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Abstract

ICD Coding aims to assign a wide range of
medical codes to a medical text document,
which is a popular and challenging task in the
healthcare domain. To alleviate the problems
of long-tail distribution and the lack of annota-
tions of code-specific evidence, many previous
works have proposed incorporating code knowl-
edge to improve coding performance. However,
existing methods often focus on a single type of
knowledge and design specialized modules that
are complex and incompatible with each other,
thereby limiting their scalability and effective-
ness. To address this issue, we propose GKI-
ICD, a novel, general knowledge injection
framework that integrates three key types of
knowledge, namely ICD Description, ICD Syn-
onym, and ICD Hierarchy, without specialized
design of additional modules. The comprehen-
sive utilization of the above knowledge, which
exhibits both differences and complementarity,
can effectively enhance the ICD coding per-
formance. Extensive experiments on existing
popular ICD coding benchmarks demonstrate
the effectiveness of GKI-ICD, which achieves
the state-of-the-art performance on most eval-
uation metrics. Code is available at https:
//github.com/xuzhang0112/GKI-ICD.

1 Introduction

International Classification of Diseases (ICD) 1 is
a globally used medical classification system, de-
veloped by the World Health Organization to clas-
sify diseases, symptoms, procedures, and external
causes. The ICD coding task aims to assign the
most accurate ICD codes to clinical texts, typically
discharge summaries, for further medical billing
and clinical research. Two main challenges arise in
the ICD coding process (Edin et al., 2023). First,
there is a tremendous number of ICD codes to as-

*Corresponding authors
1https://www.who.int/standards/classifications/classification-

of-diseases

Assigned ICD Codes (Ground-Truth)
038.9	unspecified	septicemia
995.92	severe	sepsis
96.71	continuous	invasive	mechanical	ventilation	for	less	
than	96	consecutive	hours

Medical Text (~1500 words)
[...] Patient	then	became septic	and	oliguric	as	the course	of	
the	day	went	on.	He	was	transferred	for evaluation	as	to	
whether	there	was	an	operation	that	could salvage	him.	At	
current	time,	he	is	intubated and	sedated	on	2 pressors. […]

Figure 1: An example of ICD coding: Occurrence of
multiple codes and noisy content in a long medical text
document makes it hard to link each ICD code to its cor-
responding evidence (marked in same color), explaining
the necessity of incorporating code-specific knowledge.

sign in clinical practice, whose distribution is ex-
tremely long-tailed, and most of which are lacking
in enough training samples. Second, as shown in
Figure 1, the occurrence of multiple ICD codes
within a long medical document makes it hard for
models to accurately link each ICD code with its
corresponding evidence fragments. Human coders
do not annotate the evidence of the ICD codes as-
signed by them, due to the complexity of this oper-
ation, only leaving document-level annotations to
each medical document.

In recent years, numerous studies (Ji et al.,
2024) have explored the incorporation of ICD code-
related knowledge to assist models in precisely lo-
cating evidence fragments related to specific ICD
codes, thereby effectively and efficiently improv-
ing coding performance. Generally, three types
of knowledge are involved in ICD coding: ICD
Description, ICD Synonym, and ICD Hierarchy.
Specifically, 1) ICD Description refers to the mean-
ing of each ICD code, which is directly related to
the coding process. Language models can lever-
age semantic mapping to identify the most relevant
evidence fragments within a long medical text doc-
ument, facilitating accurate classification. 2) ICD
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Synonym addresses the diversity of medical termi-
nology, as a single ICD code may have multiple lin-
guistic expressions. Incorporating synonyms helps
the model recognize different variants of the same
code, enhancing its robustness. 3) ICD Hierarchy
organizes the relationships between codes. With
tens of thousands of codes in ICD-9, these codes
are not entirely independent. ICD Hierarchy pro-
vides a structured relationship between codes, par-
ticularly grouping rare codes with more common
ones. Inherently, these three types of knowledge
exhibit both differences and complementarity.

However, existing methods typically focus on
only one of these different types of knowledge and
design specialized network architectures accord-
ingly, making it hard to integrate other comple-
mentary knowledge. To utilize synonym knowl-
edge, current approaches often employ a multi-
synonym-attention mechanism, where each query
corresponds to a synonym (Yuan et al., 2022;
Gomes et al., 2024). To incorporate hierarchical
knowledge, methods primarily rely on graph neu-
ral networks, treating the hierarchical structure as
an adjacency matrix to aggregate code representa-
tions (Xie et al., 2019; Ge et al., 2024). Since these
methods design specialized modules for individual
knowledge types, the complexity of these mod-
ules makes it difficult to scale to advanced mod-
els. More importantly, the incompatibility between
these specialized modules hinders their integration
into a unified model, preventing the comprehensive
utilization of all knowledge types.

To address the above issue, we propose GKI-
ICD, a novel synthesis-based multi-task learning fr
to inject knowledge. In contrast to existing methods
that often struggle with complex architectural de-
signs and integration challenges, our method jointly
leverages all types of knowledge without relying on
specialized modules. Specifically, GKI-ICD con-
sists of two key components: guideline synthesis
and multi-task learning. The guideline synthesis
incorporates ICD code knowledge to synthesize a
guideline, ensuring that all the knowledge relevant
to the raw sample is embedded within the guideline.
Meanwhile, the multi-task learning mechanism re-
quires the model to not only correctly classify the
original samples but also make accurate predictions
based on the synthesized guidelines. Additionally,
it encourages the model to align the information
extracted from the raw samples with that from the
provided guidelines as closely as possible, thereby
facilitating effective knowledge integration.

Our main contributions are summarized as:

• To our knowledge, we are the first to inject
ICD code knowledge without requiring any
additional specially-designed networks or
prompts, thus being able to integrate the three
kinds of ICD code knowledge separately uti-
lized before.

• We propose a novel synthesis-based multi-task
learning mechanism, including guideline syn-
thesis and multi-task learning, to inject ICD
code knowldge into the coding model.

• We achieve state-of-the-art performance on
most evaluation metrics on the ICD coding
benchmarks MIMIC-III and MIMIC-III-50,
proving not only the effectiveness of our
knowledge injection framework, but also the
necessity of multiple knowledge integration.

2 Related Work

2.1 ICD Coding Network

The automatic ICD coding task is well established
in the healthcare domain, and most of the ap-
proaches fisrt encode the discharge summary with
a text encoder, and then use a label attention mech-
anism to attend, aggregate, and make predictions.

Text encoder. Early ICD coding methods (Mul-
lenbach et al., 2018; Vu et al., 2021; Li and Yu,
2020; Liu et al., 2021) primarily utilized convolu-
tional neural networks (CNNs), recurrent neural
networks (RNNs), and their variants as backbones,
while recent approaches (Huang et al., 2022; Edin
et al., 2024) have been based on pretrained lan-
guage models (LMs). Besides, large language mod-
els (LLMs) have been proved to perform worse
on this task (Boyle et al., 2023), compared to fine-
tuned small models.

Label attention. Instead of making predictions
based on a pooled vector, label attention use a lin-
ear layer to compute relationships between each
ICD code and each token in the clinical text, aggre-
gate different information for different codes and
then make predictions (Mullenbach et al., 2018).
Subsequently, this linear layer was replaced by a
multilayer perceptron (Vu et al., 2021), and was fi-
nally replaced by the standard cross attention (Edin
et al., 2024), both improving the training stability
and slightly enhancing its performance.
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2.2 Knowledge Injection

Considering the rich prior knowledge in biomed-
ical domain, many efforts have been made to in-
corporate medical knowledge to enhance model
performance on ICD coding tasks. Knowledge in-
jection methods can generally be divided into two
categories: task-agnostic and task-specific.

Task-agnostic knowledge. Extensive biomedi-
cal corpora, such as electronic health records and
biomedical academic papers, can be utilized for pre-
training language models. These pretrained models,
including BioBERT (Lee et al., 2020), Clinical-
BERT (Huang et al., 2019), PubMedBERT (Gu
et al., 2021) and RoBERTa-PM (Lewis et al., 2020),
serve as powerful biomedical text encoders, signifi-
cantly enhancing the performance of downstream
tasks, including ICD coding.

Task-specific knowledge. Task-specific knowl-
edge refers to information related to ICD codes,
such as the meaning of each code and the hierar-
chical structure among codes. By injecting this
kind of knowledge during the fine-tuning stage, the
model’s performance on the ICD coding task can
be improved. MSATT-KG (Xie et al., 2019) lever-
ages graph convolutional neural network to capture
the hierarchical relationships among medical codes
and the semantics of each code. ISD (Zhou et al.,
2021) proposes a self-distillation learning mecha-
nism, utilizing code descriptions help the model ig-
nore the noisy text in clinical notes. MSMN (Yuan
et al., 2022) uses multiple synonyms of code
descriptions to initialize the code query embed-
dings. KEPTLongformer (Yang et al., 2022) in-
corporates a medical knowledge graph for self-
alignment contrastive learning, and then adds a
sequence of ICD code descriptions as prompts
in addition to each clinical note as model input.
DKEC (Ge et al., 2024) propose a heterogeneous
graph network to encode knowledge from multiple
sources, and generate knowledge-based queries for
each ICD code. MRR (Wang et al., 2024a) and
AKIL (Wang et al., 2024b) incorporates diagnosis-
related group (DRG) codes, current procedural ter-
minology (CPT) codes, and medications prescribed
to patients to generate a dynamic label mask, which
can help down-sample the negative labels and fo-
cus the classifier on candidate labels. Unlike previ-
ous methods that design specialized networks for
knowledge injection, we propose a general knowl-
edge injection framework, making it applicable to
various models and diverse types of knowledge.

3 Methodology

We first provide an overview in Section 3.1, high-
lighting the key differences between our proposed
GKI-ICD and previous works. Next, we elaborate
on its details in Section 3.2. In addition, we briefly
describe the ICD coding network adopted in our
work in Section 3.3.

3.1 Overview

Typically, the ICD coding task involves optimiz-
ing an ICD coding network to assign specific ICD
codes to the given medical text, defined as:

θ∗ = argmin
θ

L(f(x; θ), y), (1)

where x represents the input medical text and y de-
notes the corresponding ground-truth ICD codes, θ
denotes the parameters of the ICD coding network.

To further boost performance, existing methods
(Xie et al., 2019; Yang et al., 2022; Yuan et al.,
2022; Ge et al., 2024; Gomes et al., 2024; Luo et al.,
2024) generally devise additional neural networks
to inject knowledge, i.e.,

θ∗; θ∗i = argmin
θ;θi

L(gi(x; θ; θi), y), (2)

where gi is a neural network specially designed
to incorporate the i-th type of knowledge, and θi
denotes the corresponding additional module pa-
rameters. To be specific, gi can be graph neural
networks for hierarchy knowledge (Xie et al., 2019)
or multi-synonym attention networks for synonym
knowledge (Yuan et al., 2022), etc.

However, considering these extra modules are
complex and hard to integrate simultaneously, our
approach aims to propose a new training framework
that can inject knowledge without extra parameters.
By leveraging knowledge to synthesize guidelines
x̂ and modifying the training pipeline, we enable
the injection of all necessary knowledge to be free
of extra parameters or interactions. The proposed
knowledge injection framework can be defined as:

θ∗ = argmin
θ

L′(f(x; x̂; θ), y), (3)

where f is the simplest ICD coding network, hav-
ing the merit to be adapted to any state-of-the-art
network. In the following, as illustrated in Fig. 2,
we give the details including guideline synthesis
based on knowledge in 3.2.1 and multi-task learn-
ing based on synthetic guidelines in 3.2.2.
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Figure 2: Our proposed general knowledge injection training framework for ICD coding, GKI-ICD. For each
training sample, we first retrieve code-specific knowledge to synthesize a guideline, and then use this guideline and
multi-task learning to inject knowledge into the model. Note that our method only incorporates knowledge in the
training stage, which has no effect on the computation cost of the model during the inference stage.

3.2 Proposed Method

3.2.1 Guideline Synthesis
Given a medical text document with a set of ICD
codes, we synthesize a guideline by retrieving rel-
evant knowledge associated with each ICD code
assigned to this document. This guideline can as-
sist the model in learning to localize evidence frag-
ments and make accurate code predictions.

Description parsing. Given document-level an-
notations {yi}, yi ∈ {0, 1}, we can extract the set
of ICD codes present in the document, referred to
as the positive code set. Let the full code set be
denoted as {c1, ..., cn}, and the positive code set
be represented as:

Cp = {ci|yi = 1}, (4)

Since each code ci has an offical description in ICD-
9, it can be denoted as Description(ci). We can
easily retrieve the descriptions of these assigned
ICD codes in the positive code set:

Dp = {Description(ci)|ci ∈ Cp}, (5)

which can be used to build the synthetic guideline.
We remove the term "NOS" (Not Otherwise Speci-
fied) to standardize expressions.

Synonym replacement. To enhance the diver-
sity of synthetic samples and enrich the representa-
tion of each code, we incorporate synonyms (Yuan
et al., 2022) derived from biomedical knowledge
bases. For instance, code 401.9 in ICD-9 is defined
as "unspecified essential hypertension", but may be
referred to in alternative terminologies such as "pri-
mary hypertension" or "hypertension nos." These
variations can be systematically identified within
the Unified Medical Language System (UMLS)
(Bodenreider, 2004), a structured repository of
biomedical terminologies that provides multiple
synonymous expressions for all ICD codes.

We first map each ICD code to its corresponding
Concept Unique Identifier (CUI) and extract the
English synonyms associated with the same CUI.
For a specific code ci with multiple synonyms, we
randomly sample one of these synonyms, i.e.,

si = Synonym(ci) ∼ {s1i , s2i , ..., ski }, (6)

where ski is the k-th synonym. Then we replace the
code descriptions with these sampled synonyms to
obtain:

Sp = {si|ci ∈ Cp}. (7)

This synonym substitution strategy facilitates di-
verse and robust code representation and enhances
the adaptability to real-world medical texts.
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Hierarchy retrieve. Another important source
of prior knowledge is the hierarchical relationships
between ICD codes. For example, code 038.9
("unspecified septicemia") belongs to code groups
030-041 ("other bacterial diseases") and 001-139
("infectious and parasitic diseases"), which in-
clude many similar but distinct codes. The hier-
archical information of a code can be defined as
Hierarchy(ci), which contains the descriptions of
all the groups to which this ICD code belongs.

While code hierarchy knowledge is commonly
incorporated by designing graph neural networks
with predefined adjacency matrices, we assume
that the language model can adaptively retrieve se-
mantic information from the complete descriptions.
This is achieved by simply adding all hierarchical
knowledge to the guideline as:

Hp = {Hierarchy(ci)|ci ∈ Cp}. (8)

Shuffle and concatenate. Next, we shuffle the
order of the assigned codes Cp, replace them with
their descriptions and hierarchical descriptions, and
concatenate them to form a long string sequence x̂.

Thus, for each training sample (x, y), we gen-
erate a synthetic guideline x̂ that encapsulates the
relevant knowledge of the ICD codes assigned to
the raw training sample.

3.2.2 Multi-task Learning
Retrieve and prediction from raw text. In an
ordinary setting, the ICD coding model makes a bi-
nary prediction based on the raw clinical document
as:

Lraw = LBCE(f(x), y), (9)

where x is the medical document, and y is the bi-
nary vector whose dimension equals the total num-
ber of ICD codes. The predictions are supervised
by the binary labels using cross-entropy loss:

LBCE = − 1

C

C∑

i=1

(yi log pi + (1− yi) log(1− pi)),

(10)

where C is the total number of ICD-9 codes and i
refers to the dimension of the predicted vector and
ground truth vector.

Retrieve and prediction from guideline. Given
that the guideline encapsulates all the semantic in-
formation of the assigned ICD codes, the model is

guided to retrieve code-specific details and predict
the corresponding ICD codes. We employ

Lguide = LBCE(f(x̂), y), (11)

to achieve this goal. This guideline, free from noisy
content such as social and family history, simpli-
fies the assignment of ICD codes and facilitates
smoother learning for the ICD coding model.

Semantic similarity constraint: We apply a
similarity loss function to enforce consistency be-
tween the code-specific representations aggregated
from the raw sample and its corresponding guide-
line. Only the assigned ICD codes are considered,
using the binary ground truth vector to select the
aggregated vector of these positive codes by:

E = y ⊙ E (12)

Ê = y ⊙ Ê, (13)

where E ∈ RC×D and Ê ∈ RC×D are code-
specific representations obtained by the ICD coding
model elaborated in Section 3.3. Then, we compute
the similarity between each of the two retrieved fea-
tures: one from a normal clinical document, and
the other from the guideline, as the loss function:

Lsim = 1− cosine(E, Ê), (14)

to make them consistent in the semantic space.
The total optimization function can be formu-

lated as:

L = Lraw(x, y) + Lguide(x̂, y) + λLsim(E, Ê),
(15)

where λ is a coefficient to control the similar-
ity, considering the gap between theoretical code
knowledge and clinical code expressions.

3.3 Model Architecture

Following PLM-CA (Edin et al., 2024), our model
comprises an encoder and a decoder. The en-
coder transforms a sequence of N tokens into a
sequence of contextualized token representations
H ∈ RN×D. We use RoBERTa-PM (Lewis et al.,
2020), a transformer pre-trained on PubMed arti-
cles and clinical notes, as the encoder. However,
the length of clinical documents is larger than the
max input length of RoBERTa-PM, so we chunk
the raw document text into pieces, feed them into
the PLM separately, and concatenate them along
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Figure 3: The model architecture adopted in our work.

with the axis of length in feature space. For sim-
plicity, we describe this process as:

H = PLM(x). (16)

After obtaining the contextual representations of
the input text, we use a standard cross attention to
aggregate information for different ICD codes. The
code-specific evidence Ei can be obtained by:

Ai = softmax(Qi(HWk))
T ), (17)

Ei = layernorm(Ai(HWv)), (18)

where Qi ∈ RD is the learnable code query of
the i-th ICD code, Ai ∈ RC×N is the attention
matrix from the i-th code to the input text, and Wk,
Wv ∈ RD×D are the linear transform matrices.

Based on the aggregated evidence of the i-th
ICD code, a linear classifier is applied to compute
the predicted probability for i-th ICD code:

ŷi = sigmoid(EiWi), (19)

where Wi ∈ RD is an independent linear classifier
applied to the i-th ICD code.

4 Experiments

4.1 Experiment Setting

Dataset NTrain NDev NTest NCodes

Full 47,723 1,631 3,372 8,929
Top-50 8,066 1,573 1,729 50

Table 1: Statistics of MIMIC-III Dataset Splits. NTrain,
NDev and NTest refer to the number of samples in the
train, development and test split. NCodes refers to the
number of unique ICD codes in the whole dataset.

Dataset. We use the MIMIC-III dataset (John-
son et al., 2016), which is the largest publicly avail-
able clinical dataset. We follow the experimental
setting of Mullenbach et al. (2018) to form MIMIC-
III-Full and MIMIC-III-Top-50. The statistical data
for the two datasets are presented in Table 1. Fol-
lowing the setting of Edin et al. (2024), we train
and test the models on raw text, only truncating all
documents to a maximum of 8,192 tokens without
any other pre-processing.

Evaluation metrics. Following previous work
(Mullenbach et al., 2018), we evaluate our method
using both macro and micro F1 and AUC metrics,
mean average precision (MAP), and precision at
K (P@K) that indicates the proportion of the cor-
rectly predicted labels in the top-K predictions. For
MIMIC-III-Full Dataset, we set K as 8, 15, while
for the MIMIC-III-Top-50 Dataset, we set K as 5.

Implementation details. We implement our
model in PyTorch (Paszke et al., 2019) on a single
NVIDIA H20 96G GPU. We use the Adam opti-
mizer and the learning rate is initialized to 5e-5.
We train the model for 12 epochs, the learning rate
increases in the first 2000 steps, and then decays
linearly in the further steps. The batch size is 8,
which indicates that there are 8 raw samples and
8 synthetic guidelines in a batch in our proposed
framework. We initialize each code query with its
ICD description by encoding the text and employ-
ing a maximum pooling, inspired by Wang et al.
(2018). We use R-Drop (Wu et al., 2021) regu-
larization techniques to alleviate overfitting, and
set α as 5 for MIMIC-III-Full Dataset and 10 for
MIMIC-III-Top-50 Dataset.

4.2 Comparison with SOTA models
To demonstrate the superiority of proposed GKI-
ICD framework, we compare it with the state-of-
the-art methods for ICD coding.

Methods without knowledge. CAML (Mullen-
bach et al., 2018) is a CNN-based model, which is
the first work to propose explainable ICD coding;
PLM-ICD (Huang et al., 2022) and PLM-CA (Edin
et al., 2024) are transformer-based models, which
are popular these years in ICD coding.

Methods with extra knowledge. MSATT-
KG (Xie et al., 2019) captures code hierarchi-
cal relationships with graph neural networks;
MSMN (Yuan et al., 2022) proposes multi-
synonym-attention to learn diverse code represen-
tations; KEPTLongformer (Yang et al., 2022) adds
the description of each ICD code to a long prompt;
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Models
MIMIC-III-Full MIMIC-III-Top-50

AUC F1 P@K AUC F1
P@5

Macro Micro Macro Micro P@8 P@15 Macro Micro Macro Micro
CAML (Mullenbach et al., 2018) 0.895 0.986 0.088 0.539 0.709 0.561 0.875 0.909 0.532 0.614 0.609
MSATT-KG (Xie et al., 2019) 0.910 0.992 0.090 0.553 0.728 0.581 0.914 0.936 0.638 0.684 0.644
MSMN (Yuan et al., 2022) 0.950 0.992 0.103 0.584 0.752 0.599 0.928 0.947 0.683 0.725 0.680
KEPTLongformer (Yang et al., 2022) - - 0.118 0.599 0.771 0.615 0.926 0.947 0.689 0.728 0.672
PLM-ICD (Huang et al., 2022) 0.926 0.989 0.104 0.598 0.771 0.613 0.910 0.934 0.663 0.719 0.660
PLM-CA (Edin et al., 2024) 0.916 0.989 0.103 0.599 0.772 0.616 0.916 0.936 0.671 0.710 0.664
CoRelation (Luo et al., 2024) 0.952 0.992 0.102 0.591 0.762 0.607 0.933 0.951 0.693 0.731 0.683
GKI-ICD (Ours) 0.962 0.993 0.123 0.612 0.777 0.624 0.933 0.952 0.692 0.735 0.681
MRR (Wang et al., 2024a) 0.949 0.995 0.114 0.603 0.775 0.623 0.927 0.947 0.687 0.732 0.685
AKIL (Wang et al., 2024b) 0.948 0.994 0.112 0.605 0.784 0.637 0.928 0.950 0.692 0.734 0.683

Table 2: Comparison with previous SOTA methods. Note that MRR and AKIL rely on DRG codes, CPT codes and
medications, which are additionally annotated to each sample by human coders. We list these methods for reference
although directly comparing our method with them is unfair.

CoRelation (Luo et al., 2024) integrates context,
synonyms and code relationships to enhance the
learning of ICD code representations.

Methods with additional human annotated
data. AKIL (Wang et al., 2024b) and MRR (Wang
et al., 2024a) improve ICD coding using additional
human annotations, e.g., DRG codes, and CPT
codes. Although directly comparing our methods
with them is unfair, we list them for reference.

Methods using LLMs. Currently, LLMs under
zero-shot prompting perform worse than fine-tuned
PLMs on ICD coding tasks, according to Boyle
et al. (2023). To our knowledge, no published
work has applied fine-tuned LLMs to ICD coding
to achieve comparable performance to PLMs.

Table 2 shows the quantitative results of these
approaches on MIMIC-III-Full and MIMIC-III-
Top-50. Our method outperforms state-of-the-arts
significantly on all evaluation metrics. Specifi-
cally, compared with PLM-CA, on whose basis
our model builds, our method obtains 4.6% im-
provement on MacroAUC and 2.0% improvement
on MicroAUC, respectively, on MIMIC-III-Full. It
also obtains 1.7% gains on Macro AUC and 2.6%
gains on Micro AUC on MIMIC-III-Top-50, which
only considers the most common ICD codes in
MIMIC-III-Full. Moreover, even compared with
methods that rely on extra annotated inputs, e.g.,
AKIL and MRR, our method shows comparable
performance and is even better on many metrics.
The improvement shows the effectiveness of GKI-
ICD for using knowledge-based synthetic data to
guide the learning process, and further verifies that
jointly using the real samples and synthetic samples
can obtain more accuracy.

Models
AUC F1

MAP
Macro Micro Macro Micro

w/o knowledge 0.917 0.989 0.109 0.606 0.653
w/ desc 0.960 0.993 0.118 0.609 0.658
w/ desc + syn 0.962 0.993 0.123 0.611 0.660
w/ desc + hie 0.962 0.993 0.123 0.611 0.661
w/ desc + syn + hie 0.962 0.993 0.123 0.612 0.661

Table 3: Ablation of multiple knowledge injection on
MIMIC-III-Full Dataset. The abbreviations "desc",
"syn", "hie" stand for description knowledge, synonym
knowledge and hierarchy knowledge, respectively. We
apply our proposed knowledge injection training frame-
work to the baseline model, and add different types
of ICD code knowledge. Different from PLM-CA, all
these models use R-drop regularization techniques and
truncate input text into 8192 tokens, not 6144 tokens.

4.3 Ablation Study

We conduct extensive ablation studies on MIMIC-
III-Full dataset to verify the effectiveness of each
component of our method.

Effectiveness of proposed knowledge injection
training framework. To address the challenges
of long-tailed distribution and missing annotations,
GKI-ICD injects knowledge through synthetic sam-
ple generation and multi-task learning. As shown
in Table 3, after incorporating any type of ICD code
knowledge, the model demonstrates improvements
across various evaluation metrics, highlighting the
effectiveness of GKI-ICD and the importance of
knowledge infusion. Furthermore, the model’s per-
formance is further enhanced by integrating all
kinds of knowledge, demonstrating the compatibil-
ity of our approach with diverse types of knowledge
and its potential for broader applications.

Effectiveness of integrating multiple types of
ICD code knowledge. The impact of integrating
multiple types of ICD code knowledge is explored.
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Predicted Codes (Probability) Evidence (Attention weights)

✅ 96.71 continuous invasive mechanical 
ventilation for less than 96 consecutive hours
( 0.9909)

… was extubated on … (0.0148)

❌272.0 pure hypercholesterolemia (0.5471) … GLAUCOMA … (0.0878)

Predicted Codes (Probability) Evidence (Attention weights)

✅ 250.00 diabetes mellitus without mention of 
complication, type ii or unspecified type (0.926)

… DIABETES TYPE II … (0.1499)

✅ 272.4 other and unspecified hyperlipidemia
(0.8034)

… HYPERLIPIDEMIA … (0.0766)

✅ 96.71 continuous invasive mechanical 
ventilation for less than 96 consecutive hours
(0.9384)

… was extubated on … (0.1239)

… The	patient	was	
found	lying	face	up	
in	his	bathtub	
after	having
shaved …

Assigned ICD Codes
250.00;
272.4;
96.71;

Medical Text PLM-CA (Baseline)

GKI-ICD (Ours)

Figure 4: Case Study on MIMIC-III-Top-50 Dataset. We visualize the predicted ICD codes and the retrieved
evidence of PLM-CA and our method. The red means the token which gains the greatest attention weight.

Code Frequency PLM-CA GKI-ICD
>500 0.684 0.687
101-500 0.508 0.509
51-100 0.413 0.420
11-50 0.293 0.322
1-10 0.029 0.132

Table 4: Comparison of F1-scores of PLM-CA and
GKI-ICD on different code groups on MIMIC-III-Full
Dataset.

In addition to ICD code definitions, we incorporate
synonym knowledge from a medical knowledge
graph and hierarchy knowledge defined in ICD-9
system. These additional knowledge sources can be
seamlessly integrated into GKI-ICD framework as
supplementary information. As shown in Table 3,
incorporating richer knowledge enhances the ICD
coding performance. This improvement highlights
the importance of leveraging diverse and structured
medical knowledge to better capture the semantic
and relational nuances of ICD codes, leading to
more accurate and robust predictions.

4.4 Effectiveness on Rare Codes

We classify the ICD codes into groups based on
their frequencies in the training set, and test the F1
scores on different groups separately. As shown
in Table 4, GKI-ICD leads to improved accuracy
across all code groups. Specifically, for rare codes
(occurrence <= 10), GKI-ICD demonstrates an im-
provement of 0.103 micro-F1 score over PLM-CA,
highlighting its superior capability in handling rare
codes, as well as its potential to address other long-
tailed distribution problem.

4.5 Case Study

We visualize an example from the test set, as shown
in Figure 4, comparing the attention weights and
predictions before and after knowledge injection.
Before knowledge injection, only half of the codes
are correctly predicted by the model, and the evi-
dence of the false positive code "272.0" is totally
irrelevant to this code. However, after knowledge
injection, the predicted codes are the same as the
ground truth. Notably, the model pays attention to
"Diabetes Type II", which is specially mentioned
in the description of code "250.00". Moreover, the
model pays more attention to the word "extuba-
tion", which is related to code "96.71", compared
to the baseline. These changes substantiate the
efficacy of knowledge injection.

5 Conclusion

In this paper, we propose GKI-ICD, a novel, gen-
eral knowledge injection framework, which inte-
grates multiple kinds of ICD code knowledge for
guideline synthesis and inject code knowledge to
the ICD coding model via multi-task learning. Ex-
perimental results demonstrate that our proposed
method outperforms the baseline models and is
even comparable to models relying on extra human
annotations. In addition, our framework does not
make any changes to model architecture, thus being
easy to be applied to other multi-label classifica-
tion problems, using label-specific knowledge to
improve the performance on rare labels.
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Limitations

Our proposed general knowledge injection frame-
work, while offering an effective approach for the
injection of knowledge to improve ICD coding per-
formance, has notable limitations. First, it focuses
on the ICD-9 code system, which, though widely
used in prior research, is outdated compared to
the more comprehensive ICD-10 system (e.g., over
70,000 diagnosis codes in ICD-10-CM vs. 14,000
in ICD-9). Future work should adapt our approach
to ICD-10. Second, our framework does not in-
corporate the Alphabetic Index, a key tool in ICD
coding. Coders use the Alphabetic Index to map
clinical terms to a set of candidates before assign-
ing the final ICD codes, ensuring accurate ICD
coding. Future work should also integrate the Al-
phabetic Index.
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