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Abstract

Existing Large Language Models (LLMs)
enforce uniform computation across all to-
kens. We analyze the correlation between the
input-output difference of self-attention block
and Feed-Forward Network (FFN) within the
same transformer layer, and find that these
two differential vectors are highly correlated.
Thus, we propose to dynamically skip the
FFN blocks based on the self-attention differ-
ence and introduce Diffential Layer Skipping
(DiffSkip) to show that LLMs are inherently
dynamic-depth models, capable of adjusting
computational depth when generating differ-
ent tokens. DiffSkip employs a lightweight
router module to dynamically skip a set of
FFN blocks in LLMs and only requires effi-
cient fine-tuning while keeping the pre-trained
LLM frozen. Experimental results demon-
strate that DiffSkip effectively enables dy-
namic FFN skipping in decoder-only language
models, even in continuous token genera-
tion tasks where many layer-skipping meth-
ods struggle. We open sourced our model at
DiffSkip-Llama-3-8B-Instruct.

1 Introduction

Large language models (LLMs) (Ouyang et al.,
2022; Dubey et al., 2024; Liu et al., 2024) have
demonstrated remarkable capabilities across di-
verse tasks (Zhu et al., 2023; Basyal and Sanghvi,
2023; Jiang et al., 2024). These models operate
through a next-token-prediction mechanism, en-
abling them to tackle complex problems via step-
by-step reasoning. However, regardless of the pre-
diction complexity, tokens are processed through
the same number of transformer layers. To enable
dynamic computation, prior works (Raposo et al.,
2024; Zeng et al., 2023) introduce a router that
makes a binary decision at each layer, determining
whether to skip the layer or not. In their imple-
mentation, the router is jointly trained with the
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Figure 1: Cosine similarity between Self-attention Input-
Output Differences (∆Attn = Attn(x) − x) and FFN
Input-Output Differences (∆FFN = FFN(h) − h)
across different layers in Llama-3-8B-Instruct. The
input-output differences of the self-attention and FFN
exhibit a high correlation across most layers, except for
the first and last few layers.

transformer from scratch. Although this approach
allows the transformer to learn representations that
provide valuable signals for routing, it comes with
significant training overhead. This motivates us to
explore whether effective routing signals can be
directly obtained from a pre-trained model.

In this paper, we demonstrate that pre-trained
large language models already possess the rout-
ing signals for dynamic computation. Our key
insight is that the self-attention input-output dif-
ference, ∆Attn = Attn(x)− x, is correlated with
the feed-forward network (FFN) input-output dif-
ference, ∆FFN = FFN(h) − h. Here, x and h
represent the inputs to the self-attention block and
the FFN block, respectively. As shown in Figure 1,
∆Attn and ∆FFN exhibit high cosine similarity
across diverse tasks, including single-token gen-
eration tasks like ARC (Clark et al., 2018) and
HellaSwag (Zellers et al., 2019), as well as multi-
token generation tasks like GSM8K (Cobbe et al.,
2021) and BBH (Suzgun et al., 2023). This cor-
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Figure 2: Visualization of token-wise FFN block skip-
ping with DiffSkip. The color gradient from light blue
to dark blue indicates the number of FFN blocks utilized
during token generation, ranging from 16 to 32.

relation enables us to use ∆Attn as a proxy for
∆FFN . By feeding ∆Attn to a learnable router, we
enable the router to predict the potential impact of
the FFN transformation without executing it. This
allows the router to make informed decisions about
whether to skip or execute the subsequent FFN
block based on its anticipated contribution.

Based on this insight, we propose Differential
Layer Skipping (DiffSkip), a method that uses the
self-attention input-output difference ∆Attn as a
routing signal for dynamic FFN skipping. Specif-
ically, DiffSkip employs two key components in
each layer: (1) a router that takes ∆Attn as input to
determine whether individual tokens skip or pass
through the FFN, and (2) an adaptor that aligns the
latent spaces of tokens that skip the FFN with those
that undergo FFN computation. Importantly, the
router and the adaptor are the only components that
are tunable, while the rest of the transformer pa-
rameters remain frozen. By stacking multiple such
layers, DiffSkip enables tokens to dynamically skip
FFN blocks during inference, effectively creating
paths of varying depths through the network for
each token.

To optimize DiffSkip in an end-to-end manner,
we introduce a skipping loss that works in con-
junction with the original next-token prediction
loss. This loss function encourages feed-forward
network (FFN) skipping by penalizing the num-
ber of FFN blocks used. It is defined as the L2
loss on the expected number of FFN blocks used
to generate each token. Additionally, to tailor the
skipping strategy to the complexity of the genera-
tion task, we incorporate token-wise weighting into
the loss. High-perplexity tokens, which indicate
more challenging predictions, incur smaller penal-

ties to preserve FFN usage, while low-perplexity
tokens, associated with simpler predictions, are
incentivized to skip more. Although we use next-
token perplexity as a straightforward weighting
measure in this work, future research could explore
more sophisticated schemes for adaptive allocation.

Experimental results demonstrate that DiffSkip
effectively enables dynamic FFN skipping in
decoder-only language models, even in continuous
token generation tasks where many pruning meth-
ods struggle. For example, when applying DiffSkip
to Llama-3-8B with 8 FFN blocks skipped, it main-
tains 91.3% of the original performance.

To better understand how DiffSkip dynamically
allocates computational depth to different tokens,
we visualize the layer usage of each token in Fig-
ure 2. DiffSkip processes answer tokens that re-
quire computation through more blocks, such as
"180" in "= 180 students" and the first "36" in "= 36
teachers". Interestingly, although the final answer
"36" is numerically identical to the first "36" in "=
36 teachers", it is assigned fewer blocks since it is
simply a copy of the previous result and does not
require computation. DiffSkip also demonstrates
that the FFN blocks within the network exhibit dif-
ferent usage patterns across layers. The FFNs in
the first and last few layers are utilized more fre-
quently than those in the middle layers, with the
FFN utilization pattern approximately following a
long-tail distribution. This selective activation pat-
tern reveals that pre-trained LLMs naturally exhibit
varying computational requirements across differ-
ent tokens and FFNs. By leveraging these inherent
variations, DiffSkip transforms static LLMs into
dynamic models that allocate computation based
on actual needs rather than a fixed architecture.

2 Methods

DiffSkip is a plug-in method that applies to a pre-
trained decoder-only language model. It adds a
router and an adaptor to enable dynamic FFN skip-
ping. The router takes the self-attention input-
output difference ∆Attn as input and produces the
gating scores G = [g1, g2, ..., gT ], where T is the
number of tokens. Based on the gating scores
G and a pre-defined threshold τ , tokens are par-
titioned into two groups: those routed to the FFN
(Figure 3 left) and those routed to skip the FFN
(Figure 3 right). In the following subsections, we
describe the implementation details.
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Figure 3: Pipeline for the routing mechanism. The
router generates a gating score g based on the self-
attention difference ∆Attn. If g > τ , the token represen-
tation x is routed to the FFN; if g ≤ τ , it is processed
by the lightweight adaptor.

2.1 Router Design
In this section, we present our implementation of
the routing mechanism. Figure 3 illustrates the
routing pipeline in a transformer block. The key
insights guiding our design are:

Attention Block Difference: The attention op-
eration acts as a preparatory step for the FFN, with
its input-output differences highly correlated to the
transformations performed by the FFN (Figure 1).
This correlation allows the router to infer the extent
of FFN processing needed for each token, enabling
informed decisions on whether to skip or engage
the FFN.

Latent Space Alignment: Hidden representa-
tions that skip the FFN might not be in the same
latent space as those processed by the FFN. To
address this, we use an adaptor to align the latent
spaces of the skipped ones with those that undergo
FFN processing.

Let X = [x1, x2, . . . , xT ] ∈ RT×d denote the
input hidden states, where T represents the number
of tokens and d represents the number of hidden
dimensions. We compute the attention output and
subtract it from the input X to obtain the difference
∆Attn:

∆Attn = softmax
(QK⊤

√
d

)
V Wo − X, (1)

where Q = XWq, K = XWk, V = XWv. The
router then uses the difference to predict the gating
scores G:

G = [g1, g2, ..., gT ] = σ(Router(∆Attn)), (2)

where σ denotes the sigmoid function to restrict
the scores gi between 0 and 1. The router is im-

plemented as a bottlenecked MLP with a router
head:

Router(z) = Whead · (Wup · tanh(Wdownz)), (3)

where Wdown ∈ Rdr×d, Wup ∈ Rd×dr , and
Whead ∈ R1×d are the down-projection, up-
projection, and router head matrices, respectively,
with dr as the bottleneck dimension.

The gating scores G determine how the input
hidden states H = [h1, h2, . . . , hT ] of FFN block
are processed. Hidden states hi with gi > τ are
routed to the FFN, while those with gi ≤ τ skip the
FFN. For hidden states routed to the FFN (Figure 3
left), they are processed by the standard transformer
block modules and then multiplied by their gating
scores gi to enable gradient backpropagation to the
router. For hidden states that skip the FFN (Figure 3
right), they are processed by a lightweight adaptor
and multiplied by 1− gi. The entire process can be
formalized as:

x′i =

{
gi · FFN(Norm(hi)) + hi, if gi > τ

(1− gi) · A(Norm(hi)) + hi, if gi ≤ τ
(4)

where x′i is the output hidden state for token i,
Norm denotes layer normalization, FFN is the feed-
forward network, and A(·) is the lightweight adap-
tor. We implement the Adaptor as a tiny FFN with
greatly reduced intermediate dimension.

2.2 Skipping Loss

To balance computational efficiency and generation
quality, we introduce a skipping loss that works
jointly with the next-token prediction loss. Specif-
ically, we minimize the number of utilized FFN
blocks using an L2 loss, encouraging routers across
different layers to jointly optimize their skipping
decisions. To ensure differentiability, we utilize the
gating scores Gl = [gl1, gl2, . . . , glT ] to compute a
differentiable expectation of FFN usage:

E(G) =

[
L∑

l=1

gl1,
L∑

l=1

gl2, . . . ,
L∑

l=1

glT

]
, (5)

where E(G) is a T -dimensional vector, with each
element representing the expected number of FFN
blocks utilized for generating the corresponding
token. The skipping loss is then defined as the
weighted L2 loss of the expectation:
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Lskip =
T∑

t=1

wt

(
L∑

l=1

glt

)2

, (6)

where W = [w1, w2, ..., wT ] are token-specific
weights. Each weight wt is computed as the re-
ciprocal of the next-token prediction perplexity:
wt = 1/Perplexity(yt|y<t). This ensures that to-
kens with lower perplexity encourage more skip-
ping, while tokens with higher perplexity preserve
computational depth. We note that perplexity-
based weighting is a minimalistic design choice,
and future work could explore more advanced met-
rics for measuring prediction difficulty or com-
putation budget allocation. The final loss is the
weighted sum of the skipping loss and the original
language modeling loss:

L = α ∗ Lskip + Llm. (7)

3 Experiments

3.1 Implementation Details

Hyperparameters. For the router, we implement a
bottlenecked MLP according to Equation 2, where
we set the bottleneck dimensions dr to d/16, with
d being the model’s hidden dimension. The projec-
tion layer employs a tiny FFN with an intermediate
dimension of dffn/16, where dffn represents the
original FFN intermediate dimension. Our gating
function is implemented using SparseMixer (Liu
et al., 2023). Based on empirical findings of prior
work (Men et al., 2024; Sun et al., 2024) that early
transformer layers exhibit limited sparsity and are
less amenable to skipping, we deploy routers only
in the latter half of the transformer layers. The loss
function balancing coefficient α in Equation 6 was
empirically set to 1e− 3 during training on Llama-
3-8B (Dubey et al., 2024). This value achieved
an average skipping rate of approximately 8 FFN
blocks for generation.

Training Protocol. We optimize our model
using AdamW with the following configuration:
learning rate = 1e − 4, β1 = 0.9, β2 = 0.999,
ϵ = 1e − 8, and weight decay = 0.01. The train-
ing process spans 3 epochs on the tulu-v2 (Ivison
et al., 2023) dataset which consists of 326k dia-
logues, incorporating a warmup ratio of 0.03 and
utilizing a global batch size of 64. The complete
training procedure for a DiffSkip based on Llama-
3-8B model requires approximately 7 hours on 8
NVIDIA A100 GPUs.

3.2 Main Results
In this section, we present the main results of our
experiments. Using Llama-3-8B-Instruct (Dubey
et al., 2024) as the base model for FFN skipping,
we compare the proposed DiffSkip with other skip-
ping methods. Let k represent the number of layers
skipped by these methods. For the 32-layer Llama-
3-8B-Instruct, we evaluate the methods with k = 4
and k = 8.

Benchmarks. We assess our method across
a variety of benchmarks. For single-token gen-
eration tasks, we use 5-shot MMLU (Hendrycks
et al., 2021), 5-shot HellaSwag (Zellers et al.,
2019), and 5-shot Winogrande (Sakaguchi et al.,
2020). For sequence generation tasks (multiple to-
kens), we evaluate on 5-shot GSM8K (Cobbe et al.,
2021), zero-shot BBH (Suzgun et al., 2023) with
chain-of-thought (Wei et al., 2022), and zero-shot
XSum (Narayan et al., 2018). All evaluations are
performed using the lm-evaluation-harness (Gao
et al., 2024) codebase, measuring accuracy (acc)
for MMLU and Winogrande, normalized accuracy
(acc norm) for HellaSwag, exact match for GSM8K
and BBH, and ROUGE for XSum.

Baselines. We tested several layer-skipping
methods on Llama-3-8B-Instruct as baselines for
comparison. For comparison, we set these methods
to skip only the Feed-Forward Network (FFN) part
of the transformer block:

• EarlyExit (Elhoushi et al., 2024): This method
skips the last k consecutive layers during de-
coding and corrects the generation results us-
ing speculative decoding (Leviathan et al.,
2023). For comparison, we skip only the Feed-
Forward Network (FFN) part of the trans-
former block and avoid using speculative de-
coding for correction.

• ShortGPT (Men et al., 2024): This approach
uses cosine similarity between the input and
output of a layer to assess its importance, prun-
ing the k least important layers. In our experi-
ments, we measured the cosine similarity for
the FFN blocks and pruned the k least impor-
tant FFN blocks.

• LaCo (Yang et al., 2024): This method em-
ploys a Reserving-Differences-while-Seeking-
Common (RDSC) Layer Merge strategy to
reduce the total number of layers. For our im-
plementation, we applied the merge operation
to reduce k FFN blocks.
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Methods Single-Token Generation Multi-Token Generation Retain
%MMLU Hellaswag Winogrande GSM8K BBH XSum

Vanilla 67.3 70.6 74.4 67.9 52.4 12.2 100.0%

Skip k = 4 FFN Blocks

EarlyExit 66.1 65.7 68.0 2.1 8.7 3.4 55.0%
ShortGPT 65.8 61.3 68.9 0.0 8.8 1.0 50.0%
LaCo 67.2 69.7 64.9 58.4 42.9 11.6 91.5%
MindSkip 65.7 65.2 68.9 2.4 5.5 3.1 53.7%
DiffSkip(Ours) 66.3 73.2 74.3 64.8 50.2 12.3 99.0%

Skip k = 8 FFN Blocks

EarlyExit 66.5 52.4 64.5 0.0 2.9 2.8 48.0%
ShortGPT 65.6 52.2 66.5 0.0 2.8 0.3 44.8%
LaCo 65.7 63.0 60.4 6.6 22.7 8.6 65.3%
MindSkip 64.8 54.2 67.0 0.4 4.6 1.8 47.9%
DiffSkip(Ours) 62.4 68.7 74.2 57.8 44.6 10.7 91.3%

Table 1: Performance comparison based on Llama-3-8B-Instruct, which consists of 32 layers. Retain % represents
the percentage of average retained benchmark performance compared with the original LLM.

• MindSkip (He et al., 2024a): This method
uses sequence-level routing, where a router de-
cides whether the entire sequence should skip
or preserve a layer. We trained it to skip FFN
blocks on the same tulu-v2 (Ivison et al., 2023)
dataset and adjusted the skipping penalty to
ensure that the expected number of skipped
FFN blocks per generated token is approxi-
mately k.

For our method, we aim to control the expected
number of skipped FFN blocks to be k. To ensure
a consistent number of skipped blocks, we trained
multiple models with different weights α and eval-
uated their performance. For each task, we report
the results corresponding to the model configura-
tion that achieves the target number k of skipped
FFN blocks. We will later show the performance
of DiffSkip with a fixed penalty weight α across
these tasks.

As presented in Table 1, all methods perform
similarly on single-token generation tasks (e.g.,
MMLU, HellaSwag, and Winogrande). However,
baseline approaches experience a notable perfor-
mance decline on multi-token generation tasks,
such as GSM8K, BBH, and XSum, due to error
propagation. In contrast, DiffSkip maintains con-
sistent performance across both task types. When
skipping 4 FFN blocks, our method retains 100.7%
of the original performance on single-token gener-
ation tasks and 97.4% on multi-token generation
tasks. When skipping 8 FFN blocks, it preserves
96.6% of the original performance on single-token
generation tasks and 86.0% on multi-token gen-
eration tasks. The proposed Diffskip effectively

preserves the functionality of the original network
for sustained generation.

3.3 Different Base Models

In this section, we analyze the skipping behavior of
DiffSkip across different base models. We conduct
experiments using Llama-3.2-3B-Instruct (Dubey
et al., 2024), Llama-2-7B-Instruct, Llama-3-8B-
Instruct, and Llama-2-13B-Instruct, training each
model with a fixed penalty weight of α = 1e−3 on
Tulu-v2 (Ivison et al., 2023) for 3 epochs. The total
number of layers in these models is 28, 32, 32, and
40, respectively. We apply the routing mechanism
only to the latter half of the layers in each model.
Table 2 summarizes the results. For simplicity, we
omit the "Instruct" suffix in the table. Each group
of three rows corresponds to a different base model.

We find that the skipping patterns vary with
model size. Larger models, such as Llama-2-13B,
skip more FFN blocks on average (9.1 FFN blocks)
compared to smaller models like Llama-3.2-3B (3.1
FFN blocks). Smaller models demonstrate higher
sensitivity to FFN skipping; for instance, skipping
just 1.7 FFN blocks in Llama-3.2-3B leads to a
performance drop on HellaSwag from 70.6 to 68.3.

3.4 FFN Utilization Pattern

We analyze the FFN utilization pattern across lay-
ers using Llama-3-8B-Instruct as the base model
with a penalty weight of α = 1e − 3. We tested
our approach on three tasks: copying, summariza-
tion, and addition, each with 100 samples. For
copying, we sampled paragraphs from the XSum
dataset (Narayan et al., 2018) and prompted the
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Model MMLU Hellaswag Winogrande GSM8K BBH XSum

Llama-3.2-3B 61.7 70.6 65.7 71.9 47.3 12.6
DiffSkip 61.3 68.3 61.2 67.0 45.4 11.8
Skipped FFNs 2.8 1.7 3.8 4.3 4.0 2.2

Llama-2-7B 45.3 66.4 67.3 19.6 30.1 12.1
DiffSkip 41.1 69.5 69.9 16.8 29.2 12.5
Skipped FFNs 4.3 1.8 3.7 8.0 7.3 5.1

Llama-3-8B 67.3 70.6 74.4 67.9 52.4 12.2
DiffSkip 65.3 74.5 74.3 57.2 44.6 12.8
Skipped FFNs 5.2 2.0 4.3 9.6 8.7 5.1

Llama-2-13B 49.2 72.7 71.4 23.6 33.9 10.7
DiffSkip 50.4 75.3 71.8 26.5 32.8 11.5
Skipped FFNs 7.6 3.9 6.4 14.7 13.1 9.9

Table 2: Performance and skipping patterns of DiffSkip. For each model, the first row shows the baseline
performance, the second row shows DiffSkip’s performance, and the third row reports the average number of
skipped FFN blocks.

Copy Summarize Add

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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Figure 4: FFN allocation pattern, with the x-axis show-
ing the FFN block index and the y-axis showing the
average percentage of tokens processed by the FFN.

model to reproduce them. For summarization, we
used the same paragraphs and prompted the model
to generate concise summaries. For addition, we
created questions with lists of 5 to 10 random two-
digit numbers, prompting the model to output their
sum. For each task, we record the percentage of
tokens processed by each FFN block across layers.

Figure 4 reveals distinct FFN utilization pat-
terns across different tasks. In the copying
task, most FFNs process fewer than 20% of to-
kens, while in the summarization task, nearly
all FFNs process over 60% of tokens. For sim-
pler tasks like copying and addition, FFN usage
follows a long-tail distribution, with early and
late FFNs showing higher utilization and middle
FFNs being less engaged. To support further re-
search into conditional computation in transform-
ers, we have open-sourced the allocation dataset at
DiffSkip-Llama-3-8B-Instruct. Please refer
to this dataset for additional details and examples.

3.5 Examples of Skipping

In this section, we illustrate the skipping patterns
at sequence level. Tokens are color-coded to reflect
the number of FFN blocks utilized. A lighter color
indicates that fewer FFN blocks were used. Below
is the color mapping, where each number corre-
sponds to the number of FFN blocks employed: 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32. Here, we demonstrate three examples.

Example 1 Our first example is from the GSM8K
dataset, which is about math reasoning.

Prompt: Marilyn’s first record sold 10 times as
many copies as Harald’s. If they sold 88,000 copies
combined, how many copies did Harald sell?

Generated: Let Harald’s number be H. Then
Marilyn’s number is 10H. 10H + H = 88,000.
11H = 88,000. H = 8,000.

By examining the model’s reasoning process,
several insights can be gained. The initial step of
defining the variable (H) to represent Harald’s num-
ber of copies requires more computation, as this
involves abstracting from the problem statement
and introducing a new symbol. Subsequently, when
forming the equation (10H + H = 88,000) based
on the problem statement, fewer FFNs are needed
because they can be copied from the context with-
out deep computation. Finally, in computing the
answer (H = 8,000), we observe another increase in
FFNs usage, reflecting the model’s need to perform
a more demanding arithmetic calculation.

Example 2 The second example is a summariza-
tion sample from the XSum dataset about a flood
incident at a Victoria Centre store.

Prompt: Torrents of water brought down a sus-
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Router Design MMLU Hellaswag Winogrande GSM8K BBH XSum Retain
%

Vanilla 67.3 70.6 74.4 67.9 52.4 12.2 100.0%
DiffSkip 66.3 73.2 74.3 64.8 50.2 12.3 99.0%
Attn-Input 66.3 70.0 63.8 51.2 47.7 11.4 90.5%
Attn-Output 65.6 70.8 63.4 52.7 48.8 11.7 91.6%
Linear Router 66.0 71.3 72.1 58.9 45.0 11.9 94.4%
No Adaptor 24.4 25.8 48.4 0.0 0.9 0.0 23.2%
Linear Adaptor 66.8 72.8 62.0 33.9 45.5 11.3 85.8%
Independent 60.5 72.5 70.8 59.2 43.4 11.7 92.3%
No Weighting 62.5 72.3 74.0 60.2 46.2 12.0 95.0%
Enhanced Dataset 66.4 75.3 75.1 67.3 48.5 12.2 99.7%

Table 3: Ablation studies based on Llama-3-8B-Instruct. The settings for methods are described in the main text.

pended ceiling and damaged stock in the Victoria
Centre store at about 22:40 BST on Tuesday. Man-
agers had hoped for a weekend reopening but it is
now closed until further notice. Staff have been
helping with the clean-up operation. Water poured
through from a rooftop room, leaving the top floor
under three inches of water and stock significantly
damaged. A spokeswoman said: Our teams are
working around the clock to get the shop open as
quickly as possible and we’re sorry for the incon-
venience this has caused to our customers. Please
summarize this paragraph into one sentence:

Generated: 1. The Victoria Centre store is
closed until further notice after a ceiling collapsed
and water poured through the top floor, damaging
stock.

Most content words in a summary require deeper
computation to capture key information accurately.
However, words like "Centre" and "store" in this
example utilize fewer FFN blocks, likely because
they are more predictable given the preceding con-
text, specifically the phrase "Victoria Centre store".

Example 3 The third example is about a simple
coding problem in python.

Prompt: Please write code in python. I want to
reverse this list: [1,2,3,4,5]

Generated: and also want to remove duplicates
from the list.

list = [1,2,3,4,5]
list = list[::-1] # reverse the list
list = list(set(list)) # remove duplicates from the

list
print(list) # [5,4,3,2,1] # output
This example highlights several key insights. To-

kens that can be directly copied from the context,
such as the list elements "[1,2,3,4,5]", require min-
imal processing. In contrast, generating the initial
tokens in the reversed list "[5,4,3,2,1]" demands
deeper computation, as the model must selectively

determine them from the given numbers. Once
these initial tokens are established, generating the
remaining numbers becomes easier due to reduced
uncertainty. Our approach explicitly captures this
notable phenomenon— the computational cost re-
quired for token generation varies depending on
the context.

3.6 Ablation Studies

To understand the contributions of our proposed
components, we conduct ablation studies by con-
trolling the alpha parameter to skip approximately
4 feed-forward network (FFN) layers across all
experiments. This ensures a fair comparison by
maintaining consistent layer skipping, with results
reported in Table 3.

Router Design. We investigate different
attention-based features as router inputs to iden-
tify the most effective design. While our default
implementation uses the difference between atten-
tion input and output, we explore two alternatives:
directly using attention input (Attn-Input) or output
(Attn-Output). As shown in Table 3, both alterna-
tives underperform the difference-based approach.
The performance degradation is particularly pro-
nounced on tasks requiring sophisticated reason-
ing: Winogrande (requiring the identification of
nuanced semantic cues to resolve ambiguity) and
GSM8K (requiring step-by-step mathematical rea-
soning). Specifically, while our difference-based
approach only experiences a marginal 1% perfor-
mance drop, using raw attention input or output
leads to degradation of 9.5% and 8.4%, respectively.
These results suggest that the attention difference
better captures task-relevant features for routing
decisions.

Regarding router architecture, we compare our
bottlenecked MLP design against a simpler linear
layer (Linear Router). The linear variant, which
directly transforms hidden states to routing logits,
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achieves only 94.4% retention compared to our
MLP’s 99.0%. This 4.6% gap demonstrates that
the additional modeling capacity and nonlinear-
ity provided by the MLP architecture are essential
for learning effective routing patterns, particularly
given that the pre-trained transformer parameters
remain frozen during training.

Adaptor Design. We investigate the impact of
adaptor architecture. Our default design uses a
small FFN with a reduced intermediate dimension,
which we compare against two variants: removing
the adaptor entirely and replacing it with a linear
transformation. As shown in Table 3, removing
the adaptor ("No Adaptor") results in catastrophic
performance degradation, retaining only 23.2% of
the original performance. This degradation is par-
ticularly evident in continuous token generation
tasks, where performance drops to zero. While re-
placing the FFN with a linear transformation ("Lin-
ear Adaptor") also reduces performance (85.8%
retention), it still maintains reasonable functional-
ity. Since a linear transformation cannot provide
non-linearity for deeper representation learning,
this result supports our hypothesis that the hidden
representations skipping the FFN might not reside
in the same latent space as those processed by the
FFN.

Loss Function Design. We investigate two
key components in our loss function design: the
L2 penalty on expected FFN preservation and
the perplexity-based token weighting strategy.
First, we examine the impact of replacing our
expectation-based L2 penalty with independent
L2 loss directly on gating scores g, modifying
Equation 6 to Lskip =

∑T
t=1wt

∑L
l=1 (glt)

2. As
shown in Table 3, this modification ("Independent")
leads to a performance drop to 92.3%, with no-
table degradation in knowledge-intensive tasks like
MMLU (60.5%) and reasoning tasks like BBH
(43.4%). Second, we evaluate the effectiveness
of our perplexity-based weighting by removing the
weighting factor w ("No Weighting"). This results
in a moderate performance decline to 95.0%, sug-
gesting that while token-difficulty adaptation pro-
vides benefits, the expectation-based L2 penalty
plays a more crucial role in maintaining model per-
formance.

Training Data Impact. In our original set-
ting, we employed the tulu-v2 (Ivison et al., 2023)
dataset for training. However, this dataset lacks
sufficient math reasoning problems, which limits
the performance of DiffSkip on tasks like GSM8K.

To address this, we incorporated additional math-
focused datasets, namely GSM8K and tulu-3-sft-
personas-math (Lambert et al., 2024), into the train-
ing process. As shown in the "Enhanced Dataset"
row of Table 3, this augmentation significantly en-
hances performance on reasoning tasks, such as
GSM8K and Hellaswag. These findings suggest
that DiffSkip could further benefit from training
on more diverse datasets or through continued pre-
training to improve generalization across a broader
range of tasks.

4 Related Work

4.1 Routing in Language Models

In encoder-only models like BERT (Devlin et al.,
2019), methods such as PoWER-BERT (Goyal
et al., 2020), LTP (Kim et al., 2022), and LoT (Kim
et al., 2023), make layer-by-layer decisions on
whether tokens should be processed or skipped. For
encoder-decoder models like T5, methods such as
CoDA (Lei et al., 2023) and COLT5 (Ainslie et al.,
2023) introduce conditional computation mecha-
nisms for the encoder. They conditionally replace
the original attention or FFN with a lightweight
adaptor. However, these methods are primarily
designed for the encoder portion of the model, as
they rely on noncausal routing mechanisms. Conse-
quently, they are not directly applicable to decoder-
only causal language models.

While significant progress has been made in
encoder-based models, enabling dynamic depth in
decoder-only language models remains an under-
studied area. Mixture of Depth (MoD) (Raposo
et al., 2024) and SkipLayer (Zeng et al., 2023) were
the first to introduce depth routing in causal lan-
guage models, demonstrating that a simple router
combined with extensive pre-training can train a dy-
namic depth model from scratch. DLO (Tan et al.,
2024) further explored this area by using a layer-
expanding and layer-skipping mechanism, showing
that supervised fine-tuning can adapt LLaMA-3
into a dynamic depth model. However, these meth-
ods require the model to be fully tunable. In this
work, we enable dynamic depth in a pre-trained
large language model without changing any of its
original parameters.

4.2 Layer Pruning

Layer pruning reduces computational overhead by
identifying and eliminating redundant layers in neu-
ral networks. One prevalent approach analyzes the
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Method MMLU Hellaswag Winogrande GSM8K BBH XSum

Vanilla 33.12 11.71 28.26 5.52 12.09 0.71
DiffSkip 35.24 11.93 28.91 5.69 12.45 0.69

Table 4: Throughput (iterations/s) comparison across benchmarks.

similarity between layer inputs and outputs to de-
tect redundancy. Men et al. (2024) measured cosine
similarity between transformer block inputs and
outputs, pruning modules that exhibit high similar-
ity based on calibration data. He et al. (2024b) con-
ducted a finer-grained analysis by separately eval-
uating the similarity between inputs and outputs
of attention and FFN modules, revealing distinct
redundancy patterns across components. Building
on this foundation, Razzhigaev et al. (2024) incor-
porated cosine similarity-based regularization into
the pruning process, while Ashkboos et al. (2020)
achieved pruning by replacing dense matrices with
smaller counterparts.

To overcome the limitations of static pruning
approaches, Zhang et al. (2024) developed an itera-
tive framework that greedily removes layers with
minimal impact, quantified by the output differ-
ence between original and pruned models. He et al.
(2024a) took a different approach by employing
sequence-level routers to dynamically skip atten-
tion or feed-forward modules. Similarly, Yang et al.
(2024) reduced layer count by merging adjacent lay-
ers that demonstrate high cosine similarity. More-
over, early-exit strategies offer an alternative by
halting computation for tokens once they satisfy
confidence thresholds. Schuster et al. (2022) ad-
vanced this paradigm by training early-exit classi-
fiers to detect local consistency in encoder-decoder
architectures. For decoder-only models, Varshney
et al. (2024) enhanced early-exit quality by training
intermediate layers to enable mid-network decod-
ing, while Elhoushi et al. (2024) combined layer
dropout during training with speculative decoding
at inference to improve overall robustness.

5 Conclusion

In this paper, we show that large language mod-
els inherently possess a capacity for dynamic-
depth processing without modifying their origi-
nal parameters. We introduced Differential Layer
Skipping (DiffSkip). This method leverages the
self-attention input-output difference as a routing
signal, enabling a lightweight router mechanism to
decide whether each token’s hidden state should

undergo or skip FFN transformations. Conse-
quently, computational depth is allocated dynami-
cally based on token difficulty and show interesting
phenomenon on various tasks. We hope these find-
ings encourage further research into exploiting the
inherent signals and dynamic-depth properties of
large language models to create more adaptive and
efficient AI systems.

6 Limitations

While our approach reduces computational FLOPs
by dynamically skipping Feed-Forward Network
(FFN) blocks, it does not achieve speedup on cur-
rent GPU hardware during the decoding stage. In
batched decoding scenarios, tokens can be routed
to both FFN and adapter modules within each layer,
requiring both to be fetched and executed. The re-
sulting I/O overhead outweighs computational sav-
ings, limiting throughput improvements. However,
our proposed DiffSkip accelerates the prefilling
stage, where computation is the bottleneck. We
evaluated throughput (iterations/s) on the paper’s
benchmarks using 8 A6000 GPUs, a batch size of
8, and 5-shot examples. For multi-token tasks, out-
put length was fixed at 5 tokens for comparison.
Results are shown in Table 4.

Despite demonstrating modest throughput gains
during prefilling, DiffSkip’s router and adapter
overhead limits speedup in batched decoding due
to I/O constraints. Consequently, it cannot deliver
acceleration for continuous generation tasks like
GSM8K, BBH, and XSum. Future hardware op-
timizations—such as enhanced memory manage-
ment or specialized accelerators—could address
these bottlenecks and unlock additional perfor-
mance gains.
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