasoning
LLMs on 9 tabular benchmarks except TableGPT
benchmark to save API cost of R1 and GPT-4o.

From the results shown in Table 5, we can find
that reasoning LLMs (like DeepSeek-R1 and QwQ-
32B) surpass traditional LLMs (like DeepSeek-V3
and GPT-4o) and achieve the best overall perfor-
mance, which demonstrates that improving gen-
eral reasoning ability of LLMs can also boost
their table understanding skills, e.g., DeepSeek-
R1 improves the average accuracy of DeepSeek-

V3 by 3.20 (71.25→74.45). The QwQ-32B even
performs slightly better than 671B DeepSeek-R1,
which could be attributed to the reason that the
Qwen-2.5 backbone has been specially enhanced
for understanding table data (Yang et al., 2024).

The R1-distilled smaller LLMs, which were
fine-tuned with R1’s 800K SFT data, also outper-
form their vanilla versions, e.g., R1-Distill-Llama-
8B beats Llama3.1-8B-instruct by 7.12 in aver-
age accuracy. Notably, our method (Llama3.1-
8B-instruct + TableDreamer-27K) outperforms R1-
Distill-Llama-8B by 3.07, which further validates
the effectiveness of the proposed framework and
the value of our synthetic data. We believe that
TableDreamer framework can be combined with
these reasoning LLMs to generate better table in-
struction tuning data, which could be used to distill
more powerful table-related reasoning ability into
student LLMs. More results and analysis are
given in App. C due to space limitation, such
as the effectiveness on different LLMs and general
capacity of different tabular LLMs.

5 Conclusion

This paper introduces a novel data synthesis frame-
work for table instruction tuning, which can gener-
ate diverse tables together with instructions span-
ning a wide range of tabular tasks, without relying
on any public datasets. At the core of the pro-
posed TableDreamer framework lies the iterative
collaboration between input space exploration and
weakness data identification. On the basis of Table-
Dreamer, we construct and release 27K synthetic
data, which can effectively enhance LLMs’ table
understanding ability and outperforms strong base-
lines. In conclusion, this paper promotes the re-
search of data synthesis for the important table
instruction tuning with the new method, dataset
and thorough empirical study.
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6 Limitations

Though this paper presents an effective framework
as well as a systematic investigation within the
scope of table instruction tuning data synthesis,
there are certain limitations and promising direc-
tions that deserve future research. First, the pro-
posed framework generates tables and instructions
in text format. With the devolvement of multi-
modal large language models (MLLMs), consider-
able efforts have been dedicated to the multimodal
or visual table understanding problem (Zheng et al.,
2024; Deng et al., 2024; Zhao et al., 2024), where
models take as input a table image rather than a
textual table sequence for visual understanding and
it also lacks the large amount of diverse instruc-
tion tuning data (i.e., triples of table image, in-
struction, and response). One potential solution
is to transform the TableDreamer synthetic tex-
tual tables into table images with automatic scripts,
e.g., rendering the HTML tables into images with
the Python html2image package. Second, there
are three common paradigms for LLM-based data
synthesis: Strong2Weak distillation (Huang et al.,
2022), Weak2Strong Generalization (Burns et al.,
2023), and self-improving or self-evolving (Tao
et al., 2024). The proposed framework belongs
to Strong2Weak distillation paradigm where we
use a stronger LLM (Llama3.1-70B-instruct or
GPT-4o) to synthesize data in order to enhance
the performance of a weaker LLM (e.g., Llama3.1-
8B-instruct). The latter two paradigms also re-
quire more in-depth explorations, e.g., for the self-
evolving paradigm, how can we continuously im-
prove the table understanding ability of the most
powerful LLMs like GPT-4o with their own syn-
thetic data.

Third, current data synthesis methods for ta-
ble understanding and even most table understand-
ing studies, including this paper, are restricted to
synthesizing data for the supervised fine-tuning
stage. It is worthwhile exploring the generation of
table-related preference data to further improve the
model performance with reinforce learning (Gal-
lego, 2024; Wijaya et al., 2024). Particularly, we
believe it is a very promising direction to explore
incentivizing the table-based Deepseek-R1-style
in-depth reasoning (DeepSeek-AI et al., 2025) of
tabular LLMs by synthesizing tabular task data
that can provide reward feedback for reinforcement
learning. Lastly, like other data synthesis methods,
TableDreamer data is not perfect and could contain

noisy tables and instruction-response pairs. Fur-
ther filtering these noisy data would benefit model
performance.

7 Ethical Considerations

The main objective of the proposed TableDreamer
framework is to develop a scalable data synthesis
method for table instruction tuning to enhance the
table understanding capabilities of LLMs. How-
ever, the data generated from the LLMs (Llama3.1-
70B-instruct and GPT-4o) may contain harmful
content in the synthesized tables, instructions, and
responses. To this end, we use the LLM-as-a-judge
based on Llama3.1-70B-instruct to check for harm-
ful content within the generated samples, as shown
in Fig. 9, and we also randomly sample 5K sam-
ples for manually checking. In our empirical evalu-
ations, we do not observe such unsafe data but we
still suggest adding relevant safety filtering strate-
gies when using the proposed framework. The
benchmarks used in the experiments are free and
open datasets for research use, thus the authors
foresee no ethical concerns.
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A More Dataset Information and
Comparison

Table 4 shows the basic statistics of 27K synthetic
data from GPT-4o, such as the average instruction
number per table, instruction length (whitespace-
split word number) and so on. Figure 6 shows more
examples of synthetic tables and instructions.

To shed more light on the characteristics of dif-
ferent data synthesis methods, we visualize the data
distribution of various synthetic datasets, including
instruction length, output length, table row number,
and table column number, and the results are shown
in Figure 8. Figure 7 further demonstrates the diver-
sity of synthetic instructions from different meth-
ods, and Table 10 compares their characteristics.
Based on these results, we can find that, although
existing data synthesis methods could generate a
large amount of table instruction tuning data, the di-
versity of their synthetic data is limited, e.g., most
synthetic samples only cover small tables within
20 rows and 10 columns and can only generate
relatively short instructions around 25 words. By
contrast, the proposed TableDreamer method offers
table instruction tuning data with the best overall
diversity.

B Implementation Details

B.1 TableDreamer

The table generation prompt is shown in Figure 14,
and the prompts and strategies for data evolution in
three directions are given in Fig. 15, Fig. 18 , Fig.
17 and Table 12, respectively. The LLM-as-a-judge
prompt used for the identification of weaknesses
data is shown in Figure 16, which is modified from
the correctness-judging standard of the HelpSteer2
dataset (Wang et al., 2024a). The 20 seed tasks
and their descriptions are given in Table 11, which
are used by the teacher LLM (e.g., Llama3.1-70B-
instruct or GPT-4o) to generate seed instructions
based on synthetic tables. Multiple prompt tem-
plates are used to combine the input table, table
title and instruction to form the final input prompt
in the training data. During fine-tuning, we adopt
the recommended hyper-parameters from Deng and
Mihalcea (2025) and perform the standard super-
vised fine-tuning with a learning rate of 1e-6 and a
batch size of 128 for 2 epochs. During inference,
we set the temperature to 0.01 for reproducible
evaluation results.

Characteristic Value
Avg. instruction number per table 3.4
Row number per table (median/mean/min/max) 15/16.8/4/43
Column number per table (median/mean/min/max) 13/14.8/4/45
Cell number per table (median/mean/min/max) 200/237/28/1008
Instruction length by word (median/mean/min/max) 29/36.9/6/900
Output length by word (median/mean/min/max) 288/412.9/3/11513

Table 4: Basic statistics of the TableDreamer-27K syn-
thetic data generated by GPT-4o.

B.2 Baseline Implementations.

For general LLMs and tabular LLMs, we directly
evaluate their performance on the collected bench-
marks using model checkpoints downloaded from
the HuggingFace. For general data synthesis base-
lines like Self-Instruct, we made necessary adjust-
ments to enable them to generate table instruction
tuning data based on the Llama3.1-70B-instruct.
For table instruction tuning data generation base-
lines, we directly use their released synthetic data
as the training data. We fine-tune the Llama3.1-
8B-instruct with the synthetic data from the Table-
Dreamer and other data synthesis baselines, and
evaluate the performance of the resulting models
to compare the effectiveness of different data syn-
thesis methods.

Here we give more details about reimplement-
ing general data synthesis baselines. For Self-
Instruct (Wang et al., 2023), we construct 175 gen-
eral tabular task requests with the help of GPT-
4o and use them as seed data to generate more
tabular tasks with the original self-instruct frame-
work. Then, the filtered tabular tasks are used to
synthesize task-inputs which include input tables
and instructions. For Magpie (Xu et al., 2024)
reimplementation, we follow the original Magpie
approach which modifies the system prompt to
generate domain-specific instruction tuning like
mathematical data. Similarly, we modify the sys-
tem prompt to ask the LLM to act as a table un-
derstanding expert that fulfills table-related tasks.
Then, a pre-query template with the modified sys-
tem prompt is input to the LLM and it will au-
tonomously generate the input table and related
instructions autoregressively, which are further fil-
tered with the methods from the original paper.

The GenQA (Chen et al., 2024) explores differ-
ent prompts to synthesize instruction-tuning data.
To reimplement GenQA, we modify the Generator-
Conditional data synthesis prompt, the best prompt
according to the paper, to generate input tables
and instructions based on the diverse topics from
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Methods LLMs
TQA TFV T2T

Ave. Acc
TABMWP WTQ HiTab AIT-QA TabMCQ TabFact InfoTabs FeTaQA QTSumm

Reasoning LLMs
DeepSeek-R1 (671B) 64.75 77.76 39.34 65.36 88.38 73.64 69.59 97.20 94.06 74.45

QwQ-32B 65.46 77.07 36.14 76.12 87.85 78.88 74.74 95.16 92.39 75.98
Distilled Reasoning

LLMs
R1-Distill-Llama-70B 63.10 62.26 19.61 56.36 86.68 68.89 72.53 93.51 90.82 68.20
R1-Distill-Llama-8B 63.50 46.82 18.02 47.55 82.02 52.57 60.38 86.02 76.16 59.23

Traditional LLMs
DeepSeek-V3 (671B) 70.29 65.65 32.86 63.79 89.31 65.46 67.14 96.21 90.54 71.25

GPT-4o 73.47 68.57 38.13 71.62 88.04 69.03 68.11 95.66 92.30 73.88
Llama3.1-70B-instruct 61.69 50.43 19.35 61.25 86.88 66.31 62.55 90.61 84.04 64.79

Ours
Llama3.1-8B-instruct 53.39 36.53 11.35 43.63 75.31 53.87 48.94 78.98 66.98 52.11
w/ TableDreamer-27K 64.61 54.66 22.88 53.22 84.29 63.09 57.65 84.37 75.97 62.30

△ 1.11 7.84 4.86 5.67 2.27 10.52 -2.73 -1.65 -0.19 3.07

Table 5: Results of recent R1-style reasoning LLMs. △ indicates performance increase between our method and
R1-Distill-Llama-8B.

Method TQA TFV T2T TableGPT Ave. Acc
Llama3.1-8B-Instruct 44.04 51.41 72.98 21.68 49.07
w/ TableDreamer-27K 55.93 60.37 80.17 46.20 60.69

△ 11.89 8.96 7.19 24.52 11.63
Mistral-7B-Instruct-v0.3 37.98 45.24 67.10 44.26 45.88
w/ TableDreamer-27K 51.06 49.34 76.19 43.33 54.97

△ 13.07 4.10 9.09 -0.93 9.08
MiniCPM3-4B 46.77 35.21 55.47 40.79 45.60

w/ TableDreamer-27K 53.03 40.50 64.51 42.85 51.80
△ 6.27 5.29 9.04 2.06 6.20

InternLM2.5-7B-Chat 36.81 46.20 72.15 39.52 46.02
w/ TableDreamer-27K 54.99 51.99 73.08 40.14 56.52

△ 18.18 5.79 0.93 0.62 10.50

Table 6: Comparison of average performance of differ-
ent LLMs fine-tuned with the TableDreamer data.

the original paper. For Evol-Instruct (Xu et al.,
2023), we select 40K samples generated from Mag-
pie and Self-Instruct synthetic data as seed data
for synthesizing new samples with the evol-instruct
prompts. The Dynosaur (Yin et al., 2023) method
synthesizes instruction-tuning data by transforming
existing datasets with LLM-generated instructions.
To reimplement Dynosaur, we collect 5 table un-
derstanding datasets including FinQA, SQA, Wik-
iSQL, TAT-QA and PubHealthTab as the basic data
source and carefully construct their dataset meta-
data, which are used by the Llama3.1-70B-instruct
to design tabular tasks and instructions. More de-
tails and introduction about these baselines could
be found in the original papers. All experiments in
this paper were conducted on one machine with 8
80GB A100.

C More Results and Analysis

C.1 Effect on Different LLMs

As shown in Table 6, other LLMs can also benefit
from fine-tuning with TableDreamer-27K data, in-
dicating the transferability of synthetic data. Com-

Method TQA TFV T2T TableGPT Ave. Acc
Llama3.1-8B-Instruct 44.04 51.41 72.98 21.68 49.07
w/ TableDreamer-27K 55.93 60.37 80.17 46.20 60.69

w/o Weakness Iden.-34K 53.12 51.72 75.82 42.12 56.28
△ 2.81 8.65 4.36 4.08 4.41

Mistral-Instruct-v0.3-7B 37.98 45.24 67.10 44.26 45.88
w/ TableDreamer-27K 51.06 49.34 76.19 43.33 54.97

w/o Weakness Iden.-34K 49.87 48.17 72.81 45.29 53.66
△ 1.19 1.17 3.38 +1.96 1.31

MiniCPM3-4B 46.77 35.21 55.47 40.79 45.60
w/ TableDreamer-27K 53.03 40.50 64.51 42.85 51.80

w/o Weakness Iden.-34K 52.05 39.71 64.40 41.81 51.03
△ 0.99 0.79 0.11 1.04 0.78

InternLM2.5-7B-Chat 36.81 46.20 72.15 39.52 46.02
w/ TableDreamer-27K 54.99 51.99 73.08 40.14 56.52

w/o Weakness Iden.-34K 50.78 49.01 71.24 45.14 53.96
△ 4.20 2.98 1.84 +5.00 2.57

Table 7: Ablation study on different LLMs fine-tuned
with the TableDreamer-34K data without weakness iden-
tification.

Method TQA TFV T2T TableGPT Ave. Acc
Llama3.1-8B-instruct 44.04 51.41 72.98 21.68 49.07
w/ TableDreamer-27K 52.01 53.65 79.90 33.03 56.02
w/ randomly selected
weakness data-27K

48.54 50.58 76.72 30.06 52.73

△ 3.47 3.07 3.18 2.97 3.29

Table 8: Ablation study of randomly selecting weakness
data for data evolution with Llama3.1-70B-Instruct.

pared with Llama3.1-8B-Instruct, the performance
gains of three LLMs are relatively smaller, which
may be because we used Llama3.1-8B-Instruct as
the target LLM to identify vulnerability data in or-
der to achieve targeted performance enhancement.

To more thoroughly investigate the generaliza-
tion of weakness detection beyond Llama3.1-8B-
instruct, we conduct extra ablation experiments by
using the TableDreamer-34K data (from GPT-4o)
without weakness data selection to fine-tune other
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Task Category Benchmark # Test samples Ave. Input Length Task Description Metric

Table
Question

Answering
(TQA)

WTQ 4344 496.3
TQA based on tables which usually possesses a flat
structure with the first row as the sole column header.

Accuracy

HiTab 1576 399.4
TQA based on tables which usually possesses
hierachical headers and merged cells.

Accuracy

AIT-QA 511 275.2 TQA based on hierarchical tables from the airline industry. Accuracy
TabMCQ 1029 311.8 TQA with multi-choice questions. Accuracy

TABMWP 7686 89.6
TQA requiring mathematical reasoning operations such as
finding the largest number or do math computations.

Accuracy

Table
Fact

Verification
(TFV)

TabFact 6845 303.7
Given a table as evidence and a statement, the
task is to distinguish whether the given
statement is entailed or refuted by the table.

Accuracy

InfoTabs 5400 155.1
Given a infobox table as evidence and a statement,
the task is to distinguish whether the
givenstatement is entailed or refuted by the table.

Accuracy

Table to
Text

Generation (T2T)

QTSumm 1078 242.8
Given a table and a query, models must perform
human-like reasoning and analysis over
the given table to generate a tailored summary.

LLM-as-a-judge
Acc.

FeTaQA 2003 263
TQA with a free-form text answer rather
than a short text span copied from the table.

LLM-as-a-judge
Acc.

TableGPT

Column
Finding

1682 106.3
Identify the column-name of a
specific value that appears only once in a given table

Accuracy

Data
Imputation

2000 147.8
Predict the missing values in a cell
based on the table context

Accuracy

Row2Row
Transformation

570 101.7
Transform table data based
on input/output examples

Accuracy

Missing Value
Identification

8000 107.1
Identify the row and column
position of the only missing cell in a given table

Accuracy

TQA
(SQA,WTQ)

9048 229.5
Answer a natural-language question
based on the content of a table

Accuracy

Table 9: Detailed description and statistics of 10 used benchmarks. The average input length is computed by
whitespace-split word number.

Method Rely on
public tables?

Need human
annotators? Table types Table formats Instruction

template
Instruction generation

method
Response

type
Consider model

weakness?
OmniTab Yes No Flat Python-dict-style Fixed SQL2NL Short answer No
ReasTap Yes No Flat Python-dict-style Fixed Predefined template Short answer No
UCTR Yes No Flat Python-dict-style Fixed Program2NL Short answer No

TableLlama Yes No
Flat,

hierarchical
heuristically-defined Fixed Converting existing datasets Short answer No

TableGPT Yes No Flat Markdown-style Fixed LLM generated Short answer No

TableBenchLLM Yes Yes
Flat,

hierarchical
Python-dict-style Fixed LLM generated+Human Corrected Detail Reasoning steps No

TableLLM Yes No Flat CSV Fixed LLM generated Detail Reasoning steps No

TableDreamer (Ours) No No Flat, hierarchical,
horizontal Diversified Diversified LLM generated Detail Reasoning steps Yes

Table 10: Comparison of TableDreamer and previous table instruction tuning data synthesis methods.

LLMs. Performance comparison is shown in Ta-
ble 7 and the ’△’ indicates the performance gap
between the normal TableDreamer-27K and unse-
lected 34K data. We can observe that, compared
with 27K filtered data, using 34K unfiltered data
also leads to performance decrease for other LLMs,
but their gap is smaller than that of Llama3.1-8B-
instruct. For example, the average accuracy gap
on InternLM2.5-7B-Chat is 2.57 and the gap on
MiniCPM3-4B is only 0.78. This demonstrates
that the detected weakness data with Llama3.1-
8B-Instruct can generalize to other LLMs but with
different extent, which could be attributed to the be-
havior similarity between different LLMs resulting
from model distillation (Lee et al., 2025). Intu-
itively, if the target LLM used for weakness detec-
tion and another LLM both utilize fine-tuning data

distilled from the same teacher LLM (like GPT-4o),
their model behavior could be similar or homoge-
neous, thus they are likely to share some weakness
data in table understanding.

C.2 Credibility of Weakness Detection

The credibility of LLM-as-a-judge-based weakness
detection module directly impacts on the reserved
synthetic training data. Thus, we conduct an extra
ablation experiment by randomly selecting weak-
ness data in each round of data evolution and use
Llama3.1-70B-Instruct to synthesize 27K data for
fine-tuning Llama3.1-8B-Instruct. From the results
in Table 8, we can observe that randomly selecting
weakness data leads to a substantial degeneration
of 3.29 in average accuracy over 10 benchmarks,
which validates the effectiveness of the LLM-as-
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Task Category Task Name Task Description

Table
Question

Answering

Numerical
reasoning problem

Given a table and a problem, the model needs to perform mathematical calculations based on numerical values in
the table and the problem, such as addition, subtraction, averaging, calculation of growth rates, etc.

Information
seeking problem

Given a table and a related problem, the model needs to conduct information seeking from
table cells based on the requirements of problem.

Multihop
reasoning problem

Given a table and a related problem, the model needs to conduct multi-hop reasoning according
to the requirements of the problem to get the final answer.

Time
calculation problem

Given a table and a problem, the model needs to perform temporal calculations or comparison based on
the time information, such as calculating the time difference between the release time of two movies.

Table-based
fact verification

Given a table and a statement, the model needs to determine whether the statement is true based on
the table information.

Table-to-text
generation

Table
description

Given a table, the model needs to describe the table contents in detail.

Table
summarization

Given a table, the model is asked to summarize the key information in the table
and generate a summary.

Table
analysis

Given a table, the model is asked to act as a professional data analyst, analyzing the key trends and
phenomena in the table data, such as analyzing the sales of products in each quarter against the sales report.

Table
Structure

Understanding

Table size
detection

Given a table, the model is asked to determine how many rows and columns the table has.

Table cell
extraction

Given a table and some cell locations (represented by row and column numbers),
the model is asked to extract the cell text for the corresponding location.

Table
cell location

Given a table and some cell text, the model is asked to find the position of those cells in the table
(represented by row and column numbers).

Row&Column
extraction

Given a table and some row or column numbers, the model is asked to extract all the text for the
corresponding row or column.

Merged
cell detection

Given a table, the model is asked to determine whether the table contains merged cells and give the location of
all the merged cells (represented by row and column numbers) if so.

Data
Manipulation

Data
formating

Given a table and user requirements, the model needs to modify the formats of some table data according
to user requirements.

Data
cleaning

Given a table that may contain noise or errors, the model needs to identify and correct errors in the table
based on the user requirements, such as typos, duplicate values, or illegal characters and so on.

Data
filtering

Given a table and some filter criteria, the model is asked to filter some rows and columns in
the table based on the given criteria. For example, only reserving rows that meet certain criteria.

Data
classification

Given a table and user requests, the model needs to classify table data into pre-defined categories.
For example, classifying movie reviews in the given table into positive reviews or negative reviews.

Data sorting
The model needs to sort the data in the table according to the user’s requirements and return
the sorted data, which can be sorted in the ascending or descending order.

Table
Processing

Table
modification

Given the table and modification requirements, the model is asked to modify the overall table
according to the user’s requirements and returns the processed table.

Format
transformation

The model needs to convert the original table to the desired format based on user requirements, such as
from Markdown format to Latex format.

Table 11: Description of 20 seed tasks which are used to synthesize seed instructions based on synthetic tables.

a-judge-based weakness detection. Besides, with
more complex task instructions being synthesized,
we argue that more advanced methods need to be
adopted to provide reliable LLM-based evaluation
for selecting weakness data, e.g., criteria decompo-
sition or majority voting (Gu et al., 2025; Li et al.,
2024a).

C.3 Combining Synthetic and Human Data

Although the results in Table 1 and Table 2 have
shown that TableDreamer synthetic data could im-
prove table understanding ability under zero-shot
(no human-annotated data) and few-shot (limited
amount of human-annotated data) scenarios, we
want to further investigate whether our synthetic
data can effectively complement human-annotated
training data in tabular benchmarks and compare
the quality of human-annotated and synthetic data.
To this end, we fine-tune Llama3.1-8B-Instruct
with all training data of 7 benchmarks and also com-
bine these human-annotated data with synthetic

TableDreamer-27K data. We leave AIT-QA and
TABMCQ as held-out benchmarks and do not use
their training data.

The results in Table 14 reveal that, using all
human-annotated training data indeed greatly im-
proves performance on held-in benchmarks, but at
the significant cost of held-out performance. Com-
pared with only using 27K TableDreamer data, us-
ing 120K human-annotated data boosts the held-
in average accuracy from 60.46 to 65.27, but the
held-out performance greatly degenerates, e.g., the
performance on AIT-QA declines from 53.22 to
27.20, which eventually leads to a worse average
performance over 9 benchmarks (61.90 vs 62.30).
We believe this performance instability is due to
the different quality of human-labeled responses.
As shown in the ’Answer Type’ row, TABMWP
contains high-quality human-annotated responses
with chain-of-thoughts, thus leading to the largest
accuracy boost of 22.82, but most human-annotated
data only contains short answers, which are very
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Evolution Direction Evolution Strategy Description

Instruction Complication

Add Constrains adding one more constraints/requirements/conditions to the original instruction.

Increase Depth
increasing the depth of the questions or requests in the original instruction. For instance,
rewriting a simple question into a more profound question, or proposing a
complex math problem instead of a simple calculation.

Add Reasoning Steps
increasing the required reasoning steps of the original instruction. For instance, if the original
task can be solved with a few simple steps, you should rewrite it
into more complex problems that request multi-step reasoning.

Add Task Number
adding more tasks/demands to the original instruction so that models need to perform multiple tasks.
For instance, if the original instruction only contains one task,
you can propose more tasks in the instruction and organize them in a Markdown list.

Add Details replacing general concepts in the original instruction with more specific concepts.

Increase Length
writing long and multi-line instructions. Each instruction consists of multiple lines
or paragraphs of text to create complex tasks.

Add Context
designing more complex tasks which require not only the original input
table but also additional input data (e.g., related contexts, code,
background information or task examples, etc).

Instruction Generalization
New Instruction

draw inspiration from the example tabular instruction and come up brand
new instructions about the provided table. New instructions require performing tasks
that are different from example instructions.

Similar Instruction
come up with task instructions about the given table, which are similar with
the original instruction. The new instructions SHOULD belong to the same
task type or the same demand as the example instruction.

Table Generalization

Change Format convert the original table into a table in the new format

Modify Header
paraphrasing some row headers or column headers into new headers
with the same meaning. For instance, replacing original headers with synonyms.

Modify Data
replacing the data in the original table with new data. Make new data
as diverse as possible. You can also replace some data with null values.

Order Permutation randomly changing the order of rows and columns in the original table.
Insert/Remove Data randomly inserting or removing some new rows and columns.

Table 12: Descriptions of 14 detailed data evolution strategies. In the evolution of each direction, one strategy is
randomly sampled to fill in the corresponding data evolution prompt.

Method TABMWP WTQ HiTab TabFact InfoTabs AIT-QA TabMCQ FeTaQA QTSumm TableGPT Ave. Acc
Llama3.1-8B-Instruct 53.39 36.53 11.35 53.87 48.94 43.63 75.31 78.98 66.98 21.68 49.07
w/ TableDreamer-27K 60.57 42.47 17.25 57.32 49.98 56.75 82.99 84.67 75.12 33.03 56.02
w/ TableDreamer-52K 58.41 43.55 17.69 59.98 54.09 57.72 84.25 85.07 73.19 34.09 56.80

△ -2.16 1.08 0.44 2.66 4.11 0.97 1.26 0.40 -1.93 1.06 0.79

Table 13: The influence of adding 25K extra TableDreamer synthetic data (from Llama3.1-70B-Instruct).

prone to overfitting on dataset-specific patterns and
harm out-of-distribution and general capacities.

By contrast, the synthetic TableDreamer data
could act as a supplementary part, which not
only provides better diversity of tables, instruc-
tions, and tasks, but also includes detail responses
from teacher LLMs, resulting in substantial per-
formance boost under both few-shot and stan-
dard training settings. For instance, using both
human-annotated and TableDreamer data obtains
the best average performance of 67.59. Moreover,
human-generated data also faces challenges like
high costs and lacking creativity in synthesizing
diverse table-related instructions and tasks, where
LLM-generated data could serve as a viable alter-
native or supplement (Long et al., 2024).

C.4 General Capacity of Tabular LLMs

It is very important for tabular LLMs to main-
tain their general ability on non-tabular tasks such
as instruction-following or commonsense ques-
tion answering. As a result, we evaluate our
method and existing tabular LLMs on two general
LLM benchmarks IFEval (Zhou et al., 2023b) and
MMLU (Hendrycks et al., 2021). The IFEval is
an instruction following benchmark which assesses
LLMs’ ability to follow natural language instruc-
tions, e.g., ‘Write a casual summary of LLMs with
two sections and at least 25 sentences’. MMLU is
a multi-task benchmark where LLMs needs to an-
swer multi-choice questions from 57 subjects such
as elementary mathematics and computer science.

For IFEval, we follow the original paper and re-
port prompt-level and instruction-level accuracy
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Exp. Setting SFT Data # SFT Data
Held-in Held-out Overall

Ave. AccTABMWP WTQ HiTab TabFact InfoTabs FeTaQA QTSumm Ave. Acc AIT-QA TabMCQ
No Train Data Llama3.1-8B-Instruct - 53.39 36.53 11.35 53.87 48.94 78.98 66.98 50.01 43.63 75.31 52.11

Only
Synthetic Data

w/ TableDreamer 27K 64.61 54.66 22.88 63.09 57.65 84.37 75.97 60.46 53.22 84.29 62.30

A Few
Human Data

50-shot 350 56.18 37.75 14.78 56.34 47.88 83.23 69.48 52.23 51.07 77.84 54.95
w/ TableDreamer 350+27K 70.89 56.37 26.90 60.68 47.22 83.37 74.95 60.05 61.64 83.86 62.88

All
Human Data

Training Set Size - 30K 17K 8K 31K 18K 8K 5K - - - -
Answer Type - CoT S.A. S.A. S.A. S.A. L. A. L. A. - - - -

Ave.
Answer Length

- 65.30 1.73 1.40 1.03 1.35 18.60 50.60 - - - -

All human data 120K 87.43 58.74 30.64 65.31 62.61 83.23 68.92 65.27 27.20 72.98 61.90
△ with only TableDreamer Data - 22.82 4.08 7.76 2.22 4.96 -1.14 -7.05 4.81 -26.02 -11.31 -0.40

Human Data+TableDreamer Data 120K+27K 91.90 62.27 31.02 76.56 71.87 84.22 73.19 69.98 32.87 85.61 67.59
△ with only Human Data - 4.47 3.53 0.38 11.25 9.26 0.99 4.27 4.71 5.67 12.63 5.69

Table 14: Comparison of human-annotated data and TableDreamer-27K synthetic data (from GPT-4o) under different
settings. ‘S.A.’ and ‘L.A.’ stand for ‘short answer’ and ‘long answer’ respectively. △ indicates performance gap.

Method
IFEval MMLU

prompt-level instruction-level
Ave. Acc. Humanities Social Science STEM Other Ave Acc.

Strict Acc. Loose Acc. Strict Acc. Loose Acc.
Qwen2.5-7B-Instruct 71.34 73.38 79.37 80.93 76.26 64.59 82.22 81.01 77.61 74.99

TableGPT2
(Qwen2.5-7B)

52.86 57.67 62.82 67.14 60.12 59.49 78.55 75.08 74.43 70.47

△ 18.48 15.71 16.55 13.79 16.13 5.10 3.67 5.93 3.18 4.52
Llama3.1-8B-Instruct 68.94 73.19 76.73 80.45 74.83 61.11 75.76 69.52 75.35 69.41

TableBenchLLM
(Llama3.1-8B)

20.88 25.13 31.65 36.45 28.53 15.75 22.59 12.62 11.29 15.55

△ 48.06 48.06 45.08 44.00 46.30 45.36 53.17 56.90 64.06 53.86
TableLLM

(CodeLlama-7B)
18.66 22.92 28.65 32.61 25.71 12.55 16.83 16.29 16.09 17.30

△ 50.28 50.27 48.08 47.84 49.12 48.56 58.93 53.23 59.26 52.11
TableDreamer-27K

(ours)
68.20 71.90 76.61 79.73 74.11 61.42 75.43 71.24 74.95 69.73

△ 0.74 1.29 0.12 0.72 0.72 +0.31 0.33 +1.72 0.40 +0.32

Table 15: Comparison of TableDreamer-27K and existing tabular LLMs on IFEval and MMLU benchmarks. △
indicates performance decrease of different tabular LLMs compared with general LLMs in the same/similar-series.

under the strict and loose settings (i.e., 4 met-
rics), which represents the percentage of prompts
and instructions that LLMs successfully followed.
For MMLU, we report exact match accuracy of
four broad disciplines: Humanities, Social Science,
STEM and Other. The zero-shot CoT setting is
used for both benchmarks. For MMLU, we add
requirements in the input prompt and ask LLMs to
represent the final answer in the JSON format for
answer parsing and accuracy computation.

The results in Table 15 reveal that existing tabu-
lar LLMs suffer tremendous performance drop on
general benchmarks, e.g., compared with Llama3.1-
8B-Instruct, the TableBenchLLM only achieves av-
erage accuracy of 28.53 on IFEval (46.30↓) and
15.55 on MMLU (53.86↓). The average perfor-
mance of powerful TableGPT2 also declines sub-
stantially by 16.13 on IFEval and 4.52 on MMLU.
These phenomena correspond to our findings and

findings in Deng and Mihalcea (2025), i.e., exist-
ing tabular LLMs can only perform well under the
in-distribution table understanding setting and they
significantly sacrifice out-of-distribution as well as
fundamental general capabilities.

In comparison, our method maintains general
capabilities with slight performance fluctuations
on IFEval (-0.72) and MMLU (+0.32), which val-
idates that our method can effectively enhance ta-
ble understanding performance without sacrificing
broader and general capabilities.

C.5 Effect of Adding More Data

Another important question is whether adding more
data would continue to improve model performance
or if the gains would eventually plateau. Thus, con-
sidering the high cost of GPT-4o API, we utilize
Llama3.1-70B-instruct to synthesize 25K new data
and combine it with the original 27K Llama3.1-
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User ID U001 U002 U003 U004 U005 U006 U007

Age 34 29 41 37 25 30 36

Country USA UK Germany Canada Brazil Australia India

Preferred 
Tool

Tool A Tool B Tool C Tool D Tool B Tool A Tool C

Use Case
Transacti
on 
Tracking

Market 
Analysis

Complian
ce

Asset 
Manage
ment

Transacti
on 
Tracking

Market 
Analysis

Complian
ce

Satisfacti
on (1-10)

8 7 6 9 5 7 8

Tool 
Customiz
ation

Yes No Yes Yes No Yes Yes

Subscript
ion Type

Premium Basic Business
Enterpris
e

Basic Premium
Enterpris
e

Plastic Bottles Jute Bags
Bioplastic 

Containers
Foil Paper Wax Paper

Material Plastic Glass Composite Aluminium

Manufacturing 
Emissions (kg 

CO2)
8.2 5.5 4.3 7

Transportation 
Emissions (kg 

CO2)
1.9 2.1 1.2 1.4

Recycling 
Emissions (kg 

CO2)
0.7 0.9 0.5 0.8

Total Emissions 
(kg CO2)

10.8 8.5 6 9.2

Year

Region
Overall 

Growth 

Rate

North America Europe

USA Canada Mexico UK Germany France

2015 $200 $50 $30 $40 $60 $55 $700 

2016 $260 $70 $35 $45 $80 $60 $893 

2017 $310 $85 $40 $65 $100 $75 $1,078 

2018 $350 $95 $45 $70 $120 $90 $1,232 

2019 $390 $110 $50 $75 $140 $95 $1,425 

2020 $440 $130 $55 $80 $160 $100 $1,555 

2021 $480 $145 $60 $90 $180 $110 $1,725 

2022 $520 $160 $65 $100 $200 $120 $1,935 

2023 $570 $180 $70 $110 $220 $130 $2,135 

2024 $620 $200 $75 $120 $240 $140 $2,415 

2025 $680 $220 $80 $130 $260 $150 $2,685 

Subject ID Age Gender
Sleep 

Quality

Memory 

Test 1

Memory 

Test 2

Reaction 

Time (ms)

Sleep 

Duration 

(hrs)

1001 25 M Good 85 88 320 7.5

1002 30 F Fair 72 75 340 6

1003 22 F Excellent 92 95 280 8

1004 35 M Poor 60 65 350 5

1005 28 F Good 87 89 300 7

1006 45 M Fair 74 77 330 6.5

1007 32 F Excellent 93 94 275 8.5

1008 27 M Poor 63 68 345 5.5

1009 40 F Good 88 90 310 7.2

Retailer Country
Online Sales 

(in $)

Brick-and-
Mortar 

Sales (in $)

Total Sales 
(in $)

Online Sales 
Growth (%)

Brick-and-
Mortar 
Sales 

Growth (%)

Zara USA 450000 650000 1100000 8.5 5

H&M UK 300000 380000 680000 7.5 4.2

Uniqlo Japan 520000 590000 1110000 10 6

Primark Ireland 270000 750000 1020000 9.1 4.9

ASOS UK 500000 0 500000 12 0

Next UK 285000 415000 700000 7.9 3.7

Nordstrom USA 610000 790000 1400000 9.5 6.5

Urban 
Outfitters

USA 315000 435000 750000 5.5 4

Survey ID
Participant 

Name
Age Gender

Time Since 

Stroke 

(months)

Aphasia 

Severity

101 John Smith 67 Male 18 Moderate

102 Anna Brown 58 Female 14 Severe

103 Sarah Johnson 72 Female 24 Mild

104 David Lee 63 Male 30 Moderate

105 Emily White 52 Female 16 Severe

106
Michael 

Green
70 Male 22 Moderate

107 Linda Carter 65 Female 20 Mild

108 Chris Brown 74 Male 19 Severe

109 Megan Scott 60 Female 12 Moderate

110 Richard King 68 Male 11 Mild

Challenge Region Severity (1-5)
Technology 

Used

Long-term 

Strategy

Raw Material 

Shortage

North 

America
4 AI Forecasting Diversification

Port Congestion Asia 5 IoT Tracking Port Expansion

Labor Shortages Europe 3 Robotics
Workforce 

Training

Transportation 

Costs

South 

America
4

Route 

Optimization
Green Logistics

Exchange Rate 

Fluctuations
Oceania 3 ERP Systems

Financial 

Diversification

Filter out the challenges with a severity level of 4 or higher, translate 

them into French, and evaluate the effectiveness of the technologies 

mentioned in each challenge. Include your evaluation in the table 

along with the translated text.

Instruction

Challenges Faced by the Global Apparel Industry Due to Supply Chain 

Disruptions, 2021

Table title

Flat Table

Region

Transport Infrastructure

Roads Railways

Subsidy 

Amount ($ 

million)

Projects

Subsidy 

Amount ($ 

million)

Projects

Region A 45 12 30 8

Region B 50 14 28 7

Region C 48 13 35 9

Region D 55 16 32 10

Region E 52 15 20 6

Region F 60 18 31 9

Region G 58 17 29 8

Calculate the average subsidy amount for the 

'Roads' category across all regions. What is the 

percentage difference between the highest and 

lowest values?

Instruction

Rural Infrastructure Subsidies

Table title

Hierachical Table

Item_id: Breadth_evolution-
new_instruction_data_4935_round_2

Based on the table, compare the revenue growth of 

enterprises that employ organic farming with those that 

implement renewable energy use, integrated pest 

management, and agroforestry ……

Instruction

Sustainability Practices Adopted by Rural Enterprises 

and Their Correlation with Business Growth

Table title

Enterprise 

Name

Green 

Fields 

Co.

Farm 

Fresh Ltd.

EcoFarmer

s SA

AgriLife 

Pvt.

Country USA UK
South 

Africa
India

Sustainability 

Practice

Organic 

Farming

Renewable 

Energy 

Use

Rainwater 

Harvesting

No-till 

Farming

Current 

Revenue 

(USD)

123000 76000 145000 134000

Revenue 

Growth (%)
44.706 16.923 55.914 31.373

Horizontal Table

Depth_evolution-
adding_constrains_data_1535_round_2

First, identify the last row of the table, focusing on the details starting 

from the third column. Your goal is to extract information from the 

fields that represent age, aphasia severity, peer support group 

attendance, sessions attended, improvement……

Instruction

Evaluating the Impact of Peer Support in Aphasia Rehabilitation 

Frameworks: Insights from Patient Surveys

Table title

Flat Table

Region

Transport Infrastructure

Roads Railways

Subsidy Amount 

($ million)
Projects

Subsidy Amount 

($ million)
Projects

Region A 45 12 30 8

Region B 50 14 28 7

Region C 48 13 35 9

Region D 55 16 32 10

Region E 52 15 20 6

Region F 60 18 31 9

Region G 58 17 29 8

Calculate the average subsidy amount for the 'Roads' 

category across all regions. What is the percentage 

difference between the highest and lowest values?

Instruction

Rural Infrastructure Subsidies

Table title

Hierachical Table

Based on the table, compare the revenue growth of enterprises 

that employ organic farming with those that implement 

renewable energy use, integrated pest management, and 

agroforestry ……

Instruction

Sustainability Practices Adopted by Rural Enterprises and 

Their Correlation with Business Growth

Table title

Enterprise Name
Green 

Fields Co.

Farm Fresh 

Ltd.

EcoFarmers 

SA
AgriLife Pvt.

Country USA UK South Africa India

Sustainability 

Practice

Organic 

Farming

Renewable 

Energy Use

Rainwater 

Harvesting

No-till 

Farming

Current Revenue 

(USD)
123000 76000 145000 134000

Revenue Growth 

(%)
44.706 16.923 55.914 31.373

Horizontal Table

Select the retailers from the dataset with a 'Brick-and-Mortar Sales 

Growth (%)' of under 5% and return their 'Total Sales' figures in 

descending order.

Instruction

Comparison of Online vs Brick-and-Mortar Sales in the Fashion 

Industry, Q1 2023

Table title

Flat Table

Examine the relationship between work stress level and sleep 

disruption events. Which subjects with a work stress level above 5 

report the most sleep disruption events? Explain any patterns or 

anomalies you find.

Instruction

Impact of Sleep Quality on Memory

Table title

Flat Table

E-

commerce 

Segments

Emerging Trends

Technology Integration Sustainability Customer Preferences

IoT AI Driven
Green 

Packaging

Carbon 

Footprint

Personaliza

tion

Convenienc

e

Online 

Retail

High Medium Low Medium High Medium

Medium High Medium Low High High

Low Medium High Medium Medium Medium

Medium Low Medium High Low High

Examine the relationship between personalization trends and 

convenience across all segments. Which segment shows the strongest 

impact from these customer preferences, and what operational 

strategies are influenced as a result?

Instruction

Emerging Trends in E-commerce Supply Chain and Their Impact on 

Operational Strategies

Table title

Hierachical Table

Considering the data from 2015 to 2020, analyze the relative growth 

patterns in consumer spending across North America, Europe, Asia, 

and Other Regions. Which region’s consumer spending shows the 

most consistent increase year over year? ……

Instruction

Annual Increase in Consumer Spending on Sustainable Household 

Products from 2015 to 2025 by Region

Table title

Hierachical Table

Determine the average emissions for each type of packaging, 

considering manufacturing, transportation, and recycling 

emissions. Provide the most and least emission-intensive 

packaging types.

Instruction

Food Industry Packaging Lifecycle Emissions

Table title Enterprise Name
Green 

Fields Co.

Farm Fresh 

Ltd.

EcoFarmers 

SA
AgriLife Pvt.

Country USA UK South Africa India

Sustainability 

Practice

Organic 

Farming

Renewable 

Energy Use

Rainwater 

Harvesting

No-till 

Farming

Current Revenue 

(USD)
123000 76000 145000 134000

Revenue Growth 

(%)
44.706 16.923 55.914 31.373

Horizontal Table

Based on the data, provide a general profile for users who 

prefer 'Tool A'. Include the average age, average satisfaction 

rating, and the most common use case for these users.

Instruction

Blockchain Analytics User Preferences

Table title

Horizontal Table

Figure 6: More examples of TableDreamer synthetic data. Tables and instructions are clipped due to space limitation.
We render tables into images for better visualization, and real tables could have various formats such as HTML,
CSV, Markdown and et al.

70B-instruct-generated data to fine-tune Llama3.1-
8B-instruct. The results are listed in Table 13 and
’△’ indicates the performance increase from 27K
data to 52K data. We can find that, although in-
creasing the synthetic data volume improves the av-
erage performance, the improvement is much more
smaller compared to the accuracy boost brought
by 27K data. We anticipate that the performance
gains will plateau with more synthetic data. For
one thing, as we continually explore the input space
by generating more complex instructions, it could
reach the capability boundary of the teacher LLM,
i.e., the synthetic table-related instructions are be-
yond the capacity of Llama3.1-70B-instruct, which
will lead to more problematic responses that bring
noise and negative effect to model training. For
another, it would also become more difficult for the
LLM-as-a-judge to rate the correctness of student
LLMs’ responses of more complicated tasks, result-

ing in potentially unreliable weakness data. There-
fore, we think it would be an intriguing idea to intro-
duce a monitoring module within the Strong2Weak
data synthesis approaches, which determines when
to stop the data synthesis process rather than end-
lessly distilling new data from the stronger LLM.

C.6 Case Study.

We conduct a side-by-side qualitative comparison
of TableDreamer with other baselines, as illustrated
in Figure 10-13. The results demonstrate that Table-
Dreamer synthetic data can improve the table un-
derstanding ability of vanilla Llama3.1-8B-Instruct
and outperform strong baselines including recent
tabular LLMs. Moreover, case study on the MMLU
benchmark in Figure 13 also intuitively shows that
TableDreamer does not sacrifice the general ca-
pacity of LLM, while other tabular LLMs such as
TableLLM, TableBenchLLM and even TableGPT2
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TableDreamer (GPT-4o) TableDreamer (Llama3.1-70B-instruct) Magpie

Self-Instruct GenQA TableLLM

TableBenchLLM TableGPT
OmniTab

Figure 7: Instruction diversity comparison of different synthetic table instruction tuning data. We show the top 25
most prevalent root verbs (the inner circle) and their top 5 direct nouns (the outer circle) in the synthetic instructions
from different methods.

suffer significant decline of their general abilities,
which underscores the importance of diverse table
instruction-tuning data to avoid ovefitting.
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Instruction Length Output Length Row Number Column Number

Table

Dreamer

(GPT-4o)

Magpie

Table

Dreamer

(Llama3.1-

70B-instruct)

Self-

Instruct

GenQA

TableLLM

TableBench

LLM

TableGPT

Figure 8: The distribution of instruction length, output length, table row number and table column number in
different synthetic table instruction tuning data.

I want you act as an Instruction Creator.

Given a table and its title, your goal is to draw inspiration from the example tabular instruction and to come up with a set of {New Instruction Number} brand new 

instructions about the provided table.

Requirements:

1. New instructions require performing tasks that are different from example instructions. You could include various types of tabular tasks like open-ended text 

generation, question answering, table editing, etc. You can also design any creative table-related tasks or demands that can be completed based on the given table.

2. Make new instructions as diverse as possible. For example, you could use diverse language style, combine questions with imperative instructions or necessary 

background contexts and so on.

3. New instructions should belong to text-only tasks. Do not ask the model to create any visual or audio output.

4. Output new instructions in the following JSON format:

```json

{

    'new_instruction_list': [ <instruction_1>, ..., <instruction_N> ]

}

```

## Table Title:

<Table Title>

## Table:

<String Representation of Input Table>

## The Original Instruction:

<The Original Tabular Task Instruction>

## Generated New Instructions:

New Instruction Generation Prompt

I want you act as an Instruction Creator.

Given a table, its title and an example instruction, your goal is to come up with a set of {New Instruction Number} similar task instructions about the given table.

Here are the requirements:

1. The new instructions SHOULD belong to the same task type or the same demand as the example instruction.

2. The difficulty of new instructions SHOULD be similar with the example instruction.

3. The language expression of new instructions SHOULD be diverse. For instance, you can paraphrase the original instruction, add colloquial expressions, change 

instruction format (e.g., convert open-ended questions to multi-choice questions), change word order and verb patterns, or directly write new instructions.

4. Output the new instructions in the following JSON format:

```json

{

    'new_instruction_list': [ <instruction_1>, ..., <instruction_N> ]

}

```

## Table Title:

<Table Title>

## Table:

<String Representation of Input Table>

## The Original Instruction:

<The Original Tabular Task Instruction>

## Generated New Instructions:

Similar Instruction Generation Prompt

You will be given a prompt of a table-related task, a reference response and a response from a language model (LM).

Your task is to rate the correctness of the LM's response on a 5 point likert scale.

The Detailed Rating Breakdown is as follows.

- 4 – The response is completely correct and accurate to what is requested by the prompt with no necessary details missing and without false, misleading, or 

hallucinated information. If the prompt asks the LM to do a task, the task is completely done and addressed in the response.

- 3 – The response is mostly correct and accurate with a small amount of missing information. It contains no misleading information or hallucinations. If the prompt 

asks the LM to perform a task, the task is mostly successfully attempted.

- 2 – The response contains a mix of correct and incorrect information. The response may miss some information, contain misleading information, or minor 

hallucinations, but is more or less aligned with what the prompt asks for. If the prompt asks the LM to perform a task, the task is attempted with moderate success but 

still has clear room for improvement.

- 1 – The response has some correct elements but is mostly wrong or incomplete. The response may contain multiple instances of hallucinations, false information, 

misleading information, or irrelevant information. If the prompt asks the LM to do a task, the task was attempted with a small amount of success.

- 0 – The response is completely incorrect. All information provided is wrong, false or hallucinated. If the prompt asks the LM to do a task, the task is not at all 

attempted, or the wrong task was attempted in the response. The response is completely irrelevant to the prompt.

Additionally, flag the rating result as 'Invalid Prompt' in the following cases:

1. The input prompt requires the LM to perform a multimodal task (e.g., draw a picture or book a restaurant).

2. The input prompt is not about table-related tasks.

3. The input prompt is incomplete and illogical and contains lots of grammar mistakes.

Format your output in the JSON format:

```json

{

    'rating': <final rating result, string format>

    'explanation': <rating explanation, string format>

}

```

LLM-as-a-Judge Prompt  

Given a conversation between a human user and an LLM-based assistant like GPT-4, please check if there is harmful or unsafe content within this conversation.

You should identify any harmful information in both the user input prompt and assistant response, which involves violence, crimes, sexual content, hate speech, 

misinformation with malicious intent, or any content that poses a threat to individuals or communities.

The output result should be formatted in the following JSON result:

```json

{{

"harmful_content": "<list all harmful content you identified>"

"is_harmful": "<yes/no>",

}}

```

<USER INPUT PROMPT>

{}

<ASSISTANT RESPONSE>

{}

<OUTPUT RESULT>

Harmful Content Detection Prompt

Figure 9: The prompt used for harmful content detection.
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To determine how many games were played on ABC, we need to examine the "TV" column of the table 

for each game played by the 1994 Alabama Crimson Tide football team. Here are the steps:

1. **Identify Games Broadcasted on ABC:**

   - September 17: Opponent is Arkansas, TV is ABC.

   - October 22: Opponent is Ole Miss, TV is ABC.

   - November 12: Opponent is Mississippi State, TV is ABC.

   - November 19: Opponent is Auburn, TV is ABC.

   - December 3: Opponent is Florida, TV is ABC.

   - January 2, 1995: Opponent is Ohio State, TV is ABC.

2. **Count the Games:**

   - There are 6 games broadcasted on ABC.

Based on these steps, the final answer is:

```json

{"answer": ["6"]}
```

GPT-4o Response

{"answer": ["2 games played on ABC: Arkansas, Ole Miss, Tennessee–Chattanooga, Auburn, Florida, 

Ohio State"]}

Llama3.1-8B-Instruct

To determine how many games were played on ABC, we need to examine the "TV" column in the 

table and count the number of entries that have "ABC" listed. Here's the breakdown:

1. September 17: at Arkansas - ABC

2. October 22: Ole Miss - ABC

3. November 12: at #20 Mississippi State - ABC

4. November 19: #6 Auburn - ABC

5. December 3: vs. #6 Florida - ABC

6. January 2, 1995: vs. #13 Ohio State* - ABC

There are 6 games played on ABC. Therefore, the JSON output is:

```json

{"answer": ["6"]}
```

Llama3.1-8B-Instruct + TableDreamer-27K (Ours)

Final Answer: 13

TableBenchLLM

{"answer": ["3"]}

TableGPT2-7B

import pandas as pd

# Create a dataframe from the table

data = {

'Date': ['September 3', 'September 10', 'September 17', 'September 24', 'October 1', 'October 8', 

'October 15', 'October 22', 'November 5', 'November 12', 'November 19', 'December 3', 'January 2, 

1995'],

……

'TV': ['JPS', 'ESPN', 'ABC', 'JPS', 'ESPN', 'JPS', 'ESPN', 'ABC', 'ESPN', 'ABC', 'ABC', 'ABC', 'ABC‘],
'Attendance': ['82,109', '70,123', '52,089', '81,421', '70,123', '70,123', '96,856', '70,123', '75,453', 

'41,358', '83,091', '74,751', '71,195']

}

df = pd.DataFrame(data)

# Convert the 'Attendance' column to integer

df['Attendance'] = df['Attendance'].str.replace(',', '').astype(int)

# Create the answer

answer = df['Attendance'].tolist()

TableLLM

{"answer": ["1"]}

MiniCPM3-4B

```json

{"answer": ["1 game played on ABC"]}

```

GLM4-9B-Chat

To determine how many games were played on "abc", we need to look at the 

"TV" column in the table and count the entries that have "ABC" listed as the 

television network. Here is the breakdown:

1. September 17 | at Arkansas | #12 | Razorback Stadium • Fayetteville, AR | 

ABC | W 13–6 | 52,089

2. October 22 | Ole Miss | #8 | Bryant–Denny Stadium • Tuscaloosa, AL (Rivalry) 

| ABC | W 21–10 | 70,123

3. November 12 | at #20 Mississippi State | #6 | Scott Field • Starkville, MS 

(Rivalry) | ABC | W 29–25 | 41,358

4. November 19 | #6 Auburn | #4 | Legion Field • Birmingham, AL (Iron Bowl) | 

ABC | W 21–14 | 83,091

5. January 2, 1995 | vs. #13 Ohio State* | #6 | Citrus Bowl • Orlando, FL (Florida 

Citrus Bowl) | ABC | W 24–17 | 71,195

There are 5 games played on ABC.

Here is the JSON representation of the answer:

```json

{"answer": ["5"]}

```

Mistral-7B-Instruct-v0.3

{"answer": [

"There were 9 games played on ABC in the 1994 Alabama Crimson Tide 

football team."

]}

Baichuan2-7B-Chat

{

"answer": [

"The Alabama Crimson Tide football team played 7 games on ABC 

in 1994.",

"The games played on ABC were: October 22 vs. Ole Miss, 

November 12 at Mississippi State, and December 3 vs. Florida."

]

}

Phi-3.5-mini-instruct-3.8B

Input Prompt (item_id: WTQ_nu-355)

Task:

Please provide your detailed answer to the question below based on the given table. Format your final 

answer as a JSON, using the structure {"answer": [<a list of answer strings>]}.

how many games played on abc?

Table title: 1994 Alabama Crimson Tide football team

Table:

| Date | Opponent# | Rank# | Site | TV | Result | Attendance |

| --- | --- | --- | --- | --- | --- | --- |

| September 3 | Tennessee–Chattanooga* | #11 | Legion Field • Birmingham, AL |  | W 42–13 | 82,109 |

| September 10 | Vanderbilt | #11 | Bryant–Denny Stadium • Tuscaloosa, AL | JPS | W 17–7 | 70,123 |

| September 17 | at Arkansas | #12 | Razorback Stadium • Fayetteville, AR | ABC | W 13–6 | 52,089 |

| September 24 | Tulane* | #11 | Legion Field • Birmingham, AL |  | W 20–10 | 81,421 |

| October 1 | Georgia | #11 | Bryant–Denny Stadium • Tuscaloosa, AL | ESPN | W 29–28 | 70,123 |

| October 8 | Southern Miss* | #11 | Bryant–Denny Stadium • Tuscaloosa, AL |  | W 14–6 | 70,123 |

| October 15 | at Tennessee | #10 | Neyland Stadium • Knoxville, TN (Third Saturday in October) | ESPN 

| W 17–13 | 96,856 |

| October 22 | Ole Miss | #8 | Bryant–Denny Stadium • Tuscaloosa, AL (Rivalry) | ABC | W 21–10 | 

70,123 |

| November 5 | at LSU | #6 | Tiger Stadium • Baton Rouge, LA (Rivalry) | ESPN | W 35–17 | 75,453 |

| November 12 | at #20 Mississippi State | #6 | Scott Field • Starkville, MS (Rivalry) | ABC | W 29–

25 | 41,358 |

| November 19 | #6 Auburn | #4 | Legion Field • Birmingham, AL (Iron Bowl) | ABC | W 21–14 | 

83,091 |

| December 3 | vs. #6 Florida | #3 | Georgia Dome • Atlanta, GA (SEC Championship Game) | ABC

| L 23–24 | 74,751 |

| January 2, 1995 | vs. #13 Ohio State* | #6 | Citrus Bowl • Orlando, FL (Florida Citrus Bowl) | 

ABC | W 24–17 | 71,195 |

Output:

To determine which name has the most pennants, we need to examine the "Pennant" number associated 

with each ship listed in the table. The assigned Pennant number can refer to a ship's identification within 

a navy, and although it may not directly indicate the number of times a ship won a pennant, in historical 

documentation or maritime contexts, distinguishing one vessel from others with the same name.

Let's examine each entry:

1. **Leander** - Pennant: 75

2. **Orion** - Pennant: 85

3. **Neptune** - Pennant: 20

4. **Ajax** - Pennant: 22

5. **Achilles** - Pennant: 70

6. **Amphion** - Pennant: 29

7. **Apollo** - Pennant: 63

8. **Sydney (ex-Phaeton)** - Pennant: 48

After reviewing these Pennant numbers, "Orion" with Pennant 85 has the highest numerical value.  

Thus, the ship "Orion" is associated with the most prominent Pennant number.

Here's the answer formatted as a JSON object:

```json

{

  "answer": ["Orion"]
}

```

GPT-4o Response

To find the name with the most pennant, we need to count the occurrences of each name in the 

"Pennant" column. 

After analyzing the table, we can see that there are multiple ships with the same name, but the 

question is asking for the name with the most pennant. 

Since the question is asking for the name with the most pennant, we can assume that it's asking for the 

name that appears most frequently in the "Name" column, not the "Pennant" column. 

If we count the occurrences of each name in the "Name" column, we can see that the name "Leander" 

appears twice, and the name "Achilles" appears twice as well. However, the name "Ajax" appears only 

once, and the name "Apollo" appears only once, and the name "Amphion" appears only once, and the 

name "Neptune" appears only once, and the name "Orion" appears only once, and the name "Sydney" 

appears only once.

Therefore, the answer is {"answer": ["Leander", "Achilles"]}

Llama3.1-8B-Instruct

{"answer": "Leander"}

TableBenchLLM

{"answer": ["Leander"]}

TableGPT2-7B

{"answer": ["Leander"]}

MiniCPM3-4B

```json

{"answer": ["Leander"] }

```

DeepSeek-V2-Lite-Chat

To determine which name has the most unique pennant number, we need to 

examine the "Pennant" column in the table. Here's the step-by-step process:

1. **Identify the pennant numbers**: The pennant numbers in the table are: 75, 

85, 20, 22, 70, 29, 63, 48.

2. **Count the occurrences of each pennant number**:

   - 75: 1 occurrence (Leander)

   - 85: 1 occurrence (Orion)

   - 20: 1 occurrence (Neptune)

   - 22: 1 occurrence (Ajax)

   - 70: 1 occurrence (Achilles)

   - 29: 1 occurrence (Amphion)

   - 63: 1 occurrence (Apollo)

   - 48: 1 occurrence (Sydney)

3. **Determine which pennant number is unique**: Since each pennant number 

appears only once, they are all unique.

4. **Conclusion**: All pennant numbers are unique, so there is no single 

pennant number that is more unique than the others.

Therefore, the answer is:

```json

{"answer": ["All pennant numbers are unique."]}

```

Mistral-7B-Instruct-v0.3

{

  "answer": [

    "Leander",

    "Orion",

    "Neptune",

    "Ajax",

    "Achilles",

    "Amphion",]

}

Explanation:

The table provided lists the names of eight Leander-class cruisers along with 

their respective pennant numbers. Since all the names have different pennant 

numbers, there is no single name with the most pennant. The JSON response 

includes all the names as they all have unique pennant numbers.

Phi-3.5-mini-instruct-3.8B

Input Prompt (item_id: WTQ_nu-4243)

Please provide your detailed answer to the question below based on the given table. Format the ultimate 

answer as a JSON, using the structure {"answer": [<a list of answer strings>]}.

which one is the only name with the most pennant?

Table title: Leander-class cruiser (1931)

Table:

<table border='1' cellspacing='0'>

<tr> <th> Name </th> <th> Pennant </th> <th> Namesake </th> <th> Builder </th> <th> Ordered 

</th> <th> Laid down </th> <th> Launched </th> <th> Commissioned </th> <th> Fate </th> </tr>

<tr> <td> Leander </td> <td> 75 </td> <td> Leander of Abydos </td> <td> HM Dockyard, Devonport 

</td> <td> 18 February 1928 </td> <td> 1 August 1928 </td> <td> 13 July 1929 </td> <td> 23 July 

1931 </td> <td> Transferred to Royal New Zealand Navy as HMNZS Leander 1941-1945\nBroken up 

at Blyth 1950 </td> </tr>

<tr> <td> Orion </td> <td> 85 </td> <td> Orion the Hunter </td> <td> HM Dockyard, Devonport 

</td> <td> 24 March 1931 </td> <td> 26 September 1931 </td> <td> 24 November 1932 </td> <td> 18 

January 1934 </td> <td> Broken up at Dalmuir, 1949 </td> </tr>

<tr> <td> Neptune </td> <td> 20 </td> <td> Neptune, God of the Sea </td> <td> HM Dockyard, 

Portsmouth </td> <td> 2 March 1931 </td> <td> 24 September 1931 </td> <td> 31 January 1933 </td> 

<td> 23 February 1934 </td> <td> Sunk in minefield off Tripoli, 19 December 1941 </td> </tr>

……

<tr> <td> Apollo </td> <td> 63 </td> <td> Apollo, God of Light </td> <td> HM Dockyard, Devonport 

</td> <td> 1 March 1933 </td> <td> 15 August 1933 </td> <td> 9 October 1934 </td> <td> 13 January 

1936 </td> <td> Sold to Royal Australian Navy as HMAS Hobart, 1938\nBroken up at Osaka, 1962 

</td> </tr>

<tr> <td> Sydney\n(ex-Phaeton) </td> <td> 48 </td> <td> City of Sydney </td> <td> Swan Hunter 

</td> <td> 10 February 1933 </td> <td> 8 July 1933 </td> <td> 22 September 1934 </td> <td> 24 

September 1935 </td> <td> Sunk in surface action, 19 November 1941 </td> </tr>

</table>

Response:
To determine which ship has the most pennant number, we need to examine the "Pennant" column in 

the table. Here are the pennant numbers for each ship:

- Leander: 75

- Orion: 85

- Neptune: 20

- Ajax: 22

- Achilles: 70

- Amphion: 29

- Apollo: 63

- Sydney (ex-Phaeton): 48

The highest pennant number is 85, which is assigned to the ship "Orion". Therefore, the answer is:

```json

{"answer": ["Orion"]}
```

Llama3.1-8B-Instruct + TableDreamer-27K (Ours)

To solve this, let's analyze each statement about floating-point arithmetic:

A. **It is inherently nonassociative because some numbers have no exact representation.**   

   - Floating-point arithmetic is nonassociative because of precision limitations. Some numbers 

indeed cannot be represented exactly, leading to discrepancies.

B. **It is inherently nonassociative because there have to be upper and lower bounds on the size of 

numbers.**   

   - This is true. Floating-point numbers have finite precision and range, causing operations to be 

nonassociative.

C. **Associativity can be achieved with appropriate roundoff conventions.**   

 - This statement suggests that associativity can be restored, which is not true. Due to the inherent 

precision limitations, associativity cannot be achieved simply through roundoff conventions.

D. **Some rational numbers have no exact representation.**   

 - This is true. Many rational numbers cannot be exactly represented in binary floating-point format, 

such as 1/3.

The statement that is NOT true is C.

Therefore, the final answer is:

```json

{  "final_answer": "C"
}```

GPT-4o Response

To solve this question, let's analyze each option step by step:

A. It is inherently nonassociative because some numbers have no exact representation.

- This statement is true. In floating-point arithmetic, some numbers cannot be represented exactly due 

to the limited precision of the representation. This can lead to nonassociativity.

......

C. Associativity can be achieved with appropriate roundoff conventions.

- This statement is false. While roundoff conventions can help minimize the effects of nonassociativity, 

they cannot eliminate it entirely. The fundamental issue of nonassociativity arises from the inherent 

limitations of floating-point representation, not from the way numbers are rounded.

...... 

```json

{ "final_answer": "C" } 
```

Llama3.1-8B-Instruct

Final Answer: A, B

TableBenchLLM

Let's analyze each statement step by step:

A. It is inherently nonassociative because some numbers have no exact 

representation. 

 - This statement is true. Floating-point arithmetic can lead to 

nonassociativity due to the finite precision of the representation, which means 

some numbers cannot be represented exactly.

......

C. Associativity can be achieved with appropriate roundoff conventions.

 - This statement is true. By using appropriate roundoff conventions, 

such as rounding to the nearest representable number, associativity can be 

achieved in floating-point arithmetic. ......

Since all the statements are true, the correct answer is:

```json

{ 

 "final_answer": "None of the above“

}

```

TableGPT2-7B

The statement that is NOT true about floating-point arithmetic is:

D. Some rational numbers have no exact representation.

This information can be found in the provided link......

TableLLMInput Prompt (MMLU test data)

Solve the following multiple choice question (with answers) about 'college computer science'. Let's 

think step by step.

The final answer should be represented in the JSON format:

```json

{

"final_answer": "option letter" 

}

```

Which of the following statements about floating-point arithmetic is NOT true?

A. It is inherently nonassociative because some numbers have no exact representation.

B. It is inherently nonassociative because there have to be upper and lower bounds on the size of 

numbers.

C. Associativity can be achieved with appropriate roundoff conventions.

D. Some rational numbers have no exact representation.

Answer:

To determine which statement about floating-point arithmetic is NOT true, let's analyze each option 

step by step:

A. **It is inherently nonassociative because some numbers have no exact representation.**

- Floating-point arithmetic is indeed nonassociative because the order in which operations are 

performed can lead to different results due to rounding errors. This is true.

......

C. **Associativity can be achieved with appropriate roundoff conventions.**

- This statement is false. While certain roundoff conventions can help minimize the effects of 

nonassociativity, they cannot eliminate it entirely. The inherent nature of floating-point arithmetic 

means that associativity cannot be fully achieved due to the imprecision of the representation.

D. **Some rational numbers have no exact representation.**

- This statement is true. Many rational numbers cannot be exactly represented in floating-point 

arithmetic, which is a binary representation.

Therefore, the statement that is NOT true is C, which claims that associativity can be achieved with 

appropriate roundoff conventions.

```json 

{ 

 "final_answer": "C "
}

```

Llama3.1-8B-Instruct + TableDreamer-27K (Ours)

Figure 10: Qualitative comparison of model responses on WTQ benchmark.

To determine how many games were played on ABC, we need to examine the "TV" column of the table 

for each game played by the 1994 Alabama Crimson Tide football team. Here are the steps:

1. **Identify Games Broadcasted on ABC:**

   - September 17: Opponent is Arkansas, TV is ABC.

   - October 22: Opponent is Ole Miss, TV is ABC.

   - November 12: Opponent is Mississippi State, TV is ABC.

   - November 19: Opponent is Auburn, TV is ABC.

   - December 3: Opponent is Florida, TV is ABC.

   - January 2, 1995: Opponent is Ohio State, TV is ABC.

2. **Count the Games:**

   - There are 6 games broadcasted on ABC.

Based on these steps, the final answer is:

```json

{"answer": ["6"]}
```

GPT-4o Response

{"answer": ["2 games played on ABC: Arkansas, Ole Miss, Tennessee–Chattanooga, Auburn, Florida, 

Ohio State"]}

Llama3.1-8B-Instruct

To determine how many games were played on ABC, we need to examine the "TV" column in the 

table and count the number of entries that have "ABC" listed. Here's the breakdown:

1. September 17: at Arkansas - ABC

2. October 22: Ole Miss - ABC

3. November 12: at #20 Mississippi State - ABC

4. November 19: #6 Auburn - ABC

5. December 3: vs. #6 Florida - ABC

6. January 2, 1995: vs. #13 Ohio State* - ABC

There are 6 games played on ABC. Therefore, the JSON output is:

```json

{"answer": ["6"]}
```

Llama3.1-8B-Instruct + TableDreamer-27K (Ours)

Final Answer: 13

TableBenchLLM

{"answer": ["3"]}

TableGPT2-7B

import pandas as pd

# Create a dataframe from the table

data = {

'Date': ['September 3', 'September 10', 'September 17', 'September 24', 'October 1', 'October 8', 

'October 15', 'October 22', 'November 5', 'November 12', 'November 19', 'December 3', 'January 2, 

1995'],

……

'TV': ['JPS', 'ESPN', 'ABC', 'JPS', 'ESPN', 'JPS', 'ESPN', 'ABC', 'ESPN', 'ABC', 'ABC', 'ABC', 'ABC‘],
'Attendance': ['82,109', '70,123', '52,089', '81,421', '70,123', '70,123', '96,856', '70,123', '75,453', 

'41,358', '83,091', '74,751', '71,195']

}

df = pd.DataFrame(data)

# Convert the 'Attendance' column to integer

df['Attendance'] = df['Attendance'].str.replace(',', '').astype(int)

# Create the answer

answer = df['Attendance'].tolist()

TableLLM

{"answer": ["1"]}

MiniCPM3-4B

```json

{"answer": ["1 game played on ABC"]}

```

GLM4-9B-Chat

To determine how many games were played on "abc", we need to look at the 

"TV" column in the table and count the entries that have "ABC" listed as the 

television network. Here is the breakdown:

1. September 17 | at Arkansas | #12 | Razorback Stadium • Fayetteville, AR | 

ABC | W 13–6 | 52,089

2. October 22 | Ole Miss | #8 | Bryant–Denny Stadium • Tuscaloosa, AL (Rivalry) 

| ABC | W 21–10 | 70,123

3. November 12 | at #20 Mississippi State | #6 | Scott Field • Starkville, MS 

(Rivalry) | ABC | W 29–25 | 41,358

4. November 19 | #6 Auburn | #4 | Legion Field • Birmingham, AL (Iron Bowl) | 

ABC | W 21–14 | 83,091

5. January 2, 1995 | vs. #13 Ohio State* | #6 | Citrus Bowl • Orlando, FL (Florida 

Citrus Bowl) | ABC | W 24–17 | 71,195

There are 5 games played on ABC.

Here is the JSON representation of the answer:

```json

{"answer": ["5"]}

```

Mistral-7B-Instruct-v0.3

{"answer": [

"There were 9 games played on ABC in the 1994 Alabama Crimson Tide 

football team."

]}

Baichuan2-7B-Chat

{

"answer": [

"The Alabama Crimson Tide football team played 7 games on ABC 

in 1994.",

"The games played on ABC were: October 22 vs. Ole Miss, 

November 12 at Mississippi State, and December 3 vs. Florida."

]

}

Phi-3.5-mini-instruct-3.8B

Input Prompt (item_id: WTQ_nu-355)

Task:

Please provide your detailed answer to the question below based on the given table. Format your final 

answer as a JSON, using the structure {"answer": [<a list of answer strings>]}.

how many games played on abc?

Table title: 1994 Alabama Crimson Tide football team

Table:

| Date | Opponent# | Rank# | Site | TV | Result | Attendance |

| --- | --- | --- | --- | --- | --- | --- |

| September 3 | Tennessee–Chattanooga* | #11 | Legion Field • Birmingham, AL |  | W 42–13 | 82,109 |

| September 10 | Vanderbilt | #11 | Bryant–Denny Stadium • Tuscaloosa, AL | JPS | W 17–7 | 70,123 |

| September 17 | at Arkansas | #12 | Razorback Stadium • Fayetteville, AR | ABC | W 13–6 | 52,089 |

| September 24 | Tulane* | #11 | Legion Field • Birmingham, AL |  | W 20–10 | 81,421 |

| October 1 | Georgia | #11 | Bryant–Denny Stadium • Tuscaloosa, AL | ESPN | W 29–28 | 70,123 |

| October 8 | Southern Miss* | #11 | Bryant–Denny Stadium • Tuscaloosa, AL |  | W 14–6 | 70,123 |

| October 15 | at Tennessee | #10 | Neyland Stadium • Knoxville, TN (Third Saturday in October) | ESPN 

| W 17–13 | 96,856 |

| October 22 | Ole Miss | #8 | Bryant–Denny Stadium • Tuscaloosa, AL (Rivalry) | ABC | W 21–10 | 

70,123 |

| November 5 | at LSU | #6 | Tiger Stadium • Baton Rouge, LA (Rivalry) | ESPN | W 35–17 | 75,453 |

| November 12 | at #20 Mississippi State | #6 | Scott Field • Starkville, MS (Rivalry) | ABC | W 29–

25 | 41,358 |

| November 19 | #6 Auburn | #4 | Legion Field • Birmingham, AL (Iron Bowl) | ABC | W 21–14 | 

83,091 |

| December 3 | vs. #6 Florida | #3 | Georgia Dome • Atlanta, GA (SEC Championship Game) | ABC

| L 23–24 | 74,751 |

| January 2, 1995 | vs. #13 Ohio State* | #6 | Citrus Bowl • Orlando, FL (Florida Citrus Bowl) | 

ABC | W 24–17 | 71,195 |

Output:

To determine which name has the most pennants, we need to examine the "Pennant" number associated 

with each ship listed in the table. The assigned Pennant number can refer to a ship's identification within 

a navy, and although it may not directly indicate the number of times a ship won a pennant, in historical 

documentation or maritime contexts, distinguishing one vessel from others with the same name.

Let's examine each entry:

1. **Leander** - Pennant: 75

2. **Orion** - Pennant: 85

3. **Neptune** - Pennant: 20

4. **Ajax** - Pennant: 22

5. **Achilles** - Pennant: 70

6. **Amphion** - Pennant: 29

7. **Apollo** - Pennant: 63

8. **Sydney (ex-Phaeton)** - Pennant: 48

After reviewing these Pennant numbers, "Orion" with Pennant 85 has the highest numerical value.  

Thus, the ship "Orion" is associated with the most prominent Pennant number.

Here's the answer formatted as a JSON object:

```json

{

  "answer": ["Orion"]
}

```

GPT-4o Response

To find the name with the most pennant, we need to count the occurrences of each name in the 

"Pennant" column. 

After analyzing the table, we can see that there are multiple ships with the same name, but the 

question is asking for the name with the most pennant. 

Since the question is asking for the name with the most pennant, we can assume that it's asking for the 

name that appears most frequently in the "Name" column, not the "Pennant" column. 

If we count the occurrences of each name in the "Name" column, we can see that the name "Leander" 

appears twice, and the name "Achilles" appears twice as well. However, the name "Ajax" appears only 

once, and the name "Apollo" appears only once, and the name "Amphion" appears only once, and the 

name "Neptune" appears only once, and the name "Orion" appears only once, and the name "Sydney" 

appears only once.

Therefore, the answer is {"answer": ["Leander", "Achilles"]}

Llama3.1-8B-Instruct

{"answer": "Leander"}

TableBenchLLM

{"answer": ["Leander"]}

TableGPT2-7B

{"answer": ["Leander"]}

MiniCPM3-4B

```json

{"answer": ["Leander"] }

```

DeepSeek-V2-Lite-Chat

To determine which name has the most unique pennant number, we need to 

examine the "Pennant" column in the table. Here's the step-by-step process:

1. **Identify the pennant numbers**: The pennant numbers in the table are: 75, 

85, 20, 22, 70, 29, 63, 48.

2. **Count the occurrences of each pennant number**:

   - 75: 1 occurrence (Leander)

   - 85: 1 occurrence (Orion)

   - 20: 1 occurrence (Neptune)

   - 22: 1 occurrence (Ajax)

   - 70: 1 occurrence (Achilles)

   - 29: 1 occurrence (Amphion)

   - 63: 1 occurrence (Apollo)

   - 48: 1 occurrence (Sydney)

3. **Determine which pennant number is unique**: Since each pennant number 

appears only once, they are all unique.

4. **Conclusion**: All pennant numbers are unique, so there is no single 

pennant number that is more unique than the others.

Therefore, the answer is:

```json

{"answer": ["All pennant numbers are unique."]}

```

Mistral-7B-Instruct-v0.3

{

  "answer": [

    "Leander",

    "Orion",

    "Neptune",

    "Ajax",

    "Achilles",

    "Amphion",]

}

Explanation:

The table provided lists the names of eight Leander-class cruisers along with 

their respective pennant numbers. Since all the names have different pennant 

numbers, there is no single name with the most pennant. The JSON response 

includes all the names as they all have unique pennant numbers.

Phi-3.5-mini-instruct-3.8B

Input Prompt (item_id: WTQ_nu-4243)

Please provide your detailed answer to the question below based on the given table. Format the ultimate 

answer as a JSON, using the structure {"answer": [<a list of answer strings>]}.

which one is the only name with the most pennant?

Table title: Leander-class cruiser (1931)

Table:

<table border='1' cellspacing='0'>

<tr> <th> Name </th> <th> Pennant </th> <th> Namesake </th> <th> Builder </th> <th> Ordered 

</th> <th> Laid down </th> <th> Launched </th> <th> Commissioned </th> <th> Fate </th> </tr>

<tr> <td> Leander </td> <td> 75 </td> <td> Leander of Abydos </td> <td> HM Dockyard, Devonport 

</td> <td> 18 February 1928 </td> <td> 1 August 1928 </td> <td> 13 July 1929 </td> <td> 23 July 

1931 </td> <td> Transferred to Royal New Zealand Navy as HMNZS Leander 1941-1945\nBroken up 

at Blyth 1950 </td> </tr>

<tr> <td> Orion </td> <td> 85 </td> <td> Orion the Hunter </td> <td> HM Dockyard, Devonport 

</td> <td> 24 March 1931 </td> <td> 26 September 1931 </td> <td> 24 November 1932 </td> <td> 18 

January 1934 </td> <td> Broken up at Dalmuir, 1949 </td> </tr>

<tr> <td> Neptune </td> <td> 20 </td> <td> Neptune, God of the Sea </td> <td> HM Dockyard, 

Portsmouth </td> <td> 2 March 1931 </td> <td> 24 September 1931 </td> <td> 31 January 1933 </td> 

<td> 23 February 1934 </td> <td> Sunk in minefield off Tripoli, 19 December 1941 </td> </tr>

……

<tr> <td> Apollo </td> <td> 63 </td> <td> Apollo, God of Light </td> <td> HM Dockyard, Devonport 

</td> <td> 1 March 1933 </td> <td> 15 August 1933 </td> <td> 9 October 1934 </td> <td> 13 January 

1936 </td> <td> Sold to Royal Australian Navy as HMAS Hobart, 1938\nBroken up at Osaka, 1962 

</td> </tr>

<tr> <td> Sydney\n(ex-Phaeton) </td> <td> 48 </td> <td> City of Sydney </td> <td> Swan Hunter 

</td> <td> 10 February 1933 </td> <td> 8 July 1933 </td> <td> 22 September 1934 </td> <td> 24 

September 1935 </td> <td> Sunk in surface action, 19 November 1941 </td> </tr>

</table>

Response:
To determine which ship has the most pennant number, we need to examine the "Pennant" column in 

the table. Here are the pennant numbers for each ship:

- Leander: 75

- Orion: 85

- Neptune: 20

- Ajax: 22

- Achilles: 70

- Amphion: 29

- Apollo: 63

- Sydney (ex-Phaeton): 48

The highest pennant number is 85, which is assigned to the ship "Orion". Therefore, the answer is:

```json

{"answer": ["Orion"]}
```

Llama3.1-8B-Instruct + TableDreamer-27K (Ours)

To solve this, let's analyze each statement about floating-point arithmetic:

A. **It is inherently nonassociative because some numbers have no exact representation.**   

   - Floating-point arithmetic is nonassociative because of precision limitations. Some numbers 

indeed cannot be represented exactly, leading to discrepancies.

B. **It is inherently nonassociative because there have to be upper and lower bounds on the size of 

numbers.**   

   - This is true. Floating-point numbers have finite precision and range, causing operations to be 

nonassociative.

C. **Associativity can be achieved with appropriate roundoff conventions.**   

 - This statement suggests that associativity can be restored, which is not true. Due to the inherent 

precision limitations, associativity cannot be achieved simply through roundoff conventions.

D. **Some rational numbers have no exact representation.**   

 - This is true. Many rational numbers cannot be exactly represented in binary floating-point format, 

such as 1/3.

The statement that is NOT true is C.

Therefore, the final answer is:

```json

{  "final_answer": "C"
}```

GPT-4o Response

To solve this question, let's analyze each option step by step:

A. It is inherently nonassociative because some numbers have no exact representation.

- This statement is true. In floating-point arithmetic, some numbers cannot be represented exactly due 

to the limited precision of the representation. This can lead to nonassociativity.

......

C. Associativity can be achieved with appropriate roundoff conventions.

- This statement is false. While roundoff conventions can help minimize the effects of nonassociativity, 

they cannot eliminate it entirely. The fundamental issue of nonassociativity arises from the inherent 

limitations of floating-point representation, not from the way numbers are rounded.

...... 

```json

{ "final_answer": "C" } 
```

Llama3.1-8B-Instruct

Final Answer: A, B

TableBenchLLM

Let's analyze each statement step by step:

A. It is inherently nonassociative because some numbers have no exact 

representation. 

 - This statement is true. Floating-point arithmetic can lead to 

nonassociativity due to the finite precision of the representation, which means 

some numbers cannot be represented exactly.

......

C. Associativity can be achieved with appropriate roundoff conventions.

 - This statement is true. By using appropriate roundoff conventions, 

such as rounding to the nearest representable number, associativity can be 

achieved in floating-point arithmetic. ......

Since all the statements are true, the correct answer is:

```json

{ 

 "final_answer": "None of the above“

}

```

TableGPT2-7B

The statement that is NOT true about floating-point arithmetic is:

D. Some rational numbers have no exact representation.

This information can be found in the provided link......

TableLLMInput Prompt (MMLU test data)

Solve the following multiple choice question (with answers) about 'college computer science'. Let's 

think step by step.

The final answer should be represented in the JSON format:

```json

{

"final_answer": "option letter" 

}

```

Which of the following statements about floating-point arithmetic is NOT true?

A. It is inherently nonassociative because some numbers have no exact representation.

B. It is inherently nonassociative because there have to be upper and lower bounds on the size of 

numbers.

C. Associativity can be achieved with appropriate roundoff conventions.

D. Some rational numbers have no exact representation.

Answer:

To determine which statement about floating-point arithmetic is NOT true, let's analyze each option 

step by step:

A. **It is inherently nonassociative because some numbers have no exact representation.**

- Floating-point arithmetic is indeed nonassociative because the order in which operations are 

performed can lead to different results due to rounding errors. This is true.

......

C. **Associativity can be achieved with appropriate roundoff conventions.**

- This statement is false. While certain roundoff conventions can help minimize the effects of 

nonassociativity, they cannot eliminate it entirely. The inherent nature of floating-point arithmetic 

means that associativity cannot be fully achieved due to the imprecision of the representation.

D. **Some rational numbers have no exact representation.**

- This statement is true. Many rational numbers cannot be exactly represented in floating-point 

arithmetic, which is a binary representation.

Therefore, the statement that is NOT true is C, which claims that associativity can be achieved with 

appropriate roundoff conventions.

```json 

{ 

 "final_answer": "C "
}

```

Llama3.1-8B-Instruct + TableDreamer-27K (Ours)

Figure 11: Qualitative comparison of model responses on WTQ benchmark.

7312



To determine whether the statement "four of the games ended in a shut out" is upheld or challenged, 

we need to identify if there are any games in the table where the Toronto Blue Jays won with a 

shutout score (i.e., they won with a score of 1-0 or 2-0, for example, where the opponent scored no 

runs).

**Key criteria for a shutout:**

1. The Blue Jays must win the game.

2. The opponent must score 0 runs in that game.

Let's go through the table step by step to check:

1. **April 2 (White Sox)**: Blue Jays won 6-1 – **Not a shutout**.

2. **April 4 (Brewers)**: Blue Jays won 6-2 – **Not a shutout**.

3. **April 5 (Brewers)**: Blue Jays won 5-2 – **Not a shutout**.

4. **April 6 (Brewers)**: Blue Jays won 4-2 – **Not a shutout**.

5. **April 9 (White Sox)**: Blue Jays won 5-0 – **Shutout**.

6. **April 10 (White Sox)**: Blue Jays won 4-0 – **Shutout**.

……

13. **April 19 (Rangers)**: Blue Jays won 6-0 – **Shutout**.

14. **April 20 (Rangers)**: Blue Jays won 10-5 – **Not a shutout**.

15. **April 21 (Angels)**: Blue Jays won 5-4 (13 innings) – **Not a shutout**.

16. **April 22 (Angels)**: Blue Jays won 7-6 – **Not a shutout**.

……

22. **April 30 (Royals)**: Blue Jays won 1-0 – **Shutout**.

**Conclusion:**

There were **three shutout wins**: April 9, April 10, and April 19, and **one game where they 

won 1-0** on April 30, making it a total of **four shutout games**.

So, the statement is **upheld**.

### JSON result:

```json

{

  "answer": "upheld"
}

```

GPT-4o Response

{"answer": "challenged"}

Llama3.1-8B-Instruct To determine whether the sentence "four of the games ended in a shut out" is 

upheld or challenged by the table's content, we need to analyze the "score" 

column in the table.

Looking at the "score" column, we can see that the scores are presented in the 

format "x-y" where x represents the number of runs scored by the Toronto 

Blue Jays and y represents the number of runs scored by the opposing team.

To identify the games that ended in a shut out, we need to find the rows 

where the score is "0-0" or "0-y" where y is greater than 0.

Analyzing the table, we can see that the following games ended in a shut out:

- April 8: The game against the White Sox was postponed due to cold weather 

and was later rescheduled for August 19.

- April 11: The game against the Brewers was postponed due to snow and was 

later rescheduled for July 28.

- April 12: The game against the Brewers was postponed due to snow and 

was later rescheduled for July 29.

Therefore, there were a total of 3 games that ended in a shut out during 

the 1997 Toronto Blue Jays season.

TableLLM

{"answer": "challenged"}

TableGPT2-7B

{"answer": ["Leander"]}

MiniCPM3-4B

{"answer": "challenged"}

DeepSeek-V2-Lite-Chat

To determine whether the statement "four of the games ended in a shut out" is 

upheld or challenged by the table's content, we need to count the number of 

games that ended with a score of 0-0. Let's examine the table:

1. April 9: White Sox vs. Blue Jays - Score: 5 - 0

2. April 10: White Sox vs. Blue Jays - Score: 4 - 0

3. April 19: Rangers vs. Blue Jays - Score: 6 - 0

4. April 23: Angels vs. Blue Jays - Score: 5 - 4 (10)

From the table, we see that there are three games where the score was 0-0, not 

four. Therefore, the statement is not upheld.

The final result is:

```json

{"answer": "not upheld"}

```

InternLM2.5-7B-Chat

To determine whether the sentence "four of the games ended in a shut out" is 

upheld or challenged by the table's content, we need to count the number of games 

where the score is 0 - 0 or 0 - 1.

From the table, the games with scores ending in 0 are:

- April 9: 5 - 0

- April 10: 4 - 0

There are 2 games that ended in a shut out.

Therefore, the sentence "four of the games ended in a shut out" is **challenged** 

by the table's content.

Here is the JSON response:

```json

{"answer": "challenged"}

```

Mistral-7B-Instruct-v0.3

Input Prompt (item_id: TabFact_test_2791)

Give you a table about '1997 toronto blue jays season', determine whether the following sentence is 

upheld or challenged by the table's content. The final result should be presented in the JSON format of 

{"answer": "<YOUR ANSWER>"}.

four of the games ended in a shut out

Table:

| date | opponent | score | loss | attendance | record |

| --- | --- | --- | --- | --- | --- |

| april 1 | white sox | 6 - 5 (10) | plesac (0 - 1) | 40299 | 0 - 1 |

| april 2 | white sox | 6 - 1 | álvarez (0 - 1) | 31310 | 1 - 1 |

| april 4 | brewers | 6 - 2 | karl (0 - 1) | 26331 | 2 - 1 |

| april 5 | brewers | 5 - 2 | williams (0 - 1) | 31226 | 2 - 2 |

| april 6 | brewers | 4 - 2 | hentgen (0 - 1) | 29106 | 2 - 3 |

| april 8 | white sox | postponed (cold weather) rescheduled for august 19 | postponed (cold weather) 

rescheduled for august 19 | postponed (cold weather) rescheduled for august 19 | postponed (cold 

weather) rescheduled for august 19 |

| april 9 | white sox | 5 - 0 | álvarez (0 - 2) | 746 | 3 - 3 |

| april 10 | white sox | 4 - 0 | baldwin (0 - 1) | 14180 | 4 - 3 |

| april 11 | brewers | postponed (snow) rescheduled for july 28 | postponed (snow) rescheduled for july 

28 | postponed (snow) rescheduled for july 28 | postponed (snow) rescheduled for july 28 |

| april 12 | brewers | postponed (snow) rescheduled for july 29 | postponed (snow) rescheduled for july 

29 | postponed (snow) rescheduled for july 29 | postponed (snow) rescheduled for july 29 |

| april 13 | brewers | 3 - 2 | crabtree (0 - 1) | 19143 | 4 - 4 |

| april 14 | royals | 3 - 2 | quantrill (0 - 1) | 25642 | 4 - 5 |

| april 15 | royals | 7 - 5 | guzmán (2 - 1) | 25582 | 4 - 6 |

| april 16 | athletics | 4 - 3 | taylor (0 - 1) | 26139 | 5 - 6 |

| april 17 | athletics | 5 - 4 | groom (0 - 1) | 25625 | 6 - 6 |

| april 18 | rangers | 6 - 5 | pavlik (1 - 2) | 30452 | 7 - 6 |

| april 19 | rangers | 6 - 0 | hill (1 - 2) | 44206 | 8 - 6 |

| april 20 | rangers | 10 - 5 | guzmán (2 - 2) | 34333 | 8 - 7 |

| april 21 | angels | 5 - 4 (13) | spoljaric (0 - 1) | 13413 | 8 - 8 |

| april 22 | angels | 7 - 6 | james (1 - 2) | 13353 | 9 - 8 |

| april 23 | angels | 5 - 4 (10) | spoljaric (0 - 2) | 13117 | 9 - 9 |

| april 25 | mariners | 13 - 8 | plesac (0 - 2) | 31215 | 9 - 10 |

| april 26 | mariners | 4 - 3 | lowe (0 - 1) | 31420 | 10 - 10 |

| april 27 | mariners | 2 - 1 | person (0 - 1) | 32160 | 10 - 11 |

| april 29 | royals | 6 - 5 (10) | quantrill (3 - 2) | 12533 | 10 - 12 |

| april 30 | royals | 1 - 0 | appier (3 - 1) | 13004 | 11 - 12 |

To determine whether the sentence "four of the games ended in a shut out" is upheld or challenged 

by the table's content, we need to examine the scores of each game to identify any shutouts.

A shutout occurs when one team scores zero runs while the other team scores any number of runs. 

Let's review the scores:

1. April 9: White Sox 5 - 0 (Blue Jays)

2. April 10: White Sox 4 - 0 (Blue Jays)

3. April 19: Rangers 6 - 0 (Blue Jays)

4. April 30: Royals 1 - 0 (Blue Jays)

There are four games where the Blue Jays were shut out, which matches the claim in the sentence. 

Therefore, the sentence is upheld.

The JSON format of the answer is:

```json

{"answer": "upheld"}
```

Llama3.1-8B-Instruct + TableDreamer-27K (Ours)

{"answer": "challenged"}

GLM4-9B-Chat

{"answer": "challenged"}

Yi-1.5-9B-Chat

Figure 12: Qualitative comparison of model responses on TabFact benchmark.

To determine how many games were played on ABC, we need to examine the "TV" column of the table 

for each game played by the 1994 Alabama Crimson Tide football team. Here are the steps:

1. **Identify Games Broadcasted on ABC:**

   - September 17: Opponent is Arkansas, TV is ABC.

   - October 22: Opponent is Ole Miss, TV is ABC.

   - November 12: Opponent is Mississippi State, TV is ABC.

   - November 19: Opponent is Auburn, TV is ABC.

   - December 3: Opponent is Florida, TV is ABC.

   - January 2, 1995: Opponent is Ohio State, TV is ABC.

2. **Count the Games:**

   - There are 6 games broadcasted on ABC.

Based on these steps, the final answer is:

```json

{"answer": ["6"]}
```

GPT-4o Response

{"answer": ["2 games played on ABC: Arkansas, Ole Miss, Tennessee–Chattanooga, Auburn, Florida, 

Ohio State"]}

Llama3.1-8B-Instruct

To determine how many games were played on ABC, we need to examine the "TV" column in the 

table and count the number of entries that have "ABC" listed. Here's the breakdown:

1. September 17: at Arkansas - ABC

2. October 22: Ole Miss - ABC

3. November 12: at #20 Mississippi State - ABC

4. November 19: #6 Auburn - ABC

5. December 3: vs. #6 Florida - ABC

6. January 2, 1995: vs. #13 Ohio State* - ABC

There are 6 games played on ABC. Therefore, the JSON output is:

```json

{"answer": ["6"]}
```

Llama3.1-8B-Instruct + TableDreamer-27K (Ours)

Final Answer: 13

TableBenchLLM

{"answer": ["3"]}

TableGPT2-7B

import pandas as pd

# Create a dataframe from the table

data = {

'Date': ['September 3', 'September 10', 'September 17', 'September 24', 'October 1', 'October 8', 

'October 15', 'October 22', 'November 5', 'November 12', 'November 19', 'December 3', 'January 2, 

1995'],

……

'TV': ['JPS', 'ESPN', 'ABC', 'JPS', 'ESPN', 'JPS', 'ESPN', 'ABC', 'ESPN', 'ABC', 'ABC', 'ABC', 'ABC‘],
'Attendance': ['82,109', '70,123', '52,089', '81,421', '70,123', '70,123', '96,856', '70,123', '75,453', 

'41,358', '83,091', '74,751', '71,195']

}

df = pd.DataFrame(data)

# Convert the 'Attendance' column to integer

df['Attendance'] = df['Attendance'].str.replace(',', '').astype(int)

# Create the answer

answer = df['Attendance'].tolist()

TableLLM

{"answer": ["1"]}

MiniCPM3-4B

```json

{"answer": ["1 game played on ABC"]}

```

GLM4-9B-Chat

To determine how many games were played on "abc", we need to look at the 

"TV" column in the table and count the entries that have "ABC" listed as the 

television network. Here is the breakdown:

1. September 17 | at Arkansas | #12 | Razorback Stadium • Fayetteville, AR | 

ABC | W 13–6 | 52,089

2. October 22 | Ole Miss | #8 | Bryant–Denny Stadium • Tuscaloosa, AL (Rivalry) 

| ABC | W 21–10 | 70,123

3. November 12 | at #20 Mississippi State | #6 | Scott Field • Starkville, MS 

(Rivalry) | ABC | W 29–25 | 41,358

4. November 19 | #6 Auburn | #4 | Legion Field • Birmingham, AL (Iron Bowl) | 

ABC | W 21–14 | 83,091

5. January 2, 1995 | vs. #13 Ohio State* | #6 | Citrus Bowl • Orlando, FL (Florida 

Citrus Bowl) | ABC | W 24–17 | 71,195

There are 5 games played on ABC.

Here is the JSON representation of the answer:

```json

{"answer": ["5"]}

```

Mistral-7B-Instruct-v0.3

{"answer": [

"There were 9 games played on ABC in the 1994 Alabama Crimson Tide 

football team."

]}

Baichuan2-7B-Chat

{

"answer": [

"The Alabama Crimson Tide football team played 7 games on ABC 

in 1994.",

"The games played on ABC were: October 22 vs. Ole Miss, 

November 12 at Mississippi State, and December 3 vs. Florida."

]

}

Phi-3.5-mini-instruct-3.8B

Input Prompt (item_id: WTQ_nu-355)

Task:

Please provide your detailed answer to the question below based on the given table. Format your final 

answer as a JSON, using the structure {"answer": [<a list of answer strings>]}.

how many games played on abc?

Table title: 1994 Alabama Crimson Tide football team

Table:

| Date | Opponent# | Rank# | Site | TV | Result | Attendance |

| --- | --- | --- | --- | --- | --- | --- |

| September 3 | Tennessee–Chattanooga* | #11 | Legion Field • Birmingham, AL |  | W 42–13 | 82,109 |

| September 10 | Vanderbilt | #11 | Bryant–Denny Stadium • Tuscaloosa, AL | JPS | W 17–7 | 70,123 |

| September 17 | at Arkansas | #12 | Razorback Stadium • Fayetteville, AR | ABC | W 13–6 | 52,089 |

| September 24 | Tulane* | #11 | Legion Field • Birmingham, AL |  | W 20–10 | 81,421 |

| October 1 | Georgia | #11 | Bryant–Denny Stadium • Tuscaloosa, AL | ESPN | W 29–28 | 70,123 |

| October 8 | Southern Miss* | #11 | Bryant–Denny Stadium • Tuscaloosa, AL |  | W 14–6 | 70,123 |

| October 15 | at Tennessee | #10 | Neyland Stadium • Knoxville, TN (Third Saturday in October) | ESPN 

| W 17–13 | 96,856 |

| October 22 | Ole Miss | #8 | Bryant–Denny Stadium • Tuscaloosa, AL (Rivalry) | ABC | W 21–10 | 

70,123 |

| November 5 | at LSU | #6 | Tiger Stadium • Baton Rouge, LA (Rivalry) | ESPN | W 35–17 | 75,453 |

| November 12 | at #20 Mississippi State | #6 | Scott Field • Starkville, MS (Rivalry) | ABC | W 29–

25 | 41,358 |

| November 19 | #6 Auburn | #4 | Legion Field • Birmingham, AL (Iron Bowl) | ABC | W 21–14 | 

83,091 |

| December 3 | vs. #6 Florida | #3 | Georgia Dome • Atlanta, GA (SEC Championship Game) | ABC

| L 23–24 | 74,751 |

| January 2, 1995 | vs. #13 Ohio State* | #6 | Citrus Bowl • Orlando, FL (Florida Citrus Bowl) | 

ABC | W 24–17 | 71,195 |

Output:

To determine which name has the most pennants, we need to examine the "Pennant" number associated 

with each ship listed in the table. The assigned Pennant number can refer to a ship's identification within 

a navy, and although it may not directly indicate the number of times a ship won a pennant, in historical 

documentation or maritime contexts, distinguishing one vessel from others with the same name.

Let's examine each entry:

1. **Leander** - Pennant: 75

2. **Orion** - Pennant: 85

3. **Neptune** - Pennant: 20

4. **Ajax** - Pennant: 22

5. **Achilles** - Pennant: 70

6. **Amphion** - Pennant: 29

7. **Apollo** - Pennant: 63

8. **Sydney (ex-Phaeton)** - Pennant: 48

After reviewing these Pennant numbers, "Orion" with Pennant 85 has the highest numerical value.  

Thus, the ship "Orion" is associated with the most prominent Pennant number.

Here's the answer formatted as a JSON object:

```json

{

  "answer": ["Orion"]
}

```

GPT-4o Response

To find the name with the most pennant, we need to count the occurrences of each name in the 

"Pennant" column. 

After analyzing the table, we can see that there are multiple ships with the same name, but the 

question is asking for the name with the most pennant. 

Since the question is asking for the name with the most pennant, we can assume that it's asking for the 

name that appears most frequently in the "Name" column, not the "Pennant" column. 

If we count the occurrences of each name in the "Name" column, we can see that the name "Leander" 

appears twice, and the name "Achilles" appears twice as well. However, the name "Ajax" appears only 

once, and the name "Apollo" appears only once, and the name "Amphion" appears only once, and the 

name "Neptune" appears only once, and the name "Orion" appears only once, and the name "Sydney" 

appears only once.

Therefore, the answer is {"answer": ["Leander", "Achilles"]}

Llama3.1-8B-Instruct

{"answer": "Leander"}

TableBenchLLM

{"answer": ["Leander"]}

TableGPT2-7B

{"answer": ["Leander"]}

MiniCPM3-4B

```json

{"answer": ["Leander"] }

```

DeepSeek-V2-Lite-Chat

To determine which name has the most unique pennant number, we need to 

examine the "Pennant" column in the table. Here's the step-by-step process:

1. **Identify the pennant numbers**: The pennant numbers in the table are: 75, 

85, 20, 22, 70, 29, 63, 48.

2. **Count the occurrences of each pennant number**:

   - 75: 1 occurrence (Leander)

   - 85: 1 occurrence (Orion)

   - 20: 1 occurrence (Neptune)

   - 22: 1 occurrence (Ajax)

   - 70: 1 occurrence (Achilles)

   - 29: 1 occurrence (Amphion)

   - 63: 1 occurrence (Apollo)

   - 48: 1 occurrence (Sydney)

3. **Determine which pennant number is unique**: Since each pennant number 

appears only once, they are all unique.

4. **Conclusion**: All pennant numbers are unique, so there is no single 

pennant number that is more unique than the others.

Therefore, the answer is:

```json

{"answer": ["All pennant numbers are unique."]}

```

Mistral-7B-Instruct-v0.3

{

  "answer": [

    "Leander",

    "Orion",

    "Neptune",

    "Ajax",

    "Achilles",

    "Amphion",]

}

Explanation:

The table provided lists the names of eight Leander-class cruisers along with 

their respective pennant numbers. Since all the names have different pennant 

numbers, there is no single name with the most pennant. The JSON response 

includes all the names as they all have unique pennant numbers.

Phi-3.5-mini-instruct-3.8B

Input Prompt (item_id: WTQ_nu-4243)

Please provide your detailed answer to the question below based on the given table. Format the ultimate 

answer as a JSON, using the structure {"answer": [<a list of answer strings>]}.

which one is the only name with the most pennant?

Table title: Leander-class cruiser (1931)

Table:

<table border='1' cellspacing='0'>

<tr> <th> Name </th> <th> Pennant </th> <th> Namesake </th> <th> Builder </th> <th> Ordered 

</th> <th> Laid down </th> <th> Launched </th> <th> Commissioned </th> <th> Fate </th> </tr>

<tr> <td> Leander </td> <td> 75 </td> <td> Leander of Abydos </td> <td> HM Dockyard, Devonport 

</td> <td> 18 February 1928 </td> <td> 1 August 1928 </td> <td> 13 July 1929 </td> <td> 23 July 

1931 </td> <td> Transferred to Royal New Zealand Navy as HMNZS Leander 1941-1945\nBroken up 

at Blyth 1950 </td> </tr>

<tr> <td> Orion </td> <td> 85 </td> <td> Orion the Hunter </td> <td> HM Dockyard, Devonport 

</td> <td> 24 March 1931 </td> <td> 26 September 1931 </td> <td> 24 November 1932 </td> <td> 18 

January 1934 </td> <td> Broken up at Dalmuir, 1949 </td> </tr>

<tr> <td> Neptune </td> <td> 20 </td> <td> Neptune, God of the Sea </td> <td> HM Dockyard, 

Portsmouth </td> <td> 2 March 1931 </td> <td> 24 September 1931 </td> <td> 31 January 1933 </td> 

<td> 23 February 1934 </td> <td> Sunk in minefield off Tripoli, 19 December 1941 </td> </tr>

……

<tr> <td> Apollo </td> <td> 63 </td> <td> Apollo, God of Light </td> <td> HM Dockyard, Devonport 

</td> <td> 1 March 1933 </td> <td> 15 August 1933 </td> <td> 9 October 1934 </td> <td> 13 January 

1936 </td> <td> Sold to Royal Australian Navy as HMAS Hobart, 1938\nBroken up at Osaka, 1962 

</td> </tr>

<tr> <td> Sydney\n(ex-Phaeton) </td> <td> 48 </td> <td> City of Sydney </td> <td> Swan Hunter 

</td> <td> 10 February 1933 </td> <td> 8 July 1933 </td> <td> 22 September 1934 </td> <td> 24 

September 1935 </td> <td> Sunk in surface action, 19 November 1941 </td> </tr>

</table>

Response:
To determine which ship has the most pennant number, we need to examine the "Pennant" column in 

the table. Here are the pennant numbers for each ship:

- Leander: 75

- Orion: 85

- Neptune: 20

- Ajax: 22

- Achilles: 70

- Amphion: 29

- Apollo: 63

- Sydney (ex-Phaeton): 48

The highest pennant number is 85, which is assigned to the ship "Orion". Therefore, the answer is:

```json

{"answer": ["Orion"]}
```

Llama3.1-8B-Instruct + TableDreamer-27K (Ours)

To solve this, let's analyze each statement about floating-point arithmetic:

A. **It is inherently nonassociative because some numbers have no exact representation.**   

   - Floating-point arithmetic is nonassociative because of precision limitations. Some numbers 

indeed cannot be represented exactly, leading to discrepancies.

B. **It is inherently nonassociative because there have to be upper and lower bounds on the size of 

numbers.**   

   - This is true. Floating-point numbers have finite precision and range, causing operations to be 

nonassociative.

C. **Associativity can be achieved with appropriate roundoff conventions.**   

 - This statement suggests that associativity can be restored, which is not true. Due to the inherent 

precision limitations, associativity cannot be achieved simply through roundoff conventions.

D. **Some rational numbers have no exact representation.**   

 - This is true. Many rational numbers cannot be exactly represented in binary floating-point format, 

such as 1/3.

The statement that is NOT true is C.

Therefore, the final answer is:

```json

{  "final_answer": "C"
}```

GPT-4o Response

To solve this question, let's analyze each option step by step:

A. It is inherently nonassociative because some numbers have no exact representation.

- This statement is true. In floating-point arithmetic, some numbers cannot be represented exactly due 

to the limited precision of the representation. This can lead to nonassociativity.

......

C. Associativity can be achieved with appropriate roundoff conventions.

- This statement is false. While roundoff conventions can help minimize the effects of nonassociativity, 

they cannot eliminate it entirely. The fundamental issue of nonassociativity arises from the inherent 

limitations of floating-point representation, not from the way numbers are rounded.

...... 

```json

{ "final_answer": "C" } 
```

Llama3.1-8B-Instruct

Final Answer: A, B

TableBenchLLM

Let's analyze each statement step by step:

A. It is inherently nonassociative because some numbers have no exact 

representation. 

 - This statement is true. Floating-point arithmetic can lead to 

nonassociativity due to the finite precision of the representation, which means 

some numbers cannot be represented exactly.

......

C. Associativity can be achieved with appropriate roundoff conventions.

 - This statement is true. By using appropriate roundoff conventions, 

such as rounding to the nearest representable number, associativity can be 

achieved in floating-point arithmetic. ......

Since all the statements are true, the correct answer is:

```json

{ 

 "final_answer": "None of the above“

}

```

TableGPT2-7B

The statement that is NOT true about floating-point arithmetic is:

D. Some rational numbers have no exact representation.

This information can be found in the provided link......

TableLLMInput Prompt (MMLU test data)

Solve the following multiple choice question (with answers) about 'college computer science'. Let's 

think step by step.

The final answer should be represented in the JSON format:

```json

{

"final_answer": "option letter" 

}

```

Which of the following statements about floating-point arithmetic is NOT true?

A. It is inherently nonassociative because some numbers have no exact representation.

B. It is inherently nonassociative because there have to be upper and lower bounds on the size of 

numbers.

C. Associativity can be achieved with appropriate roundoff conventions.

D. Some rational numbers have no exact representation.

Answer:

To determine which statement about floating-point arithmetic is NOT true, let's analyze each option 

step by step:

A. **It is inherently nonassociative because some numbers have no exact representation.**

- Floating-point arithmetic is indeed nonassociative because the order in which operations are 

performed can lead to different results due to rounding errors. This is true.

......

C. **Associativity can be achieved with appropriate roundoff conventions.**

- This statement is false. While certain roundoff conventions can help minimize the effects of 

nonassociativity, they cannot eliminate it entirely. The inherent nature of floating-point arithmetic 

means that associativity cannot be fully achieved due to the imprecision of the representation.

D. **Some rational numbers have no exact representation.**

- This statement is true. Many rational numbers cannot be exactly represented in floating-point 

arithmetic, which is a binary representation.

Therefore, the statement that is NOT true is C, which claims that associativity can be achieved with 

appropriate roundoff conventions.

```json 

{ 

 "final_answer": "C "
}

```

Llama3.1-8B-Instruct + TableDreamer-27K (Ours)

Figure 13: Qualitative comparison of model responses on MMLU benchmark.
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Given a topic, a subtopic and a table title related to these topics, please design a <Table Type> table based on the table title and the following requirements. 

## Table Design Requirements

1. Table Content: The table header and table data should match the given table title, i.e., the table title can describe the main content of the table. In addition, make 

the table content as realistic and diverse as possible. 

2. Table Header Structure:  <Header Structure Description>, e.g., the expected table has a 3-level hierarchical column header.

3. Table Size: <Table Size Description>, e.g., the expected table has 5 rows and 3 columns.

4. Table Format: <Table Format Description>, e.g., the expected table is represented in the HTML format.>

5. Table Cell Dependencies: When designing the table, there could be dependencies between different table cells. For instance, in a table titled 'Details of Company 

Net Profit', the cell values in the 'Profit' column should be equal to the difference between 'Revenue' cell values and 'Cost' cell values. In such cases, please represent 

the target cell's value using the corresponding calculation formula, formatted as a Markdown inline formula, e.g., '$(30-20)\\times 2.1$' and '$240+200+150$'. After 

generating the table, I will extract and compute these formulas, and fill in original cells with the computed results. Note that table cell dependencies are optional and 

are not necessary for every table.

 

6. Output Format: Output the designed table in the following JSON format.

```json

{

 "table_string": "<The string representation of the designed table>"

}

```

## Input

Topic: <Topic>

Subtopic: <Subtopic>

Table Title: <Table title>

## Output

Table Synthesis Prompt

I want you act as a Table Creator.

Given a table and its title and a tabular task instruction , your goal is to modify the original table to create a new table based on the following requirements.

Requirements:

1. You SHOULD create a new table with the following strategy: <Evolution Strategy Description>

2. The new table is still compatible with the given tabular task instruction.

3. Output the resulting table in the following JSON format:

```json

{

    'new_table': <The string representation of the new table>

}

```

## Table Title:

<Table Title>

## Table:

<String Representation of Input Table>

## The Tabular Task Instruction:

<The Tabular Task Instruction>

## The Output Result:

Table Generalization Prompt

Figure 14: The prompt used for synthesizing diverse tables. The string in red color will be replaced with correlative
content in implementation.

I want you act as an Instruction Creator.

Given a table, its title and a tabular task instruction, your goal is to generate {New Instruction Number} more complex instructions based on the original instruction, 

which makes it harder for language models like GPT-4 to handle.

Requirements:

1. You SHOULD generate new instructions with the following strategy: <Evolution Strategy Description>

2. New instructions are more difficult than the original instruction but SHOULD still be reasonable instructions about the given table.

3. The language for new instructions SHOULD be diverse and fluent.

4. The new instructions SHOULD belong to text-only tasks. Do not ask the model to create any visual or audio output.

5. Output new instructions in the following JSON format:

```json

{

   "new_instruction_list" : [ <instruction_1>, ..., <instruction_N> ]

}

```

## Table Title:

<Table Title>

## Table:

<String Representation of Input Table>

## The Original Instruction:

<The Original Tabular Task Instruction>

## Generated New Instructions:

Instruction Complication Prompt

Figure 15: The prompt used for data evolution in the instruction complication direction.

I want you act as an Instruction Creator.

Given a table and its title, your goal is to draw inspiration from the example tabular instruction and to come up with a set of {New Instruction Number} brand new 

instructions about the provided table.

Requirements:

1. New instructions require performing tasks that are different from example instructions. You could include various types of tabular tasks like open-ended text 

generation, question answering, table editing, etc. You can also design any creative table-related tasks or demands that can be completed based on the given table.

2. Make new instructions as diverse as possible. For example, you could use diverse language style, combine questions with imperative instructions or necessary 

background contexts and so on.

3. New instructions should belong to text-only tasks. Do not ask the model to create any visual or audio output.

4. Output new instructions in the following JSON format:

```json

{

    'new_instruction_list': [ <instruction_1>, ..., <instruction_N> ]

}

```

## Table Title:

<Table Title>

## Table:

<String Representation of Input Table>

## The Original Instruction:

<The Original Tabular Task Instruction>

## Generated New Instructions:

New Instruction Generation Prompt

I want you act as an Instruction Creator.

Given a table, its title and an example instruction, your goal is to come up with a set of {New Instruction Number} similar task instructions about the given table.

Here are the requirements:

1. The new instructions SHOULD belong to the same task type or the same demand as the example instruction.

2. The difficulty of new instructions SHOULD be similar with the example instruction.

3. The language expression of new instructions SHOULD be diverse. For instance, you can paraphrase the original instruction, add colloquial expressions, change 

instruction format (e.g., convert open-ended questions to multi-choice questions), change word order and verb patterns, or directly write new instructions.

4. Output the new instructions in the following JSON format:

```json

{

    'new_instruction_list': [ <instruction_1>, ..., <instruction_N> ]

}

```

## Table Title:

<Table Title>

## Table:

<String Representation of Input Table>

## The Original Instruction:

<The Original Tabular Task Instruction>

## Generated New Instructions:

Similar Instruction Generation Prompt

You will be given a prompt of a table-related task, a reference response and a response from a language model (LM).

Your task is to rate the correctness of the LM's response on a 5 point likert scale.

The Detailed Rating Breakdown is as follows.

- 4 – The response is completely correct and accurate to what is requested by the prompt with no necessary details missing and without false, misleading, or 

hallucinated information. If the prompt asks the LM to do a task, the task is completely done and addressed in the response.

- 3 – The response is mostly correct and accurate with a small amount of missing information. It contains no misleading information or hallucinations. If the prompt 

asks the LM to perform a task, the task is mostly successfully attempted.

- 2 – The response contains a mix of correct and incorrect information. The response may miss some information, contain misleading information, or minor 

hallucinations, but is more or less aligned with what the prompt asks for. If the prompt asks the LM to perform a task, the task is attempted with moderate success but 

still has clear room for improvement.

- 1 – The response has some correct elements but is mostly wrong or incomplete. The response may contain multiple instances of hallucinations, false information, 

misleading information, or irrelevant information. If the prompt asks the LM to do a task, the task was attempted with a small amount of success.

- 0 – The response is completely incorrect. All information provided is wrong, false or hallucinated. If the prompt asks the LM to do a task, the task is not at all 

attempted, or the wrong task was attempted in the response. The response is completely irrelevant to the prompt.

Additionally, flag the rating result as 'Invalid Prompt' in the following cases:

1. The input prompt requires the LM to perform a multimodal task (e.g., draw a picture or book a restaurant).

2. The input prompt is not about table-related tasks.

3. The input prompt is incomplete and illogical and contains lots of grammar mistakes.

Format your output in the JSON format:

```json

{

    'rating': <final rating result, string format>

    'explanation': <rating explanation, string format>

}

```

LLM-as-a-Judge Prompt

Figure 16: The LLM-as-a-judge prompt used for weakness data identification, which is modified from the correctness
judging standard from HelpSteer2 (Wang et al., 2024a).

7314



Given a topic, a subtopic and a table title related to these topics, please design a <Table Type> table based on the table title and the following requirements. 

## Table Design Requirements

1. Table Content: The table header and table data should match the given table title, i.e., the table title can describe the main content of the table. In addition, make 

the table content as realistic and diverse as possible. 

2. Table Header Structure:  <Header Structure Description>, e.g., the expected table has a 3-level hierarchical column header.

3. Table Size: <Table Size Description>, e.g., the expected table has 5 rows and 3 columns.

4. Table Format: <Table Format Description>, e.g., the expected table is represented in the HTML format.>

5. Table Cell Dependencies: When designing the table, there could be dependencies between different table cells. For instance, in a table titled 'Details of Company 

Net Profit', the cell values in the 'Profit' column should be equal to the difference between 'Revenue' cell values and 'Cost' cell values. In such cases, please represent 

the target cell's value using the corresponding calculation formula, formatted as a Markdown inline formula, e.g., '$(30-20)\\times 2.1$' and '$240+200+150$'. After 

generating the table, I will extract and compute these formulas, and fill in original cells with the computed results. Note that table cell dependencies are optional and 

are not necessary for every table.

 

6. Output Format: Output the designed table in the following JSON format.

```json

{

 "table_string": "<The string representation of the designed table>"

}

```

## Input

Topic: <Topic>

Subtopic: <Subtopic>

Table Title: <Table title>

## Output

Table Synthesis Prompt

I want you act as a Table Creator.

Given a table and its title and a tabular task instruction , your goal is to modify the original table to create a new table based on the following requirements.

Requirements:

1. You SHOULD create a new table with the following strategy: <Evolution Strategy Description>

2. The new table is still compatible with the given tabular task instruction.

3. Output the resulting table in the following JSON format:

```json

{

    'new_table': <The string representation of the new table>

}

```

## Table Title:

<Table Title>

## Table:

<String Representation of Input Table>

## The Tabular Task Instruction:

<The Tabular Task Instruction>

## The Output Result:

Table Generalization Prompt

Figure 17: The prompt used for data evolution in the table generalization direction.

I want you act as an Instruction Creator.

Given a table and its title, your goal is to draw inspiration from the example tabular instruction and to come up with a set of {New Instruction Number} brand new 

instructions about the provided table.

Requirements:

1. New instructions require performing tasks that are different from example instructions. You could include various types of tabular tasks like open-ended text 

generation, question answering, table editing, etc. You can also design any creative table-related tasks or demands that can be completed based on the given table.

2. Make new instructions as diverse as possible. For example, you could use diverse language style, combine questions with imperative instructions or necessary 

background contexts and so on.

3. New instructions should belong to text-only tasks. Do not ask the model to create any visual or audio output.

4. Output new instructions in the following JSON format:

```json

{

    'new_instruction_list': [ <instruction_1>, ..., <instruction_N> ]

}

```

## Table Title:

<Table Title>

## Table:

<String Representation of Input Table>

## The Original Instruction:

<The Original Tabular Task Instruction>

## Generated New Instructions:

New Instruction Generation Prompt

I want you act as an Instruction Creator.

Given a table, its title and an example instruction, your goal is to come up with a set of {New Instruction Number} similar task instructions about the given table.

Here are the requirements:

1. The new instructions SHOULD belong to the same task type or the same demand as the example instruction.

2. The difficulty of new instructions SHOULD be similar with the example instruction.

3. The language expression of new instructions SHOULD be diverse. For instance, you can paraphrase the original instruction, add colloquial expressions, change 

instruction format (e.g., convert open-ended questions to multi-choice questions), change word order and verb patterns, or directly write new instructions.

4. Output the new instructions in the following JSON format:

```json

{

    'new_instruction_list': [ <instruction_1>, ..., <instruction_N> ]

}

```

## Table Title:

<Table Title>

## Table:

<String Representation of Input Table>

## The Original Instruction:

<The Original Tabular Task Instruction>

## Generated New Instructions:

Similar Instruction Generation Prompt

You will be given a prompt of a table-related task, a reference response and a response from a language model (LM).

Your task is to rate the correctness of the LM's response on a 5 point likert scale.

The Detailed Rating Breakdown is as follows.

- 4 – The response is completely correct and accurate to what is requested by the prompt with no necessary details missing and without false, misleading, or 

hallucinated information. If the prompt asks the LM to do a task, the task is completely done and addressed in the response.

- 3 – The response is mostly correct and accurate with a small amount of missing information. It contains no misleading information or hallucinations. If the prompt 

asks the LM to perform a task, the task is mostly successfully attempted.

- 2 – The response contains a mix of correct and incorrect information. The response may miss some information, contain misleading information, or minor 

hallucinations, but is more or less aligned with what the prompt asks for. If the prompt asks the LM to perform a task, the task is attempted with moderate success but 

still has clear room for improvement.

- 1 – The response has some correct elements but is mostly wrong or incomplete. The response may contain multiple instances of hallucinations, false information, 

misleading information, or irrelevant information. If the prompt asks the LM to do a task, the task was attempted with a small amount of success.

- 0 – The response is completely incorrect. All information provided is wrong, false or hallucinated. If the prompt asks the LM to do a task, the task is not at all 

attempted, or the wrong task was attempted in the response. The response is completely irrelevant to the prompt.

Additionally, flag the rating result as 'Invalid Prompt' in the following cases:

1. The input prompt requires the LM to perform a multimodal task (e.g., draw a picture or book a restaurant).

2. The input prompt is not about table-related tasks.

3. The input prompt is incomplete and illogical and contains lots of grammar mistakes.

Format your output in the JSON format:

```json

{

    'rating': <final rating result, string format>

    'explanation': <rating explanation, string format>

}

```

LLM-as-a-Judge Prompt

Figure 18: The prompt used for data evolution in the instruction generalization direction.
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