
Findings of the Association for Computational Linguistics: ACL 2025, pages 7150–7179
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

DependEval: Benchmarking LLMs for Repository Dependency
Understanding

Junjia Du1, Yadi Liu2, Hongcheng Guo3*, Jiawei Wang4,
Haojian Huang5, Yunyi Ni1, Zhoujun Li3,

1Nanyang Technological University 2Tsinghua University, 3Beihang University
4ShanghaiTech University 5The University of Hong Kong

Abstract

While large language models (LLMs) have
shown considerable promise in code genera-
tion, real-world software development demands
advanced repository-level reasoning. This in-
cludes understanding dependencies, project
structures, and managing multi-file changes.
However, the ability of LLMs to effectively
comprehend and handle complex code reposi-
tories has yet to be fully explored. To address
challenges, we introduce a hierarchical bench-
mark designed to evaluate repository depen-
dency understanding (DEPENDEVAL). Bench-
mark is based on 2683 repositories collected
from real-world websites. It evaluates models
on three core tasks: Dependency Recognition,
Repository Construction, and Multi-file Edit-
ing, across 8 programming languages from ac-
tual code repositories. Our evaluation of over
25 LLMs reveals substantial performance gaps
and provides valuable insights into repository-
level code understanding1

1 Introduction

“It’s not that we use a language to ex-
press our thoughts, but that we use a
language to understand our thoughts.”
– Donald Knuth

Large Language Models (LLMs) have made sig-
nificant strides in automated code generation and
comprehension (Feng et al., 2020; Rozière et al.,
2023; Chaudhary, 2023; Hui et al., 2024a; Nijkamp
et al., 2023a), enabling tasks like code comple-
tion, bug fixing, and documentation. However,
real-world software development involves com-
plex repository-wide reasoning, including depen-
dency understanding, project structures, and multi-
file modifications (Wu et al., 2024a; Zhang et al.,
2023b; Shrivastava et al., 2023a). While LLMs

*Corresponding author.
1We provide code and datasets at https://github.com/ink7-

sudo/DependEval.

show potential in software engineering, their ability
to handle large-scale repositories remains underex-
plored.

Existing benchmarks (Peng et al., 2024; Chai
et al., 2024; Liu et al., 2023a; Cassano et al., 2023)
typically evaluate LLMs at the function or file level,
often focusing on isolated code snippets. However,
large software projects require an evaluation frame-
work that captures repository-wide reasoning. Pre-
vious benchmarks, such as SWE-bench (Jimenez
et al., 2023), focus on bug fixing but neglect chal-
lenges like dependency resolution, project construc-
tion, and structured multi-file edits. Additionally,
existing methods (Liu et al., 2023b; Zhang et al.,
2023a; Ding et al., 2023) lack fine-grained insights
into model performance across repository reason-
ing aspects.

To address these limitations, we introduce DE-
PENDEVAL, a hierarchical benchmark designed to
evaluate LLMs’ ability to reason about structured
code repositories through three progressively chal-
lenging tasks: (1) Dependency Recognition: As-
sessing the model’s ability to infer and resolve inter-
file dependencies. (2) Repository Construction:
Evaluating models on generating structured, mod-
ular project layouts. (3) Multi-File Editing: Test-
ing models’ ability to make coordinated changes
across multiple files while maintaining consistency.
Unlike existing benchmarks (Ding et al., 2023;
Liu et al., 2023b), DEPENDEVAL provides fine-
grained metrics for static analysis, architectural
reasoning, and cross-file consistency.

We evaluate DEPENDEVAL with 25+ LLMs,
making the following key contributions:

• DEPENDEVAL is the first multilingual bench-
mark with over 2,500 cases designed for hier-
archical assessment of repository-scale under-
standing in LLMs, enabling a comprehensive
evaluation of LLMs’ understanding capabili-
ties at the code repository level.

7150

https://github.com/ink7-sudo/DependEval
https://github.com/ink7-sudo/DependEval

• It provides fine-grained metrics, enabling de-
tailed analysis of repository reasoning capa-
bilities.

• Larger models tend to perform better, partic-
ularly on complex cross-file reasoning tasks,
but performance gains diminish as task com-
plexity increases, suggesting that scaling
alone is not enough for mastering repository-
wide code comprehension.

• Experiment analysis shows that LLMs strug-
gle with key challenges in large-scale soft-
ware development, such as dependency pars-
ing, function call inference, and maintaining
consistency across file modifications, high-
lighting key challenges in applying LLMs to
large-scale software development.

2 Related Work

Code Large Language Models. The rapid ad-
vancement of generative language models has
spurred extensive research on AI applications in
software engineering (Black et al., 2022; Brown
et al., 2020; Radford et al., 2019; Touvron et al.,
2023). Models (Achiam et al., 2023; Chen et al.,
2021; Chowdhery et al., 2023; Nijkamp et al.,
2023b,c; Li et al., 2023; Lozhkov et al., 2024;
Roziere et al., 2023; Guo et al., 2024b) have demon-
strated significant performance improvements on
various code-related tasks. These advancements
have accelerated the development of code assistant
tools like Copilot 2, TONGYI Lingma (Hui et al.,
2024a), and Cursor 3.
Repository-level Code Evaluation. Recent
repository-level code benchmarks (Allal et al.,
2023; Liu et al., 2023c; Shrivastava et al., 2023b;
Zhang et al., 2023b; Ding et al., 2023; Liu et al.,
2024; Allal et al., 2023; Liu et al., 2023b) assess
code LLMs’ capabilities at various granularities,
from individual lines and API calls to full func-
tion implementations. SWE-Bench (Jimenez et al.,
2023) challenges LLMs with real-world scenarios
using issues and pull requests from popular Python
repositories on GitHub, while DevBench (Li et al.,
2024a) breaks the development process into stages
to evaluate AI performance at each step. How-
ever, these datasets often neglect detailed reposi-
tory code understanding. Most difficulty catego-
rizations focus on the number of files involved,

2https://github.com/features/copilot
3https://www.cursor.com/

overlooking the internal structure and semantic
context within projects. To better evaluate multi-
lingual, repository-based code understanding, DE-
PENDEVAL extends to 8 programming languages
and includes three designed tasks. The detailed
comparison is in Table 1.

Benchmark Task Scope Languages #Repo

MBPP (Austin et al., 2021) Code Generation Function 1 N/A
HumanEval (Liu et al., 2023a) Code Generation Function 1 N/A
ClassEval (Du et al., 2023) Code Generation Class 1 N/A
RepoEval (Zhang et al., 2023c) Code Completion Repo-level 1 14
RepoBench (Liu et al., 2023b) Retrieval & Completion Repo-level 2 1,669
CrossCodeEval (Ding et al., 2023) Code Completion Repo-level 4 1,002
EvoCodeBench (Li et al., 2024b) Code Generation Repo-level 1 25
RepoMasterEval (Wu et al., 2024b) Code Completion Repo-level 2 6

DEPENDEVAL Hierarchical Dependency Reasoning Repo-level 8 2,683

Table 1: Comparison of features between existing bench-
marks and DEPENDEVAL

3 DependEval

3.1 Overview

DependEval is a multi-language benchmark span-
ning eight programming languages (C, C++, C#,
TypeScript, JavaScript, Java, PHP, and Python) to
evaluate the capability of large language models
(LLMs) in three hierarchical understanding tasks
in Figure 7. We propose three tasks—Dependency
Recognition, Repository Construction, and Multi-
file Editing. Dependency Recognition reflects
whether a model can infer the invocation order
between files, which is crucial for resolving ref-
erences and ensuring the correct program flow.
Repository Construction evaluates the model’s
ability to organize code structure from natural lan-
guage requirements, testing architectural reasoning.
Multi-file Editing simulates real-world develop-
ment scenarios where modifications span multiple
files, requiring models to maintain semantic and
dependency consistency across components.

3.2 Data Collection and Filtering

Our data comes from real-world GitHub reposito-
ries, ensuring authenticity and practical relevance
for evaluating code understanding tasks. We collect
multilingual repositories in languages such as C,
C++, C#, TypeScript, JavaScript, Java, PHP, and
Python, using GitHub’s official API to crawl repos-
itories and their README files. These are selected
from open-source repositories created before De-
cember 16, 2024, with a focus on those with the
highest star counts (e.g., above 50 stars) and exclud-
ing forks to mitigate data leakage and ensure qual-
ity. We apply filtering rules similar to Deepseek-
Coder (Guo et al., 2024a) to remove lower-quality

7151

Analyze the project
description. Generate a
project structure that
shows the dependencies

between files.

Analyze the project
description. Generate a
project structure that
shows the dependencies

between files.

Analyze their content
and determine the

dependency relationship
between files.

Analyze their content
and determine the

dependency relationship
between files.

Add an option to save the
displayed images to disk.
Add an option to save the
displayed images to disk.

Repository ConstructionRepository Construction Dependency RecognitionDependency Recognition Multi-file EditingMulti-file Editing

[ip_basic/dataset_sparsity.py],

[ip_basic/depth_completion.py],

[depth_map.py] [depth_completion.py]

ip_basic/vis_utils.py

import cv2
def cv2_show_image(): …

ip_basic/depth_completion.py

from ip_basic import vis_utils
vis_utils.cv2_show_image(…)

[ip_basic/vis_utils.py,

ip_basic/depth_completion.py]

Dependency DetectionConstruction Graph

ip_basic/vis_utils.py

import cv2
def cv2_show_image(): …

ip_basic/depth_completion.py

from ip_basic import vis_utils
vis_utils.cv2_show_image(…)

ip_basic/vis_utils.py

import cv2
After
def cv2_show_image(..., save_path=None):

if save_path: cv2.imwrite(save_path, image)

ip_basic/depth_completion.py

from ip_basic import vis_utils
After
save_path = 'process/' + key + '.png
vis_utils.cv2_show_image(…, save_path=save_path)

"Image Processing for Basic

Depth Completion"

 { "file": "vis_utils.py","function":

 “A Python module that provides…”},

 { “file”: "depth_completion.py"…. }

 Files: Files: Description: Description:



Code Modify

Figure 1: Overview of DEPENDEVAL. It contains 3 tasks including Repository Construction, Dependency
Recognition, and Multi-file Editing. The first task analyzes the project description to generate a structure showing
the dependencies between files. The second task identifies the content of the files to determine the relationships
between them. Finally, the third task modifies the code to add functionality for saving displayed images to disk.

code. Additionally, we filter READMEs based on
structural integrity, practical utility, and content
clarity. Detailed filtering criteria can be seen in
Appendix B. After filtering and removing dupli-
cates, we retain 15,576 high-quality repositories
and README files.

3.3 Dependency Code Snippets Generation

After downloading repositories from GitHub, we
concatenate interdependent code files into snippets
based on their dependency relationships. This in-
volves parsing each file for import statements to
identify internal module dependencies. Details on
the import expressions considered for each lan-
guage are provided in Appendix A. Call chains and
code snippets are generated by selecting a starting
file and appending its dependent files in reference
order. Multiple call chains of varying lengths can
be extracted from each repository, capturing both
short and long inter-file relationships. In addition
to the filtering criteria in Section 3.2, we exclude
repositories that fail to cover all dependencies or
do not pass integrity checks, ensuring only valid,
self-contained code fragments are included.

3.4 Task Construction

3.4.1 Dependency Recognition
Task Settings. The Dependency Recognition
task is designed to evaluate the model’s ability to
accurately identify and understand the calling rela-

tionships between files within a codebase. Given
a set of code files F , with dependency relations D
extracted as described in Section 3.3, we define the
set of dependencies as:

D △
= {(fi, fj) | fi directly invokes fj}. (1)

The model is required to generate a unique or-
dered list P = [p1, p2, . . . , pn], where pi ∈ F ,
such that:

∀(fi, fj) ∈ D, π−1(fj) < π−1(fi), (2)

where the output list P must respect all dependen-
cies in D. Here, π−1(f) denotes the position of file
f in the list P .

3.4.2 Repository Construction
Task Settings. The Repository Construction task
evaluates the ability of LLMs to generate a coher-
ent file structure based on natural language require-
ments and file names with functional descriptions.
Given natural language requirements R and a set
of files F = {f1, f2, . . . , fn} with functional de-
scriptions D = {d1, d2, . . . , dn}, the input X is:

X △
= (R, {(fi, di)}ni=1), (3)

where R is the requirement, and each (fi, di)
pair represents a file fi and its description di.
The model generates a set of valid ordered lists

7152

Step1: Data Crawling and Filtering

… Repositories

Dependency
parser

Step4: Evaluation

Step2: Dependency Snippets Generation

b.py

b
c

d

e f

Dependency

a

concat
b

c

concat

a

b

c

…

Step3: Test Sample Generation

Task1:Dependency Recognition

Task2:Repository Construction

Task3: Multi-file Editing

Features to be added
Multi-file Code
Snippets

Modified Code

 [b.py, c.py]

Code Snippet

concatb

c

LLM

Human Review

.py

b c

b c
a

…

LLM

Human Review

Task1

Task2

…
[a.py, c.py, d.py]
[a.py, b.py] Graph

Construction

 Graph Match F1 Score

[b.py, c.py] Exact Match

Called Code Segment:
Invoking Code Segment:
Modified Complete Code:

Task3

LLM Judge

Reference

Evaluation on LLMs

Data CurationInput Ground TruthOutput Example

…
import a
…

Project Requirements
File names: Function Description

[a.py, b.py, d.py]
[b.py, c.py]

…

75
C

C++

C#

Python

Java

PHP

Typescript

Javascript

Figure 2: Pipeline for data curation of DEPENDEVAL. It consists of four steps: data crawling and filtering (Step 1),
dependency snippet generation (Step 2), test sample generation for dependency recognition (Step 3), and evaluation
using metrics like Exact Match and Graph Match F1 Score (Step 4).

P = {P1, P2, . . . , Pm}, where each list Pi =
[pi1, pi2, . . . , pin] consists of files pij ∈ F , with
each file pij being invoked or depended upon by
the subsequent file pi(j+1).

Sample Curation. The construction process be-
gins by extracting complete dependency relation-
ships from the repository to identify invocation
chains, which serve as the ground truth for evalu-
ation. We filter repositories to include only those
with fewer than 12 invocation chains, ensuring all
files are comprehensively covered. Next, GPT-4
processes the README and individual code files
to generate a natural language requirement, includ-
ing an overall repository description and functional
descriptions for each file. Detailed prompt is in
Appendix E.1.

Human in the Loop. Finally, human review se-
lects the final set of samples. We evaluate the
generated natural language requirements based on
criteria such as the coherence and completeness
of repository descriptions, accuracy of functional
descriptions, and correctness of reflected depen-
dency relationships. Detailed criteria are provided
in Appendix C.1. We also ensure a diverse range
of topic types in the selected repositories to rep-
resent real-world scenarios, with further details in
Appendix D.

3.4.3 Multi-file Editing

Task Settings The Multi-file Editing task eval-
uates the model’s ability to add new functional-
ities across multiple files while preserving inter-
file dependencies. Given a set of files C =
{f1, f2, . . . , fm}, where each fi is invoked by fi+1,
and a functionality requirement R, the task involves
two scenarios:

• In-place Edits: Modify the existing files C
to incorporate R, while maintaining inter-
dependencies, resulting in a new set Cnew =
{f ′

1, f
′
2, . . . , f

′
m}.

• Expansion Edits: Modify C and create a new
file fnew to integrate R, resulting in an ex-
panded set Cnew = {f ′

1, f
′
2, . . . , f

′
m}∪{fnew},

ensuring proper invocation relationships.

This approach reflects real-world scenarios where
AI-driven code editors like Cursor4 help developers
modify multiple files based on natural language
requirements.

Sample Curation. We concatenate files from in-
vocation chains of lengths 2, 3, and 4, then input

4Cursor is an AI-powered code editor designed to assist
developers. https://www.cursor.com/

7153

https://www.cursor.com/

Task # Examples Avg. # Input Tokens Avg. # Output Tokens
Subtask C C++ C# Java PHP Python JavaScript TypeScript

Multi-file Editing (In-place Edits)
Chain Length 2 30 38 49 42 49 60 58 42 21453 4832
Chain Length 3 53 35 34 33 37 50 33 33 28634 5424
Chain Length 4 39 38 33 33 60 24 32 28 32423 6367

Multi-file Editing (Expansion Edits)
Chain Length 2 44 45 23 42 38 45 49 42 21355 7319
Chain Length 3 35 21 54 41 33 38 36 34 25542 7844

Sub-total 201 177 193 191 217 217 208 187 - -
Dependency Recognition - 180 180 180 180 180 180 180 180 12549 232
Repository Construction - 58 49 41 52 57 58 45 36 3247 341

Total 439 406 414 423 454 455 433 403 20742 4617

Table 2: Statistic of DEPENDEVAL. This table shows the number of examples and average token counts for each
task and subtask across different programming languages.

these code snippets into GPT-4o. Using a step-
by-step prompt, GPT-4o identifies cross-file inter-
actions, proposes new features, and generates the
corresponding modified code, including feature de-
scriptions and explanations. Sample outputs for
different invocation lengths and scenarios are pro-
vided in Appendix E.2.

Human in the Loop. We first apply an LLM-
based filtering process to pre-select samples, ensur-
ing basic quality and consistency with the task.
GPT-4o evaluates samples based on predefined
criteria, such as clarity of the feature description
and logical implementation. Human annotators
then manually review and correct the pre-selected
samples, verifying the correctness of descriptions,
logic, and code consistency. Annotators also ensure
that errors in GPT-4o-generated code are corrected,
curating gold labels for evaluation. Details about
the process and our crowdsourcing can be found in
Appendix C.2 and Appendix G, respectively.

3.5 Features of DEPENDEVAL

Statistic. We present the statistic of DEPENDE-
VAL in Table 2. We use the Qwen2.5-Coder (Hui
et al., 2024b) tokenizer to compute the number of
tokens. After the filtering and curation process, our
test samples cover a total of 2,683 real-world repos-
itories. Length distribution of DEPENDEVAL is in
Figure 3. More results about project topics are in
Appendix D.

Future Extensions. DEPENDEVAL currently
supports 8 popular languages. In addition to re-
leasing our test samples on GitHub, we have also
open-sourced all the scripts used for crawling and
curating these samples. Therefore, DEPENDEVAL
can potentially be extended to other languages and
the community to use our tools to create more sam-
ples as needed.

0 5000 10000 15000 20000 25000 30000
Sample String Length

0

50

100

150

200

Fr
eq

ue
nc

y

-75 -73

+21

+75

+42 +41
+34

+18

-4 -5

+12
+25 +27 +22

+8

-9
-19 -20

-29

-96

Sample String Length Distribution in task2_c.json
Mean Frequency

Figure 3: Length Distribution of DEPENDEVAL.

4 Experiments

4.1 Models
We evaluate over 25 models, ranging from 1.5B
to 670B+ parameters, including both open-source
large language models and closed-source general
LLMs. For general models, we test GPT-4o-
mini (OpenAI, 2023), Claude series (Anthropic,
2023), Phi series (Abdin et al., 2024a,b), PaLM2-
CodeChat (Anil et al., 2023), Llama3.35, and
Qwen2.5 (Qwen et al., 2025). For code models, we
evaluate CodeLlama (Rozière et al., 2023), Open-
Coder (Huang et al., 2024), Qwen-Coder (Hui et al.,
2024a), DeepSeekCoder (Guo et al., 2024a), Code-
Stral (MistralAI, 2024), Yi-Coder6, and Granite-
Coder (Mishra et al., 2024).

4.2 Implementation Details
Our evaluation framework is built on the Trans-
formers library (Wolf et al., 2020). We use a one-
shot prompt for the Dependency Recognition and
Repository Construction tasks, while the Multi-
File Editing task is performed in a zero-shot set-
ting, without additional training. All experiments
are run on 16 NVIDIA A800-SXM4-80GB GPUs
with the same hyperparameters for code generation
across all models. Detailed settings and prompts
are provided in Appendix E.3.

5https://ai.meta.com/blog/meta-llama-3/
6https://huggingface.co/01-ai/Yi-Coder-9B

7154

https://ai.meta.com/blog/meta-llama-3/
https://huggingface.co/01-ai/Yi-Coder-9B

Models C C++ C# Python Java PHP Typescript Javascript Avg.
DR RC ME DR RC ME DR RC ME DR RC ME DR RC ME DR RC ME DR RC ME DR RC ME -

Open-Source Large Language Models (1.5B+)

Yi-Coder-1.5B-Chat 7.41 11.23 0.45 10.64 9.62 0.57 4.84 5.68 0.01 10.34 8.80 4.34 0.00 2.83 0.35 1.45 14.52 2.26 8.47 10.73 0.50 2.17 4.93 0.01 5.09
OpenCoder-1.5B-Instruct 3.95 9.03 7.39 1.59 11.93 13.24 4.62 9.58 7.63 4.55 21.48 16.66 0.00 6.98 9.76 2.17 15.96 7.70 2.04 10.98 7.92 3.66 12.73 8.17 8.32

Qwen2.5-Coder-3B 6.47 27.34 3.62 11.85 30.38 4.31 8.04 15.19 3.33 13.73 46.36 6.86 0.00 23.36 1.34 4.50 30.14 2.57 11.76 24.30 5.80 6.45 27.45 8.30 13.48
Qwen2.5-Coder-3B-Instruct 4.46 5.23 4.64 9.44 8.26 4.51 5.59 5.72 4.66 8.93 14.20 9.95 10.00 2.15 6.49 7.22 7.37 5.98 5.59 5.52 3.55 9.55 6.51 10.61 6.92

Granite-3b-code-instruct-128k 10.27 17.63 4.97 9.70 17.41 8.76 9.15 10.68 8.50 15.07 24.02 4.95 9.09 17.93 5.96 3.70 25.58 2.58 8.46 21.79 5.57 7.02 22.38 6.62 11.57
Phi-3.5-mini-128k-instruct(3.82B) 8.22 3.43 1.31 13.38 15.84 2.01 13.48 0.81 1.01 11.19 9.01 3.01 5.11 2.38 1.01 17.24 13.06 0.77 11.51 5.76 1.01 17.05 5.98 1.42 6.88

Open-Source Large Language Models (7B+)

Codestral-mamba(7B) 9.22 26.09 24.79 16.22 23.94 25.10 9.16 16.27 30.64 16.00 28.83 26.14 13.10 17.77 18.79 4.00 33.95 18.62 11.68 28.30 12.74 9.49 26.98 20.73 19.52
CodeLlama-7b-Instruct-hf 8.00 18.21 13.23 11.81 18.01 13.25 6.25 10.26 12.67 7.63 30.43 18.42 5.74 16.91 12.67 4.00 27.67 11.43 9.52 20.41 11.32 6.96 21.03 10.12 13.58

Yi-Coder-9B-Chat 15.85 36.33 8.62 19.14 48.06 10.55 11.46 15.67 6.02 13.67 28.89 21.04 13.60 25.12 13.39 12.50 35.51 9.78 12.98 35.37 7.95 11.45 32.29 6.25 18.81
Granite-8b-code-instruct-128k 2.47 12.88 16.09 4.73 17.97 10.63 5.13 6.52 12.87 6.94 13.13 13.10 5.22 10.48 11.61 6.02 24.36 12.60 8.26 16.29 22.99 10.84 18.98 15.79 11.91

Qwen2.5-Coder-7B 12.41 23.31 7.39 14.18 22.30 13.25 11.86 12.14 7.63 16.50 33.32 16.66 0.00 17.73 9.76 8.87 32.71 7.70 14.91 25.10 7.92 10.61 26.06 8.17 15.02
Qwen2.5-Coder-7B-Instruct 16.85 20.30 17.58 26.16 21.90 19.18 20.11 7.69 14.87 28.81 19.37 19.23 18.99 19.80 13.18 22.01 19.71 15.31 30.87 15.97 18.34 24.12 19.02 15.29 19.36

Phi-4(14B) 46.02 33.50 23.60 53.70 39.59 20.63 33.33 14.55 23.62 49.26 33.09 31.99 31.07 26.13 13.93 35.63 21.68 15.41 54.29 21.76 16.00 62.32 23.18 11.27 30.65
CodeLlama-13b-Instruct-hf 6.41 20.09 18.23 6.76 21.02 21.25 9.09 11.74 16.67 11.88 29.04 16.42 7.79 18.64 18.67 7.02 28.97 8.42 7.10 21.91 13.32 10.37 25.66 13.21 15.40

Qwen2.5-Coder-14B 11.38 6.89 13.62 13.21 13.27 14.31 13.89 9.55 13.33 17.33 39.33 16.86 3.45 8.89 11.34 3.80 3.35 12.57 13.22 14.15 15.80 12.57 18.68 18.30 13.30
Qwen2.5-Coder-14B-Instruct 11.38 6.89 13.62 13.21 13.27 14.31 13.89 9.55 13.33 17.33 39.33 16.86 3.45 8.89 11.34 3.80 3.35 12.57 13.22 14.15 15.80 12.57 18.68 18.30 26.70

Codestral-2501(24B) 37.78 47.12 29.45 55.56 44.71 29.40 40.56 22.12 31.00 45.56 61.18 35.62 37.22 28.42 27.43 26.11 34.01 21.62 57.78 32.41 31.00 60.56 33.69 33.50 37.66

Open-Source Large Language Models (32B+)

CodeLlama-34b-Instruct-hf 8.77 24.59 23.00 5.62 23.89 31.00 1.44 11.39 27.00 10.56 33.01 31.28 2.63 20.58 26.32 2.37 31.53 19.67 3.79 23.83 17.32 3.55 24.02 21.23 17.85
Qwen2.5-Coder-32B-Instruct 52.22 49.40 30.29 70.00 58.27 36.67 42.78 24.06 41.00 61.11 46.93 37.12 43.89 33.04 35.92 50.56 37.47 14.71 63.13 41.47 44.80 57.22 35.96 40.36 43.68

Qwen2.5-Coder-32B 15.88 17.26 23.50 25.77 18.20 33.42 18.89 11.37 25.86 21.66 23.20 23.11 20.51 13.03 17.00 14.56 26.63 20.45 26.14 19.37 15.35 24.40 26.30 20.71 20.94
Llama-3.3-70b-instruct 17.78 10.00 9.49 34.64 12.00 14.88 16.29 30.02 11.38 9.44 22.10 18.54 2.22 12.30 18.52 17.22 12.00 8.94 13.89 10.09 6.19 39.66 18.12 5.08 15.45
Qwen-2.5-72b-instruct 43.89 36.33 15.72 67.22 48.61 21.60 35.56 16.32 37.21 51.11 41.33 22.93 40.56 15.47 33.06 43.33 27.53 32.18 65.56 29.61 19.26 61.67 29.83 17.83 35.57

DeepSeek-Coder-V2-Lite-Instruct(21/236B) 8.94 21.48 24.87 11.67 25.29 28.69 7.78 12.49 25.86 11.67 20.45 24.61 16.67 12.02 39.97 12.78 19.96 11.67 12.43 25.15 39.59 14.86 19.50 35.59 20.17
DeepSeek-V3(37/671B) 68.54 64.25 36.97 83.05 63.15 47.46 54.75 26.85 41.22 63.48 67.89 37.99 48.31 33.51 44.32 67.05 51.58 40.54 83.33 53.65 43.60 88.83 53.13 40.11 54.31

Closed-Source Large Language Models (API)

Claude-3.5-sonnet-20241022 52.78 63.12 42.00 55.56 66.00 57.00 30.00 27.93 43.75 25.56 61.95 55.83 9.44 30.81 47.67 48.33 60.92 44.33 53.89 57.62 46.33 62.78 57.38 42.12 47.63
GPT-4o-mini-2024-07-18 50.56 41.90 39.55 60.00 49.59 45.17 30.00 13.56 41.06 51.67 41.43 38.37 37.78 31.16 44.93 47.19 25.71 25.73 51.67 28.60 42.87 60.00 26.07 39.78 40.18

Palm-2-codechat-bison 8.89 22.49 12.37 11.17 33.29 16.80 10.98 3.03 20.83 9.60 10.61 25.46 9.44 2.69 14.11 9.71 19.62 18.82 9.77 16.25 16.15 9.66 13.82 16.05 14.23
Gemini-1.5-flash-latest 52.78 52.17 36.42 58.33 56.19 44.49 36.67 22.10 39.88 58.89 27.49 36.32 37.78 13.10 47.05 35.00 29.42 33.24 58.89 44.14 57.18 57.78 35.90 46.88 42.42

Table 3: Results of different models on the DEPENDEVAL. We utilize green (1st) blue (2nd) yellow (3rd) to
distinguish the top three results within different sizes.

(a)DR tasks (c)ME tasks(b)RC tasks

Figure 4: Results of different tasks in DEPENDEVAL. The radar charts show the performance of various models
across Dependency Recognition(a), Repository Construction(b), and Multi-file Editing(c) tasks. Each line represents
a different model, with performance measured for different programming languages.

4.3 Evaluation Metrics

Dependency Recognition. For the Dependency
Recognition task, we calculate the Exact Match
Rate (EMR), which measures the proportion of
instances where the predicted dependency chain
exactly matches the ground truth:

EMR
△
=

|{i | EMi = 1}|
N

(4)

where

EMi =

{∑
j ⊮(pj=gj)

|Pi| , if |Pi| > 0

0, otherwise
(5)

Here, Pi and Gi denote the predicted and ground-
truth dependency sets, and ⊮(·) is an indicator func-
tion, capturing the proportion of fully correct pre-
dictions.

Repository Construction. For Repository Con-
struction, we evaluate structural similarity by com-
paring the predicted and ground-truth dependency
graphs. Given a set of predicted file invoca-
tion chains, we construct a directed graph Gp =
(Vp, Ep) and similarly for the ground-truth graph
Gg = (Vg, Eg). We then compute precision, recall,
and F1-score for both nodes and edges:

F1 =
2× Precision × Recall

Precision + Recall
(6)

7155

Finally, we combine node and edge F1-scores (i.e.
F1n and F1e) as follows:

F1com = w1 × F1n + w2 × F1e, (7)

where w1 and w2 are empirically set to 0.15 and
0.85, respectively.

Multi-file Editing. Inspired by FairEval (Wang
et al., 2023) to reduce bias in LLMs as judge mod-
els, we prompt the large language model (LLM),
denoted as LLM(·), to evaluate the correctness and
completeness of multi-file edits. The LLM com-
pares the generated code with the corrected ver-
sion provided by human annotators in section 3.4.3.
We define the following metrics: Correctness (C):
Measures how accurately the files meet the ex-
pected functionality. Purpose Alignment (PA):
Assesses how well the code aligns with its intended
purpose. Functionality Accuracy (FA): Evalu-
ates the accuracy of the functionality across files.
Functionality Completeness (FC): Checks if all re-
quired aspects of functionality are addressed. Code
Quality (CQ): Reflects the overall quality of the
code. The detailed prompts are in Appendix E.4.
The combined score is calculated as:

Score = λ1 · LLM(C) + λ2 · LLM(PA)

+ λ3 · LLM(FA) + λ4 · LLM(FC)

+ λ5 · LLM(CQ),

(8)

where the weighting parameters are empirically set
as follows: λ1 = λ2 = 0.25, λ3 = λ4 = 0.20, and
λ5 = 0.10.

4.4 Main Results

In the following discussions, we will refer to spe-
cific tasks using the following abbreviations: ME
(Multi-file Editing), DR (Dependency Recogni-
tion), and RC (Repository Construction).

4.4.1 Overall Evaluation
Model Size & Type and Performance. Larger
models generally outperform smaller ones,
as seen in open-source architectures like
Codellama-34B-Instruct and Qwen-Coder-32B,
which consistently show better performance
than their smaller counterparts. This suggests
that increasing model capacity enhances the
ability to manage complex dependency rela-
tionships in code repositories. Interestingly,
Qwen-Coder-32B surpasses larger general
models like Llama-3.3-70b-instruct and

Qwen-2.5-72b-instruct, highlighting that
domain-specific training can be more effective
than simply scaling model size. This implies that
targeted pretraining on high-quality code datasets
and instruction tuning for software engineering
tasks are key to improving performance.

Task-Specific. Larger models show clear ad-
vantages in DR and RC tasks. For instance,
DeepSeek-V3(37/671B) excels in DR, demon-
strating strong ability to understand complex inter-
file dependencies. However, Multi-file Editing re-
mains a more intricate task, even larger models face
challenges in maintaining consistency and accuracy
across multiple files

Language-Specific. Closed-source models gen-
erally show more stable performance across lan-
guages in the ME task. Performance also varies
by language, with Python and JavaScript yielding
better results, particularly in Dependency Recog-
nition and Repository Construction tasks. In con-
trast, languages like C# and Java are more chal-
lenging. Models perform better in languages with
static, modular structures, while languages with
complex interdependencies or dynamic features
pose more difficulty for multi-file editing and de-
pendency recognition.

Closed-source vs. Open-source Models. On
average, closed-source models outperform most
open-source ones. However, DeepSeek-V3 sur-
passes Claude-3.5-sonnet-20241022, showing
that top-tier open-source models remain compet-
itive. While models like Qwen2.5-Coder-32B
and DeepSeek-V3 excel in simpler tasks like
DR, they struggle with more complex ones like
ME. In contrast, closed-source models, especially
Claude-3.5-sonnet-20241022, perform better in
RC and ME, indicating stronger reasoning and gen-
eralization abilities for multi-file editing and repos-
itory understanding.

4.4.2 Takeaways from Task-specific
Evaluation

Dependency Relationships are Crucial for ME.
Models strong in Dependency Recognition excel
in Multi-file Editing. This correlation shows that
capturing and modifying dependencies is key to ac-
curate, consistent changes across large codebases.
LLMs Struggle with Directory Structure. LLMs
may lack the prior knowledge needed to effectively
organize hierarchical project structures, which is

7156

reflected in the generally lower RC scores com-
pared to DR. To improve performance, incorpo-
rating more structured code repositories into the
training data could help LLMs learn better patterns
for organizing directory structures.
Cross-File Modifications Remain Challenging.
Even closed-source models struggle with cross-file
modifications in ME, requiring better consistency
and a global view across files. Improving training
with real-world ME examples could help.

5 Analysis

5.1 Multilingual Analysis

Figure 4 shows the performance of various models
across multiple programming languages for three
tasks. We selected the top two models for each
parameter range. Key insights include as follows.
LLMs struggle with statically typed languages.
In Dependency Recognition and Repository Con-
struction, languages like Python, JavaScript, and
TypeScript perform better due to their clear mod-
ular structures and explicit imports. In contrast,
PHP and C# present challenges with flexible file
inclusion and complex project files, respectively.
Intricate interdependencies challenge multi-file
editing (ME). Models perform worse in C and
C++, where complex cross-file modifications are
needed, like pointer tracking and header updates.
Languages such as Python and Java, with struc-
tured class designs, perform better in ME.

5.2 Instruction Following

Language-wise Analysis. In Figure 5.
deepseek-chat is the strongest model over-
all, demonstrating its strong adaptability across
various programming languages. More complex
languages, such as C++ and PHP, pose challenges
for all models. Most models show weaker
instruction-following abilities in these languages,
indicating poor understanding and execution
capabilities. In contrast, languages like JavaScript
and Python are relatively easier to process,
resulting in higher instruction-following rates for
these languages.
Task-wise Analysis. In Figure 6. At the task
level, deepseek-chat significantly outperforms
other models, showcasing its efficient handling
of multiple tasks. Most models perform well on
the Repository Construction and Dependency
Recognition tasks, which are relatively easier as
they mainly focus on file relationships and de-

Figure 5: Instruction-following performance covering 8
different languages.

0

0.2

0.4

0.6

0.8

1

In
st

ru
ct

io
n

 F
o

ll
o

w
in

g
 R

at
e

Multi-file Editing Dependency Recognition Repository Construction

Figure 6: Instruction-following performance covering 3
different tasks.

pendencies. On the other hand, the Multi-file
Editing task is more challenging, requiring mod-
els to simultaneously understand modifications
across multiple files and their collaboration, which
leads to poorer performance for some models.

6 Conclusion

We introduce DEPENDEVAL, a benchmark de-
signed to evaluate the repository-level dependency
understanding of LLMs. Built on a diverse set
of 15,576 real-world repositories, the benchmark
covers three key tasks: Dependency Recognition,
Repository Construction, and Multi-file Editing,
across eight programming languages. Our evalu-
ation of over 25 LLMs reveals significant perfor-
mance gaps, highlighting the difficulties models
face when managing complex code repositories.
These insights point to the need for LLMs to im-
prove their handling of dependencies, project struc-
tures, and multi-file modifications. Our work sets
the stage for future advancements in enhancing the
repository-level reasoning capabilities of LLMs.

7157

7 Limitations

Not Enough Languages. While DEPENDEVAL
evaluates models across 8 programming languages,
this scope is limited and may not fully capture the
performance of models in other popular or emerg-
ing languages. Expanding the range of supported
languages will provide a more comprehensive eval-
uation of LLMs’ capabilities across diverse coding
environments.

Not Enough Tasks. Currently, the benchmark fo-
cuses on three core tasks: Dependency Recognition,
Repository Construction, and Multi-file Editing.
While these tasks are crucial, they do not encom-
pass all the challenges faced in real-world software
development. Including additional tasks such as
debugging, code refactoring, or performance opti-
mization would offer a more complete assessment
of LLMs in software engineering contexts.

Not Enough Models. Although we evaluate over
25 models, this number is not sufficient to represent
the full range of LLMs available, particularly as
new models continue to emerge. Expanding the
model pool would provide deeper insights into the
performance of various model architectures and
sizes, ensuring a more robust evaluation.

Future Updates. As the field of large language
models evolves, DEPENDEVAL will be updated to
include more languages, tasks, and models. This
will help ensure the benchmark remains relevant
and continues to provide valuable insights into the
growing capabilities of LLMs in handling complex
software engineering tasks.

References
Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed

Awadallah, Ammar Ahmad Awan, Nguyen Bach,
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat
Behl, Alon Benhaim, Misha Bilenko, Johan Bjorck,
Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav
Chaudhary, Dong Chen, Dongdong Chen, Weizhu
Chen, Yen-Chun Chen, Yi-Ling Chen, Hao Cheng,
Parul Chopra, Xiyang Dai, Matthew Dixon, Ro-
nen Eldan, Victor Fragoso, Jianfeng Gao, Mei Gao,
Min Gao, Amit Garg, Allie Del Giorno, Abhishek
Goswami, Suriya Gunasekar, Emman Haider, Jun-
heng Hao, Russell J. Hewett, Wenxiang Hu, Jamie
Huynh, Dan Iter, Sam Ade Jacobs, Mojan Javaheripi,
Xin Jin, Nikos Karampatziakis, Piero Kauffmann,
Mahoud Khademi, Dongwoo Kim, Young Jin Kim,
Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi
Li, Yunsheng Li, Chen Liang, Lars Liden, Xihui
Lin, Zeqi Lin, Ce Liu, Liyuan Liu, Mengchen Liu,

Weishung Liu, Xiaodong Liu, Chong Luo, Piyush
Madan, Ali Mahmoudzadeh, David Majercak, Matt
Mazzola, Caio César Teodoro Mendes, Arindam Mi-
tra, Hardik Modi, Anh Nguyen, Brandon Norick,
Barun Patra, Daniel Perez-Becker, Thomas Portet,
Reid Pryzant, Heyang Qin, Marko Radmilac, Liliang
Ren, Gustavo de Rosa, Corby Rosset, Sambudha Roy,
Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil
Salim, Michael Santacroce, Shital Shah, Ning Shang,
Hiteshi Sharma, Yelong Shen, Swadheen Shukla, Xia
Song, Masahiro Tanaka, Andrea Tupini, Praneetha
Vaddamanu, Chunyu Wang, Guanhua Wang, Lijuan
Wang, Shuohang Wang, Xin Wang, Yu Wang, Rachel
Ward, Wen Wen, Philipp Witte, Haiping Wu, Xiaoxia
Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu,
Weijian Xu, Jilong Xue, Sonali Yadav, Fan Yang,
Jianwei Yang, Yifan Yang, Ziyi Yang, Donghan Yu,
Lu Yuan, Chenruidong Zhang, Cyril Zhang, Jianwen
Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yu-
nan Zhang, and Xiren Zhou. 2024a. Phi-3 technical
report: A highly capable language model locally on
your phone. Preprint, arXiv:2404.14219.

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien
Bubeck, Ronen Eldan, Suriya Gunasekar, Michael
Harrison, Russell J. Hewett, Mojan Javaheripi, Piero
Kauffmann, James R. Lee, Yin Tat Lee, Yuanzhi
Li, Weishung Liu, Caio C. T. Mendes, Anh Nguyen,
Eric Price, Gustavo de Rosa, Olli Saarikivi, Adil
Salim, Shital Shah, Xin Wang, Rachel Ward, Yue
Wu, Dingli Yu, Cyril Zhang, and Yi Zhang. 2024b.
Phi-4 technical report. Preprint, arXiv:2412.08905.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.

Loubna Ben Allal, Raymond Li, Denis Kocetkov,
Chenghao Mou, Christopher Akiki, Carlos Munoz
Ferrandis, Niklas Muennighoff, Mayank Mishra,
Alex Gu, Manan Dey, et al. 2023. Santa-
coder: don’t reach for the stars! arXiv preprint
arXiv:2301.03988.

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, Eric Chu, Jonathan H. Clark, Laurent El
Shafey, Yanping Huang, Kathy Meier-Hellstern, Gau-
rav Mishra, Erica Moreira, Mark Omernick, Kevin
Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao,
Yuanzhong Xu, Yujing Zhang, Gustavo Hernandez
Abrego, Junwhan Ahn, Jacob Austin, Paul Barham,
Jan Botha, James Bradbury, Siddhartha Brahma,
Kevin Brooks, Michele Catasta, Yong Cheng, Colin
Cherry, Christopher A. Choquette-Choo, Aakanksha
Chowdhery, Clément Crepy, Shachi Dave, Mostafa
Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz,
Nan Du, Ethan Dyer, Vlad Feinberg, Fangxiaoyu
Feng, Vlad Fienber, Markus Freitag, Xavier Gar-
cia, Sebastian Gehrmann, Lucas Gonzalez, Guy Gur-
Ari, Steven Hand, Hadi Hashemi, Le Hou, Joshua
Howland, Andrea Hu, Jeffrey Hui, Jeremy Hur-
witz, Michael Isard, Abe Ittycheriah, Matthew Jagiel-

7158

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2412.08905

ski, Wenhao Jia, Kathleen Kenealy, Maxim Krikun,
Sneha Kudugunta, Chang Lan, Katherine Lee, Ben-
jamin Lee, Eric Li, Music Li, Wei Li, YaGuang Li,
Jian Li, Hyeontaek Lim, Hanzhao Lin, Zhongtao Liu,
Frederick Liu, Marcello Maggioni, Aroma Mahendru,
Joshua Maynez, Vedant Misra, Maysam Moussalem,
Zachary Nado, John Nham, Eric Ni, Andrew Nys-
trom, Alicia Parrish, Marie Pellat, Martin Polacek,
Alex Polozov, Reiner Pope, Siyuan Qiao, Emily Reif,
Bryan Richter, Parker Riley, Alex Castro Ros, Au-
rko Roy, Brennan Saeta, Rajkumar Samuel, Renee
Shelby, Ambrose Slone, Daniel Smilkov, David R.
So, Daniel Sohn, Simon Tokumine, Dasha Valter,
Vijay Vasudevan, Kiran Vodrahalli, Xuezhi Wang,
Pidong Wang, Zirui Wang, Tao Wang, John Wiet-
ing, Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting
Xue, Pengcheng Yin, Jiahui Yu, Qiao Zhang, Steven
Zheng, Ce Zheng, Weikang Zhou, Denny Zhou, Slav
Petrov, and Yonghui Wu. 2023. Palm 2 technical
report. Preprint, arXiv:2305.10403.

Anthropic. 2023. Introducing Claude.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Sidney Black, Stella Biderman, Eric Hallahan, Quentin
Anthony, Leo Gao, Laurence Golding, Horace
He, Connor Leahy, Kyle McDonell, Jason Phang,
Michael Pieler, Usvsn Sai Prashanth, Shivanshu
Purohit, Laria Reynolds, Jonathan Tow, Ben Wang,
and Samuel Weinbach. 2022. GPT-NeoX-20B: An
open-source autoregressive language model. In
Proceedings of BigScience Episode #5 – Workshop
on Challenges & Perspectives in Creating Large
Language Models, pages 95–136, virtual+Dublin.
Association for Computational Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual.

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-
ney Nguyen, Luna Phipps-Costin, Donald Pinckney,
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,
Molly Q Feldman, et al. 2023. Multipl-e: a scal-
able and polyglot approach to benchmarking neu-
ral code generation. IEEE Transactions on Software
Engineering.

Linzheng Chai, Shukai Liu, Jian Yang, Yuwei Yin,
Ke Jin, Jiaheng Liu, Tao Sun, Ge Zhang, Changyu
Ren, Hongcheng Guo, et al. 2024. Mceval: Mas-
sively multilingual code evaluation. arXiv preprint
arXiv:2406.07436.

Sahil Chaudhary. 2023. Code Alpaca: An instruction-
following LLaMA model for code generation.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, et al. 2023. Palm: Scaling lan-
guage modeling with pathways. Journal of Machine
Learning Research, 24(240):1–113.

Yangruibo Ding, Zijian Wang, Wasi Uddin Ah-
mad, Hantian Ding, Ming Tan, Nihal Jain, Mu-
rali Krishna Ramanathan, Ramesh Nallapati, Par-
minder Bhatia, Dan Roth, and Bing Xiang.
2023. Crosscodeeval: A diverse and multilin-
gual benchmark for cross-file code completion. In
Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang,
Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng
Sha, Xin Peng, and Yiling Lou. 2023. Classe-
val: A manually-crafted benchmark for evaluating
llms on class-level code generation. arXiv preprint
arXiv:2308.01861.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
bert: A pre-trained model for programming and nat-
ural languages. In Findings of the Association for
Computational Linguistics: EMNLP 2020, Online
Event, 16-20 November 2020, volume EMNLP 2020
of Findings of ACL, pages 1536–1547. Association
for Computational Linguistics.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y Wu, YK Li, et al. 2024a. Deepseek-
coder: When the large language model meets
programming–the rise of code intelligence. arXiv
preprint arXiv:2401.14196.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. 2024b. Deepseek-
coder: When the large language model meets
programming–the rise of code intelligence. arXiv
preprint arXiv:2401.14196.

7159

https://arxiv.org/abs/2305.10403
https://arxiv.org/abs/2305.10403
https://www.anthropic.com/index/introducing-claude
https://arxiv.org/abs/2108.07732
https://doi.org/10.18653/v1/2022.bigscience-1.9
https://doi.org/10.18653/v1/2022.bigscience-1.9
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
http://papers.nips.cc/paper_files/paper/2023/hash/920f2dced7d32ab2ba2f1970bc306af6-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/920f2dced7d32ab2ba2f1970bc306af6-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196

Siming Huang, Tianhao Cheng, Jason Klein Liu, Jiaran
Hao, Liuyihan Song, Yang Xu, J Yang, JH Liu,
Chenchen Zhang, Linzheng Chai, et al. 2024. Open-
coder: The open cookbook for top-tier code large
language models. arXiv preprint arXiv:2411.04905.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. 2024a. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, Kai Dang, Yang Fan,
Yichang Zhang, An Yang, Rui Men, Fei Huang,
Bo Zheng, Yibo Miao, Shanghaoran Quan, Yun-
long Feng, Xingzhang Ren, Xuancheng Ren, Jingren
Zhou, and Junyang Lin. 2024b. Qwen2.5-coder tech-
nical report. Preprint, arXiv:2409.12186.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. 2023. Swe-bench: Can language mod-
els resolve real-world github issues? arXiv preprint
arXiv:2310.06770.

Bowen Li, Wenhan Wu, Ziwei Tang, Lin Shi, John Yang,
Jinyang Li, Shunyu Yao, Chen Qian, Binyuan Hui,
Qicheng Zhang, Zhiyin Yu, He Du, Ping Yang, Dahua
Lin, Chao Peng, and Kai Chen. 2024a. Devbench: A
comprehensive benchmark for software development.
CoRR, abs/2403.08604.

Jia Li, Ge Li, Xuanming Zhang, Yihong Dong, and
Zhi Jin. 2024b. Evocodebench: An evolving code
generation benchmark aligned with real-world code
repositories. Preprint, arXiv:2404.00599.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161.

Jiaheng Liu, Ken Deng, Congnan Liu, Jian Yang, Shukai
Liu, He Zhu, Peng Zhao, Linzheng Chai, Yanan
Wu, Ke Jin, Ge Zhang, Zekun Moore Wang, Guoan
Zhang, Bangyu Xiang, Wenbo Su, and Bo Zheng.
2024. M2rc-eval: Massively multilingual repository-
level code completion evaluation.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023a. Is your code generated by chat-
gpt really correct? rigorous evaluation of large lan-
guage models for code generation. arXiv preprint
arXiv:2305.01210, abs/2305.01210.

Tianyang Liu, Canwen Xu, and Julian McAuley.
2023b. Repobench: Benchmarking repository-
level code auto-completion systems. arXiv preprint
arXiv:2306.03091.

Tianyang Liu, Canwen Xu, and Julian J. McAuley.
2023c. Repobench: Benchmarking repository-level
code auto-completion systems. abs/2306.03091.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
et al. 2024. Starcoder 2 and the stack v2: The next
generation.

Mayank Mishra, Matt Stallone, Gaoyuan Zhang, Yikang
Shen, Aditya Prasad, Adriana Meza Soria, Michele
Merler, Parameswaran Selvam, Saptha Surendran,
Shivdeep Singh, et al. 2024. Granite code models:
A family of open foundation models for code intelli-
gence. arXiv preprint arXiv:2405.04324.

MistralAI. 2024. Codestral. https://mistral.ai/
news/codestral. 2024.05.29.

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Sil-
vio Savarese, and Yingbo Zhou. 2023a. Codegen2:
Lessons for training llms on programming and natu-
ral languages. CoRR, abs/2305.02309.

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Sil-
vio Savarese, and Yingbo Zhou. 2023b. Codegen2:
Lessons for training llms on programming and natu-
ral languages. arXiv preprint arXiv:2305.02309.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu,
Huan Wang, Yingbo Zhou, Silvio Savarese, and
Caiming Xiong. 2023c. Codegen: An open large
language model for code with multi-turn program
synthesis. In International Conference on Learning
Representations.

OpenAI. 2023. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774.

Qiwei Peng, Yekun Chai, and Xuhong Li. 2024.
Humaneval-xl: A multilingual code generation
benchmark for cross-lingual natural language gen-
eralization. arXiv preprint arXiv:2402.16694.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li,
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang
Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical
report. Preprint, arXiv:2412.15115.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
preprint.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code Llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950.

7160

https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2404.00599
https://arxiv.org/abs/2404.00599
https://arxiv.org/abs/2404.00599
https://arxiv.org/abs/2410.21157
https://arxiv.org/abs/2410.21157
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2305.01210
https://doi.org/10.48550/ARXIV.2306.03091
https://doi.org/10.48550/ARXIV.2306.03091
https://mistral.ai/news/codestral
https://mistral.ai/news/codestral
https://doi.org/10.48550/ARXIV.2305.02309
https://doi.org/10.48550/ARXIV.2305.02309
https://doi.org/10.48550/ARXIV.2305.02309
https://arxiv.org/abs/2305.02309
https://arxiv.org/abs/2305.02309
https://arxiv.org/abs/2305.02309
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2308.12950

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code.

Disha Shrivastava, Denis Kocetkov, Harm de Vries,
Dzmitry Bahdanau, and Torsten Scholak. 2023a. Re-
pofusion: Training code models to understand your
repository. arXiv preprint arXiv:2306.10998.

Disha Shrivastava, Hugo Larochelle, and Daniel Tar-
low. 2023b. Repository-level prompt generation for
large language models of code. In Proceedings of the
40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning
Research, pages 31693–31715. PMLR.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu,
Binghuai Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and
Zhifang Sui. 2023. Large language models are not
fair evaluators. arXiv preprint arXiv:2305.17926.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing. Preprint, arXiv:1910.03771.

Di Wu, Wasi Uddin Ahmad, Dejiao Zhang, Murali Kr-
ishna Ramanathan, and Xiaofei Ma. 2024a. Repo-
former: Selective retrieval for repository-level code
completion. In Forty-first International Conference
on Machine Learning, ICML 2024, Vienna, Austria,
July 21-27, 2024. OpenReview.net.

Qinyun Wu, Chao Peng, Pengfei Gao, Ruida Hu, Haoyu
Gan, Bo Jiang, Jinhe Tang, Zhiwen Deng, Zhanming
Guan, Cuiyun Gao, Xia Liu, and Ping Yang. 2024b.
Repomastereval: Evaluating code completion via
real-world repositories. Preprint, arXiv:2408.03519.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin
Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and
Weizhu Chen. 2023a. Repocoder: Repository-level
code completion through iterative retrieval and gen-
eration. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2023, Singapore, December 6-10, 2023,
pages 2471–2484. Association for Computational
Linguistics.

Fengji Zhang, Bei Chen, Yue Zhang, Jin Liu, Daoguang
Zan, Yi Mao, Jian-Guang Lou, and Weizhu Chen.
2023b. Repocoder: Repository-level code comple-
tion through iterative retrieval and generation. arXiv
preprint arXiv:2303.12570.

Fengji Zhang, Bei Chen, Yue Zhang, Jin Liu, Daoguang
Zan, Yi Mao, Jian-Guang Lou, and Weizhu Chen.
2023c. RepoCoder: Repository-level code comple-
tion through iterative retrieval and generation. arXiv
preprint arXiv:2303.12570, abs/2303.12570.

7161

https://proceedings.mlr.press/v202/shrivastava23a.html
https://proceedings.mlr.press/v202/shrivastava23a.html
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/2408.03519
https://arxiv.org/abs/2408.03519
https://arxiv.org/abs/2303.12570
https://arxiv.org/abs/2303.12570
https://doi.org/10.48550/arXiv.2303.12570
https://doi.org/10.48550/arXiv.2303.12570

A Import Statements

Python Basic import(and rename): Use the "import" keyword followed by the module name or "as" keyword to give it an
alias, like "import xx","import xx as xxx".
Import specific content from a module(and rename): Use the "from" keyword followed by the module name and "import"
keyword (and "as" keyword), such as "from a import b as c".
Import multiple functions: use a comma-separated list within the import statement for importing multiple functions from a
module or package,like "from mymodule import function1, function2".
Absolute references: An absolute reference specifies the complete path to a resource from the root directory. For instance,
"from mypackage.mymodule","import myfunction".
Relative references: A relative reference specifies a path starting from the current location in the directory structure. For
example, "from . import sibling_module".

C Basic include: Use the #include directive followed by the header file name. Standard library headers are enclosed in angle
brackets < >, while user-defined headers are enclosed in double quotes " ". For example, #include <xx.h> or #include "xx.h".
Include specific content from a header file(and rename): C can use typedef or # define to rename data types or functions.
For example, typedef old_type new_type; or #define new_func old_func.
Absolute references: An absolute reference specifies the complete path to a resource from the root directory. In C, this is
typically used for specifying the full path to a header file or source file. For example, #include "/usr/include/myheader.h".
Relative references: A relative reference specifies a path starting from the current location in the directory structure. For
example, #include "./myheader.h" includes a header file from the current directory, or #include "../myheader.h" includes a
header file from the parent directory.

C++ Basic include: Use the #include directive followed by the header file name. Standard library headers are enclosed in
angle brackets < >, while user-defined headers are enclosed in double quotes " ". For example, #include <xx.h> or #include
"xx.h".
Include specific content from a header file(and rename): C++ allows you to include specific parts of a header file by using
namespace to refer to certain namespaces or classes. You can also rename or alias types or functions using using directives,
like "using namespace std" or "using std::vector".
Absolute references: An absolute reference specifies the complete path to a resource from the root directory. In C++, this is
typically used for specifying the full path to a header file or source file. For example, #include "/usr/include/myheader.h".
Relative references: A relative reference specifies a path starting from the current location in the directory structure. For
example, #include "./myheader.h" includes a header file from the current directory, or #include "../myheader.h" includes a
header file from the parent directory.

C# Basic using): In C#, you use the "using" keyword to import namespaces, which allow access to classes, structs, and other
members within those namespaces. For example, "using System"; allows access to the classes in the "System" namespace.
Import specific content from a namespace: C# can import specific types (such as classes or methods) from a namespace by
"using" followed by the type name. For instance, "using System.Console".
Absolute references: In C#, absolute references are typically used for referencing fully qualified type names (including the
namespace). For example, "System.Console.xx".

PHP Basic include: Use the "include" or "require" keyword followed by the path to the file you wish to include. You
can also use include_once or require_once to ensure the file is included only once. For example, "include ’myfile.php’" or
"require ’myfile.php’".
Include specific content from a file: PHP can include an entire file or use functions and classes defined in the included file.
To rename or alias functions, classes, or variables, you would use PHP’s "use" keyword in the context of namespaces. For
example, "use MyNamespace".
Absolute references: An absolute reference specifies the full path from the root directory. In PHP, this would be used to
include files from a specific path on the server, such as: "include ’/xx/xx/xx.php’".
Relative references: A relative reference specifies a path relative to the current directory. For example, "include ’./xx.php’"
or "include ’../xx.php’".

JAVA Basic import: In Java, the "import" keyword is used to include classes or entire packages from other files. By default,
Java does not support aliasing in imports like some other languages. To import a class, use "import package.ClassName".
Import all classes from a package: Java allows importing all the classes from a package by using the * wildcard. For
example, "import java.util.*".
Absolute references: An absolute reference in Java specifies the full path to a class, starting from the root of the classpath.
For example, "import xx.xx.MyClass".
Static imports: Java allows importing static members of a class, such as methods or constants, using the import static
keyword. For example, import static java.lang.Math.*; allows access to static methods like Math.sqrt() without needing to
prefix them with Math.

7162

JavaScript Basic import(and rename): Use the import keyword to bring in modules or specific parts of modules. The
general syntax is import <module> from ’<module-name>’, where <module> is the exported entity. To rename an import,
the as keyword can be used, like import originalName as alias from ’<module-name>’.
Import specific content from a module(and rename): JavaScript allows importing specific functions, objects, or values
from a module. This can be done by using the syntax. Additionally, renaming is possible with the as keyword. For example,
import func1 as f1, func2 from ’<module-name>’ imports func1 as f1 and func2 as-is.
Import multiple items from a module: Multiple exports from the same module can be imported in a single statement.
These are separated by commas inside curly braces. For example, import func1, func2, constant from ’<module-name>’.
Absolute references: An absolute reference in JavaScript specifies the complete URL or file path to the module or resource.
This often starts from the root directory or the full URL. For example, import func from ’/modules/myModule.js’ or import
func from ’https://example.com/myModule.js’.
Relative references: A relative reference in JavaScript refers to the file path starting from the current location in the directory
structure. This can be done using ./ for the current directory or ../ for the parent directory. For example, import func from
’./myModule.js’ imports from the current directory, while import func from ’../myModule.js’ imports from the parent
directory.

TypeScript Basic import(and rename): Use the import keyword to bring in modules or specific components from modules.
The syntax is import <module> from ’<module-name>’, where <module> refers to the default export of the module. To
rename an import, the as keyword is used, such as import originalName as alias from ’<module-name>’.
Import specific content from a module(and rename): TypeScript supports importing specific parts of a module using curly
braces. The as keyword can also be used to rename the imported elements. For example, import func1 as f1, func2 from
’<module-name>’ imports func1 as f1 and func2 with its original name.
Import multiple items from a module: Multiple items from the same module can be imported by listing them inside
curly braces, separated by commas. For instance, import func1, func2, variable from ’<module-name>’ imports multiple
functions and variables from the module.
Absolute references: An absolute reference in TypeScript specifies the full path to a module, either from the root di-
rectory or via a full URL. For example, "import myFunction from ’/xx/myModule’" or "import myFunction from
’https://xx/myModule’".
Relative references: A relative reference specifies the file path starting from the current directory. For example, "import
myFunction from ’./myModule’" or "import myFunction from ’../myModule’".

B Repository Collection

B.1 Repo Filter Criteria
We collect public GitHub repositories created before December 16, 2024, and focus on eight specific
programming languages. To streamline data processing, we apply several filtering criteria.

First, we exclude files where the average line length exceeds 100 characters or the maximum line length
surpasses 1000 characters. Additionally, files with fewer than 25% alphabetic characters are removed.

At the repository level, we enforce the following main conditions. (1) Repositories must fall within
the specified creation timeframe and must not be forks to ensure originality. (2) They must be primarily
written in one of the eight target programming languages listed in Table 2. (3) They must meet size
and popularity constraints: repositories should be smaller than 1MB for manageability, and they must
have at least three stars to reflect a minimum level of community interest. (4) Repositories must have
at least one commit in the last six months before the collection date to ensure they are not abandoned.
(5) Repositories must have at least one open or closed issue or pull request to indicate some level of
engagement from developers. (6) For repositories using dependency managers (e.g., package.json for
JavaScript, requirements.txt for Python), we check that these files are present and not empty to ensure the
repository is functional. (7) Repositories must contain a README file with at least 100 words to ensure
they provide sufficient context for analysis. (8) To maintain consistency, we exclude repositories that mix
multiple programming languages beyond a small threshold (e.g., more than 10% of files in a secondary
language).

B.2 README Filter Criteria
To ensure that the README file effectively serves its purpose by providing structured and comprehensive
information, we apply the following filtering criteria: (1) Structured Formatting: The README must
include appropriate titles and headings to organize content, making it easier for readers to navigate. (2)
Content Sufficiency: The document should meet a minimum character threshold to ensure it provides a
meaningful overview of the project rather than being overly brief. (3) Setup Instructions: The README
must contain setup-related keywords such as install, build, setup, download, compile, train, or run, ensuring

7163

that it provides essential instructions for setting up and using the project. (4) Project Structure References:
It should explicitly reference specific files or directories within the repository to help users understand
the project’s organization and locate key resources quickly. (5) License Information: The presence of
a license section or a direct reference to a LICENSE file is required to clarify usage permissions and
distribution rights.

B.3 Detailed Task Sample Filter Process
We applied different filtering strategies for the three tasks, with all prioritizing task difficulty and diversity
of repository topics.

Dependency Recognition Task. We categorized code snippets by token length (≤8K, 8K–16K, >16K),
but found an imbalance across languages. For example, in the >16K category, C had 1,329 samples, while
PHP had only 141. We initially selected 100 samples from each token length range for every language.
After removing duplicate snippets from the same repository, we developed scripts to analyze invocation
chain length, character length, and repository topic distribution. If imbalances were detected, we manually
adjusted the sample selection, resulting in 180 samples per language.

Repository Construction Task: We selected repositories with fewer than 12 invocation chains while
ensuring full file coverage. This resulted in varying sample counts across languages (e.g., Python: 230,
Java: 70). To manage manual verification costs, we aimed for 40–60 samples per language. Human
review filtered out non-compliant cases (Appendix C.1), and we adjusted the distribution to approximate
normality as in the dependency recognition task.

Multi-file Editing Task: We selected code snippets with chains of lengths 2, 3, and 4, ensuring they
came from different repositories. For each language, we generated 500–2000 samples (varying by
language) using GPT-4o. We then verified if the number of generated files matched the requirements and
used LLM to check whether the generated snippets met the criteria. We ran multiple rounds of refinement
and removed code comments from the snippets. Human annotators applied manual corrections, discarding
non-compliant samples and finalizing the dataset.

C Human Review Criteria

C.1 Repository Construction
Human annotators perform the following criteria to select the final set of samples:

First, the repository description should provide a brief and clear summary of the purpose and func-
tionality of the repository. It should be logically coherent, free from contradictions, and align with the
functional components of the repository. In addition, the description should include all important features
and functionalities of the repository, ensuring a comprehensive overview. Next, the functional description
for each file should clearly outline the core features and capabilities of the file. It should be accurate and
brief, reflecting the actual code behavior of the file while adhering to the conventions and terminology of
the repository.

Finally, the relationships between files, functions, and modules should be accurately represented in the
generated descriptions. The dependencies of each file and the interactions within the repository must be
clearly conveyed, ensuring that the dependencies reflect the actual structure of the repository.

C.2 Multi-file Editing
After the LLM-based filtering step, pre-selected samples are passed to human annotators for manual
verification. This process is designed to ensure accuracy and consistency across multiple files.

First, annotators check whether the new functionalities are described in a way that is consistent with the
code’s behavior and the intended programming logic. They then confirm that the changes align with the
existing codebase, are semantically correct, and do not introduce errors or bugs. Modifications must be
coherent not only within the specific file but throughout the project, maintaining consistency in terms of
structure, style, and performance. Annotators also cross-check that all modified files reflect the appropriate
changes, ensuring that updates in one file do not conflict with others.

7164

Static Analysis for Code Correctness. We use static analysis tools to ensure syntax correctness.
After verifying the logic of newly implemented functionalities, annotators apply language-specific static
analyzers to detect syntax errors:

• C, C++: Cppcheck

• C#: StyleCop

• Python: Pylint

• Java: SpotBugs

• TypeScript/JavaScript: ESLint

• PHP: PHPCS

Finally, annotators manually correct any remaining issues, including syntax errors and logical inconsisten-
cies with the intended requirements, to produce gold-standard code for evaluation.

D Diversity of Data

Figure 7: Topic distribution. Different programming languages and frameworks into various fields, such as
Development, Tools, Systems, Data Science, and more.

E Prompt Templates

E.1 Curating Prompts for Dependency Recognition Data

Data Curation for Dependency Recognition

You are an AI assistant that summarizes file functionality. Your task: 1. Read the file content
provided by the user. 2. Analyze and understand the file’s main purpose. 3. Summarize the
core functionality in 1-2 concise sentences. 4. Provide only the summary, without any additional
information or commentary.

7165

Data Curation for Dependency Recognition

You are an AI assistant that summarizes project functionality. Your task: 1. Read the README
content provided by the user. 2. Analyze and understand the project’s main purpose and features. 3.
Summarize the core functionality of the project in 2-3 concise sentences. 4. Provide the summary
in JSON format with two keys: "description" and "function". 5. The "description" should briefly
describe what the project is. 6. The "function" should summarize the main features or capabilities
of the project.
Example output:
{

"description":␣"An␣AI-powered␣game␣solver␣for␣2048",
"function":␣"Utilizes␣expectimax␣optimization␣with␣efficient␣bitboard␣representation␣to␣

play␣2048.␣Can␣control␣browser-based␣game␣and␣provides␣both␣command-line␣and␣browser-
control␣versions."

}

E.2 Curating Prompts for Multi-file Editing Data

Data Curation for In-place Edits with Chain Length 2

Based on the above code snippets, complete the following instructions and output according to the
format required in Step 3: 1. Identify interactions across two files:Identify a segment in one file
(#file 1) that is invoked by another file (#file 2). Exclude import parts in both files and specify only
relevant code segments in the corresponding files. 2. Add a new feature: • Modify the part in #file 1
that is being invoked by #file 2. • Update the corresponding code in #file 2 to handle the changes in
#file 1. • If new code snippets are required, append them at the end of each file. 3. Output format:
{
"called_code_segment":␣"\#file␣1␣segment␣being␣invoked␣(excluding␣`import`)",
"invoking_code_segment":␣"\#file␣2␣segment␣invoking␣\#file␣1␣(excluding␣`import`)",
"feature_description":␣"Description␣of␣the␣new␣feature",
"detailed_feature_description":␣"General␣explanation␣of␣the␣modification␣approach.",
"modified_complete_code":␣"Provide␣the␣complete␣code␣with␣the␣required␣modifications␣for␣

both␣files.␣Include␣the␣modified␣code␣snippets␣for␣\#file␣1␣and␣\#file␣2.␣Use␣comments:
␣\#Modify␣for␣modified␣parts␣and␣\#New␣for␣newly␣added␣parts␣to␣indicate␣whether␣the␣
change␣is␣an␣addition␣or␣modification."

}

Data Curation for In-place Edits with Chain Length 3

Based on the above code snippets, complete the following instructions and output according to the
format required in Step 3.
1. **Identify interactions across three files:**
- Identify a segment in one file (‘#file 1‘) that is invoked by another file (‘#file 2‘). - Identify how
this interaction is further used or invoked in a third file (‘#file 3‘). - Check if ‘#file 2‘ contains a
segment invoked by ‘#file 3‘. If so, document this invocation explicitly. - Exclude ‘import‘ parts in
all cases and specify only relevant code segments in the corresponding files.
2. **Add a new feature:**
- Modify the part in ‘#file 1‘ that is being called by ‘#file 2‘. - Update ‘#file 2‘ to handle the
modified code from ‘#file 1‘ and ensure any related code segments used by ‘#file 3‘ are updated
accordingly. - If ‘#file 3‘ directly interacts with updated segments in ‘#file 2‘, modify the code in
‘#file 3‘ to accommodate the changes. - If new code snippets are required, append them at the end
of each file.
3. Output format:

7166

{
"called_code_segment_file_1":␣"Relevant␣\#file␣1␣segment␣being␣invoked␣(excluding␣`

import`)",
"invoking_code_segment_file_2":␣"Relevant␣\#file␣2␣segment␣invoking␣\#file␣1␣(excluding␣

`import`)",
"called_code_segment_file_2":␣"Relevant␣\#file␣2␣segment␣being␣invoked␣by␣\#file␣3␣(

excluding␣`import`)",
"using_code_segment_file_3":␣"Relevant␣\#file␣3␣segment␣using␣or␣interacting␣with␣\#file

␣2␣or␣\#file␣1␣(excluding␣`import`)",
"feature_description":␣"Description␣of␣the␣new␣feature",
"detailed_feature_description":␣"General␣explanation␣of␣the␣modification␣approach,

including any changes to interactions between \#file 2 and \#file 3.",
␣␣"modified_complete_code":␣"Provide the complete code with the required modifications for

all three files. Include the modified code snippets for \#file 1, \#file 2, and \#file 3.
Use comments:␣\#Modify␣for␣modified␣parts␣and␣\#New␣for␣newly␣added␣parts␣to␣indicate␣
whether␣the␣change␣is␣an␣addition␣or␣modification."

}

Data Curation for In-place Edits with Chain Length 4

Based on the above code snippets, complete the following instructions and output according to the
format required in Step 4.
1. Identify interactions across four files:
• Identify a segment in one file (#file 1) that is invoked by another file (#file 2). • Identify how this
interaction is further used or invoked in a third file (#file 3). • Check if #file 2 contains a segment
invoked by #file 3. If so, document this invocation explicitly. • Check if #file 3 contains a segment
invoked by a fourth file (#file 4). If so, document this invocation explicitly. • Exclude import parts
in all cases and specify only relevant code segments in the corresponding files.
2. Add a new feature:
• Modify the part in #file 1 that is being called by #file 2. • Update #file 2 to handle the modified
code from #file 1 and ensure any related code segments used by #file 3 are updated accordingly.
• If #file 3 directly interacts with updated segments in #file 2, modify the code in #file 3 to
accommodate the changes. • Update #file 4 if it interacts with or depends on any updated segments
in #file 3. • If new code snippets are required, append them at the end of each file.
3. Output format:

{
"called_code_segment_file_1":␣"Relevant␣\#file␣1␣segment␣being␣invoked␣(excluding␣`

import`)",
"invoking_code_segment_file_2":␣"Relevant␣\#file␣2␣segment␣invoking␣\#file␣1␣(excluding␣

`import`)",
"called_code_segment_file_2":␣"Relevant␣\#file␣2␣segment␣being␣invoked␣by␣\#file␣3␣(

excluding␣`import`)",
"using_code_segment_file_3":␣"Relevant␣\#file␣3␣segment␣using␣or␣interacting␣with␣\#file

␣2␣or␣\#file␣1␣(excluding␣`import`)",
"called_code_segment_file_3":␣"Relevant␣\#file␣3␣segment␣being␣invoked␣by␣\#file␣4␣(

excluding␣`import`)",
"using_code_segment_file_4":␣"Relevant␣\#file␣4␣segment␣using␣or␣interacting␣with␣\#file

␣3␣(excluding␣`import`)",
"feature_description":␣"Description␣of␣the␣new␣feature",
"detailed_feature_description":␣"General␣explanation␣of␣the␣modification␣approach,

including any changes to interactions between the four files.",
␣␣"modified_complete_code":␣"Provide the complete code with the required modifications for

all four files. Include the modified code snippets for \#file 1, \#file 2, \#file 3, and
\#file 4. Use comments:␣\#Modify␣for␣modified␣parts␣and␣\#New␣for␣newly␣added␣parts␣to␣
indicate␣whether␣the␣change␣is␣an␣addition␣or␣modification."

}

7167

Data Curation for Expansion Edits with Chain Length 2

Based on the above code snippets, complete the following instructions and output according to the
format required in Step 3:
1. **Identify interactions across two files:**
- Identify a segment in one file (#file 1) that is invoked by another file (#file 2). - Exclude import
parts in both files and specify only relevant code segments in the corresponding files.
2. **Add a new feature:**
- Modify the part in #file 1 that is being invoked by #file 2. - Create a new file (‘#file 3‘) to
implement additional functionality for the new feature. - Update #file 1 to invoke code from #file
3 where applicable. - Update #file 2 to invoke code from #file 3 where applicable. - Ensure the
changes maintain compatibility across #file 1 and #file 2. - If new code snippets are required,
append them at the end of each file.
3. Output format:

{
"called_code_segment":␣"\#file␣1␣segment␣being␣invoked␣(excluding␣`import`)",
"invoking_code_segment":␣"\#file␣2␣segment␣invoking␣\#file␣1␣(excluding␣`import`)",
"new_file_code_segment":␣"Relevant␣code␣snippets␣added␣in␣\#file␣3␣(excluding␣`import`)",
"feature_description":␣"Description␣of␣the␣new␣feature",
"detailed_feature_description":␣"General␣explanation␣of␣the␣modification␣approach,

including the purpose and integration of \#file 3.",
␣␣"modified_complete_code":␣"Provide the complete code with the required modifications for

\#file 1, \#file 2, and the new file (\#file 3). Use comments:␣\#Modify␣for␣modified␣
parts␣and␣\#New␣for␣newly␣added␣parts␣to␣indicate␣whether␣the␣change␣is␣an␣addition␣or␣
modification."

}

Data Curation for Expansion Edits with Chain Length 3

Extended Instruction for Interactions Across Three Files
Based on the above code snippets, complete the following instructions and output according to the
format required in Step 3:
1. Identify interactions across three files: • Identify a segment in one file (#file 1) that is invoked
by another file (#file 2). • Identify how this interaction is further used or invoked in a third file
(#file 3). • Check if #file 2 or #file 3 contains segments that directly or indirectly depend on #file 1
or interact with one another. Document these invocations explicitly. • Exclude import parts in all
cases and specify only relevant code segments in the corresponding files.
2. Add a new feature: • Modify the part in #file 1 that is being invoked by #file 2 and/or #file 3. •
Create a new file (#file 4) to implement additional functionality for the new feature. • Update #file
1 to invoke code from #file 4 where applicable. • Update #file 2 and/or #file 3 to handle changes
in #file 1 and invoke relevant code from #file 4. • Ensure compatibility across all interactions
involving #file 1, #file 2, #file 3, and the new file (#file 4). • If new code snippets are required,
append them at the end of each file.
3. Output format:

7168

{
"called_code_segment_file_1":␣"\#file␣1␣segment␣being␣invoked␣(excluding␣`import`)",
"invoking_code_segment_file_2":␣"\#file␣2␣segment␣invoking␣\#file␣1␣(excluding␣`import`)

",
"invoking_code_segment_file_3":␣"\#file␣3␣segment␣invoking␣\#file␣1␣or␣\#file␣2␣(

excluding␣`import`)",
"new_file_code_segment":␣"Relevant␣code␣snippets␣added␣in␣\#file␣4␣(excluding␣`import`)",
"feature_description":␣"Description␣of␣the␣new␣feature",
"detailed_feature_description":␣"General␣explanation␣of␣the␣modification␣approach,

including the purpose and integration of \#file 4.",
␣␣"modified_complete_code":␣"Provide the complete code with the required modifications for

\#file 1, \#file 2, \#file 3, and the new file (\#file 4). Use comments:␣\#Modify␣for␣
modified␣parts␣and␣\#New␣for␣newly␣added␣parts␣to␣indicate␣whether␣the␣change␣is␣an␣
addition␣or␣modification."

}

E.3 Prompts for Inference

Prompt Template Used for Dependency Recognition

There are files #filename. Analyze their content and determine the dependency relationship
between files. Output with the following request.
1.Don’t give analysis process and using the same file title.
2.Simply and only output the dependency relationship list using its file names with the format
[’a.py’,’b.py’,’c.py’] if b depends on a , c depends on b.
3.You must strictly output the response with the format:[’a.py’,’b.py’,’c.py’] Example output:
["file1.py", "file2.py", "file3.py"]
Here’s the code snippet: #code_content.

Prompt Template Used for Repository Construction

You are an AI assistant tasked with generating a project structure based on the given repository
information. Your task:
1. Analyze the project description, function, and file information provided.
2. Generate a project structure that shows the dependencies between files.
3. Return the structure in the format [[file1, file2, file3], [file4, file5], ...], where each sublist
represents a chain of dependencies (file2 calls file1, file3 calls file2, etc.).
4. Provide only the list structure, without any additional explanation.
5. You must strictly follow the output format.
Here’s the project information:
Project Description: #description Project Function: #function
Files in the project: #files
Based on this information, please generate the project structure showing the dependencies between
files. Remember to return only the list structure without any additional explanation.
Example output format:
[["file1.py", "file2.py", "file3.py"], ["file4.py", "file5.py"]]

Prompt Template Used for Multi-file Editing

Based on the above code snippets, complete the following instructions and output according to the
format specified in Step 3:
1. Identify the segment in one file that is invoked by another file (excluding the import parts) and
specify the relevant code segment in the called file. 2. Modify the given code to implement the

7169

#function. This requires modifying the part being called. If new code snippets are needed, add
them to the end of each respective file. 3. Output format:

{
"called_code_segment":␣"\#file␣1␣segment␣being␣invoked␣(excluding␣`import`)",
"invoking_code_segment":␣"\#file␣2␣segment␣invoking␣\#file␣1␣(excluding␣`import`)",
"feature_description":␣"Description␣of␣the␣new␣feature",
"detailed_feature_description":␣"General␣explanation␣of␣the␣modification␣approach",
"modified_complete_code":␣"Provide␣the␣complete␣code␣with␣the␣required␣modifications.␣

Output␣the␣modified␣code␣snippets.␣Use␣comments␣like␣\#Modify␣for␣modified␣parts␣and␣\#
New␣for␣newly␣added␣parts␣to␣indicate␣whether␣the␣change␣is␣an␣addition␣or␣modification
."

}

7170

E.4 Prompts for Evaluation

Prompt Template Used for Evaluating Multi-file Editing

Gt: {gt} Pred: {pred}
Using Gt as the correct answer, compare the content of Pred with Gt and evaluate Pred based on the
following aspects. Each aspect contains tailored evaluation criteria to handle the complexities of
multi-file interactions and feature integration. The output must follow the JSON format described
in Point 6.
Evaluation Aspects
1. Correctness of Function Calls Objective: Evaluate the accuracy of all function calls between seg-
ments and across files. • Ensure: • Each invoking_code_segment correctly calls its corresponding
called_code_segment as per Gt. • Calls include appropriate parameter matching, order, and context
alignment. • Evaluation Criteria: • Does the function signature match, including parameter names,
types, and order? • Are correct arguments passed, meeting expectations in feature_description
and detailed_feature_description? • Is the pre- or post-logic necessary for context included? • Are
cross-file dependencies invoked correctly, as shown in modified_complete_code?
Scoring Rules: • 5 points: All function calls are completely correct and match Gt, including
parameters, order, and logical dependencies. • 4 points: Mostly correct with minor parameter or
comment issues but no major gaps. • 3 points: Partially correct; missing key parameters, logic, or
dependencies. • 2 points: Significant issues in invocation logic, causing likely runtime errors. • 0-1
points: Calls are incorrect, incomplete, or not implemented.
2. Alignment with Feature Requirements Objective: Check if the code in Pred aligns with
the intended feature and modification goals. • Ensure: • Every call reflects requirements in fea-
ture_description and detailed_feature_description. • The new or modified logic directly implements
the required functionality. • Evaluation Criteria: • Does the logic adhere to the functional goals
described? • Does it integrate with multi-file dependencies correctly (if applicable)? • Are the new
components in new_file_code_segment aligned with expectations?
Scoring Rules: • 5 points: Perfectly aligned with feature requirements; implementation is logically
complete. • 4 points: Correctly aligned but with potential optimizations or minor improvements. •
3 points: Partially fulfills requirements with clear gaps in alignment. • 2 points: Loosely aligned
with significant logic missing. • 0-1 points: Not aligned or entirely unrelated to the described
requirements.
3. Accuracy of Functionality Implementation Objective: Verify the correctness of the implemen-
tation, focusing on functional outcomes. • Evaluation Criteria: • Does the functionality fully
satisfy the requirements in feature_description? • Are components correctly loaded, initialized, or
referenced? • Are all dependencies resolved for seamless multi-file integration?
Scoring Rules: • 5 points: Fully accurate implementation without functional defects. • 4 points:
Mostly accurate with minor issues or deviations. • 3 points: Partially correct but lacking essential
steps or logic. • 2 points: Basic framework present but largely incomplete. • 0-1 points: Non-
functional due to missing or incorrect logic.
4. Completeness of Implementation Objective: Ensure that all functional components, including
new and modified ones, are fully implemented. • Evaluation Criteria: • Are all required segments
across files defined and updated per Gt? • Does the implementation cover all subparts described
in detailed_feature_description? • Are all new dependencies (#New segments) and modifications
(#Modify segments) accounted for?
Scoring Rules: • 5 points: Complete implementation with no omissions. • 4 points: Nearly
complete, with only minor omissions. • 3 points: Significant missing functionality, but partially
meets requirements. • 2 points: Too many missing components, achieving minimal functionality. •
0-1 points: Nearly all components are missing or incorrect.
5. Code Quality Objective: Assess the overall quality, maintainability, and readability of the
code. • Evaluation Criteria: • Readability: Clear naming, concise comments, and consistent

7171

style. • Maintainability: Modular structure, minimal duplication, and extensibility. • Efficiency:
Appropriate algorithms, data structures, and resource use.
Scoring Rules: • 5 points: Excellent quality with clean, efficient, and maintainable code. • 4 points:
Good quality, but minor readability or efficiency issues. • 3 points: Average quality; readable but
not optimized or modular. • 2 points: Poor quality; lacks structure or suffers from inefficiencies. •
0-1 points: Unreadable, unstructured, or inefficient code.
6. JSON Output Format

{
"correctness_score":␣5,
"purpose_alignment_score":␣4,
"functionality_accuracy_score":␣5,
"functionality_completeness_score":␣4,
"code_quality_score":␣5

}

7172

F Task Case

Instance of Dependency Recognition

"files":["’bilireq/bilireq/login/_init_.py’", "’bilireq/bilireq/typing.py’", "’bilire-
q/test/test_login.py’"],
"content":

import asyncio
from base64 import b64encode
from io import BytesIO
from typing import Optional, Union

from qrcode.image.pure import PyPNGImage
from qrcode.main import QRCode
from _typing import T_Auth
from auth import Auth, WebAuth
from ..exceptions import ResponseCodeError
from ..utils import get, post
from .pwd_login import pwd_login as _pwd_login
from .qrcode_login import get_qrcode_login_info, get_qrcode_login_result
from .sms_login import send_sms
from .sms_login import sms_login as _sms_login
from .web_qrcode_login import get_web_qrcode_login_info, get_web_qrcode_login_url

BASE_URL = "https://passport.bilibili.com/api/v2/oauth2/"

async def refresh_token(auth: T_Auth = None, *, reqtype="app", **kwargs):
url = f"{BASE_URL}refresh_token"
return await post(url, auth=auth, reqtype=reqtype, **kwargs)

async def get_token_info(auth: T_Auth = None, *, reqtype="app", **kwargs):
url = f"{BASE_URL}info"
return await get(url, auth=auth, reqtype=reqtype, **kwargs)

class Login:
auth_code: str
qrcode_url: str
tel: int
cid: int
captcha_key: str

async def get_web_qrcode_url(self) -> str:
r = await get_web_qrcode_login_url()
self.auth_code = r["qrcode_key"]
self.qrcode_url = r["url"]
return self.qrcode_url

async def get_qrcode_url(self) -> str:
r = await get_qrcode_login_info()
self.auth_code = r["auth_code"]
self.qrcode_url = r["url"]
return self.qrcode_url

async def get_qrcode(self, url: Optional[str] = None,
print_qr=False, base64_encode=False,

url = url or (await self.get_qrcode_url()
if login_type == "app"
else await self.get_web_qrcode_url())

qr = QRCode()
qr.add_data(url)

if print_qr:
qr.print_tty()
return None

img = qr.make_image(image_factory=PyPNGImage)

7173

buf = BytesIO()
img.save(buf)

if not base64_encode:
return buf.getvalue()

return b64encode(buf.getvalue()).decode()

async def web_qrcode_login(self, auth_code=None, retry=-1, interval=1):
auth_code = auth_code or self.auth_code
Implementation continues...

"gt":["’bilireq/bilireq/_typing.py’", "’bilireq/bilireq/login/_init_.py’", "’bilireq/test/test_login.py’"
]

Instance of Repository Construction

"repo": "got-your-back",
"description": "GYB is a command-line tool for backing up Gmail messages to a local computer.",
"function": "Utilizes Gmail’s API over HTTPS to securely download and store emails locally,
offering installation options for Linux, MacOS, and Windows.",
"files": [{ "file": "got-your-back/fmbox.py", "function": "This library provides functionality
to read and manipulate mbox files sequentially, allowing extraction, modification, and removal
of email headers, as well as iterating through messages in an mbox file." }, "file": "got-your-
back/gyb.py", "function": "This script is a command-line tool for backing up and restoring Gmail
messages. It supports various actions such as backup, restore, count, purge, and label management,
and integrates with Google APIs for Gmail and Google Workspace services. The tool uses OAuth
2.0 for authentication and supports both user accounts and service accounts." , "file": "got-your-
back/labellang.py", "function": "Unable to read file content."],
"gt": "[[’got-your-back/labellang.py’, ’got-your-back/gyb.py’], [’got-your-back/fmbox.py’, ’got-
your-back/gyb.py’]]"

Instance of Repository Construction

"repo": "ip_basic",

"content":

'import␣ip_basic/ip_basic/vis_utils.py'
import cv2

def cv2_show_image(window_name, image, size_wh=None, location_xy=None):
"""Helper function for specifying window size and location when displaying images with cv2.

Args:
window_name: str window name
image: ndarray image to display
size_wh: window size (w, h)
location_xy: window location (x, y)

"""

if size_wh is not None:
cv2.namedWindow(window_name, cv2.WINDOW_KEEPRATIO | cv2.WINDOW_GUI_NORMAL)
cv2.resizeWindow(window_name, *size_wh)

else:
cv2.namedWindow(window_name, cv2.WINDOW_AUTOSIZE)

if location_xy is not None:
cv2.moveWindow(window_name, *location_xy)

7174

cv2.imshow(window_name, image)

'import␣ip_basic/demos/depth_completion.py'
import glob
import os
import sys
import time
import cv2
import numpy as np
import png
from ip_basic import depth_map_utils
from ip_basic import vis_utils

def main():
"""Depth maps are saved to the 'outputs' folder."""
##############################
Options
##############################
Validation set
input_depth_dir = os.path.expanduser('~/Kitti/depth/depth_selection/val_selection_cropped/

velodyne_raw')
data_split = 'val'

Test set
input_depth_dir = os.path.expanduser('~/Kitti/depth/depth_selection/

test_depth_completion_anonymous/velodyne_raw')
data_split = 'test'

Fast fill with Gaussian blur @90Hz (paper result)
fill_type = 'fast'
extrapolate = True
blur_type = 'gaussian'

Fast Fill with bilateral blur, no extrapolation @87Hz (recommended)
fill_type = 'fast'
extrapolate = False
blur_type = 'bilateral'

Multi-scale dilations with extra noise removal, no extrapolation @ 30Hz
fill_type = 'multiscale'
extrapolate = False
blur_type = 'bilateral'

Save output to disk or show process
save_output = True

##############################
Processing
##############################
if save_output:

Save to Disk
show_process = False
save_depth_maps = True

else:
if fill_type == 'fast':

raise ValueError('"fast"␣fill␣does␣not␣support␣show_process')

Show Process
show_process = True
save_depth_maps = False

Create output folder
this_file_path = os.path.dirname(os.path.realpath(__file__))
outputs_dir = this_file_path + '/outputs'
os.makedirs(outputs_dir, exist_ok=True)

output_folder_prefix = 'depth_' + data_split
output_list = sorted(os.listdir(outputs_dir))

7175

if len(output_list) > 0:
split_folders = [folder for folder in output_list if folder.startswith(

output_folder_prefix)]
if len(split_folders) > 0:

last_output_folder = split_folders[-1]
last_output_index = int(last_output_folder.split('_')[-1])

else:
last_output_index = -1

else:
last_output_index = -1

output_depth_dir = outputs_dir + '/{}_{:03d}'.format(output_folder_prefix,
last_output_index + 1)

if save_output:
if not os.path.exists(output_depth_dir):

os.makedirs(output_depth_dir)
else:

raise FileExistsError('Already␣exists!')
print('Output␣dir:', output_depth_dir)

Get images in sorted order
images_to_use = sorted(glob.glob(input_depth_dir + '/*'))

Rolling average array of times for time estimation
avg_time_arr_length = 10
last_fill_times = np.repeat([1.0], avg_time_arr_length)
last_total_times = np.repeat([1.0], avg_time_arr_length)

num_images = len(images_to_use)
for i in range(num_images):

depth_image_path = images_to_use[i]

Calculate average time with last n fill times
avg_fill_time = np.mean(last_fill_times)
avg_total_time = np.mean(last_total_times)

Show progress
sys.stdout.write('\rProcessing␣{}␣/␣{},␣'

'Avg␣Fill␣Time:␣{:.5f}s,␣'
'Avg␣Total␣Time:␣{:.5f}s,␣'
'Est␣Time␣Remaining:␣{:.3f}s'.format(

i, num_images - 1, avg_fill_time, avg_total_time,
avg_total_time * (num_images - i)))

sys.stdout.flush()

Start timing
start_total_time = time.time()

Load depth projections from uint16 image
depth_image = cv2.imread(depth_image_path, cv2.IMREAD_ANYDEPTH)
projected_depths = np.float32(depth_image / 256.0)

Fill in
start_fill_time = time.time()
if fill_type == 'fast':

final_depths = depth_map_utils.fill_in_fast(
projected_depths, extrapolate=extrapolate, blur_type=blur_type)

elif fill_type == 'multiscale':
final_depths, process_dict = depth_map_utils.fill_in_multiscale(

projected_depths, extrapolate=extrapolate, blur_type=blur_type,
show_process=show_process)

else:
raise ValueError('Invalid␣fill_type␣{}'.format(fill_type))

end_fill_time = time.time()

Display images from process_dict
if fill_type == 'multiscale' and show_process:

7176

img_size = (570, 165)

x_start = 80
y_start = 50
x_offset = img_size[0]
y_offset = img_size[1]
x_padding = 0
y_padding = 28

img_x = x_start
img_y = y_start
max_x = 1900

row_idx = 0
for key, value in process_dict.items():

image_jet = cv2.applyColorMap(
np.uint8(value / np.amax(value) * 255),
cv2.COLORMAP_JET)

vis_utils.cv2_show_image(
key, image_jet,
img_size, (img_x, img_y))

img_x += x_offset + x_padding
if (img_x + x_offset + x_padding) > max_x:

img_x = x_start
row_idx += 1

img_y = y_start + row_idx * (y_offset + y_padding)

Save process images
cv2.imwrite('process/' + key + '.png', image_jet)

cv2.waitKey()

Save depth images to disk
if save_depth_maps:

depth_image_file_name = os.path.split(depth_image_path)[1]

Save depth map to a uint16 png (same format as disparity maps)
file_path = output_depth_dir + '/' + depth_image_file_name
with open(file_path, 'wb') as f:

depth_image = (final_depths * 256).astype(np.uint16)

pypng is used because cv2 cannot save uint16 format images
writer = png.Writer(width=depth_image.shape[1],

height=depth_image.shape[0],
bitdepth=16,
greyscale=True)

writer.write(f, depth_image)

end_total_time = time.time()

Update fill times
last_fill_times = np.roll(last_fill_times, -1)
last_fill_times[-1] = end_fill_time - start_fill_time

Update total times
last_total_times = np.roll(last_total_times, -1)
last_total_times[-1] = end_total_time - start_total_time

if __name__ == "__main__":
main()

"called_code_segment":

def cv2_show_image(window_name, image, size_wh=None, location_xy=None):
"""Helper function for specifying window size and location when

7177

displaying images with cv2.

Args:
window_name: str window name
image: ndarray image to display
size_wh: window size (w, h)
location_xy: window location (x, y)

"""
if size_wh is not None:

cv2.namedWindow(window_name,
cv2.WINDOW_KEEPRATIO | cv2.WINDOW_GUI_NORMAL)

cv2.resizeWindow(window_name, *size_wh)
else:

cv2.namedWindow(window_name, cv2.WINDOW_AUTOSIZE)

if location_xy is not None:
cv2.moveWindow(window_name, *location_xy)

cv2.imshow(window_name, image)

"feature_description": "Add an option to save the displayed images to disk.",
"detailed_feature_description": "Modify the ‘cv2_show_image‘ function in #file 1 to accept an
additional parameter ‘save_path‘ which, if provided, will save the displayed image to the specified
path. Update the invocation in #file 2 to include this new parameter and save the images to a
specified directory.",
"modified_complete_code":
file 1
import cv2

def cv2_show_image(window_name, image, size_wh=None, location_xy=None, save_path=None):
"""
Helper function for specifying window size and location when displaying images with cv2.

Args:
window_name: str, window name
image: ndarray, image to display
size_wh: tuple, window size (w, h)
location_xy: tuple, window location (x, y)
save_path: str, path to save the image

"""
if size_wh is not None:

cv2.namedWindow(window_name, cv2.WINDOW_KEEPRATIO | cv2.WINDOW_GUI_NORMAL)
cv2.resizeWindow(window_name, *size_wh)

else:
cv2.namedWindow(window_name, cv2.WINDOW_AUTOSIZE)

if location_xy is not None:
cv2.moveWindow(window_name, *location_xy)

cv2.imshow(window_name, image)

if save_path is not None:
cv2.imwrite(save_path, image)

file 2
if fill_type == 'multiscale' and show_process:

img_size = (570, 165)

x_start = 80
y_start = 50
x_offset = img_size[0]
y_offset = img_size[1]
x_padding = 0
y_padding = 28

7178

img_x = x_start
img_y = y_start
max_x = 1900

row_idx = 0
for key, value in process_dict.items():

image_jet = cv2.applyColorMap(np.uint8(value / np.amax(value) * 255), cv2.COLORMAP_JET)
save_path = 'process/' + key + '.png'
vis_utils.cv2_show_image(key, image_jet, img_size, (img_x, img_y), save_path=save_path)

img_x += x_offset + x_padding
if (img_x + x_offset + x_padding) > max_x:

img_x = x_start
row_idx += 1

img_y = y_start + row_idx * (y_offset + y_padding)

cv2.waitKey()

G Crowdsourcing

In conducting our study, we identified several potential risks to participants. Firstly, there is a risk to
privacy and confidentiality, as participants are required to share personal information. To mitigate this, all
data will be anonymized and stored securely, with access restricted to authorized personnel only. Secondly,
there may be psychological risks, such as discomfort or stress during the tasks. To address this, we have
included detailed instructions and debriefing sessions to ensure participants feel supported throughout the
process. Additionally, participants have the right to withdraw from the study at any time without penalty.
Lastly, while there are no significant physical risks associated with our procedures, we will monitor
participants for any signs of distress and provide appropriate support. We pay each participant an hourly
rate of $10. The primary participants we recruit are college students majored in software engineering with
master degree (Age ranging 23-28).

7179

