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Abstract

Video Question-Answer-Distractors (QADs)
show promising values for assessing the per-
formance of systems in perceiving and compre-
hending multimedia content. Given the signif-
icant cost and labor demands of manual anno-
tation, existing large-scale Video QADs bench-
marks are typically generated automatically us-
ing video captions. Since video captions are
incomplete representations of visual content
and susceptible to error propagation, direct gen-
eration of QADs from video is crucial. This
work first leverages a large vision-language
model for video QADs generation. To enhance
the consistency and diversity of the generated
QADs, we propose utilizing temporal motion
to describe the video objects. In addition, we
design a selection mechanism that chooses di-
verse temporal object motions to generate di-
verse QADs focusing on different objects and
interactions, maximizing overall semantic un-
certainty for a given video. Evaluation on
the NExT-QA and Perception Test benchmarks
demonstrates that the proposed approach sig-
nificantly improves both the consistency and
diversity of QADs generated by a range of large
vision-language models, thus highlighting its
effectiveness and generalizability.

1 Introduction

Video Question-Answer-Distractors (QADs) (Lei
et al., 2018; Xiao et al., 2021; Patriaucean et al.,
2023) facilitates the evaluation of video-language
understanding across modalities, offering a bench-
mark for both human and machine performance.
For instance, online education videos MOOC re-
quires students to answer questions to assess their
understanding of the video materials. Besides,
Video QADs serve as established benchmarks for
evaluating multimodal models (OpenAl, 2024;
Google, 2024; Cheng et al., 2024). The manual
generation of Video QADs necessitates the analysis
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of video content, incurring significant costs and re-
sulting in bias (Goyal et al., 2017). This constraint
has driven the development of QADs generation
via automated algorithms (Li et al., 2016; Xu et al.,
2017).

Two primary approaches currently dominate the
automatic generation of QADs for videos. The first
approach relies on textual information extracted
from video captions (Jang et al., 2017) or transcrip-
tions (Yang et al., 2021), which are susceptible to
incomplete representations (Zeng et al., 2017) and
error propagation (Su et al., 2021). The second
approach generates QADs directly from the video
content. Existing research in this domain has pri-
marily focused on leveraging question types (Su
et al., 2021) or solely object information (Wang
et al., 2020) for question-answer pair generation.
However, this crucial aspect of video understand-
ing remains unaddressed by current methodologies.
As illustrated in Figure 1, the QADs generated by
LLaVA-NeXT cannot effectively assess the under-
standing of motions and interactions of the videos.
In contrast, the QADs generated by our model,
MaxSem, are specifically focused on the temporal
object motions and interactions present within the
video.

In this work, we propose MaxSem, a frame-
work to Maximize the Semantic uncertainty of
generated question-answer-distractors for video,
ensuring both consistency and diversity. We in-
troduce temporal object motions, which provide a
description of object movements over time within
the video. The generated QADs leverage object
motions and interactions, which are widely present
in the ground truth datasets, thereby enhancing con-
sistency. Furthermore, a selection mechanism is
proposed to sample diverse combinations of tempo-
ral object motions when generating multiple QADs
from a single video, thereby maximizing seman-
tic uncertainty and ensuring QADs diversity. We
conduct extensive experiments on the NExT-QA
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LLaVA-NeXT

Questionl: Why does the woman wears shorts?
Answerl: for comfort and ease of movement
Distractorsl1: (1) to show off her legs (2) to stay cool (3) to avoid
getting dirty (4) to look sporty
Object Probability

The woman wears shorts.

The woman wears shorts. .
Low Semantic

The woman wears shorts. Uncertainty

The woman wears shorts.

LLaVA-NeXT + MaxSem (Ours)

Answerl: to play with her dog
Distractorsl1: (1) to clean the park (2) to make a fire (3) to measure
the distance (4) to use as a tool

Object Motion
The woman picks up the twig.

Probability

0.5

The woman picks up the twig. High Semantic

The woman throws the twig.  0.25 Uncertainty

| The woman watches the dog. | m

Figure 1: Our method facilitates the generation of QADs focused on object motion with high semantic uncertainty.

and Perception Test benchmarks, empirical results
reveal that the proposed method significantly im-
proves both the consistency and diversity of QADs
generated by LVLMs. The contribution of this pa-
per lies in the automatic generation of QADs to
evaluate video understanding capabilities. More-
over, a prospective direction for future research
involves utilizing the generated QADs to improve
the performance of existing models.

The main contributions of this work are listed as
follows:

« We investigate generating QADs according to
videos using LVLMs, leveraging a novel repre-
sentation of temporal object motions to capture
object movements and interactions between dif-
ferent objects over time.

« We introduce a selector mechanism to generate
various combinations of temporal object motions,
enabling the generation of diverse QADs for a
given video, ultimately maximizing semantic un-
certainty.

« Extensive experimental results on the NExT-QA
and Perception Test benchmarks reveal that the
proposed methods can help existing LVLMs to
generate consistent and diverse QADs.

2 Related Works

The majority of previous research has concentrated
on the generation of a part of or parts of QADs,
namely questions, answers, or distractors.

Video Question Generation involves generating
meaningful questions from video content or cap-
tions. Wang et al. (2020) leveraged video frames,

detected objects, and subtitles as input to generate
semantically meaningful questions. Su et al. (2021)
introduced a Generator-Pretester network that gen-
erates question-answer pairs and subsequently vali-
dates the generated question by trying to answer it.
Guo et al. (2020) extended this work to the multi-
turn setting, generating multiple questions based
on both dialogue history and video content.

Video Question Answering (Le et al., 2020; Xiao
et al., 2022b,a) requires the models to understand
both the complex video and language data to cor-
rectly generate the answers. Wang et al. (2022) pro-
posed VidIL, a framework that instructs a large lan-
guage model on video-language tasks based on the
temporal-aware template. Li et al. (2022) proposed
an invariant grounding framework (IGV) to distin-
guish the causal scene and emphasize its causal
effect on the answer. Li et al. (2023) developed a
differentiable selection module that adaptively col-
lects question-critical moments and objects using
cross-modal interaction.

Visual Distractor Generation targets to generate
challenging distractors according to the visual con-
tent. Lu et al. (2022) introduced a reinforcement
learning approach to generate distractors from vi-
sual images. Luo et al. (2024) proposed leveraging
multimodal large language models with Chain-of-
Thought reasoning to generate both questions and
distractors. Ding et al. (2024a) first proposed to
generate questions, answers, and distractors jointly.
Ding et al. (2024b) introduced a framework to gen-
erate QADs that focus on different regions in the
image. However, their work is confined to the
analysis of individual images. In this paper, we
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In the backyard, there are two young children
playing with a small playhouse. The boy is standing
near the playhouse, while the girl is closer to the
left side of the image. ..

The image depicts two children playing in a
backyard. The boy is lying on the ground, while the
girl is inside the blue playhouse...

The image depicts a backyard scene where a boy
and a girl are playing together. The boy is standing
next to a small playhouse, while the girl is on the
right side of the backyard and holding a frisbee...

I Girl: the girl is closer to the left side of the image. +—————
Boy: the boy is standing near the playhouse.

Backyard: two young children are playing in the backyard.

. i Girl: the girl is inside the playhouse.
Object | "5y aboy is lying on the ground next to a blue playhouse.
States

Backyard: two children are playing in a backyard.

i Girl: the girl is on the right side of the yard, holding a frisbee. ——
Boy: the boy is standing next to a small playhouse.

Backyard: a boy and a girl are playing together in a backyard.

Backyard: A boy and a girl are continuously playing in the backyard.

~

Girl: First, the girl is closer to the left side of the image. As time progresses, she is inside the playhouse. Following Object

this, she open the door of the playhouse. Finally, the girl is on the right side of the byard. Motion Summary B
Boy: First, the boy is standing near a playhouse. Then, the boy is lying on the ground. Afterward, the boy stands

on the left side of the yard, holding a ball. Finally, the boy returns to the small playhouse. Object

State Extraction

Semantic Entropy of Object Motions YW Scmantic Likelihood Object States in Each Frame
A

The girl is closer to the left side of the image.

Clustering by| The girl is inside the playhouse.

S tic | The girl is on the right side of the backyard.

Equivalence

Two children are playing in the backyard.

Two children are playing in the backyard.

A boy and a girl are playing in the backyard.

Left side — Insidle —» Inside —» Right side 1/n
R 2/n
T T >
Girl Time 1/n
:-----I
| SE |
1 I
[ S 1
Combination (Backyard, Boy)
-1 I
1 o .
Lol "™ L_u-.i  Sampling

§ Semantic Intersection Combinatio

Semantic Uncertainty(Girl, Boy) =

X k 1[0.3,...,0.05]
SE(Girl) + SE(Boy) - SI(Girl, Boy) 1

Weight i Boy: First,...

Girl: First, ... mm) Answer: inside the house

Question: What is the girl doing when the boy is lying on the
ground?

Distractors: (1) play with the boy (2) near the potted plant (3)
closer to the left side of the image (4) lying on the grass

Figure 2: The model architecture.

explore the simultaneous generation of multiple
QADs from a video, incorporating considerations
of both consistency and diversity.

3 Method

3.1 Preliminary

Suppose we are going to generate n groups of
QAD:s for the video V' containing m objects, each
of which exhibits motions and interacts with other
objects in V. The object set is given as O =
{01, ...,0i,...0m }, and the temporal object motion
setis M = {mq,...,my,...my, }, where each ob-
ject o; is associated with its temporal object motion
m;. We assume that each (Q AD; is generated based
on an object subset O; C O and a motion subset
M; C M, such as the generated QADs in Figure 2
which comprises the objects “girl” and “boy” and
their motions. Then, we can define the generation
of QAD; as follows:

where F denotes the pre-trained vision-language
model. The optimization objective is to maximize
the total semantic information provided by n QADs
for V as

max Y G(QAD;), 2)

=1

where G denotes the semantic information evalua-
tion function.

3.2 Temporal Object Motions

Temporal object motions describe the varying
states of objects throughout a video, playing a cru-
cial role in determining objects’ significance and
semantic expressions in generating QADs. In this
subsection, we will delineate the method of extract-
ing temporal motions for each object.

For the video V, we first perform sparse sam-
pling to obtain its 7' image frames. We then feed
each image frame into a pre-trained large vision-
language model to obtain image captions. Next,
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we use a pre-trained large language model to ex-
tract objects from the image caption of each frame,
ultimately forming the existing objects present in
V. Later, we sequentially extract objects’ descrip-
tions from image captions across different frames,
capturing the objects’ changing states over time.
Finally, we combine these states and employ a pre-
trained large language model to generate the tem-
poral motions for each object.

Formally, the temporal object motion for the
object o; can be defined as

tomi:5([Il(oi),...,1t(oi),...,IT(oi)]), 3)

where I;(0;) denotes the state of o; in the image
frame I;, and s denotes the summary of all object
states. We use a large language model to generate s
in chronological order using words that can express
the temporal sequence, such as “First”, “Then”, and
“Finally”.

Examples of generating temporal object motions
can be found in Appendix A. Although tempo-
ral object motions can be directly generated us-
ing LVLMs, our method achieves higher learning
performance (Section 4.5).

3.3 Semantic Uncertainty

In this section, we propose a novel method based
on semantic uncertainty to determine the semantic
information of QADs. Intuitively, the QADs that
contain rich semantic information are more enlight-
ening and focus on the focal points in videos.

We assess objects’ semantic uncertainty (Kuhn
et al., 2023) to evaluate the amount of the semantic
information given by QADs. That is, the objects
that demonstrate substantial semantic variations
throughout the video can be considered to have
rich semantic content, offering great inspiration for
generating QADs. Given QAD; generated based
on the object subset O;, the total information of
QAD; can be defined as

G(QAD;) = SU(0;), (4)

where SU (O;) represents the semantic uncertainty
of the object subset O;. In this study, we lever-
age semantic entropy and semantic intersection to
define SU(0O;) as follows:

SU(0;) = Y SE(o)— Y SI(0i,05),
oiEOi oi,OjGOi

(&)

SE(OZ) = —

where S E(o0;) represents the semantic entropy of
the object o; and S1(o;, oj) denotes the semantic
intersection of the two objects.

Quantifying the information content of individ-
ual motions or interactions is inherently complex.
Drawing inspiration from (Farquhar et al., 2024),
we assert that the motions or interactions of objects
with higher semantic uncertainty are more signifi-
cant and contain more information. Consequently,
we propose to define semantic entropy to determine
the semantic uncertainty of each individual object
as follows:

([ Z p(m¢|0i)] log[ Z p(mi|oi)])7

C; m; €C; m; €C;
(6)

where C; represents a semantic equivalence class,
and p(m;|o;) is the conditional probability of
the temporal motion m; given o; as the condi-
tion. In terms of the construction of semantic
equivalence classes, we extract 1" temporal states
{m},...,ml, ..mI'} according to the distribution
p(m;|o;), where m! = I;(0;). The temporal states
are clustered into C classes' based on their seman-
tics, and each class captures the states that express
the same meaning. Considering the temporal na-
ture of object states, if there are other states present
between two semantic equivalence states, we will
not classify them into the same category. For ex-
ample, “stand-stand-sit-stand” will be clustered as
three classes rather than two classes. We ultimately
obtain a temporal state set 1i; = {m}, ...,m¢}.

As to the semantic intersection between two ob-
jects, we identify all elements in 7; that are seman-
tically equivalent as follows:

79

M= {(mﬁ,mﬁ“)‘sim(m’ k) > 6A

sim(mit, mit) > 0,

i
(N
where [,k € [1,C — 1] and szm(fnﬁ,mf) is the
similarity of two states. The set M comprises all
of the elements for which the similarity between
two consecutive elements in sets 7i; and 77; ex-
ceeds a predefined threshold 6. Then, the semantic

intersection of two objects can be defined as

SI(o5,0)) =— Y p(rii|rng)log p(in|ri;).
Ty €M

(®)

'The number of semantic equivalence classes is varying
across different objects.
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Finally, we can calculate the overall semantic
uncertainty of all object combinations as

SU = [SU(O1), ..., SU(Ox), )

where K = C,L? i‘, representing the number of all
possible object combinations extracted from O. We
convert SU into sampling probabilities by normal-
izing SU as follows:

PO) = [p(0)]5,. p(0)) = 20

c .
SU(0;)
7j=1
(10)
Given the video V' containing n ground-truth
QADs, we first sample n combinations of tempo-
ral object motions based on P(O) to construct the
candidate object set O’ = [O1, ..., Oy]. Then, we
generate each QADs based on each O; € O". Com-
pared with directly selecting the top-n object com-
binations with the highest SU scores for QADs
generation, our sample strategy ensures the nu-
anced interactions still have a chance to be cap-
tured by the model. When nuanced actions are
captured in image captions, they become part of
the object’s motion record and remain eligible for
selection through our mechanism. Considering the
lack of a discernible correspondence between the
generated QQ AD; and the ground truth QAD?, we
draw inspiration from the evaluation methods in
the recommendation field. That is, for each Q AD?*,
if its similarity to the most similar predicted result
QAD; exceeds a predefined threshold ¢, it can be
considered as successfully predicted, formulated as

QADarg maxsS;; Zf Sij >1
none otherwise

QAD* = { , (11)
where S;; denotes the cosine similarity of QAD;
and QAD;. In the pilot study, we found that in-
creasing the number of predicted QADs could sig-
nificantly improve learning performance. There-
fore, we will ultimately generate r * n groups of
QADs, where 7 is a predefined hyperparameter (its
effects will be evaluated in Section 4.5).

4 Experiments

4.1 Datasets

NExT-QA. NEXT-QA (Xiao et al., 2021) is a video
question answering (VideoQA) benchmark that re-
quires QA models to reason about causal and tem-
poral actions and understand the rich object inter-

actions in daily activities. We conduct the experi-
ments on the test split of NExT-QA, which consists
of 1,000 videos and 8,564 Multi-Choice QA pairs.
Perception Test. Perception Test (Pdtrducean et al.,
2023) is a multimodal benchmark designed to eval-
uate the perception and reasoning skills of mul-
timodal video models. We conducted the exper-
iments on the train split of the Multiple-Choice
Video QA subset. We removed QA pairs that in-
cluded question types with very few occurrences.
The final dataset consists of 1,401 videos and 5,460
Multi-Choice QA pairs.

4.2 Metrics

We evaluate the generated QADs from the perspec-
tives of consistency and diversity. Given that con-
sistency represents the concordance between the
predicted results and the ground truth QADs, we
utilize recall, precision, and the Fl-score as the
evaluation metrics. Recall can be calculated us-
ing r = k/n, we utilize BLEU (Papineni et al.,
2002) and CIDEr (Vedantam et al., 2015) to eval-
uate the precision of the generated QADs. On the
diversity side, we refer to (Wang et al., 2016) and
select mBLEU-1 and mBLEU-4 as the evaluation
metrics.

4.3 Baselines

We compare our model with the Large Language
Models and Large Vision-Language Models. The
model details can be found in Appendix B. Fur-
thermore, we incorporated two image-based QAD
frameworks as baselines for comparison. Specifi-
cally, in the case of VQADG (Ding et al., 2024a),
a single image was randomly sampled from each
video. For the ReBo (Ding et al., 2024b) frame-
work, we adapted its recurrent generation com-
ponent to OneVision. We use OneVision (Li
et al., 2024a), LLaVA-NeXT (Liu et al., 2024),
and mPLUG-OwI3 (Ye et al., 2024) to demonstrate
the effectiveness and generalizability of our pro-
posed methods?. The implementation details can
be found in Appendix C. The source code of our
model will be released once accepted.

4.4 Main Results

Overall Performance We evaluate the consistency
and diversity of generated QADs on NExT-QA and
Perception Test benchmarks in Table 1 and Table 2.

“We chose foundation models that can directly accept
video input, so models like GPT-40, Claude-3.5, and LLaMA-
3.2 were not selected.
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Modality Consistency(?) ‘ Diversity(])
Model . .
| Text Visual | Recan | PreAsion | o qoore | mBLEU-1 mBLEU-4
\ BLEU-4 CIDEr \

GLM-4 v - 52.09 4.08 8.04 13.93 27.15 24.17
Qwen-2.5 v - 66.03 5.01 11.53 19.63 21.92 17.36
Qwen-2 v - 66.19 4.96 9.68 16.89 20.66 15.74
Llama-3 v - 66.63 4.87 9.48 16.60 20.57 15.80
ChatGPT v - 68.36 5.10 9.71 17.00 19.54 14.46
Llama-3.1 v - 68.81 4.78 9.24 16.29 19.47 14.56
BLIP-3 v v 8.98 5.51 13.36 10.74 58.44 57.45
Video-LLaVA v v 30.95 5.83 16.20 21.27 32.18 30.56
Qwen2-VL v v 33.15 4.82 12.42 18.07 32.21 31.74
Interleave v v 54.11 5.43 16.95 25.81 28.66 26.54
Qwen-VL v v 57.63 5.39 16.64 25.82 23.36 19.51
VQADGT v v 30.56 7.78 50.13 37.97 34.44 31.94
ReBof v v 36.25 6.51 19.37 25.25 26.31 24.46
LLaVA-NeXT | v 57.65 6.57 20.08 29.79 25.33 23.35

+ MaxSem | v 81.59 9.05 29.84 43.70 14.72 10.68
mPLUG-Ow13 | v v 60.40 5.40 13.94 22.65 25.19 22.90

+ MaxSem | v 83.93 7.32 18.96 30.93 15.45 11.17
OneVision v v 65.48 6.40 19.60 30.17 24.43 22.52

+ MaxSem | v 86.71 9.35 30.16 44.75 15.01 11.06

Table 1: Performance evaluation on the NEXT-QA dataset. We select CIDEr to calculate the F1-Score. “” denotes
our re-implementation.

Model ‘ R P F; mB,(])
GLM-4 22.64 2386 2323 21.11
Llama-3 26.12 2095 2325 14.60
ChatGPT 30.53 2441 27.13 1545
Qwen-2.5 37.80 30.81 3395 12.58
BLIP-3 38.30 81.74 52.16 9.03
mPLUG-OwI3 | 39.92 83.32 53.98 6.28
Interleave 44.04 9326 59.83 7.38
LLaVA-NeXT | 32.69 36.59 3453 13.25
+ MaxSem 56.00 79.96 65.87 5.24
Onevision 3979 93.83 55.88 7.46
+ MaxSem 5442 101.72 70.91 5.50

Table 2: Performance evaluation on the Perception Test
dataset. R stands for recall, P stands for precision.

We provide video captions to instruct LLMs to
generate QADs, and image frames or videos for  *®
LVLMs based on the model requirements. The
detailed prompts used for LLMs and LVLMs are
provided in Appendix A. There are several notable

observations as follows:

« Our proposed method demonstrably outperforms
baseline methods across all evaluated metrics.
Notably, it achieves a maximum 23.97% recall
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improvement and a maximum 14.58% F1-Score
improvement on the NeXT-QA benchmark. Sim-
ilar performance gains are observed on the Per-
ception Test benchmark. Substantial findings
indicate that integrating temporal object motions
significantly enhances the informational content
of generated QADs, providing knowledge of both
individual object movement and interaction be-
tween objects. Consequently, the incorporation
of temporal object motions into the generation
process yields QADs that more closely resemble
those in the original benchmarks. Furthermore,
the generation of multiple QADs incorporates a
variety of combinations of temporal object mo-
tions, resulting in enhanced diversity for each
video.

Comparative analysis on the NExT-QA bench-
mark reveals that LLMs achieve higher recall
and diversity scores, whereas LVLMs exhibit
superior precision and F1 scores. On the Per-
ception Test benchmark, LVLMs significantly
outperform LLMs across all measured metrics.
The inadequate representation of video informa-
tion by captions is a likely contributing factor to
the poor performance of LLMs.



Model \ Question \ Answer \ Distractor
| BLEU-4 CIDEr mB;(}) | BLEU-4 CIDEr mB(}) | BLEU-4 CIDEr mB;(})
GLM-4 8.19 3042 2785 0.39 1345  25.86 0.80 5.39 26.06
Qwen-2.5 9.90 32.79 23.19 0.41 12.24 20.18 1.23 7.92 20.03
Llama-3 10.08 38.91 22.62 0.50 13.53 19.49 0.71 4.45 18.80
Llama-3.1 10.30 37.75 21.00 0.65 15.54 17.72 0.79 4.73 17.90
ChatGPT 10.35 36.51 21.03 0.42 13.21 17.78 0.74 5.68 17.60
Qwen-2 10.74 37.04 22.44 0.26 12.22 19.79 0.93 5.72 18.40
Qwen-VL 8.39 38.01 24.69 2.13 28.48 22.62 1.61 9.05 22.02
Qwen2-VL 8.53 43.46 32.30 0.89 16.54 31.28 0.85 4.56 32.26
BLIP-3 8.91 2589  58.75 0.02 8.38 59.24 1.08 8.79 57.80
Interleave 9.28 39.15  28.74 1.67 21.75  27.26 1.38 9.11 28.30
Video-LLaVA 10.46 37.83  32.03 1.73 2427  31.83 1.61 7.57 31.86
OneVision 10.47 4565 2444 | 139 2496  23.53 1.70 9.22 24.16
+ MaxSem | 16.77 77.66  15.32 1.60 2594 12.78 1.88 11.83 14.14
mPLUG-OwI3 | 1094 4314 2468 | 0.72 18.50  24.77 1.21 7.37 24.87
+ MaxSem | 1648 7211  15.83 0.73 19.74  12.87 1.29 8.29 14.44
LLaVA-NeXT 11.22 40.78 25.48 ‘ 1.49 19.88 24.07 1.73 10.56 24.95
+ MaxSem | 15.68 68.70  14.78 1.98 25,51 1238 2.08 13.08 1391
Table 3: Separate evaluation of question, answer, and distractor on the NExT-QA dataset.
Separate Evaluation Table 3 presents the compar- cool
ison of the automatic evaluation results of ques- LLaVA-NeXT _—
tions, answers, and distractors separately, which
demonstrates that all the baselines fail to compete o eous 75.59
with our methods on both consistency and diver- 82.06
sity. Specifically, we observe that improvements in
answers and distractors were less pronounced than VideoLLaMA2 P
those in the questions. Therefore, we conducted s
a further evaluation of our generated QADs using £8.04
the VQA task in Figure 3. We treat the generated OneVision .
questions as questions and input the generated an-
0 20 40 60 80 100

swers and distractors as candidates into LVLMs.
Subsequently, we calculated the accuracy of the
models in correctly answering the generated ques-
tions. Given the inherent uncertainty in verifying
the correctness of the generated answers, the fol-
lowing measures were implemented: (1) A “None
of the above” option was included; (2) Multiple
LLMs were employed for independent evaluation.
Table 3 and Figure 3 indicate that our proposed
method generates not only consistent and diverse
questions, but also QADs with higher accuracy.

4.5 Ablation Study

Object Count and Ratio We perform ablation
studies to investigate the effects of the object count
and ratio r, as presented in Figure 4. Our experi-
mental findings demonstrate that the ratio parame-
ter exerts a more substantial influence on the results
than the object count parameter. This is a conse-

Baseline Baseline+MaxSem

Figure 3: VQA task performance using different models
on the dataset generated by Onevision.

quence of the variable number of objects present in
the QADs within the real-world benchmarks. An
object count of 2 and a ratio of 3 were ultimately
selected.

Different Temporal Object Motion Recall rates
were evaluated under four object motion condi-
tions: (1) backbone model (no object motion); (2)
whole object motion (all object motions included);
(3) a simplified version (temporal object motions
are generated directly from raw videos, and object
sampling is performed randomly); (4) our proposed
MaxSem model. As shown in Figure 5, the pro-
posed MaxSem model yields the highest recall rate.

While employing information extracted from
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Ratio
1 2

Ratio
2

1 3 3
- 0'77 B 0.24
0.30
2 loss & [
S~ 0.79 B 3~ 0.26 | 0.28 | 0.3 0.25
8 080 3
0.20
" 0.78
(a) Recall (b) Precision
Ratio Rat|o
1 2 3
“ g
o 45
- = 0 14
3~ 0. ci*M 0.43 | 0.45 0 40 3
o o 0 12

0.35
m 0.39 042 0.44

(c) F1-Score (d) Diversity

Figure 4: The evaluation results using different combi-
nations of hyperparameters.

0.87
0.81

08 0.8

0.7

0.65 0.66
0.6

0.6
0.4

OneVision mPLUG-Ow13

Backbone Model = Whole Object Motion = Simplified = MaxSem

Figure 5: Results with different types of object motion.

multiple images and tracking the movements of
multiple objects can aid in mitigating error prop-
agation, the multi-step approach may nonetheless
influence the final results. We provide the time
cost of each step and the proposed method in Ap-
pendix D. Although our multi-step method will
cost more time. We have developed two strategies
to reduce computational costs: (1) reducing both
the object count and ratio, as illustrated in Figure 4,
and (2) leveraging video captions instead of image
captions, as shown in the simplified example in
Figure 5. We also evaluate how well the generated
QADs reflect the temporal motions in Appendix E.

4.6 Human Evaluation

In addition, three annotators were engaged to as-
sess 300 QADs generated by different methods. We
adopt a 5 point scale for three metrics to evaluate
the quality of generated QADs including: (1) Q, A,
Dj: Overall quality of questions, answers, and dis-
tractors; (2) C: Consistency estimates whether the
generated QADs are semantically relevant to the
given ground truth QADs; (3) D;: Diversity mea-

Model | Q A D, C D,
ChatGPT 3.55 3.62 34 339 3.68
Qwen-VL 3.78 359 351 321 345
OneVision | 395 3.76 348 3.65 3.54
MaxSem ‘ 412 389 364 405 4.2

Table 4: Human evaluation of the generated QADs.

w/o temporal Question: What does the woman do when the little
object motions girl tries to climb on her back?
Answer: hug her
Distractors: (1) dance (2) talk (3) sit down (4) leave

iy Questionl: What does the woman in

§ blue do at the beginning?

i Answerl: take photos !
! Distractorsl: (1) dance (2) stand (3) sit 3
1 (4) leave i

Women in Blue:
First, the women
in blue is
standing on a

+ chair and taking

photos... : )
i Question2: What does the woman in

§ pink do as the little girl is hugging her? !
i Answer2: hug her back :
| Distractors2: (1) dance (2) hold a wine ;
'[ bottle (3) stand (4) look at the little girl ‘

Women in Pink:
First, the women
in pink is holding
the girl’s hand...

Figure 6: Case Study.

sures the degree of semantic divergence among the
several QADs generated for a given video. Table 4
summarizes the human evaluation results of gener-
ated QADs. Our method significantly outperforms
all baselines across all metrics, demonstrating that
the generated QADs exhibit high quality, strong
consistency with the benchmark dataset, and high
diversity within the set of QADs generated for each
video.

4.7 Case Study

To qualitatively evaluate the proposed method, we
visualize an example from the NExT-QA bench-
mark in Figure 6. It shows from the figure that
our model is capable of generating distinct QADs
that specifically focus on “women in blue” and

“women in pink”, respectively. In contrast, when the

temporal object motions are removed, the model
is only able to generate QADs that concentrate on
segments of information from the video.

5 Conclusion

This paper presents MaxSem, a novel method that
leverages temporal object motions and maximum
semantic uncertainty to generate multiple QADs
from a given video. Specifically, we use temporal
object motions to describe the object movement
over time and the intersections between different
objects. Meanwhile, we introduce a selection mod-
ule to select different temporal object motions to
guide the generation. We conduct experiments on
the NExT-QA and Perception Test benchmarks to
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demonstrate a significant improvement of our pro-
posed methods for different models.

6 Limitations

Our focus in this study is devoted on generating
diverse QADs jointly for videos. The inherent chal-
lenge of this task arises from the necessity of com-
prehending both the temporal motions and inter-
actions of objects within the video, as well as the
generation and evaluation of QADs. We notice that
there is still large room for progress. For exam-
ple, how to represent the video information in a
structured format, and how to efficiently process
video data remain unaddressed and will be tackled
in our future study. This study primarily focuses
on general domains with abundant resources. In
resource-constrained settings, transfer learning or
supervised fine-tuning of pre-trained models may
be necessary.
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A Prompts Details

A.1 Prompts for Temporal Object Motion
Generation

Table 5 and Table 6 present the generation process
of temporal object motions. For each object that ap-
pears in the video, we first use the Large Language
Model to generate the object status for all image
frames, then we use the Large Language Model to
summarize the temporal object motions based on
the generated object status.

Object Status Generation Prompt Input

Image caption: In the image, a baby girl is
lying down on a couch with her back facing
the camera. She is wearing a pink dress and
appears to be enjoying herself. There are two
people in the scene, one sitting on the left side
of the couch and the other sitting on the right
side of the couch. They both seem to be engag-
ing with the baby girl, possibly playing with
her or interacting with her in some way.
Object: girl

Refer to the following example and generate
the status for the object based on the Image
caption. The status should describe the con-
dition or the action of the object, and the gen-
erated status should appear in the image cap-
tion. If the object does not appear in the image
caption, then response ‘Not appeared’. Only
response the status, do not repeat the image
caption and object.

Example:

Image Caption: The image features a man
working at a desk in an office space. He is
sitting at a desk with two computer monitors,
one of which is placed closer to him. There
are several books scattered around the room,
some of which can be seen closer to the man.
There is also a bottle of water on the desk,
which could be used to hydrate the man as he
works. Overall, the workspace appears to be
well-organized and well-furnished.

Objects: man

Status: The man is working at a desk.

Table 5: Prompts used for object status generation.
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Temporal Object Motions Generation
Prompt Input

Object: woman

Object status 1: a woman is present.

Object status 2: a woman is on the right side
of the image.

Object status 3: a woman is sitting on the
couch.

Object status 4: a woman is holding a baby.
Object status 5: a woman is observing the
baby.

Object status 6: a woman is sitting on the
couch.

Refer to the following example and generate
the temporal object motion for the object based
on all object status. The object status describe
the actions or status of the object in a temporal
sequence. Temporal object motion is gener-
ated by summarizing the object status in order
using words that express temporal sequence,
such as ’First’, *Then’, *Next’, "Later’, and
’Finally’. Only response the temporal object
motion.

Example:

Object: man

Object status 1: a man is standing in front of
a closed door.

Object status 2: a man is standing next to the
door.

Object status 3: a man is standing in front of
a closed door.

Object status 4: the man’s hand is on the door
handle.

Object status 5: a man reached for the door
handle.

Object status 6: a man is standing in front of
a opened door.

Object status 7: a man is in a room.

Object status 8: a man is in a room.
Temporal object motion: First, a man is
standing in front of a closed floor. Next, a
man reaches for the handle. Then, a man is
standing in front of an opened door. Finally, a
man is in a room.

Table 6: Prompts used for temporal object motion gen-
eration.



A.2 Prompts for QADs Generation

Table 7 presents the prompts used by the Large
Language Models. For the Large Vision Language
Models, we directly use video instead of video
caption.

QADs Generation Prompt Input

Video caption: The video depicts a person
with a large backpack walking along a dirt
trail. The camera follows the person as they
continue walking, and the view changes to
show the surrounding landscape. The person
appears to be on a journey, possibly hiking
or trekking, as they navigate the trail. The
backpack suggests that they may be carrying
supplies for an extended trip. The trail itself
seems to be in a rural or wilderness area, with
no visible signs of civilization. The person’s
movements are deliberate and steady, indicat-
ing a level of experience and familiarity with
the activity. Overall, the video captures the
serene and peaceful atmosphere of a solitary
journey through nature.

Refer to the following example and based on
the video description, generate one question
starting with ‘what’, and generate the answer
and four distractors. The generated question
should be related to the video description, the
generated answer should be found in the video
description, the distractors should be mislead-
ing but different from the answer, and the dis-
tractors should be separated with numbers like

(1 @2) 3) 4).

Example:

Question: What does the girl do as the boy is
attempting to put on the backpack at the end?
Answer: help him put on

Distractors: (1) pink (2) stop the boy from
snatching (3) look towards the boy (4) disap-
pointed

Table 7: Prompts used for QADs generation.

B Model Details

Large Language Models: We use Chat-
GPT (Ouyang et al.,, 2022), GLM4 (GLM
et al.,, 2024), Llama3 (Dubey et al.,, 2024),
Llama3.1 (Dubey et al., 2024), Qwen2 (Yang et al.,

2024), and Qwen2.5 (Team, 2024) as baseline large
language models.

Large Vision-Language Models: We use BLIP-
3 (Xue et al., 2024), Video-LLaVA (Lin et al.,
2023), Interleave (Li et al., 2024b), Qwen-VL (Bai
et al., 2023) and Qwen2-VL (Wang et al., 2024) as
baseline large vision language models.

Table 8 presents the specific model names in our
experiments.

Model Name | Model Details
ChatGPT gpt-3.5-turbo-0125
GLM-4 GLM4-9B-Chat
Llama-3 Lama3-8B-Instruct
Llama-3.1 Llama-3.1-8B-Instruct
Qwen-2 Qwen2-7B-Instruct
Qwen-2.5 Qwen2.5-7B-Instruct
BLIP-3 xGen-MM-instruct-interleave
Interleave Llava-Interleave-Qwen-7B
Qwen-VL Qwen-VL-Chat
Qwen2-VL Qwen2-VL-7B-Instruct
Video-LLaVA Video-LLaVA-7B
OneVision LLaVA-OneVision-Qwen2-7B-ov
LLaVA-NeXT LaVA-NeXT-Video-7B
mPLUG-OwI3 mPLUG-OwI3-7B-240728

Table 8: Baseline model details.

C Implementation Details

For temporal object motion generation, we sample
16 frames for each video. We use InstructBLIP-
Vicuna-13B (Dai et al., 2023) to generate image
captions, and we use Llama-3-8B-Instruct (Dubey
et al., 2024) to generate existing objects, object
s, and temporal object motions. We use the text-
embedding-3-small model from OpenAl API for
information gain and similarity calculation. We
use the threshold ¢ = 0.6 during evaluation. For
Large Language Models, we first employ Video-
LLaMAZ2 to generate video descriptions, and then
we use these descriptions, rather than the videos,
to generate QADs. For Large Vision-Language
Models that can accept video inputs, we directly
use the video to generate QADs. For large vision-
language models that accept multiple image inputs,
we sample 8 frames from the video and then use
these frames to generate QADs. We use the Hug-
gingFace? transformers library implementation for
the above LLMs and LVLMs.

3https://huggingface.co/
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D Computational Cost

We have measured the average time required to gen-
erate QADs for each video using both the baseline
and MaxSem, as detailed in Table 9.

Average Time (s) \ Onevision mPLUG-OwlI3

Baseline 42.63 65.28
MaxSem 192.96 218.71
Simplified 62.97 87.92

Table 9: Computational cost of our model.

We also present the time cost and the percentage
of each step on OneVision in Table 10.

Content \ Time (s) Percentage (%)
Image Caption 41.85 21.69
Candidate Object 2.24 1.16
Object Status 61.52 31.88
Object Summary 7.49 3.88
Weight Generation| 34.68 17.97
QAD Generation 45.18 23.41

Table 10: Computational cost of each step.

E Temporal Motion Evaluation

In order to evaluate how well the generated QADs
reflect the temporal object motions of the video.
We conduct a further evaluation by employing
Llama3 to calculate the ratio of object motions men-
tioned in the QADs generated by various models.
For each QAD, we iteratively assess its relevance to
every object motion that we have generated for the
video, with a higher ratio indicating that the gener-
ated QADs can better reflect the temporal motions
present in the video.

Model |Onevision mPLUG-OwI3 LLaVA-NeXT | Average

Baseline 87.07 87.81 80.15 85.01
MaxSem | 97.19 97.52 91.85 95.52

Table 11: Temporal motion evaluation.
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