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Abstract

Large language models (LLMs) have made sig-
nificant strides in text-to-SQL tasks; however,
small language models (SLMs) are crucial due
to their low resource consumption and efficient
inference for real-world deployment. Due to
resource limitations, SLMs struggle to accu-
rately interpret natural language questions and
may overlook critical constraints, leading to
challenges such as generating SQL with in-
correct logic or incomplete conditions. To
address these issues, we propose PARSQL, a
novel framework that leverages SQL parsing
and reasoning. Specifically, we design PARSer,
an SQL parser that extracts constraints from
SQL to generate sub-SQLs for data augmenta-
tion and producing step-by-step SQL explana-
tions (reason) via both rule-based and LLM-
based methods. We define a novel text-to-
reason task and incorporate it into multi-task
learning, thereby enhancing text-to-SQL per-
formance. Additionally, we employ an effi-
cient SQL selection strategy that conducts di-
rect similarity computation between the gener-
ated SQLs and their corresponding reasons to
derive the final SQL for post-correction. Ex-
tensive experiments show that our PARSQL
outperforms models with the same model size
on the BIRD and Spider benchmarks. Notably,
PARSQL-3B achieves 56.98% execution accu-
racy on BIRD, rivaling 7B models with signifi-
cantly fewer parameters, setting a new state-of-
the-art performance. Code can be found here.

1 Introduction

Text-to-SQL, or NL2SQL, is a longstanding
and pivotal task focusing on transforming nat-
ural language (NL) questions into executable
SQLs !, streamlining database interactions for non-
experts and significantly enhancing information re-
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LSELECT name FROM country WHERE population > (SELECT
MIN(population) FROM country WHERE continent = ‘Asia’)
ORDER BY area DESC LIMIT 1

The query selects countries with a population greater than the minimum
population in 'Asia’, sorts them by area in descending order, limits the
result to the top country, and retrieves its name.

Figure 1: Common errors in SLMs and their mitiga-
tion using PARSQL. SLMs often overlook implicit con-
straints, such as the descending order (DESC) implied
by “the largest”, and misinterpret semantic nuances, like
using MAX(population) instead of MIN(population)
due to an incorrect understanding of “larger than any
country”. PARSQL employs new question/reason pairs
and augmented pair data to train the model, enhancing
query constraint sensitivity and reducing the semantic
gap between questions and the generated SQLs.

trieval efficiency (Deng et al., 2022; Katsogiannis-
Meimarakis and Koutrika, 2023; Liu et al., 2024a).
The primary challenge lies in converting the flexi-
ble and diverse expressions of NL into standardized
formal SQLs (Zhang et al., 2024b).

Recently, methods leveraging closed-source (Ta-
laei et al., 2024; Li et al., 2024a; Gao et al., 2024,
Luo et al., 2024) and open-source (Li et al., 2024b;
Dai et al., 2025) large language models (LLMs)
have proliferated, consistently advancing perfor-
mance, making this difficulty less of a limita-
tion 2. While research predominantly focuses on

Zhttps://bird-bench.github.io/
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LLMs (Liu et al., 2024a,b), small language models
(SLMs) offer comparable applicability in practical
scenarios, with advantages such as low resource
consumption and ease of local deployment. These
traits make SLMs well-suited for resource-limited
and privacy-sensitive contexts (Fan et al., 2024).
However, due to their smaller model sizes, SLMs
still encounter challenges in converting free-form
NL into constrained and formal SQL statements.

Figure 1 highlights two types of errors: SLMs
often overlook implicit constraints in NL ques-
tions, such as missing conditions (Li et al., 2023a;
Scholak et al., 2021), ordering rules (e.g., descend-
ing order implied by the largest”). Additionally,
the generated SQLs may be syntactically simi-
lar but logically incorrect, such as misinterpret-
ing larger than any country” or incorrectly using
MAX(population) instead of MIN(population).
These issues arise due to the semantic gap between
flexible and diverse NL and highly structured SQL.

Some methods have employed data augmenta-
tion to enhance the model’s semantic understanding
of NL (Zhang et al., 2024a; Li et al., 2024b; Yang
et al., 2024). The expansion of the corpus aims
to improve the model’s performance and reduce
instances of overlooked constraints. However, data
augmentation mainly focuses on diversifying train-
ing data and improving domain adaptation (Yang
et al., 2024), which remains insufficient for cap-
turing constraint differences in NL. Moreover, to
bridge the semantic gap between free-form NL and
structured and formal SQL, many studies (Pour-
reza and Rafiei, 2023; Talaei et al., 2024; Zhang
et al., 2023a) have integrated Chain-of-Thought
(CoT) (Chu et al., 2024) in LLMs, generating inter-
mediate reasoning steps to mitigate errors in direct
mapping. However, CoT often proves ineffective in
SLMs and may exacerbate errors (Wei et al., 2022),
leading to inaccurate SQL generation.

To address the challenges of constraint differenti-
ation and semantic alignment in SLMs, we propose
PARSQL, a novel framework that combines SQL
parsing and reasoning. Specifically, PARSQL intro-
duces an effective SQL parser, PARSer, to decom-
pose SQLs into abstract syntax trees (ASTs) (Wang
et al., 1997), yielding constraints, sub-SQLs, and
reasoning paths. The parsed results enable creat-
ing augmented “new pairs” (question/SQL pairs)
that resemble the original data without certain con-
straints and “reasons” to provide step-by-step SQL
generation explanations as CoT reasoning. Subse-
quently, we introduce an auxiliary task, “text-to-

reason” (NL2Reason), and apply multi-task learn-

ing to bridge the semantic gap between NL and

SQLs. Finally, PARSQL employs an efficient SQL

selection strategy that directly computes the sim-

ilarity between the generated SQLs and their cor-

responding reasons to yield the final SQL for post-

correction without requiring additional training.
We summarize our contributions as follows:

* We propose PARSQL to improve text-to-SQL in
SLMs by integrating SQL parsing and reason-
ing. It introduces innovative data augmentation,
multi-task learning for enhanced reasoning and
constraint recognition, and an efficient SQL se-
lection strategy for post-correction.

* We introduce PARSer, which decomposes SQL
into sub-SQLs and reasoning paths. It constructs
question/sub-SQL pairs and provides step-by-
step explanations based on rules.

* We show that PARSQL boosts SLM performance.
PARSQL-3B achieves 56.98% execution accu-
racy, matching 7B models with fewer parameters.
It improves constraint sensitivity by up to 5.83%
and semantic similarity by 12.20%.

2 Related Work

2.1 Text-to-SQL with SLMs

Small Language Models (SLMs), typically with
fewer than 10B parameters (Nguyen et al., 2024),
have received less attention in text-to-SQL tasks
compared to LLMs (Liu et al., 2024a). However,
they offer advantages like lower resource consump-
tion and broader applicability (Nguyen et al., 2024;
Fan et al., 2024). SLMs also outperform pre-trained
models by leveraging larger corpora (Li et al.,
2024b). The CodeS introduced open-source mod-
els ranging from 1B to 15B parameters, advancing
SLMs in text-to-SQL (Li et al., 2024b). Addition-
ally, distillation or task-specific fine-tuning can fur-
ther enhance SLM performance (Hsieh et al., 2023;
Kang et al., 2023; Fan et al., 2024). We propose
a novel multi-task learning approach, using step-
by-step SQL explanation as an auxiliary task to
improve SLM performance in text-to-SQL.

2.2 Data Augmentation

Many methods leverage LLMs to generate syn-
thetic data (Yang et al., 2024; Li et al., 2024b;
Zhang et al., 2024a). SENSE (Yang et al., 2024)
employs both strong and weak LLMs to gener-
ate preference data, improving domain generaliza-
tion, while CodeS (Li et al., 2024b) introduces a
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Figure 2: Data preparation and multi-task learning for PARSQL.

bi-directional augmentation technique for domain
adaptation. Fin-SQL (Zhang et al., 2024a) uses
LLMs to expand data, addressing the challenge of
limited training data. Differently, we focus on SQL
parsing to generate authentic sub-SQLs for ques-
tions generation, with emphasis on enhancing the
model’s ability to identify constraint differences.

2.3 Text-to-SQL with Abstract Syntax Trees

The Abstract Syntax Tree (AST) (Wang et al.,
1997) provides a foundational structure for parsing
and generating SQL queries. Early grammar-based
decoders, such as RAT-SQL (Wang et al., 2020)
and IRNet (Guo et al., 2019a), introduced tree-
structured methods for generating ASTs and pars-
ing them into SQL. While these approaches (Guo
et al., 2019b; Zhang et al., 2023b) emphasize syn-
tactic information, they fail to preserve reason-
ing information. Our work revisits ASTs, demon-
strating their dual role as both a syntactic scaf-
fold and a structured representation of reasoning
steps. By decomposing ASTs into sub-SQL com-
ponents and tracking their transformations, we de-
velop rule-based methods that generate NL expla-
nations aligned with these transformations. Unlike
template-based approaches limited to predefined
syntax patterns (Elgohary et al., 2020, 2021), our
method systematically covers all syntactic struc-
tures in datasets such as BIRD and Spider. These
explanations serve as "reasons" for data augmenta-
tion, improving semantic alignment.

3 Methodology

Problem Definition Formally, given an NL ques-
tion ) and a database D with schema S, the text-to-
SQL task aims to translate @) into an SQL query y
that can be executed on D to answer the question ().
The database D contains the schema S = (7,C, R)
of a triplet, which includes table names 7, column
names C and foreign key relations R.

Overall PARSQL consists of three main steps:
First, the data preparation step utilizes PARSer to
generate “new pairs” and “reason pairs”. Rule-
based and LLM-based methods are employed to
generate reasons describing the step-by-step SQL
generation process. Second, multi-task learning is
applied to enhance PARSQL’s sensitivity to con-
straints in the questions using “new pairs”, while
leveraging ‘“reason pairs” to aid in understand-
ing the underlying logic of SQL generation. Fi-
nally, during inference, PARSQL generates two
outputs: SQL statements and their corresponding
reasons. An efficient selection strategy is employed
to choose the final SQL with the highest score, cal-
culated based on the similarity of SQL and its rea-
son. Figure 2 illustrates the first two steps, while
Figure 4 demonstrates the inference process.

3.1 PARSer for SQL Parsing and Reasoning

We designed PARSer to construct “new pairs” and
“reason pairs” data, which decomposes an SQL into
sub-SQLs and translates an SQL using a rule-based
method, as shown in Figure 3.

Decomposing SQL into sub-SQLs  Specifically,
PARSer begins by parsing the SQL query into
an Abstract Syntax Tree (AST), e.g., using SQL-
Glot (Mao, 2024) or Apache Calcite (Begoli et al.,
2018). It then traverses the AST to extract con-
straints based on the type of each node. A con-
straint is defined as a subtree within the AST, where
the root is an operator node, and all children are
non-operator nodes; see Appendix A.1.2 for the
definition of node types. As illustrated in Fig. 3, in
the WHERE clause, there are two constraints: age=18
and sex=F, each having an Equal operation node
as the root, with children nodes of non-operation
type. By isolating individual constraints from the
AST, different sub-SQL queries can be generated.
For instance, removing the constraint age=18 and
reconstructing the remaining AST results in a sub-
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and {sex} equals {F}, finally return the values of {name}.

Figure 3: Illustration of PARSer ’s sub-SQLs splitting and rule-based SQL explanation process. Each constraint in

the AST is highlighted in a different color.

SQL: SELECT name FROM person WHERE sex=F.

Rule-based SQL Translation Since SQL en-
gines follow a specific order when executing the
clauses of a query’, we traverse the constraints
in the order of FROM, WHERE, GROUP BY, HAVING,
ORDER BY, and SELECT to align with this execution
sequence. This approach allows us to explore dif-
ferent reasoning paths, enabling the step-by-step
parsing of SQL queries diversely. For example,
in the WHERE clause, there are two parallel con-
straints, yielding two different sequences of pro-
cessing these constraints. We refer to this order of
traversal as the reasoning path. For each node in the
AST, we define an explanation template; detailed in
Appendix A.1.3. Guided by the reasoning path, we
traverse each AST node and translate it into a NL
description based on the corresponding template.
For example, the template for a FROM node is “From
the table {}”, where {3} represents the node’s
content. Similarly, the template for a WHERE node
is “filter where {}”, and for an Equal node, the
template is “{} equals {}”.

3.2 Augmented Data Generation

After obtaining constraints, sub-SQLs, and rule-
based generated reasons, via parsing an SQL via
PARSer, we generate two types of augmented data:
* Augmented (question, SQL) pairs: A pair con-
sists of a question generated from a given parsed
sub-SQL using a prompt template, as shown in
Fig. 9. The question resembles the original but
omits certain constraints from the original SQL.
* (question, reason) pairs: In a pair, the question
is given from the original question/SQL pair, and
the generated “reason” is a step-by-step expla-
nation of the SQL. In addition to the aforemen-

3hittps://sqlglot.com/sqlglot.html

tioned rule-based method for generating “rea-
son,”, we also employ an LLM-based approach,
utilizing a prompt template in Fig. 11.

3.3 Multi-task Learning

We apply multi-task learning to train PARSQL on
two tasks: NL2SQL and NL2Reason, aiming to
enhance the model’s differentiation ability. For
a question (), we first follow Li et al. (2024b) to
construct the database prompts (DP) and prepare
the corresponding task’s input by a prefix token:

zp = [P+ DP + Q (1)

where P = SQL for NL2SQL and P = REASON
for NL2Reason. We then apply multi-task learning
for supervised fine-tuning (Hsieh et al., 2023) using
LoRA (Hu et al., 2022a), minimizing the overall

loss (here denote the loss on a single instance):

|y |

L=- log(Po(y® [y, oso)
=1
REASON‘

ly
=X D 1og(Pa (UMY, Zreason) ()
i=1

where P represents the conditional probability of
PARSQL generating the outputs, A is a hyperpa-
rameter balanceing the loss on the NL2SQL and
NL2Reason tasks. We train separately on rule-
based and LLM-based reason pairs, resulting in
two variants: PARSQL,,;. and PARSQL ;.

3.4 SQL Selection

PARSQL incorporates an efficient SQL selection
strategy for post-correction. As illustrated in Fig. 4,
during inference, PARSQL first generates several
SQLs and the corresponding reasons. The SQLs
are then converted into NL explanations using a
rule-based method, and compared with the reasons
to compute the N-gram similarity, without requir-

664


https://sqlglot.com/sqlglot.html

Schema What is the average horsepower of the cars before orin 19807 ]

______ N —

! SQLs Rule-based reasons [[[reasons]l

PARSQL — L ————— T
Other SQL

<::| ( N-grams similarity J

Max score SQL

SELECT avg(horsepower) FROM cars_data WHERE YEAR <= 1980 l

SELECT avg(horsepower) FROM cars_data WHERE YEAR < 1980 l

Proper reason

From the table cars_data, filter where year is less than or equal
to 1980, finally return the values of the average of horsepower.

Figure 4: SQL selection strategy based on N-gram simi-
larity between SQL and reason in PARSQL.

ing additional training. The SQL with the highest
similarity is selected as a result. This strategy en-
hances the efficiency of post-correction using rea-
sons, especially for outputs that are semantically
similar but logically flawed.

4 Experiments

4.1 Experimental Settings

Baselines For supervised fine-tuning, nearly all
baselines are derived from the state-of-the-art
(SOTA) text-to-SQL approaches listed on the offi-
cial leaderboards of the BIRD and Spider bench-
marks (Li et al., 2023a, 2024b; Yang et al., 2024;
Li et al., 2023b; Scholak et al., 2021). We select
SFT CodeS as our primary competitive baseline
and present the results obtained by re-running the
provided checkpoints and codes (Li et al., 2024b).
Additionally, we compare PARSQL with strong
LLM-based methods (Pourreza and Rafiei, 2023;
Gao et al., 2024; Li et al., 2024a; Luo et al., 2024).

In the SQL selection strategy, we apply two base-
lines: (1) The first-valid-execution method selects
the first executable SQL generated by the model (Li
et al., 2024b, 2023a). (2) The execution-guided
self-consistency method selects the SQL with the
highest consistency in execution results through a
majority vote (Liu et al., 2024a,b).

Datasets We conduct experiments on two pop-
ular text-to-SQL benchmarks: BIRD (Li et al.,
2023c) and Spider (Yu et al., 2018). We also assess
robustness using three variants: Spider-DK (Gan
et al., 2021b), Spider-Syn (Gan et al., 2021a), and

*This also applies to the results in Table 2 and Table 3.

BIRD Dev

Methods
EX (%) VES (%)
Prompting Methods w/ Closed-Source LLMs
CHASE-SQL + Gemini (Pourreza et al., 2024) 73.01 73.0/-
CHESS + GPT-4 (Talaei et al., 2024) 65.00 -
PTD-SQL + GPT-4 (Luo et al., 2024) 57.0 57.71-
SuperSQL + GPT4 (Li et al., 2024a) 58.5 61.99/-
DAIL-SQL + GPT-4 (Gao et al., 2024) 54.76 56.08 / -
Fine-tuning Models w/ Open-Source LLMs
RESDSQL-3B + NatSQL (Li et al., 2023a) 439 45.64 /-
SFT Llama2-7B (Li et al., 2024b) 45.37 46.98 / -
SENSE-7B (Yang et al., 2024) 51.8 -
SFT CodeS-7B (Li et al., 2024b) 57.00 58.80/72.54
SFT CodeS-1B (Li et al., 2024b) 49.54 51.07/62.49

PARSQL-1B, 51.69 (+2.15) 67.71 (+5.22)

PARSQL-1By, 51.76 (+2.22) 67.96 (+5.47)
SFT CodeS-3B (Li et al., 2024b) 5502 56.54/70.96
PARSQL-3B, 56.00 (+0.98) 71.67 (+0.71)
PARSQL-3By;, 56.98 (+1.96) 72.43 (+1.47)

Table 1: Comparison on BIRD Dev: “-/-” in the VES
column indicates that the results are copied from the
original paper and reproduced by us. Values in paren-
theses record PARSQL improvement over SFT CodeS
with the same model size®.

Spider-Realistic (Deng et al., 2021). BIRD in-
cludes 9,428 training and 1,534 development sam-
ples, while Spider has 8,659 training and 1,034
development samples. Details of the datasets are
provided in Appendix A.4.1.

Metrics For the BIRD benchmark, we utilize the
official evaluation script®, which includes the Exe-
cution Accuracy (EX) and Valid Efficiency Score
(VES). EX measures whether the generated SQL
produces the same execution result as the ground
truth SQL. VES is calculated as the ratio of the
execution time of the ground truth SQL to that of
the predicted SQL. For the Spider benchmark, we
adhere to the official evaluation protocol and uti-
lize EX and test-suite accuracy (TS) (Zhong et al.,
2020) metrics®, where TS is a more reliable met-
ric to verify whether a SQL query consistently
passes all EX checks across various tests gener-
ated through database augmentation.

Implementation Details All the experiments are
run on a server with 8 NVIDIA RTX 3090 GPUs
and an AMD EPYC 7742 CPU of 128 GB mem-
ory. Details of each step are provided below: (1)
Data construction: The BIRD and Spider train-
ing sets are parsed by PARSer to extract sub-SQLs
and rule-based (question, reason) pairs. We utilize

GLM-4-0520 (Zeng et al., 2024) to generate aug-

Shttps://bird-bench.github.io/
®https://yale-lily.github.io/spider
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Methods Spider Dev

EX (%) TS (%)
Prompting Methods w/ Closed-Source LLMs
PURPLE + GPT-4 (Ren et al., 2024) 87.8 83.3
PTD-SQL + GPT-4 (Luo et al., 2024) 85.7 -
SuperSQL + GPT4 (Li et al., 2024a) 87.0 -
DIN-SQL+GPT-4 (Pourreza and Rafiei, 2023) 82.8 74.2
DAIL-SQL + GPT-4 (Gao et al., 2024) 83.1 76.6
Fine-tuning Models w/ Open-Source LLMs

RESDSQL-3B + NatSQL (Li et al., 2023a) 84.1 73.5
Graphix-T5-3B + PICARD (Li et al., 2023b) 81.0 75.0
T5-3B + PICARD (Scholak et al., 2021) 79.3 69.4
SFT Llama2-7B (Li et al., 2024b) 77.8 73.0
SENSE-7B (Yang et al., 2024) 83.2 81.7
SFT CodeS-7B (Li et al., 2024b) 84.7 79.4
SFT CodeS-1B (Li et al., 2024b) 71.8 71.2
PARSQL-1B,, 80.6 (+2.8)  73.8 (+2.6)
PARSQL-1By, 80.2 (+2.4) 73.7 (+2.5)
SFT CodeS-3B (Li et al., 2024b) 82.2 76.3
PARSQL-3Be 83.5(+1.3) 773 (+1.1)
PARSQL-3By;, 83.8(+1.6) 77.7(+1.4)

Table 2: Comparison on Spider Deyv.

mented “new pairs” and LLM-based “reason pairs”.
(2) Schema linking: The database prompt is con-
structed following SFT CodeS (Li et al., 2024b)
because the schema filter in SFT CodeS achieves
exceptional performance on BIRD, allowing to ob-
tain the relevant database schema and values, along
with additional metadata. (3) Training: We fine-
tune models using LoRA (Hu et al., 2022b) on
CodeS-1B and CodeS-3B (Li et al., 2024b). The
maximum input length is set to 4,096. The learning
rate is set to 1e-4 with a cosine warmup scheduler.
Training is conducted for 10 epochs with a batch
size of 8 and A of 0.8. (4) Inference: We set the
beam size to 4 and limited the maximum output
token length to 256 for both SQL and reason gen-
eration. For PARSQL,,., we apply SQL selection
based on N-grams. For PARSQLy;,,, we adopt the
first-valid-execution strategy.

4.2 Main Results

Evaluation on In-domain Benchmarks Ta-
ble 1 reports the results of compared methods
on BIRD Deyv, highlighting the following: (1)
Both PARSQL,,, and PARSQLy, outperform
SFT CodeS with the same model sizes, specifically
1B and 3B. Notably, PARSQL-3By;,,, improves the
EX score by 1.96% over SFT CodeS-3B, matching
SFT CodeS-7B’s performance with only a 0.02%
difference. (2) PARSQL-3B surpasses closed-
source baselines like DIN-SQL and DAIL-SQL,
which rely on GPT-4, establishing a new SOTA for
small-parameter models on complex BIRD tasks.
Table 2 demonstrates similar improvements on

] PARSQL-3Brye [C1 w/oreason [ SFT CodeS-3B

80
77.62 (+10.46)

e
75 A
N
S 7177 (+]0.94)72A82 (+12.20)
=}
S 70 A
n 67.16 67.86 (+5.41) 67.54 (+6.88)
2
= 62.44
E 60.82 60.62 60.66
.= 60
wn

W
W

BIRD P gder D Svkde"syz '\der—?\“\ﬁ“%v\“e"DK
0

Figure 5: Comparison of similarity between questions
and SQLs on five datasets.

Spider Dev, a simpler dataset. PARSQL-1B,,;.
achieves a 2.8% increase in EX and a 2.6% im-
provement in TS over SFT CodeS-1B, indicating
fewer minor errors. Overall, PARS(QL performs
exceptionally well on both complex and simple
tasks. Additionally, PARSQL,,;. offers compara-
ble performance to PARSQL;,, at lower API costs,
making it suitable for low-cost settings.

Robustness Evaluation Table 3 evaluates
PARSQL’s robustness on three Spider variants:
Spider-Syn, Spider-Realistic, and Spider-DK,
highlighting the following: (1) PARSQL out-
performs SFT CodeS of the same model size in
average performance across its both variants. (2)
PARSQL-3By;, surpasses RESDSQL-3B, T5-3B,
and SFT CodeS-3B in average performance, estab-
lishing itself as the top performer at the 3B scale.
This highlights the effectiveness of PARSQLy;,, in
enhancing out-of-domain performance.

4.3 Ablation Studies

Effect of Key Components Table 4 reports the
ablation studies of PARSQL-3B on BIRD Deyv,
highlighting the following: (1) Removing “rea-
son pairs” significantly impacts performance, with
drops of 0.92% for PARSQL-3B,,;. and 1.9% for
PARSQL-3By,,, highlighting the critical role of
“reason pairs”. (2) Even without using LLM-
generated data (“new pairs”), PARSQL-3B,.
achieves a performance of 55.41%, outperform-
ing CodeS-3B (55.02%). This demonstrates that
the performance gains do not stem from LLM-
based augmentation, but rather from improvements
brought by NL2Reason tasks. PARSQL, despite re-
moving components such as LLM-augmented data,
still surpasses the small-model SOTA, highlighting
its effectiveness in reducing the semantic gap, im-
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Methods Spider-Syn Spider-Realistic Spider-DK Average
EX (%) TS (%) EX (%) TS (%) EX (%) EX (%)
SQL-PaLM+PalLM 2 (Sun et al., 2024) 74.6 - 77.6 - 66.5 72.90
FastRATex+GPT-4 (Shen et al., 2024) 74.4 - 80.9 - 72.3 75.86
TA-SQL+GPT-4 (Qu et al., 2024) - - 79.5 - 72.9 -
DART-SQL+GPT-3.5 (Mao et al., 2024) - - 79.3 - 71.4 -
ChatGPT (Li et al., 2023c) 58.6 48.5 634 49.2 62.6 61.53
RESDSQL-3B + NatSQL (Li et al., 2023a) 76.9 66.8 81.9 70.1 66.0 74.93
T5-3B + PICARD (Scholak et al., 2021) 69.8 61.8 71.4 61.7 62.5 67.90
SENSE-7B (Yang et al., 2024) 72.6 64.9 82.7 75.6 77.9 77.73
SFT CodeS-7B (Li et al., 2024b) 74.8 67.4 82.3 76.8 72.9 76.67
SFT CodeS-1B (Li et al., 2024b) 64.7 56.9 70.1 62.0 63.2 66
PARSQL-1B,e 67.2 (+2.5) 59 +2.1) 72.8 (+2.7) 65 (+3.0) 64.3 (+1.1) 68.1 (+2.1)
PARSQL-1By;, 65.1 +0.4) 573 (+04) 722 (+21) 62.8(+0.8) 65.8 (+2.6) 67.7 (+1.7)
SFT CodeS-3B (Li et al., 2024b) 73.1 65.4 78.9 72.8 70.3 74.1
PARSQL-3B,e 72.9 (-02) 64.8(-06) 79.3 +04) T4.2+14)  T70.7 (+0.4) 74.3 (+0.2)
PARSQL-3By, 73.9 +0.8) 66.6 (+1.2) 81.1 (+2.1)  72.8 (+0.0) 69.9 (-0.4) 74.97 (+0.87)

Table 3: Comparison on Spider variants.

EX(%) VES(%)
PARSQL-3B,,. 56.00 71.67
w/0 new pairs 55.41(-0.59) 71.25¢-0.42)
w/o rule-based reason pairs ~ 55.08(-0.92) 70.20(-1.47)
w/o SQL selection 55.61(-0.39) 71.43(-0.24)
PARSQL-3By, 56.98 72.46
w/0 new pairs 56.06(-0.92) 71.59(-0.87)
w/o LLM-based reason pairs  55.08(-1.9) 70.20(-2.26)

Table 4: Ablation study on the components of PARSQL.

Methods BIRD (EX%) Spider (EX%)
RVS RVS+CSD RVS RVS +CSD
SFT CodeS-1B 53 38.57 76 66.8

PARSQL-1B,. 54(+1.0) 43.95(+5.38) 78(+2.0) 71.7(+4.9)

SFT CodeS-3B 59 46.19 80 71.2
PARSQL-3B,,e 59 52.02(+5.83) 81(+1.0) 73.9(+2.7)

Table 5: Model performance in RVS and adding CSD.

proving interpretability, and enhancing reasoning
transparency. These results underscore the impor-
tance of PARSQL in bridging the semantic gap
between natural language questions and SQL, and
in improving the reasoning capabilities necessary
for accurate SQL generation.

Why “new pairs” is Helpful? To further explore
the importance of “new pairs”, we randomly sam-
pled 100 samples from the Dev sets to create a
Random Validation Subset (RVS). For each RVS
sample, we generate sub-SQLs and correspond-
ing questions, forming the Constraint-Sensitivity
Datasets (CSD), with 123 samples for BIRD and
84 for Spider as shown in Appendix A.4.4.

Table 5 presents the model’s performance on
both test cases. While both models perform closely
on RVS, PARSQL shows significant gains after
adding CSD: a 5.38% increase on BIRD and 4.9%
on Spider for PARSQL-1B,,., and 5.83% (BIRD)
and 2.7% (Spider) at the 3B scale, respectively.
The improvement highlights PARSQL’s sensitivity
to question constraints, its ability to translate these
constraints into SQL clauses, and the effectiveness
of “new pairs” in handling ambiguous queries.

Why “reason pairs” is Helpful? To explore the
role of “reason pairs”, we calculate the vectors’ co-
sine similarity between the questions and the gen-
erated SQLs across different models, utilizing the
last layer of the hidden states of the corresponding
counterparts to form the vectors. Figure 5 reports
the similarity scores on five datasets. The results
indicate that incorporating “reason pairs” signifi-
cantly boosts similarity, with scores on BIRD Dev
and Spider Dev increasing by over 10%. Com-
bining these findings with results from Table 4,
it is evident that training with “reason pairs” im-
proves PARSQL'’s capabilities in SQL generation
and semantic interpretation, aligning question in-
tents more closely with SQL semantics.

Effect of Two Types of Generated “reasons”
To investigate the effect of two “reason” gener-
ation methods, namely, rule-based and LLM-based,
we compute the statistics of the “reason pairs*:
similarities between the reasons and the questions
via embedding and N-gram methods, and the av-
erage length of the reasons. Figure 6 illustrates
the correlation between these three indicators and
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Methods BIRD Dev Spider Dev Spider-Syn Spider-Realistic ~ Spider-DK
EX VSE EX TS EX X EX TS EX
Baselines (Solutions in PARSQL-3B,,,.)
First-valid-execution 55.61 7143 834 770 728 646 79.1 74.0 70.5
Execution-guided self-consistency 5489 69.75 825 761 702 621 783 73.2 70.1
Oracle 63.56 76.14 87.5 809 80.2 723 839 78.3 78.3
Based on similarity between SQLs and reasons
Hidden state embedding 50.2  63.14 785 715 682 586 752 66.5 65.2
all-mpnet-base-v2 (Reimers, 2021) 55.28 70.2 80.1 727 67.8 59.1 748 68.5 67.5
GTEvl1.5-en-large (Zhang et al., 2024c) 5554 7043 81.8 745 69.0 59.7 758 71.1 68.8
Based on similarity between rule-based NL explanations of SQL and reasons
all-mpnet-base-v2 (Reimers, 2021) 55.61 70.86 83.1 77.0 729 647 79.1 74.4 70.7
GTEvI1.5-en-large (Zhang et al., 2024c)  55.8 71.84 835 773 724 644 789 74.2 70.1
N-grams 56.0 7167 835 773 729 648 793 74.2 70.7
Table 6: Comparison of different SQL selection strategies on PARSQL-3B,,,.
EX(%) VES(%) Dev EX (%) /
Granite-3B-Code 51.30 66.41 Embeddi 5698 /
w/ PARSQLj;, 52.93(+1.63)  68.33(+1.92) mbedcing Ny Dev EX (%)
653 ‘
DeepSeek-Coder-1.3B 4694 61.72 e PARSQL.
w/ PARSQL 48.57(+1.63)  63.39(+1.67) 57.3 / : PARSQL
CodeS-1B 49.54 62.49 BIRD /
w/ PARSQL, 51.76(+222)  67.96(+5.47) N-grams = 42.1 1372 / 519 627 Embedding
Spider
CodeS-3B 55.02 70.96 /
w/ PARSQLs, 56.98(+1.96)  72.43(+1.47) 199/ 347
208~/ 198 36.8
N Average Length / N
Table 7: Transferability of PARSQL on BIRD Deyv. of Reason / 183 -grams

EX(%) 1B 3B 7B
SFT CodeS 76.4 80.1 82.6
PARSQL,. 78.1(+17) 822(+1.1) 83.3(+0.7)

Table 8: Impact of Model Scale on Spider Dev.

model performance, revealing that PARSQL per-
forms better with semantically closer and shorter
“reasons.” Unlike rule-based methods that generate
detailed explanations, LLM-based methods typi-
cally abstract SQL concepts into concise reasoning,
aligning more effectively with the questions and
reducing the semantic gaps.

Effect of Selection Strategy Table 6 com-
pares different SQL selection strategies for
PARSQL-3B,,;. across five datasets and highlights:
(1) Rule-based SQL explanations, using either sen-
tence embeddings or N-grams, generally outper-
form the baselines; (2) N-grams outperform em-
beddings on four datasets (except Spider-DK) due
to better alignment with model-generated reasons,
while embeddings may lose semantic details, es-

7 Average Length of Reason

Figure 6: Performance of PARSQL,,;. and PARSQL
w.r.t. “reasons” on the training sets of BIRD and Spider.

pecially when reasons are longer; (3) Direct SQL-
reason similarity performs worse, emphasizing the
semantic gap between SQLs and NL, which is miti-
gated through rule-based SQL explanations. (4)
Oracle sets the upper bound for SQL selection.
The rule-based method may misselect a query if
the model generates the correct SQL but fails to
produce the corresponding reason, lowering the
similarity score. For more experimental details and
results, please refer to Appendix A.4.5.

Transferability of PARSQL Table 7 reports the
performance of widely-used baselines on BIRD
Dev to explore the transferability of PARSQL.
For each base model, the first row reports its per-
formance when fine-tuned solely on the BIRD
training set, while the second row (denoted as
“w/ PARSQLy;,,,”) reflects results after further fine-
tuning on the LLM-generated augmented data from
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Model Easy Medium Hard Extra All
SFT CodeS-1B 91.10 83.60 68.40 51.80 77.80
PARSQL-1By,  91.90(+0.80)  83.60(+0.00)  73.60(+5.20)  53.00(+1.20)  80.20(+2.40)
PARSQL-1B.  93.50(+2.40)  87.0(+3.40)  70.10(+1.70) 54.80(+3.00)  80.60(+2.80)
SFT CodeS-3B 93.50 87.00 73.60 61.40 82.20
PARSQL-3By,  94.80(+1.30) 88.60(+1.60)  79.90(+6.30)  58.40(-3.00)  83.80(+1.60)
PARSQL-3B,.  93.50(+0.00)  87.40(+0.40) 74.10(+0.50)  67.50(+6.10)  83.50(+1.30)

Table 9: EX across queries of varying levels of difficulty on Spider Dev (%).

PARSQL. Across all evaluated models, PARSQL
consistently improves both execution accuracy
(EX) and verification-based semantic accuracy
(VES), demonstrating its strong generalizability.
For instance, on Granite-3B-Code, PARSQL;,
boosts EX from 51.30% to 52.93% (+1.63%) and
VEX from 66.41% to 68.33% (+1.92%), indicating
a substantial gain in semantic alignment. These
results highlight that PARSQL not only offers a
simple yet effective augmentation pipeline but also
transfers well across different architectures and pa-
rameter scales, making it a broadly applicable solu-
tion for improving text-to-SQL performance.

Impact of Model Scale on Performance Ta-
ble 8 shows the performance of PARSQL and SFT
CodeS across different model sizes (1B, 3B, 7B)
on the Spider dev set. All models are evaluated
with a beam size of 1 to avoid out-of-memory is-
sues, which may restrict PARSQL’s SQL selec-
tion capabilities. Despite this limitation, PARSQL
consistently outperforms SFT CodeS at all scales:
+1.7% at 1B, +1.1% at 3B, and +0.7% at 7B. These
improvements demonstrate that PARSQL is effec-
tive even with smaller models, and its advantage is
most pronounced at the 1B scale. As model size
increases, the performance gap narrows—likely be-
cause larger models can implicitly capture semantic
alignment, reducing the relative impact of external
reasoning supervision (‘“reason pairs”). Nonethe-
less, PARSQL maintains a consistent edge, sug-
gesting that reasoning guidance remains beneficial
even for stronger backbones.

Fine-grained Analysis on Hardness Spider’s
difficulty labels reveal PARSQL’s superiority
across all levels, as shown in Table 9. PARSQL-1B
shows a significant performance improvement
across all difficulty levels, with the highest gains
as follows: Easy (2.4%), Medium (3.4%), Hard
(5.20%), and Extra Hard (3.0%). PARSQL-3B also
demonstrates notable improvements: Easy (1.3%),
Medium (1.6%), Hard (6.3%), and Extra Hard

(6.1%). This indicates that PARSQL has a stronger
advantage in handling Hard and Extra Hard lev-
els, benefiting from the enhanced constraint recog-
nition and reasoning capabilities provided by the
“new pairs” and “reason pairs”.

5 Conclusion

We propose PARSQL to enhance the performance
of SLMs for text-to-SQL tasks by leveraging SQL
parsing and reasoning through novel data augmen-
tation and efficient selection strategies. PARSQL
utilizes PARSer to generate sub-SQLs and step-by-
step explanations, offering more detailed insights
into SQL syntax for data augmentation. Addi-
tionally, PARSQL incorporates multi-task learn-
ing to improve constraint differentiation and rea-
soning, alongside an efficient SQL selection strat-
egy for post-correction. Extensive experimental
results show that PARSQL outperforms SLMs in
constraint sensitivity and semantic similarity be-
tween NL and SQLs, with PARSQL-3B rivaling
7B models despite having fewer parameters.

6 Limitations

We present several limitations as follows:

e In the "reason" generation process, our rule-
based method currently only supports the SQLite
dialect for SQL. While it can parse all SQL
queries in the BIRD and Spider datasets, it may
fail to parse SQL from other dialects.

* When adopting closed-source models for data
generation, we rely solely on rule-based methods
for data cleaning, which may affect the quality of
the generated data. More data generation meth-
ods can be further explored.

* PARSer currently focuses exclusively on SQL
processing. Expanding it to other tasks, such as
code generation or mathematical computation,
through the use of abstract syntax trees for data
augmentation and rule-based reasoning steps, re-
mains a promising area for future research.
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A Appendix

A.1 Details of PARSer

Algorithm 1: PARSer

Input: SQL
Output: subSQLs, ReasoningPaths

1 subSQLs < set();

2 ReasoningPaths < [];

3 Reasons < [];

4 ast + ParserToAst (SQL) ;

s Constraintlds <—GetConstraints (ast);

6 DBinaryAst « AstNode (ast) ;

7 for id in Constraintlds do

8 | TravrseAST(BinaryAst,id, subSQLs)
9 Function TravrseAST (node, id, subSQLs):

10 subSQLs.add(node.ast.tosql()) ;

11 if not node.left and not node.right then

12 ast = DeleteConstraint(node.ast, id) ;
13 node.left < AstNode (ast) ;

14 node.right < AstNode (node.ast);
15 return 0

16 TravrseAST(node.left, id, subSQLs) ;
17 TravrseAST(node.right, id, subSQLs);
18 return 0

19 Leaves < GetAllLeaves(BinaryAst) ;

20 ReasoningPaths < CombinePath(Leaves) ;
21 for path in ReasoningPaths do

2 | Reasons.add(sqlexplanation(path, ast)) ;

23 return subSQLs, ReasoningPaths, Reasons

PARSer is a SQL disassembly tool we developed.
It features the capabilities of generating sub-SQLs
and translating SQL statements based on prede-
fined rules. The detailed functionality of PARSer
will be explained below.

A.1.1 Pipeline of PARSer

Algorithm 1 outlines the procedure of parser:

* Line 4 parses the SQL into an AST.

* Line 5 gets the set of constraints in the AST based
on each node type. Detailed information about
these rules is provided in the Appendix A.1.2.

* Line 6 initializes a binary tree to store results,
with the AST placed in the root node.

* Lines 7-8 deletes each constraint and save the
deleted AST in binary tree.

* Lines 9-18 defines a method to remove constraint
in the AST from the leaf nodes of the binary tree,
assigning the resulting new AST and a backup of
the original AST as the child nodes.

* Lines 19 extract all possible sub-SQLs from the
leaf nodes of the binary tree.

* Lines 20 identify the inclusion relationships of
constraints in sub-SQLs and retrieve all existing
reasoning paths.

Non-
operational
type nodes

Column, Table, Identifier, Literal,
Null, Datatype, TableAlias

Main body types:

SELECT, FROM, WHERE, EXISTS,
IIF, CASE, CASE WHEN, JOIN,
INNER JOIN, BETWEEN, LIKE,
LIMIT, ORDER BY, GROUP BY,
DESC,ASC, HAVING, SUBQUERY,
WINDOW, OVER

Arithmetic operation types:

AND, OR, ADD (+), SUB (-), MUL (*),
DIV (/), GT (>), GTE (>=),

LT (<), LTE (<=), EQ (=), NEQ (!=),
UNION, INTERSECT

Built-in function types:

AVG, COUNT, MAX, MIN, ROUND,
SUM, ABS, NOW, CAST

Operational
type nodes

Table 10: Operational and non-operational type nodes.

 Lines 21-22 traverse each inference path, traverse
the AST according to the order of the inference
path, and translate each node based on the rules.

A.1.2 Constraint Identification

Constraints are defined as subtrees within the AST,

where the root node represents an operator, and all

child nodes are non-operator types. The classifi-
cation of each node type in AST is shown in the

Table 10.

* Non-operational type nodes include columns,
tables, identifiers, Literals, etc.

* Operational types nodes are defined as nodes
whose operation objects are non-operational
nodes. In simple terms, an operation node can be
defined as a constraint.

Generally speaking, the subquery node in SQL rep-

resents a distinct SQL query. We treat it as a sep-

arate constraint and perform constraint decompo-
sition on the subquery independently. A subquery

(also known as an inner query or nested query) is a

query that is embedded within another SQL query,

Sub-query 1 is a sub-query node in sub-query 2.
For each sub-SQL, we can determine the con-

straints based on the following criteria:

* Dependencies exist between constraints,
necessitating careful judgment before dele-
tion. For example, the constraint “WHERE
movies.movie_popularity > 1000 relies on the
JOIN constraint “INNER JOIN movies ON
ratings.movie_id = movies.movie_id.”  This
indicates that the column referenced in the
WHERE clause belongs to the movies table.
Consequently, when deleting the JOIN constraint,
the corresponding WHERE constraint must also
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node

rules
type
union {} union {}
intersect | {} intersect{}
except {} except {}
subquery | the result of the {}
select subquery_id
table table name
From From the table {}
Join join the table {join_name} on the condition
that {columnl1} equals {column2}
Add {}add {}
sub {} subtract {}
Mul {} multiply {}
Div {} divide {}
Cast convert {objectl} to {type_object} type
Round round {objectl}
Avg the average of {this_node}
Sum the sum of {this_node}
Count the count of {this_node}
Max the minimum of {this_node}
Min the maximum of {this_node}
Length the length of {this_node}
B {table_name} is between {lower_bound} and
etween
{upper_bound}
Case if {condition}, the result will be {true_value}
Or {condition1} or {condition2}
And {conditionl} and {condition2}
GT {tablel_name} is greater than {table2_name}
LT {table]1_name} is less than {table2_name}
GTE {tablel_name} is greater than or equal to {ta-
ble2_name}
{tablel_name} is less than or equal to {ta-
LTE
ble2_name}
EQ {tablel_name} equals {table2_name}
NEQ {table]l_name} does not equal {table2_name}
Column {node.name} of {node.table}
Literal {value}
Limit keep only the first {num} rows
Offset skip the first {num} rows
Distinct remove duplicate rows
Star all records

Table 11: Explanation rules for basic SQL elements.

be removed; otherwise, the JOIN constraint
cannot be deleted. Nodes with dependencies
include: GROUP BY and HAVING; and JOIN
nodes along with all constraints involving the
tables in the JOIN.

* Constraints can be merged to reduce the number
of generated sub-SQLs. For instance, the con-
straints “SELECT name” and “SELECT year”
can be combined because both columns belong
to the person table. However, if the columns
originate from different tables, they cannot be
merged. The only node types that can be merged
are non-operation column node types.

A.1.3 Rule-based SQL Explanations

Table 11 and Table 12 correspond to the explana-
tion rules for each node type in the AST, where

node type | rules

In {column_node} isin {}

not in {column_node} is not in {}

Like {column_node} is in the form of {for-
mat_node}

. {column_node} is not in the form of

not like
{format_node}

Is {column_node} is {format_node}

not is {column_node} is not {format_node}

Trim trim ‘string” from {column}
concatenate the values of {column} in

GroupConcat
each group

CurrentTimestamp | current time

TimestampDiff the diff@rence. between {timel} and
{time2} in {unit}

DateDiff the difference between {timel} and
{time2}
the substring of {column} starting from

SUBSTR {start} with length {length}

STRFTIME the time {time} formatted as {format}
the position of {string} in {column}

INSTR starting from {start} in the {occurrence}
time

REPLACE {column} with ‘old’ replaced by ‘new’

TOTAL sum up {columns}
window function on {table_name}, then

Window group rows by {columns}, and sort rows
by {columns}

RowNumber add line number

Where filter where {conditions}

Group then group rows by {columns}

Having and keep the groups where

Order and sort rows by

Select finally return the values of {columns}

Table 12: Explanation rules for advanced SQL elements.

{} represents the explanation of the current node’s
child nodes. We follow the order of constraint
nodes in the reasoning path to translate each con-
straint. Additionally, we use an inorder traver-
sal when processing the AST. For example, for
the constraint MAX(year) + 1, we first encounter
the year node, which is of type Column and corre-
sponds to the explanation template {node.name}
of {name. table}. Next, we traverse the MAX node,
where the explanation template is the maximum of
{this_node}, and the explanation content for the
year node is inserted as this_node, resulting in
“the maximum of year”. Finally, we traverse
the ADD node, which has the explanation rule {3}
add {3}. The explanation content for the MAX and
LITERAL nodes is inserted into the corresponding
{3} placeholders, with the LITERAL node having a
value of 1. The final explanation for the constraint
MAX(year) + 1is “the maximum of year add
17,

In addition, when encountering multiple nested
queries, we fuse the corresponding contents of all
nested queries together as shown in the Table 13.
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Chaining rules for multiple nested queries

Start with subquery_1:

{Explanation content of subquery_1}
then, generate subquery_2:

{Explanation content of subquery_2}
then, generate subquery_3:

{Explanation content of subquery_3}
then, generate subquery_N:

{Explanation content of subquery_N}

Table 13: Explanation rules when there are N nested
queries in a SQL. The explanation content of each sub-

query in {}.

A.1.4 Results of Parsing on BIRD and Spider

We apply PARSer to BIRD and Spider datasets.
For the training set, we limit the number of sub-
SQLs to 256, and do not perform data enhancement
on samples that are too complex. We count the
corresponding results in each dataset, as shown in
the Table 14. It can be found that each sample
in the BIRD dataset can be decomposed into 14.4
sub-SQLs, the average number of reasoning paths
is 199.7, and the number of sub-SQLs involved in
each reasoning path is 4.8. For the Spider dataset,
the structure of SQL is simpler, so the sub-SQLs
and reasoning paths generated by the algorithm are
less than those of the BIRD dataset.

A.1.5 Comparison of PARSer and Existing
SQL Parsers

PARSer is a self-developed method based on SQL-
glot. Compared with the existing SQL decom-
position in Table 15, it can divide SQL clauses
more finely, split all possible executable sub-SQLs,
and obtain multiple reasoning paths. We com-
pared it with two recently published works, such
as STEPS (Tian et al., 2023) and DeSQL (Haroon

et al., 2024).

* Neither STEPS nor DeSQL can support out-
putting multiple reasoning paths.

* STEPS cannot fine-grain SQL, resulting in
clauses not being independent units.

e DeSQL has limited SQL structures involved, can-
not handle nested queries, etc., and can only de-
compose simple SQL.

We show an example of applying PARSer in
Table 7. The input is SQL query and the output
is sub-SQLs, reasoning paths and rule-based SQL
explanation. At the same time, we also display the

Input SQL

SELECT admfnamel FROM schools
GROUP BY admfnamel ORDER BY
COUNT (admfnamel) DESC LIMIT 2
Output

sub-SQLs

1: SELECT * FROM schools,

2: SELECT * FROM schools GROUP BY admtf-
namel,

3: SELECT * FROM schools LIMIT 2,

4: SELECT admfnamel FROM schools,

5: SELECT * FROM schools GROUP BY admtf-
namel ORDER BY COUNT (admfnamel) DESC,
6: SELECT * FROM schools GROUP BY admf-
namel LIMIT 2,

7: SELECT admfnamel FROM schools GROUP
BY admfnamel,

8: SELECT admfnamel FROM schools LIMIT 2,
9: SELECT * FROM schools GROUP BY admf-
namel ORDER BY COUNT (admfnamel) DESC
LIMIT 2,

10: SELECT admfnamel FROM schools GROUP
BY admfnamel ORDER BY COUNT (admfnamel)
DESC,

11: SELECT admfnamel FROM schools GROUP
BY admfnamel LIMIT 2,

12: SELECT admfnamel FROM schools GROUP
BY admfnamel ORDER BY COUNT (admfnamel)
DESC LIMIT 2,

Reasoning Paths
pl: [1,2,5,9,12],
[1,2,6,9,12],
p4: [1,2,6,11,12], pS: [1,2,7, 10, 12],

SQL explanation based on p1

From the table schools, then group rows by
admfnamel, and sort rows by the count of
admfnamel in descending order, finally return the
values of admfnamel, and keep only the first 2 rows.

p2: [1,2,5,10,12],  p3:

Figure 7: An example of input and output in PARSer.

results of STEPS and DeSQL in Table 16.

A.2 Prompt Templates

In our work, there are totally four kinds of prompts:

* Sub-question generation prompt: This prompt
is designed to generate augmented (sub-question,
sub-SQL) pairs based on the provided sub-SQLs;
refer to the prompt in Figure 9 and an example
of a (sub-question, sub-SQL) pair in Figure 10.

* Reason generation prompt: This prompt gen-
erates the reason or description of a chain of
thought (CoT) based on the given reasoning path;
see the prompt in Figure 11 and an example of a
(question, reason) pair in Figure 12.
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Number of Sub-SQLs

Number of Reasoning Paths

Length of Reasoning Path

Dataset
Avg Max  Min Avg Max Min Avg  Max Min
BIRD Train Set 144 256 1 199.7 130,704 0 4.8 11 2
BIRD Dev Set  13.7 192 2 97.6 20,160 1 4.8 11 2
Spider Train Set 8.2 240 2 424 99,360 1 3.9 11 2
Spider dev Set 8.0 50 2 12.3 560 1 3.9 8 2

Table 14: Results Statistics after PARSer Processing of the BIRD and Spider Datasets.

Split Clause Synthetic sub-SQL  multiple paths  Complex syntax ~ SQL explanation
PARSer v'(Refinement) v v v v’ (Refinement)
STEPS v X X X v
DeSQL  v/(Refinement) v X X X

Table 15: Comparison of PARSer and existing SQL decomposers.

SELECT MAX(CAST(T1.“Free Meal Count
(Ages 5-17)” AS REAL) / T1.“Enrollment
(Ages 5-17)”) FROM frpm AS T1 INNER
JOIN satscores AS T2 ON T1.CDSCode =
T2.cds WHERE CAST(T2.NumGE1500 AS
REAL) / T2. NumTstTakr > 0.3

SQL
query

From the table frpm, join the table satscores,
filter where convert satscores.numge1500 to
FLOAT type, then divide satscores.numtsttakr,
is greater than 0.3, finally return the values
of the maximum of convert frpm.free meal
count (ages 5-17) to FLOAT type, then divide
frpm.enrollment (ages 5-17).

PARSer

In table frpm, Keep the records where the
NumGE1500 AS REAL of satscores, the
CAST, the /, and the NumTstTakr of satscores
is greater than the 0.3, Return the maximum
value of CAST ( “Free Meal Count” of T1
(Ages 5-17, the “Free Meal Count” of T1 (
Ages 5-17, the Ages 5-17, the Ages 5-17, and
the NumGE1500 of T2 AS REAL

STEPS

DeSQL \ No SQL explanation function.

Table 16: Comparison of SQL explanation. Bold fonts
represent incorrect content.

A.3 Details of Data Augmentation

As shown in Table 14, PARSer parses an average
of over 10 sub-SQLs and 90 reasoning paths in the
BIRD dataset, and over 8 sub-SQLs and 10 rea-
soning paths in the Spider dataset. Given the large
volume, we adopt a strategy to optimize selection
and reduce costs. All data enhancements rely on
the training set. For sub-SQLs, we select those
with constraints differing by two or fewer from
the original SQL in the BIRD dataset. In contrast,
Spider sub-SQLs may correspond to multiple origi-
nal SQLs due to its approach of limiting condition
deletion. To increase data, we collect sub-SQLs for
Spider with constraints differing by three or fewer.

We exclude sub-SQLs with extraneous con-
straints, such as unnecessary JOIN operations, as
removing or retaining these does not affect exe-
cution. The generated data is manually reviewed,
resulting in 2,110 sub-question/sub-SQL pairs for
BIRD and 1,108 for Spider. For reasoning paths,
we randomly select one path from the original ques-
tion and manually filter out low-quality data, yield-
ing 9,108 sub-question/sub-SQL pairs for BIRD
and 8,505 for Spider.

A.4 More Details about Experiments
A.4.1 Details of Datasets

In our work, we conduct experiments on the fol-

lowing datasets:

e BIRD (Li et al., 2023c) is the first cross-domain,
large-scale benchmark specifically designed to
bridge the gap between academic research and
real-world applications in text-to-SQL parsing. It
features a substantial dataset comprising 12,751
text-to-SQL pairs, 95 databases across 37 profes-
sional domains, and a total size of 33.4 GB. In
comparison to Spider (Yu et al., 2018) and Wik-
iSQL (Zhong et al., 2017), BIRD-SQL empha-
sizes database content and aligns more closely
with real-world scenarios. However, due to hard-
ware limitations of the BIRD submission plat-
form, we are unable to evaluate our model on its
test set.

* Spider (Yu et al., 2018) is a large-scale seman-
tic parsing and text-to-SQL dataset annotated by
11 students from Yale University. It includes a
training set with 8,659 samples, a development
set with 1,034 samples, and a test set with 2,147
samples, covering 200 distinct databases across
138 domains. Of these, 160 databases are allo-
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A 0.6 0.8 1.0
EX(%) 50.72 51.76 51.37

Table 17: Effect of train parameter \.

cated for training and development, while 40 are
designated for testing.

 Spider-DK (Gan et al., 2021b), Spider-Syn (Gan
et al., 2021a), and Spider-Realistic (Deng et al.,
2021) are variants of the original Spider dataset,
designed to resemble queries that users might ask
in real-world scenarios. These variants allow for
a more comprehensive evaluation of the model’s
robustness in the text-to-SQL task.

A.4.2 Effect of )

Table 17 test the effect of the hyperparameter A. We
vary Ain {0.6, 0.8, 1.0} and test the performance of
PARSQL-1By;,, on BIRD Dev. The results indicate
that when ) is set to 0.8, the weighting between the
question/SQL pairs and the question/Reason pairs
is optimized. If the weight of the Reason pairs is
too low, the model fails to capture reasoning in-
formation effectively. Conversely, if A is set too
high, the model tends to overemphasize the rea-
soning pairs, neglecting the information from the
question/SQL pairs. Both scenarios can diminish
the model’s effectiveness in generating SQLs.

A.4.3 Fine-grained Analysis of Training Data
Query-Type Effectiveness

Following the query categorization in Super-
SQL (Li et al., 2024a), we classify queries into
five types: nested-query, logical-connector, join,
order-by, and group-by. Table 19 presents their dis-
tribution in the BIRD training set. To evaluate the
impact of augmentation, we compare performance

on the BIRD development set, as shown in Table 18.

The average improvement reflects the mean accu-

racy gain of PARSQL-3B,,;. and PARSQL-3By,

over SFT CodeS-3B across query types. Key ob-
servations include:

* PARSQL improves performance across all query
types.

* The improvement for nested queries is the small-
est (0.44%), despite a 12.57% increase in corre-
sponding training data.

* Order-by and group-by queries exhibit the most
significant gains.

These results suggest that handling nested queries

remains a key challenge, as both its performance

improvement and EX metric are the lowest among

all query types, indicating potential areas for future
enhancement.

A.4.4 More Experiments on Testing
Constraint Sensitivity

Random Validation Subset (RVS) To create the
Random RVS, we randomly selected 100 samples
from the development set, ensuring a diverse mix
of problem types and complexities. The selection
process was unbiased, reflecting the general distri-
bution of the development set.

Constraint-Sensitivity Dataset (CSD) The goal
of the CSD is to assess the model’s sensitivity to
variations in constraints. For each RVS sample,
we generated subSQL queries by removing a sin-
gle constraint at a time. These constraints, such
as conditions in the WHERE clause or JOIN con-
ditions, were modified individually to isolate the
effect of each change. The CSD generation follows
a process similar to generating "new pairs":

* SubSQL generation. For each RVS sample,
PARSer creates multiple subSQLs by remov-
ing one constraint at a time, ensuring minimal
changes to the query structure.

* Question generation. The corresponding ques-
tion description is adjusted to match the modified
query, with GLM-4-0520 (Zeng et al., 2024) used
to generate the question based on the modified
subSQL.

The resulting CSD contains 123 samples for
BIRD and 84 for Spider. Since Spider queries are
simpler, fewer subSQLs could be generated, result-
ing in a smaller number. These datasets allow for a
focused evaluation of the model’s ability to handle
variations in constraints, offering insights into how
well it adapts to such changes.

A.4.5 More Experiments on Testing SQL
Selection Strategies

We present the performance of PARSQL,,,. only,
as the results of PARSQLy;, are not included. This
is because the reasons generated by PARSQL;,
differ significantly in form and structure from the
rule-based SQL explanations (as shown in Figure 7
and Table 12). Such differences can negatively
impact SQL selection based on similarity, thereby
affecting the model’s performance.

We employed two primary methods to calculate
the similarity between SQL and “reason”. The
first directly computes similarity using SQL, while
the second translates SQL into its rule-based rep-
resentation before calculating similarity with “rea-
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Nested-query  Logical-connector  join Order-by  Group-by
SFT CodeS-3B 31.86 47.41 52.98 44.66 31.86
PARSQL-3B 31.86 47.72 55.09 48.87 354
PARSQL-3By;, 32.74 49.45 55.26 46.93 38.05
Average improvement +0.44 +1.17 +2.19 +3.24 +4.86

Table 18: EX score (%) on BIRD dev set for different SQL query types.

Nested-query  Logical-connector join Order-by Group-by
Origin training dataset 723 5063 7212 1722 1009
After adding new pairs ~ 723(+12.57%) 5063(+17.14%) 7212(+17.18%)  1722(+16.48%)  1009(+19.41%)

Table 19: Distribution of SQL Query Types in Training Data: Original vs. Augmented Dataset Comparison

E3]

son”. Each similarity computation utilizes four Reason

approaches: an N-gram-based approach and three
cosine similarity-based approaches. The latter in-
clude PARSQL’s hidden state, sentence embed-
dings from all-mpnet-base-v2 (Reimers, 2021), and
embeddings from GTEv1.5-en-large (Zhang et al.,
2024c).

Table 20 presents the comprehensive experimen-
tal results of PARSQL,,;. for both the 1B and 3B
models. highlighting the following: (1) The re-
sult of PARSQL-1B,,;, reaffirms that rule-based
SQL explanations, using either sentence embed-
dings or N-grams, generally outperform the base-
line; (2) Direct SQL-reason similarity performs
worse, emphasizing the semantic gap between SQL
and natural language, which is mitigated through
rule-based SQL explanations. (3) In addition, there
is not much difference between using the model
to calculate similarity and N-grams. In low re-
source scenarios, N-grams has more advantages.
(4) Oracle represents the upper bound for SQL
selection with a beam size of 4. As shown, the
rule-based method does not always select the cor-
rect SQL query. There is still significant room for
improvement in SQL selection strategies based on
reasoning. Future work will focus on supporting
a wider range of SQL syntaxes and developing
advanced SQL selection strategies based on rea-
soning, aiming to improve the model’s adaptability
and accuracy.

A.4.6 Visualization of Questions and SQLs

Figure 8 presents a 2-D t-SNE visualization of the
vector representations between the question and the
generated SQL for both PARSQL and SFT CodeS,
where the vectors represent the final hidden layer
outputs of the model. Several key observations
can be made: (1) After incorporating reason pairs,

SQL Question

Similarity is 0.71§
(a) PARSQL-3B

Similarity is 0.718
(b) PARSQL-3B

Similarity is 0.592
(c) PARSQL-3B w/o reason

Similarity is 0.608]
(d) SFT CodeS-3B

Figure 8: 2-D t-SNE visualization Comparing SQL and
Question Embeddings in Spider Dev: PARSQL and
SFT CodeS. Embeddings of between question and SQL
using last-layer hidden representations.

the similarity between the vectors of the question
and SQL in PARSQL shows a significant improve-
ment. (2) The distribution of question vectors in
PARSQL is more compact, whereas in SFT CodeS,
the distribution is more dispersed. Additionally, in
PARSQL, there is a clear boundary between the
SQL and question vectors, while in SFT CodeS,
the distribution is more chaotic. This suggests that
PARSQL is better at distinguishing and aligning
the vector representations of questions and SQL,
allowing the model to more accurately capture the
semantic structure of the question when generating
SQL. In contrast, the lack of a clear distinction be-
tween the question and SQL vectors in SFT CodeS
indicates a degree of ambiguity in understanding
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Methods BIRD Dev Spider Dev Spider-Syn  Spider-Realistic ~ Spider-DK

EX VSE EX TS EX TX EX TS EX
Baselines (Solutions in PARSQL-3B,.)

First-valid-execution 5561 7143 834 77.0 728 646 79.1 74.0 70.5

Execution-guided self-consistency 5489 69.75 825 76.1 702 621 783 73.2 70.1

Oracle 63.56 76.14 87,5 80.9 80.2 723 839 78.3 78.3

Based on similarity between SQLs and reasons (Solutions in PARSQL-3B,..)

Hidden state embedding 502  63.14 785 715 682 58.6 752 66.5 65.2

all-mpnet-base-v2 (Reimers, 2021) 55.28 70.2 80.1 7277 678 59.1 74.8 68.5 67.5

GTEvl.5-en-large (Zhang et al., 2024c) 55.54 7043 81.8 745 69.0 59.7 758 71.1 68.8

N-grams 5411 6845 80.7 733 699 611 774 71.3 68.6

Based on similarity between rule-based NL explanations of SQL and reasons (Solutions in PARSQL-3B,.)

Hidden state embedding 5541 6945 833 769 723 641 793 74.2 70.3
all-mpnet-base-v2 (Reimers, 2021) 5561 70.86 83.1 77.0 729 647 79.1 74.4 70.7
GTEvl.5-en-large (Zhang et al., 2024c)  55.8 71.84 835 773 724 644 789 74.2 70.1
N-grams 56.0 71.67 835 773 729 648 793 74.2 70.7
Baselines (Solutions in PARSQL-1B,.)
First Valid Execution 5143 67.54 80.1 735 669 583 724 65.2 63.7
Execution-guided self-consistency 5039 6451 783 717 642 556 70.7 63.4 63.2
Oracle 5874 7262 842 77.0 734 638 774 69.7 74.2
Based on similarity between SQLs and reasons (Solutions in PARSQL-1B,,.)
Hidden state embedding 47.07 6164 755 681 616 51.8 673 58.1 61.7
all-mpnet-base-v2 (Reimers, 2021) 50.2 6439 765 692 64.1 555 69.3 61.2 62.6
GTEvl.5-en-large (Zhang et al., 2024c) 4922 63.12 7677 69.6 63.6 547 699 62.2 62.6
N-grams 50.26 64.85 774 70.7 648 555 695 60.2 60.0

Based on similarity between rule-based NL explanations of SQL and reasons (Solutions in PARSQL-1B,..)

Hidden state embedding 5143 67.23
all-mpnet-base-v2 (Reimers, 2021) 51.56 67.01
GTEv1.5-en-large (Zhang et al., 2024c) 51.69  67.79
N-grams 51.69 67.71

80.8

799 73.0 669 582 724 65.2 64.1

740 670 586 728 65.6 64.9
80.1 735 672 59.0 726 65.7 64.7
80.6 73.8 672 59.0 728 65.0 64.3

Table 20: Comparison of different SQL selection strategies on PARSQL-3B,,;. and PARSQL-1B,,.

the relationship between the question and the gen-
erated SQL, which may lead to a larger semantic
gap between the question and the resulting SQL.

A.4.7 Case Study of PARSQL vs. SFT CodeS

At the end of our work, we present examples where
PARSQL-3By;, produces correct outputs while
SFT CodeS-3B generates incorrect results under
two types of errors (generating SQL with incorrect
logic and incomplete conditions), as shown in Ta-
bles 21 to Table 24. These examples highlight the
superior capability of PARSQL-3By;, in accurately
capturing logical structures and handling complex
conditions in SQL generation. In contrast, SFT
CodeS-3B demonstrates limitations in ensuring log-
ical correctness and completeness, leading to sub-
optimal outputs. This comparison underscores the
robustness and reliability of PARSQL-3By,,,, mak-
ing it more suitable for tasks requiring precise and
comprehensive SQL generation.

Question Please list the CodeS of the schools with a
total enrollment of over 500.

Evidence Total enrollment can be represented by ‘en-
rollment (k-12)° + ‘enrollment (ages 5-17)°;

READ- SELECT DISTINCT cdscode FROM frpm

SQL result ~ WHERE cast(‘enrollment (k-12)° + ‘enroll-
ment (ages 5-17)° AS REAL) > 500

SFT CodeS SELECT ‘school code FROM frpm

result WHERE ‘enrollment (k-12)° + ‘enrollment
(ages 5-17)° > 500

Cause Confusing school code and cdscode

analysis

Table 21: Generating SQL with incorrect logic: case 1.
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Instructions

You are an expert at translating SQL queries
into natural language questions. Your task is to
generate a clear, concise, and detailed question that

accurately captures the intent of the SQL query.

Example

SQL Query: SELECT avg(ratings.rating_score)
FROM movies INNER JOIN ratings ON
movies.movie_id = ratings.movie_id WHERE
movies.movie_title = “When Will I Be Loved’
Generated Question: What is the average rating
for movie titled "When Will I Be Loved’?

SQL Query: SELECT products.name FROM
products INNER JOIN sales ON products.productid
= sales.productid WHERE sales.salespersonid = 20
ORDER BY sales.quantity DESC LIMIT 1
Generated Question: What is the name of the
product that is most sold by sale person id 20?
SQL Query: {Origin SQL}

Generated  Question: {Origin question}

Now, create a detailed yet concise question that
is semantically consistent with the following
SQL query. Ensure that the generated question
closely follows the structure of the example, while
accounting for any differences in the SQL.

SQL Query: {Sub-SQL}

Generated Question:

Figure 9: Sub-question generation prompt for the aug-
mented (sub-question, sub-SQL) pairs.

Original (Question,SQL) pair

Question: What are the URL to the list page on
Mubi of the lists with followers between 1-2 and
whose last update timestamp was on 2012?

SQL: SELECT list_url FROM LISTS WHERE
list_update_timestamp_utc LIKE 2012%’ AND
list_followers BETWEEN 1 AND 2 ORDER
BY list_update_timestamp_utc DESC LIMIT 1
(sub-question, sub-SQL) pairs

Pair #1:

sub-question: What are the URLSs of the lists on
Mubi with a last update timestamp in 2012 and
a follower count between 1 and 2, sorted by the
update timestamp in descending order?

sub-SQL: SELECT list_url FROM LISTS WHERE
list_update_timestamp_utc LIKE 2012%’ AND
list_followers BETWEEN 1 AND 2 ORDER BY
list_update_timestamp_utc DES

Pair #2:

sub-question: What is the URL of the list page
on Mubi with the fewest followers, where the last
update timestamp is the most recent?

sub-SQL: SELECT list_url FROM LISTS WHERE
list_followers BETWEEN 1 AND 2 ORDER BY
list_update_timestamp_utc DESC LIMIT 1

Figure 10: An example of a (sub-question, sub-SQL)

pair.
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Instructions

Generate a chain-of-thought (CoT) reasoning
process that explains how each sub-SQL query
incrementally builds towards answering the original
question. Ensure the reasoning is clear, concise, and
logically follows the progression of the sub-SQLs.
Examples

Question: What is the average writing score of
each of the schools managed by Ricci Ulrich? List
the schools and the corresponding average writing
scores.

reasoning path: /**

1.SELECT * FROM satscores

2.INNER JOIN schools ON satscores.cds =
schools.cdscode

3.WHWERE schools.admlnamel = "Ulrich’

4 WHERE schools.admfnamel = ’Ricci’
5.SELECT satscores.avgscrwrite **/

Now, the requirements are as follows: the output
must be short and consist of a sentence, SQL clause
generates half of a sentence, split by ‘,’, only the
reasoning process needs to be output and output in
English:

Generate reasoning path:

First, select information from satscores, then join
the schools table, add school information, and add
a filter based on Ricci Ulrich; finally, choose to
display the average writing score.

I will provide a new question and sub-SQLs list.
Following the above example, generate the corre-
sponding reasoning path step-by-step.

Question: {Question}

reasoning path: /**

{reasoning path} **/

Now, The requirements are as follows: the output
must be short and consist of a sentence, each SQL
clause generates half of a sentence, split by ‘,’, only
the reasoning process needs to be output and output
in English:

Generate reasoning path:

Figure 11: Reason generation prompt.




Reasoning path

Sub-SQL 1 : SELECT * FROM LISTS,

Sub-SQL 2 : SELECT * FROM LISTS ORDER
BY list_update_timestamp_utc DESC,

Sub-SQL 3 : SELECT * FROM LISTS WHERE
list_followers BETWEEN 1 AND 2 ORDER BY
list_update_timestamp_utc DESC,

Sub-SQL 4 : SELECT * FROM LISTS WHERE
list_update_timestamp_utc LIKE °2012%’ AND
list_followers BETWEEN 1 AND 2 ORDER BY
list_update_timestamp_utc DESC,

Sub-SQL 5 : SELECT * FROM LISTS WHERE
list_update_timestamp_utc LIKE 2012%’ AND
list_followers BETWEEN 1 AND 2 ORDER BY
list_update_timestamp_utc DESC LIMIT 1,
Sub-SQL 6 : SELECT list url FROM LISTS
WHERE list_update_timestamp_utc LIKE *2012%’
AND list_followers BETWEEN 1 AND 2 ORDER
BY list_update_timestamp_utc DESC LIMIT 1
(question, reason) pair

question: What are the URL to the list page on
Mubi of the lists with followers between 1-2 and
whose last update timestamp was on 2012?
reason: Select all lists, then sort by update
timestamp in descending order; filter for lists with
followers between 1-2 and an update timestamp in
2012; Keep the order and limit it to the first item;

Question

List the patient ID, sex and birthday who
has abnormal white blood cell count. Group
them by sex and list the patient by age
in ascending order.

Evidence

abnormal white blood cell count refers to
wbc <= 3.5 or wbc >=9.0;

READ-
SQL result

SELECT patient.id, patient.sex, pa-
tient.birthday FROM patient INNER
JOIN laboratory ON patient.id = labora-
tory.id WHERE laboratory.wbc <= 3.5
OR laboratory.wbc >= 9.0 GROUP BY
patient.id, patient.sex, patient.birthday
ORDER BY patient.birthday ASC

SFT CodeS
result

SELECT patient.id, patient.sex, pa-
tient.birthday FROM patient INNER JOIN
laboratory ON patient.id = laboratory.id
WHERE laboratory.wbc BETWEEN 3.5
AND 9.0

Cause
analysis

Lost the ORDER by condition.

Table 23: Generating SQL with incomplete conditions:

retrieve the URL for the specified list. case 1.
Figure 12: An example of a (question, reason) pair,
where the reason is generated from the given reasoning
path for the question.

Question Sort in descending order all patients by birth- Question Between San Diego and Santa Barbara,
day for male patient with albumin not within which county offers the most number of
range. schools that does not offer physical build-

C o T

Evidence albumin not within range refers ing? Indicate the amount.
to alb <= 3.5 or alb >= 5.5: male = sex = Evidence Does not offer physical building” means vir-
M ’ tual = F in the database.

READ- SELECT patientid FROM patient IN- ~ READ- SELECT county, count(school) FROM

SQLresult NER JOIN laboratory ON patient.id SQL result  schools WHERE county IN (*San Diego’,
= laboratoryid WHERE patient.sex ’Santa Barbara’) AND virtual = "F> GROUP
= M’ AND (laboratory.alb <=3.5 BY county ORDER BY count(school)

' ' DESC LIMIT 1
OR laboratory.alb >=5.5) ORDER BY
patient.birthday DESC SFT CodeS  SELECT county, count(cdscode) FROM
— - result schools WHERE county IN (’San Diego’,

SFT CodeS  SELECT patientid FROM patient IN— ’Santa Barbara’) AND virtual = 'F> GROUP

result NER JOIN l_aboratory ON pqtlent.ld BY county
= laboratory.id WHERE patient.sex
= °M’ AND (laboratory.alb < 3.5 Cause There is no guarantee of the required number
OR laboratory.alb > 5.5) ORDER BY analysis of rows.
patient.birthday DESC . Lo .

- Table 24: Generating SQL with incomplete conditions:

Cause. Symbols mixed up case 2.

analysis

Table 22: Generating SQL with incorrect logic: case 2.
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