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Abstract

We introduce KODCODE, a synthetic dataset
that addresses the persistent challenge of acquir-
ing high-quality, verifiable training data across
diverse difficulties and domains for training
Large Language Models for coding. Existing
code-focused resources typically fail to ensure
either the breadth of coverage (e.g., spanning
simple coding tasks to advanced algorithmic
problems) or verifiable correctness (e.g., unit
tests). In contrast, KODCODE comprises ques-
tion–solution–test triplets that are systemati-
cally validated via a self-verification procedure.
Our pipeline begins by synthesizing a broad
range of coding questions, then generates solu-
tions and test cases with additional attempts al-
located to challenging problems. Finally, post-
training data synthesis is done by rewriting
questions into diverse formats and generating
responses under a test-based reject sampling
procedure from a reasoning model (DeepSeek
R1). This pipeline yields a large-scale, robust
and diverse coding dataset. KODCODE is suit-
able for supervised fine-tuning and the paired
unit tests also provide great potential for RL
tuning. Fine-tuning experiments on coding
benchmarks (HumanEval(+), MBPP(+), Big-
CodeBench, and LiveCodeBench) demonstrate
that KODCODE-tuned models achieve state-of-
the-art performance, surpassing models like
Qwen2.5-Coder-32B-Instruct and DeepSeek-
R1-Distill-Llama-70B.

1 Introduction

Recent advances in Large Language Models
(LLMs) for coding such as Qwen2.5-Coder (Hui
et al., 2024), Deepseek Coder (Guo et al., 2024),
and OpenCoder (Huang et al., 2024) have demon-
strated remarkable capabilities in programming
tasks. These models excel at function writing
(Chen et al., 2021), debugging (Zhong et al., 2024),
issue resolution (Zhang et al., 2024b), and agent

*Work done during internship at Microsoft GenAI.

Dataset Name #Problems Diversity Difficulty
Unit
Test

Verified
Solution

APPS (Hendrycks et al., 2021) 10K High High • •
CodeContests (Li et al., 2022) 13K High High • •
TACO (Li et al., 2023) 26K High High • •
Code Alpaca (Chaudhary, 2023) 20K Low Low ◦ ◦
SelfCodeAlign (Wei et al., 2024a) 50K Mid Low ◦ •
OSS Instruct (Wei et al., 2024c) 75K Mid Mid ◦ ◦
AceCoder (Zeng et al., 2025) 87K Mid Mid • ◦
Evol Instruct (Luo et al., 2023) 111K Low Mid ◦ ◦
Educational Instruct (Huang et al., 2024) 118K Low Low • •
Package Instruct (Huang et al., 2024) 171K Mid Mid ◦ ◦
KODCODE -V1 447K High Mix • •

Table 1: Comparison of KODCODE with existing code
datasets for LLM post-training. The first three rows
show human-curated datasets, while the remaining rows
represent synthetic datasets. KODCODE offers three
difficulty labels (e.g., “easy”, “medium”, and “hard”),
which we denote as “Mix”.

system enhancement (Zhang et al., 2024a), funda-
mentally transforming software development prac-
tices (Qian et al., 2024; Hou et al., 2024).

Ideally, training high-performing coding LLMs
requires high-quality data with verified solutions
and test cases for post-training stages, including
supervised fine-tuning (SFT) and reinforcement
learning (RL) (DeepSeek-AI et al., 2025; Team,
2025a; Hui et al., 2024; Wei et al., 2024a). While
human-curated coding datasets like TACO (Li et al.,
2023), APPS (Hendrycks et al., 2021), and Code-
Contests (Li et al., 2022) offer high quality ques-
tions, canonical solutions, and tests, their limited
scale constrains model training. Synthetic datasets
have emerged as an alternative (Wang et al., 2023;
Long et al., 2024), but often lack diversity (Xu et al.,
2024), sufficient complexity (Luo et al., 2023), and
reliable response verification (Lei et al., 2024).

In this paper, we bridge this gap by introducing
KODCODE-V1, hereafter referred to as KODCODE,
a synthetic dataset consisting of 447K coding ques-
tions with verified solutions and unit tests. Our
approach starts from synthesizing coding questions
from 12 sources using five distinct methods to en-
sure diversity and complexity. In solution & test
generation step, we generate unit tests along with
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def count_set_bits(n: int) -> int:
"""
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Figure 1: This figure demonstrates the pipeline for generating KODCODE-V1. Our approach follows a three-step
pipeline: Coding Question Synthesis, Solution & Test Generation, and Post-training Data Synthesis. The final
KODCODE-V1 dataset contains 447K verified question-solution-test triplets. The distribution of each subset is
demonstrated on the right.

the solution and execute the unit test to verify the
correctness of the solution. This self-verification
mechanism not only ensures each solution is func-
tionally correct but also offers verifiable correct-
ness by providing explicitly curated unit tests. In
addition, for challenging questions whose solutions
fail the self-verification, we allocate additional at-
tempts rather than discarding them, ensuring chal-
lenging questions are not filtered out during reject
sampling. We further enhance the dataset for post-
training by rewriting questions into diverse formats
and generating chain-of-thought (CoT) responses
using DeepSeek-R1 (DeepSeek-AI et al., 2025) un-
der a test-based reject sampling procedure.

We conduct comprehensive analyses of our cod-
ing data generation pipeline. First, we evaluate our
self-verification mechanism by testing solutions
against human-written unit tests from the MBPP
validation dataset. Our experiments show that er-
ror rate remains below 2.5%, demonstrating the
effectiveness of our self-verification mechanism.
We then examine the benefits of scaled computa-
tion for challenging coding questions. Finally, we
perform statistical analyses of KODCODE’s token
length, diversity, difficulty distribution, and poten-
tial contamination with existing benchmarks.

Furthermore, to validate KODCODE’s effective-
ness for code LLM post-training, we evaluate
models using supervised SFT and RL across stan-
dard benchmarks: HumanEval(+), MBPP(+), Big-
CodeBench, and LiveCodeBench. Our experimen-
tal results show that KODCODE-fine-tuned models
achieve state-of-the-art performance, surpassing
other open-source models such as Qwen2.5-Coder-

32B-Instruct and DeepSeek-R1-Distill-Llama-70B
in most of the benchmarks.

We hope our open-source dataset and models
will help the community develop more capable
coding assistants. We believe KODCODE will ad-
vance current SFT and RL post-training pipelines
for code generation models, pushing the boundaries
of LLMs in coding tasks.

2 KODCODE : Synthesizing Diverse,
Challenging, and Verifiable Correct
Post-Training Data for Code

As illustrated in Figure 1, our approach follows a
three-step pipeline: Coding Question Synthesis, So-
lution & Test Generation, and Post-training Data
Synthesis. Generally, we begin by synthesizing di-
verse coding questions q through a combination of
prompt engineering and LLM-based augmentation.
Next, we leverage a self-verification process to cre-
ate high-quality solutions and test cases (sol, test)
while offering verifiable correctness. Finally, to
provide high-quality post-training data, we diver-
sify the generated synthetic questions by rewriting
them into different formats, and generate responses
by prompting a reasoning model (i.e., DeepSeek-
R1) with a test-based reject sampling procedure.

2.1 Step 1: Coding Question Synthesis

To generate challenging coding questions with
broad coverage, we developed 12 distinct subsets
spanning various domains (from algorithmic to
package-specific knowledge) and difficulty levels
(from basic coding exercises to interview and com-
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petitive programming challenges). Below, we elab-
orate on the pipeline used to construct each subset.

Simple Coding Questions. To generate simple
coding questions, we extend the MAGPIE frame-
work (Xu et al., 2024) and introduce MAGPIE-
Prefill. This approach generates simple coding
questions by prefilling the user message in the chat
template with a pre-defined suffix (e.g., “Write a
Python function that”), and leverages Qwen2.5-
Coder-7B-Instruct to complete the remaining part
of the user query. This method efficiently generates
diverse questions focused on function implemen-
tation and basic Python programming tasks. We
name this subset Prefill. The complete prompt
template is provided in Appendix D.2.

Coding Assessment Questions. To synthesize
diverse coding assessment questions, we leverage
existing human-written coding assessment datasets
as seed corpora. To expand these datasets, we
employ GPT-4o-0513 as a teacher LLM, prompt-
ing it to act as an expert programming instructor.
The model analyzes the structure, complexity, and
knowledge requirements of seed questions and sub-
sequently generates new assessment questions that
maintain consistency in difficulty and scope.

The seed datasets utilized include LeetCode
(Hartford, 2023), Codeforces (Jur1cek, 2022),
APPS training subset (Hendrycks et al., 2021),
TACO training subset (Li et al., 2023), and Code
Contests (Li et al., 2022). The respective question
subsets are named LeetCode, Codeforces, APPS,
Taco, and Code Contests. The complete prompt
templates are shown in Appendix D.3.

Data Structures and Algorithms. While cod-
ing assessments typically focus on specific pro-
gramming concepts, they do not fully encompass
Data Structures and Algorithms (DSA) knowledge.
To bridge this gap, we convert Python DSA knowl-
edge into assessment questions by uniformly sam-
pling a collection of DSA code snippets (The Al-
gorithms, 2023; Keon, 2018). We prompt LLM to
first perform a systematic analysis of DSA snip-
pets (addressing core components, complexity, and
implementation challenges), then craft questions
that test foundational understanding to avoid direct
code replication. We denote the two subsets gen-
erated using this method as Algorithm and Data
Structure. The corresponding prompt template
can be found in Appendix D.4.

Technical Documentations. Given that users
frequently ask package-related questions, we de-
veloped an additional subset called Docs, which

transforms technical documentation from popular
Python libraries—including flask, pandas, pytorch,
scikit, and seaborn—into coding questions. When
prompting LLMs to generate challenging yet clear
and self-contained questions, we implemented a
quality control mechanism allowing the model to
abstain when the provided documentation proves
insufficient for crafting high-quality coding ques-
tions. The complete prompt template is available
in Appendix D.5.

More Questions. We further expand coding
questions by employing MAGPIE (Xu et al., 2024)
using seven open-source LLMs. We employ LLM
annotators to classify generated questions, retain-
ing only high-quality examples under "Algorithm
Implementation" or "Function Generation" cate-
gories. We name this subset Filter. Details of this
subset can be found in Appendix A. In addition,
we synthesize more questions from existing Pack-
age Instruct (Huang et al., 2024) and Evol Instruct
(Luo et al., 2023) synthetic datasets, and create two
subsets named as Package and Evol.

Deduplication. After generating questions, we
perform semantic deduplication within each sub-
set by utilizing the all-mpnet-base-v2 embed-
ding model to project all questions into an embed-
ding space. We then compute nearest-neighbor dis-
tances using FAISS (Douze et al., 2024), and filter
out questions that surpass a predefined similarity
threshold with existing entries.

2.2 Step 2: Solution & Test Generation
To generate verifiably correct coding solutions and
unit tests (sol, test) for questions from Step 1, we
employ a self-verification procedure as detailed
below. To ensure quality of solution and tests, we
first employ GPT-4o-0513 (which achieves state-of-
the-art performance among non-reasoning models
on the BigCodeBench Leaderboard (Zhuo et al.,
2024)) to generate both solution and test, then exe-
cute these unit tests to validate the correctness of
the solution. Additionally, we perform branch cov-
erage analysis using the PYTEST-COV framework
to ensure the diversity of test cases. Only question-
solution-test triplets that pass self-verification and
achieve 100% branch coverage are retained. The
prompt template is provided in Appendix D.6.

Since our goal is to generate verifiable training
data that is challenging and diverse in coverage,
a key challenge arises: even state-of-the-art mod-
els cannot guarantee bug-free code or ensure that
solutions pass their unit tests. Simply discarding
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questions that fail self-verification risks eliminat-
ing many challenging ones, potentially biasing our
dataset towards a distribution of simple problems.

Our solution to address this challenge is to as-
sign additional self-verification attempts for hard
questions. For each question from Step 1, we allow
up to a maximum of n attempts (where n = 10 in
our experiments) to generate a solution that passes
its unit tests. Importantly, each attempt regenerates
both the solution and its corresponding unit tests
from scratch, since if the initial tests contain errors,
all subsequent solutions would fail regardless of
their correctness. To maintain the quality of regen-
erated test cases, we only retain new (sol, test) that
achieve equal or higher branch coverage compared
to previous attempts. This ensures that regenerated
tests do not become progressively simpler or less
comprehensive.

We note that our approach can preserve challeng-
ing questions while naturally assigning difficulty
labels based on the success rate across attempts.
Questions that fail to generate correct solutions af-
ter n attempts are discarded as they likely contain
inherent flaws. Upon completing Step 2, we obtain
a collection of 279K verified triplets.

2.3 Step 3: Post-training Data Synthesis
In creating LLM post-training data for coding
tasks, there is a gap between coding questions (e.g.,
LeetCode) and training data. While coding ques-
tions are primarily expressed in natural language,
training data needs to accommodate non-natural-
language formats such as function calls and tool
interactions. To address this disparity, we propose
an LLM-based style converter to enhance the diver-
sity of question formats. Specifically, we reformat
each question q by taking its solution and test as in-
puts, q′ = LLM(q, sol, test), structuring them as
Python completion tasks with function signatures
and examples. Each reformatted question is paired
with its original solution and test cases to form new
triplets (q′, sol, test). This process results in the
creation of 168K additional triplets, increasing our
total to 447K, which are readily available for RL
training.

Motivated by recent advances in reasoning mod-
els (Team, 2025a; Labs, 2025), we further gener-
ate an SFT dataset for post-training by leveraging
the questions in these triplets, using DeepSeek R1
(DeepSeek-AI et al., 2025) as the response gener-
ator to generate Chain-of-Thought responses. To
ensure the quality of the generated responses, we

generate 3 times for each question and perform
test-based reject sampling, yielding a large-scale,
high-quality, and verifiably correct SFT dataset for
coding. We refer to this dataset as KODCODE-SFT.

3 Analysis

In what follows, we conduct a comprehensive
analysis to demonstrate the effectiveness of KOD-
CODE in generating diverse, challenging, and cor-
rect question-solution-test triplets.

3.1 Pipeline Analysis

Effectiveness of Self-Verification. To evaluate the
reliability of our self-verification pipeline, we con-
duct experiments on the MBPP validation dataset
(Austin et al., 2021) and the LiveCodeBench-V5
test set (Jain et al., 2024). For MBPP, we utilize all
90 coding questions that include ground-truth unit
tests manually written and verified by humans. For
LiveCodeBench-V5, we select all 381 questions
that provide starter code and functional test cases.

Following our pipeline, we generate both so-
lutions and unit tests for these questions. After
applying our Self-Verification approach, 80 so-
lutions (88.9%) pass self-verification for MBPP,
while 190 solutions (49.9%) pass self-verification
for LiveCodeBench-V5. We then evaluate these re-
tained solutions against the ground-truth unit tests.

We note that due to inherent ambiguity in MBPP
questions, some solutions that follow correct logic
fail assertions because of mismatched input formats
or numerical precision differences. After manual
review of these edge cases, 78 out of 80 solutions
pass all ground-truth unit tests, achieving a 97.5%
pass rate for MBPP. For LiveCodeBench-V5, 189
solutions (99.47%) successfully pass all tests. This
high success rate demonstrates the effectiveness of
our pipeline in generating verified solutions. Please
refer to Appendix B.1 for detailed analysis of the
failure cases.

Effectiveness of Allocating Additional At-
tempts to Challenging Questions. To assess the
impact of allocating more attempts on solution &
test generation, we adopt the Pass@k metric com-
monly used in model evaluation literature (Austin
et al., 2021; Chen et al., 2021). Specifically, we
measure the proportion of questions for which at
least one out of k solutions successfully passes its
self-verification in Step 2.

The experimental results are illustrated in Figure
2, where we report Pass@k by subsets and on av-
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erage. We observe that while Pass@1 yields a low
pass rate, increasing the number of trials from 1 to 5
results in an average pass rate increase of over 20%,
and further increasing to 10 trials boosts the pass
rate by an additional 4%. Notably, for more chal-
lenging tasks, such as Codeforces and Docs subsets,
increasing the number of attempts significantly en-
hances pass rates. In contrast, simpler tasks like
those in the Prefill subset show more modest gains
from additional attempts. We emphasize that this
scaling in attempts enables KODCODE to retain
more challenging questions that would otherwise
be discarded.
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Figure 2: Statistics on pass rates via self-verification in
Step 2 by subset with varying number of attempts.
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Figure 3: Distribution of token lengths for questions and
responses, along with unit test counts across subsets.

3.2 Dataset Statistics and Analysis
In what follows, we analyze KODCODE from the
perspective of token length, diversity, difficulty,
potential contamination, and data-flow analysis.

Token Length and Unit Test Statistics. Figure
3 presents the distribution of token counts for ques-

tions and solutions across different subsets. We
also provide unit test statistics of KODCODE. Each
coding question in KODCODE contains an average
of 7.52 unit tests.

Diversity. We analyze the diversity of KOD-
CODE-V1’s question distribution by comparing
it with four baseline datasets: OSS Instruct (Wei
et al., 2024c), ACECoder (Zeng et al., 2025), Edu-
cational Instruct (Huang et al., 2024), and Pack-
age Instruct (Huang et al., 2024). Using the
all-mpnet-base-v2 embedding model*, we en-
code the questions and visualize their distribution
using t-SNE (Van der Maaten and Hinton, 2008) to
create a two-dimensional representation.

Figure 4: Comparison of t-SNE visualization between
KODCODE (by subset) and baseline datasets (OSS In-
struct, ACECoder, Educational Instruct, and Package
Instruct), with 2,000 sampled instructions per dataset.

The visualization in Figure 4 reveals two key ob-
servations. First, KODCODE’s question distribution
(shown in color) spans the entire space, while base-
line datasets (in gray) cluster primarily in the upper
left region, demonstrating KODCODE’s broader
topical diversity. Second, the Algorithm and Filter
subsets of KODCODE show comprehensive cover-
age across the entire space, validating their role in
enhancing KODCODE’s overall diversity.

Difficulty. We analyze the difficulty distribu-
tion across KODCODE subsets by examining the
success rate of (sol, test) pairs in self-verification
across n = 10 attempts per question, as shown in
Figure 5. We categorize questions into four diffi-
culty levels: easy (pass rate >2/3), medium (1/3
to 2/3), hard (<1/3), and fail (all failures). The
analysis reveals that the Prefill subset are typically
the easiest, while Codeforces, Taco, and Code Con-
tests subsets are more challenging, as shown in
their higher failure rates and larger proportions of
hard questions.

*https://huggingface.co/sentence-transformers/
all-mpnet-base-v2
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Figure 5: Difficulty distribution across subsets measured
by pass rates.

Contamination Analysis. We evaluate poten-
tial contamination between KODCODE and exist-
ing evaluation benchmarks, including HumanEval
(Chen et al., 2021), MBPP (Austin et al., 2021),
BigCodeBench (Zhuo et al., 2024), and Live-
CodeBench (V5) (Jain et al., 2024). For each ques-
tion in KODCODE , we identify the most similar
benchmark question using cosine similarity of em-
beddings, considering a question contaminated if
the similarity exceeds 0.95.

(a) Confusion Matrix

(b) Histogram of Maximum Cosine Similarity Scores by Subset

Figure 6: Contamination analysis between KOD-
CODE subsets and existing benchmarks. (a) Confusion
matrix showing the percentage and absolute number
(in parentheses) of contaminated samples with cosine
similarity > 0.95. (b) Distribution of maximum cosine
similarity scores across different KODCODE subsets,
with horizontal lines indicating subset averages.

As shown in Figure 6, our analysis reveals three
findings. First, the contamination rate is minimal,

with only 94 potentially contaminated questions
out of 447K. Second, most overlaps occur between
the Prefill subset and simple Python questions from
HumanEval/MBPP. Third, the histogram in Figure
6-b shows that Prefill has the highest average maxi-
mum cosine similarity, while Docs has the lowest.
We provide examples of contaminated questions
in Appendix B.2 and exclude these cases from our
performance evaluation in Section 4.

Data Flow Analysis. Figure 7 presents a Sankey
diagram illustrating data flow throughout our syn-
thesis dataset generation pipeline. Over 25% of
instances are eliminated during Step 1’s dedupli-
cation process, with the Prefill subset showing the
highest redundancy rate (over 50% discarded). In
Step 2, instances failing unit tests are filtered out,
with higher difficulty subsets (such as Codeforces
and Taco) showing higher rejection rates.
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Algorithm
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Docs
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PackageEvol
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Figure 7: Data flow visualization through our pipeline:
from initial subsets (left) through deduplication (middle)
to final filtered sets after reject sampling (right). Red
paths indicate discarded instances.

4 Performance Evaluation

To evaluate the performance of the KOD-
CODE dataset, we conduct both supervised fine-
tuning using Qwen2.5-Coder-32B-Instruct (Hui
et al., 2024) on the KODCODE-SFT dataset, and
GRPO (Shao et al., 2024) using Qwen2.5-7B-
Instruct-1M (Team, 2025b) and Qwen2.5-Coder-
7B-Instruct (Hui et al., 2024) on the KODCODE

dataset. We compare the model’s performance
across several widely used code generation bench-
marks against existing model baselines.

4.1 Experimental Setup

SFT Setup. We evaluate two variants of KOD-
CODE-SFT. For preprocessing, we exclude R1 re-
sponses that are too long, too short, or implement
class-based solutions rather than functional imple-
mentations. The first version, KODCODE-SFT-
50K, contains 50K instruction-response pairs se-
lected based on the empirical results of mixing data
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Model Name
HumanEval MBPP BigCodeBench-C BigCodeBench-I LiveCodeBench (v5)

Average
Base Plus Base Plus Full Hard Full Hard Easy Medium Hard

Non-Reasoning
Models

Llama-3.1-Tulu-3-70B 83.5 78.0 75.9 65.9 55.0 25.0 43.4 20.9 61.7 15.4 3.7 50.15
Llama-3.3-70B-Instruct 82.9 77.4 87.3 73.0 57.9 29.1 47.0 26.4 81.4 21.1 8.5 55.5
Qwen2.5-32B-Instruct 89.6 79.9 87.8 73.8 53.2 26.4 45.4 22.3 80.3 35.9 8.5 56.27
Qwen2.5-72B-Instruct 87.8 81.1 90.2 76.2 57.5 33.1 46.1 21.6 69.9 39.9 7.0 57.15

Qwen2.5-Coder-32B-Instruct 90.9 85.4 90.2 77.0 57.6 31.1 49.4 25.7 80.6 39.0 8.2 59.25

Reasoning
Models

Sky-T1-32B-Preview 87.8 80.5 87.3 74.1 51.0 27.0 44.2 24.3 81.4 21.1 8.5 54.9
QwQ-32B-Preview 87.8 82.3 84.4 69.8 53.9 26.4 38.8 23.0 90.0 51.7 10.0 56.75

DeepSeek-R1-Distill-Qwen-32B 87.8 81.1 83.9 69.3 55.1 27.7 44.1 23.0 83.9 52.9 17.8 57.51
DeepSeek-R1-Distill-Llama-70B 89.0 80.5 81.7 68.8 53.5 25.7 43.9 25.7 88.5 56.2 18.9 57.79

Bespoke-Stratos-32B 88.4 83.5 88.1 75.1 56.2 33.1 47.3 27.0 86.7 49.5 10.4 59.64

KODCODE
KODCODE-32B-SFT-50K 92.7 85.4 89.9 76.2 59.8 37.8 51.1 32.4 87.8 35.9 6.7 61.22

KODCODE-32B-SFT-Hard-18K 90.9 86.6 89.2 77.0 59.7 37.2 50.5 31.1 90.7 39.3 5.6 61.26

Table 2: This table compares the model performances between KODCODE-tuned models and strong baseline models
across various benchmarks. Average scores are computed by first averaging sub-metrics within each benchmark
and then taking the mean across all five benchmarks (HumanEval, MBPP, BCB-Complete, BCB-Instruct, and
LiveCodeBench). Bold numbers indicate the best performance for each metric. KODCODE-tuned models outperform
larger baseline models, demonstrating the dataset’s high quality and diversity.

from different sources and difficulties. The second
version, KODCODE-SFT-Hard-18K, contains all
18K instructions that are labeled as hard after apply-
ing the same preprocessing filters. We refer to the
models fine-tuned on these two datasets as KOD-
CODE-32B-SFT-50K, and KODCODE-32B-SFT-
Hard-18K. We use a cosine learning rate schedule
with a maximum learning rate of 1 × 10−5 when
fine-tuning the Qwen-2.5 model. The maximum
sequence length is 16384. The detailed training
configurations can be found in Appendix C.1.

RL Setup. We conduct RL experiments on
both Qwen2.5-7B-Instruct-1M (Team, 2025b) and
Qwen2.5-Coder-7B-Instruct (Hui et al., 2024) us-
ing 9.5K randomly selected samples from KOD-
CODEas the training set, and 0.5K as the validation
set. We refer to this dataset as KODCODE -RL-10K.
We perform GRPO (Shao et al., 2024) for 256 steps
with actor learning rate of 5 × 10−7, 16 rollouts
per question, a batch size of 256, max response
length of 4096, and apply KL coefficient of 0.001.
We assign binary rewards for RL: 1 if the model’s
solution passes all unit tests, and 0 otherwise.

Baselines. We compare our KODCODE-tuned
model against several strong baselines, includ-
ing non-reasoning models (Llama-3.3-70B-Instruct
(Dubey et al., 2024), Llama-3.1-Tulu-3-70B (Lam-
bert et al., 2025), Qwen-2.5-32B/72B-Instruct
(Team, 2024a), Qwen-2.5-Coder-32B-Instruct (Hui
et al., 2024)), and reasoning models (QwQ-32B-
Preview (Team, 2024b), DeepSeek-R1-Distill-
Llama-70B (DeepSeek-AI et al., 2025), Sky-T1-
32B-Preview (Team, 2025a), and Bespoke-Stratos-
32B (Labs, 2025)).

Benchmarks and Evaluation Setups. We eval-
uate models on HumanEval(+) (Chen et al., 2021;
Liu et al., 2024), MBPP(+) (Austin et al., 2021; Liu
et al., 2024), BigCodeBench (Zhuo et al., 2024),
and LiveCodeBench (V5) (Jain et al., 2024), each
designed to assess different aspects of code gen-
eration, including functional correctness, external
library usage, and competitive programming chal-
lenges. We use EvalPlus for HumanEval(+) and
MBPP(+) evaluation, and Skythought-Evals (Li
et al., 2025) for LiveCodeBench evaluation. We
evaluate performance on both Complete and In-
struct subsets of BigCodeBench.

We follow the official setups in each benchmark
and evaluate all models using greedy decoding with
a maximum generation length of 16,384 tokens.
We follow the official chat templates of the model
during inference.

4.2 Experimental Results

Model fine-tuned using KODCODE-SFT out-
performs baseline models. Table 2 presents
a comparative analysis of Qwen-2.5-32B-Coder-
Instruct fine-tuned on KODCODE-SFT against var-
ious baseline models. Our fine-tuned SFT mod-
els consistently outperform all baselines, includ-
ing larger models, across both the Complete and
Instruct subsets of BigCodeBench. Specifically,
for BigCodeBench-C, our model achieves 59.8%
(+1.9%) in the Full category and 37.8% (+4.7%)
in the Hard category, compared to the strongest
baseline. For BigCodeBench-I, it achieves 51.1%
(+1.7%) in the Full category and 32.4% (+5.4%)
in the Hard category, demonstrating strong perfor-
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Benchmarks
KODCODE

SFT-Hard-10K
KODCODE
SFT-10K

KODCODE-SFT
NoConvert-10K

BigCodeBench-C Full 60.4 61.1 60.3
BigCodeBench-C Hard 39.9 38.5 35.1
BigCodeBench-I Full 50.6 49.9 49.6
BigCodeBench-I Hard 31.8 27.7 28.4

LiveCodeBench Easy 87.8 87.8 86.4
LiveCodeBench Medium 35.3 32.6 32.6
LiveCodeBench Hard 6.3 4.8 5.6

Table 3: Ablation study of data selection when fine-
tuning Qwen2.5-Coder-32B-Instruct on KODCODE-
SFT. Each model is trained on 10K sampled data. Bold
numbers indicate best performance for each metric.

mance across different evaluation settings. Addi-
tionally, on HumanEval, our model reaches 92.7%,
surpassing Qwen2.5-Coder-32B-Instruct (90.9%)
by 1.8%. For LiveCodeBench-Easy, our model
attains 90.7%, exceeding all baselines, including
QwQ-32B-Preview (90.0%). Overall, our model
achieves an average score of 61.26%, the highest
among all evaluated models, highlighting the qual-
ity and diversity of our KODCODE dataset and its
effectiveness in improving code generation perfor-
mance across various benchmarks.

Effectiveness of hard coding questions. To val-
idate the impact of challenging instances in KOD-
CODE, we compare models trained on two differ-
ent 10K sample sets: one randomly sampled from
the KODCODE-SFT-50K dataset (named as KOD-
CODE-SFT-10K) and another from the KODCODE-
SFT-Hard-18K dataset (named as KODCODE-SFT-
Hard-10K). As shown in Table 3, KODCODE-SFT-
Hard-10K outperforms KODCODE-SFT-10K on
BigCodeBench-I Hard (31.8% vs. 27.7%, +4.1%)
and BigCodeBench-I Full (50.6% vs. 49.9%,
+0.7%), confirming that exposure to difficult coding
problems improves model robustness. Similarly,
for BigCodeBench-C Hard, KODCODE-SFT-Hard-
10K achieves 39.9%, surpassing KODCODE-SFT-
10K (38.5%, +1.4%). On LiveCodeBench Hard,
KODCODE-SFT-Hard-10K leads (6.3% vs. 4.8%,
+1.5%), reinforcing that hard samples do enhance
performance on complex programming tasks.

Effectiveness of style converter in KOD-
CODE generation process. To assess the im-
pact of the style converter, we remove all in-
stances processed by the style converter from the
KODCODE-SFT-50K dataset and randomly sam-
ple 10K instances from the remaining datasets
for fine-tuning, naming the resulting dataset KOD-
CODE-SFT-NoConvert-10K. As shown in Table 3,

KODCODE-SFT-NoConvert-10K performs lower
on BigCodeBench-C Full (60.3% vs. 61.1%) and
BigCodeBench-C Hard (35.1% vs. 38.5%), indi-
cating that removing style variations slightly re-
duces performance. In LiveCodeBench Easy, KOD-
CODE-SFT-NoConvert-10K scores 86.4%, lower
than KODCODE-SFT-10K (87.8%). This result is
consistent with the findings of (Li et al., 2025),
highlighting that the question format plays a role
in the performance of the LLM code.

Effectiveness of KODCODE on RL. Table 4
compares the performance of models before and af-
ter GRPO using KODCODE-RL-10K. We observe
significant performance improvement on most of
the benchmarks compared to the original model
after RL. In addition, we observe that continuing
to increase the training steps can further enhance
the model performance. This indicates the effec-
tiveness of KODCODE for RL training.

5 Related Work

Synthetic Data Generation for Code LLMs.
High-quality training data is crucial for LLM post-
training (Zhou et al., 2023; Taori et al., 2023).
Given the time and resource cost of human data
collection (Databricks, 2023), synthetic data gen-
eration has emerged as a promising alternative.
This approach leverages LLMs to produce syn-
thetic instructions by expanding a small set of
human-annotated seed instructions through few-
shot prompting (Wang et al., 2023; Taori et al.,
2023; Xu et al., 2023a,b; Wang et al., 2024; Sun
et al., 2023). While synthetic data generation has
been widely explored for alignment (Xu et al.,
2024, 2023a; Ding et al., 2023; Cui et al., 2023)
and mathematics (LI et al., 2024; Yue et al., 2024;
Toshniwal et al., 2024) with millions of instances
available, high-quality synthetic coding datasets
remain scarce. Recently, several open-source cod-
ing datasets have been proposed by the community,
including Code Alpaca (Chaudhary, 2023), OSS In-
struct (Wei et al., 2024c), Evol Instruct (Luo et al.,
2023), and Package Instruct (Huang et al., 2024).
However, these resources are still limited in terms
of diversity, difficulty, and scale. We present a com-
prehensive comparison between KODCODE and
existing open-source coding datasets in Table 1.

Code Generation with Execution Feedback.
Ensuring the correctness of code generated by
LLMs remains a critical challenge. Yang et al.
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Model
LiveCodeBench BCB-Complete BCB-Instruct HumanEval MBPP

Average
Easy Medium Hard Full Hard Full Hard Base Plus Base Plus

Qwen2.5-Coder-7B-Instruct 57.4 23.0 4.4 52.0 21.6 41.8 19.6 91.5 85.4 83.1 71.7 52.32
+ RL KodCode-10K (Step 128) 65.2 21.1 4.1 52.5 25.7 42.2 20.3 90.9 86.0 84.9 72.8 53.56
+ RL KodCode-10K (Step 256) 64.5 19.9 3.3 53.7 27.0 42.9 21.6 90.2 85.4 86.5 74.1 53.99

Qwen2.5-7B-Instruct-1M 57.7 12.4 3.7 45.3 14.2 36.6 17.6 86.0 79.3 78.8 69.3 47.63
+ RL KodCode-10K (Step 128) 60.2 19.0 2.6 47.0 19.6 36.7 13.5 90.2 83.5 81.0 70.9 49.69
+ RL KodCode-10K (Step 256) 57.0 18.7 3.0 48.2 19.6 36.8 12.8 91.5 86.0 82.8 72.8 50.30

Table 4: This table evaluates the performance of models before and after training with GRPO using KODCODE-RL-
10K. Notable performance gains are observed across most benchmarks compared to the baselines.

(2024c) explores execution feedback within Docker
environments, enabling models to rectify syntac-
tic and logical errors by iteratively refining their
outputs based on runtime execution results. Zheng
et al. (2025) integrates code generation with ex-
ecution and refinement to improve the quality of
generated code.

LLM-based Unit Test Generation. While ex-
ecution feedback helps identify code issues, unit
tests play a complementary role by proactively as-
sessing code correctness. Yang et al. (Yang et al.,
2024d) provide a comprehensive empirical analy-
sis on LLMs’ capabilities in unit test generation.
EvalPlus (Liu et al., 2024) enhances code evalua-
tion by combining LLM-generated test cases with
mutation-based expansion, increasing test diver-
sity and rigor. Huang et al. (Huang et al., 2023)
propose a multi-perspective self-consistency frame-
work to select optimal code solutions based on
self-generated tests. Recently, Wei et al. (Wei
et al., 2024b) introduced an approach to align a
base code model by generating solutions and veri-
fying their correctness through self-generated unit
tests. OpenCoder (Huang et al., 2024) employs a
teacher model to generate multiple test cases for
each code snippet, executing them in a Python in-
terpreter and filtering out failing samples to ensure
reliability. Jiao et al. (Jiao et al., 2025) enhance the
reasoning capabilities of LLMs by evaluating so-
lutions to reasoning problems via LLM-generated
test case. AceCoder (Zeng et al., 2025) prompts
GPT-4o-mini to generate unit tests, with Qwen 2.5
Coder-32B Instruct acting as a verifier to eliminate
incorrect test cases.

6 Conclusion and Future Work

In this work, we presented KODCODE, a large-
scale synthetic dataset of 447K diverse coding ques-

tions paired with verified solutions and unit tests.
Our three-step synthesis pipeline—comprising cod-
ing question generation, solution and test case re-
finement via self-verification, and post-training
data synthesis—ensures both the diversity and
quality of training data for high-performing cod-
ing language models. Through detailed analysis,
we validate our pipeline’s effectiveness and thor-
oughly examine the dataset’s attributes. Compre-
hensive experiments demonstrate that models fine-
tuned on KODCODE not only achieve state-of-the-
art performance across multiple benchmarks (Hu-
manEval(+), MBPP(+), BigCodeBench, and Live-
CodeBench) but also outperform larger models.

Future work will focus on three directions. First,
we plan to scale up the dataset with more challeng-
ing problems, as our findings indicate that difficult
instances significantly improve model performance.
Second, we aim to investigate optimal strategies
for post-training data selection. Finally, we will
explore methods for generating repository-level
synthetic data to further enhance coding LLMs.
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Limitations

While models fine-tuned on KODCODE achieve
state-of-the-art performance across most coding
benchmarks, their performance on LiveCodeBench-
Hard remains limited. This gap likely stems from
insufficient representation of highly challenging
competition-level programming problems in our
dataset, which are prevalent in LiveCodeBench-
Hard. Future work could explore methods to syn-
thesis highly challenging coding problems.

Ethical Statement

Our KODCODE dataset enhances code generation
of code LLMs through diverse and challenging
instruction-solution-test triplets. We do not intro-
duce or endorse any applications that could cause
harm or be misused. This paper does not present
any ethical concerns.
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A Additional Information of the Filter
Subset.

To create the Filter subset, we first generate data
using seven state-of-the-art models: Llama-3.1/3.3-
70B-Instruct (Dubey et al., 2024), Qwen2/2.5-
72B-Instruct (Yang et al., 2024a; Team, 2024a),
Qwen2.5-Coder-32B-Instruct (Hui et al., 2024),
Qwen2.5-Math-72B-Instruct (Yang et al., 2024b),
and Gemma-2-27b-it (Team et al., 2024). We then
filter for Python-specific content in both instruc-
tions and responses, yielding 186K instances. Us-
ing Llama-3.1-8B-Instruct as our annotator, we la-
bel each instance for quality and difficulty (prompts
provided in Appendix D.1). We retain only high-
quality instances categorized as "Algorithm Im-
plementation" or "Function Generation". Figure
8 shows the distribution of task categories before
filtering. The final filtered dataset contains 89K
coding questions. We follow Magpie’s CC-BY-NC
4.0 license.
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Figure 8: Task categories of the collected Magpie Cod-
ing data before filtering.

B More Analysis on KODCODE

B.1 Analysis on MBPP Validation Failures
Cases with Self Verification

Figures 9 and 10 illustrate two questions (Task 511
and Task 525) that failed in the unit test during
our evaluation on the MBPP validation dataset. In
Task 511, which requires computing the minimum
sum of factors, the GPT-4o function attempts to
minimize the sum of factor pairs by iterating up
to the square root of the input number. However,
it fails to correctly accumulate all prime factors

when multiple factors exist beyond a single pair
(e.g., 105, which has factors 3, 5, and 7), leading
to incorrect results compared to the ground-truth
(GT) implementation, which iteratively divides the
number while summing all valid divisors.

In Task 525, the goal is to determine whether
two given lines are parallel, with each line rep-
resented as a tuple of coefficients. The GT so-
lution verifies parallelism by directly comparing
slopes, a1

b1
= a2

b2
, ensuring compatibility with both

the general case of two-element (a, b) tuples and
three-element (a, b, c) representations. In contrast,
GPT-4o applied an equivalent determinant-based
condition, a1 · b2 = a2 · b1, but implicitly assumed
that all inputs followed the three-element format,
failing to account for the more general case where
only (a, b) is provided. Due to this assumption,
GPT-4o’s implementation produced a mismatch in
the third GT unit test case, where the input con-
sists of two-element tuples (3, 3) and (5, 5), which
implicitly represent valid lines with c = 0.

B.2 Examples of Dataset Contamination.

We present two examples of instances from KOD-
CODE that are similar to those in the MBPP and
HumanEval benchmarks. These are illustrated in
Figure 11 and Figure 12, respectively.

C More on Experimental Setups

C.1 Supervised Fine-Tuning Setups

Table 5 demonstrates the detailed supervised fine-
tuning (SFT) hyper-parameters. We perform exper-
iments on a cluster with 768 NVIDIA A100 GPUs.
We fine-tune the model using 32 GPUs. The exper-
iments in this paper were conducted using Llama
Factory†. For datasets larger than 20K samples, we
train for 2 epochs; for datasets smaller than 20K,
we increase this to 3 epochs.

We adapt the system prompt from (Team, 2025a),
modifying it to better accommodate R1-style long
chain-of-thought responses during fine-tuning. The
full prompt can be found in Figure 13.

D Prompt Templates

D.1 Prompt Template for Dataset Labeling

Figure 14 and Figure 15 detail the prompts for
labeling question quality and task category.

†https://github.com/hiyouga/LLaMA-Factory
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Task_id: 511

GPT-4o Response

Write a python function to find minimum sum of factors of a given number. The function 
name is find_Min_Sum.

GT Response

GT Unit Test

Figure 9: Failed Task 511.

Task_id: 525

GT ResponseGPT-4o Response

Write a python function to check whether two given lines are parallel or not. The function 
name is parallel_lines.

GT Unit Test

Figure 10: Failed Task 525.

Example 1 of Contaminated Data

KodCode: How do I write a Python function to count the number of uppercase
letters in a given string?

MBPP /450: Write a python function to count the upper case characters in a
given string.

Cosine Similarity: 0.959

Figure 11: Example 1 of Contaminated Data
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Example 2 of Contaminated Data

KodCode: def is_prime(n):
""" Returns True if n is a prime number , otherwise False.

>>> is_prime (2) == True
>>> is_prime (3) == True
>>> is_prime (5) == True
>>> is_prime (11) == True
>>> is_prime (13) == True
>>> is_prime (0) == False
>>> is_prime (1) == False
>>> is_prime (4) == False
>>> is_prime (6) == False
>>> is_prime (9) == False
>>> is_prime (7919) == True
>>> is_prime (8000) == False
>>> is_prime (-1) == False
>>> is_prime (-5) == False
"""

HumanEval /31: def is_prime(n):
""" Return true if a given number is prime , and false otherwise.
>>> is_prime (6)
False
>>> is_prime (101)
True
>>> is_prime (11)
True
>>> is_prime (13441)
True
>>> is_prime (61)
True
>>> is_prime (4)
False
>>> is_prime (1)
False

Cosine Similarity: 0.953

Figure 12: Example 2 of Contaminated Data

System Prompt for Fine-Tuning
Your role as an assistant involves thoroughly exploring questions through a systematic long

thinking process before providing the final precise and accurate solutions. This requires engaging
in a comprehensive cycle of analysis, summarizing, exploration, reassessment, reflection, back-
tracing, and iteration to develop well-considered thinking process. Please structure your response
into two main sections: Thought and Solution. In the Thought section, detail your reasoning
process using the specified format: <think> thought with steps </think>. Each step should
include detailed considerations such as analisying questions, summarizing relevant findings,
brainstorming new ideas, verifying the accuracy of the current steps, refining any errors, and
revisiting previous steps. In the Solution section after </think>, synthesize your analysis from the
Thought section to present a clear, well-structured solution. Your final answer should be logically
organized, precise, and include all essential implementation steps while maintaining conciseness.

Figure 13: System Prompt for Fine-Tuning
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Prompt Template for Labeling Question Quality

# Instruction

You need to rate the quality of the code-related query based on its clarity, specificity,
and completeness.

The rating scale is as follows:

- very poor: The query lacks critical code context (e.g., no code samples, error messages,
or specific requirements). The problem description is vague or incoherent.

- poor: The query provides incomplete code context or unclear requirements. Important
details like programming language, error messages, or expected behavior are missing.

- average: The query includes basic code context and requirements but may need clarification
on specific behaviors, edge cases, or implementation details.

- good: The query provides clear code samples, specific requirements, and sufficient context
(e.g., language version, environment, expected behavior). Minor details might be
missing.

- excellent: The query is comprehensive with complete code examples, clear requirements,
relevant error messages if applicable, expected behavior, and implementation constraints
. All necessary context is provided for solving the problem.

If the query is not related to code, please rate it as `very poor`. If the query is short
but clearly demonstrates the user's intent, please rate it as `good`.

If the query only contains code with no specific instructions, please rate it as `very poor`.

If the query explicitly asks to use programming language other than Python, please rate it
as `very poor`.

## User Query
```
{input}
```

## Output Format
Given the user query, you first need to give an assesement, highlighting the strengths and/

or weaknesses of the user query.
Then, you need to output a rating from very poor to excellent by filling in the placeholders

in [...]:
```
{{

"explanation": "[...]",
"input_quality": "[very poor/poor/average/good/excellent]"

}}
```

Figure 14: Prompt Template for Labeling Question Quality.
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Prompt Template for Labeling Task Category

# Instruction

Please label the task tags for the user query.

## User Query
```
{input}
```

## Tagging the user input
Please label the task tags for the user query. You will need to analyze the user query and

select the most relevant task tag from the list below.

all_task_tags = [
"Debugging", # Users ask for help with debugging code. The user should provide the code
and error message.

"Code Review", # Users ask for help with reviewing code. The user should provide the
code.
"Code Refactoring", # Users ask for help with refactoring code to improve its structure.

"Code Optimization", # Users ask for help with improving code performance or efficiency.

"Function Generation", # Users ask for help with creating new functions based on
requirements.
"Class Design", # Users ask for help with designing classes and object-oriented
structures.
"Algorithm Implementation", # Users ask for help with implementing specific algorithms
or data structures.
"API Integration", # Users ask for help with integrating third-party APIs or services.
"Database Operations", # Users ask for help with database queries, schema design, or
operations.
"Testing", # Users ask for help with unit tests, integration tests, or test strategies.
"Security", # Users ask for help with security-related implementations or best
practices.
"Error Handling", # Users ask for help with implementing error handling and validation.
"Concurrency", # Users ask for help with multi-threading, async programming, or
parallel processing.
"UI/UX Implementation", # Users ask for help with frontend implementations or user
interface code.
"DevOps", # Users ask for help with deployment, CI/CD, or infrastructure code.
"Documentation", # Users ask for help with code documentation or technical writing.
"Dependency Management", # Users ask for help with package management or dependency
issues.
"Code Migration", # Users ask for help with migrating code between languages or
frameworks.
"Performance Profiling", # Users ask for help with identifying and resolving
performance bottlenecks.
"Others" # Any queries that do not fit into the above categories.

]

## Output Format:
Note that you can only select a single primary tag. Other applicable tags can be added to

the list of other tags.
Now, please output your tags below in a json format by filling in the placeholders in <...>:
```
{{

"primary_tag": "<primary tag>",
"other_tags": ["<tag 1>", "<tag 2>", ... ]

}}
```

Figure 15: Prompt Template for Labeling Task Category.
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Table 5: This table shows the hyper-parameters for su-
pervised fine-tuning.

Hyper-parameter Value

Learning Rate 1× 10−5

Number of Epochs 2(> 20K) / 3(< 20K)
Number of Devices 32
Per-device Batch Size 1
Gradient Accumulation Steps 4
Effective Batch Size 128
Optimizer Adamw
Learning Rate Scheduler cosine
Warmup Steps 100
Max Sequence Length 16384

D.2 Prompt Template for MAGPIE-Prefill

We utilize the following prompt template to query
the Qwen2.5-Coder-7B-Instruct model. We imple-
ment the following three different prefillings and
replace {Prefilling Content} in the template with
one of the following options: (1) Write a function
to, (2) Write a Python function, (3) Create a func-
tion that.

Prompt Template for MAGPIE-Prefill

<|im_start|>system
You are Qwen , created by Alibaba

Cloud. You are a helpful
assistant. You are designed to
provide helpful , step -by-step
guidance on coding problems.

The user will ask you a wide
range of coding questions.

Your purpose is to assist users in
understanding coding concepts

, working through code , and
arriving at the correct
solutions.<|im_end|>

<|im_start|>user
{Prefilling Content}

D.3 Prompt Template for Generating Coding
Assessment Questions

Figure 17 demonstrates the prompt template for
generating coding assessment questions.

D.4 Prompt Template for Converting DSA
Code Snippets to Questions

Figure 18 demonstrates the prompt template for
generating questions for the algorithm subset from
the code & algorithm snippets.
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Figure 16: Subset Distribution of KODCODE.

D.5 Prompt Template for Converting
Technical Documentations to Coding
Questions

Figure 19 demonstrates the prompt template for
generating questions for the Docs subset.

D.6 Prompt Template for Generating
Solutions and Tests

Figure 20 demonstrates the prompt template for
generating solutions and corresponding unit tests
using GPT-4o-0513.

D.7 Prompt Template for Style Converter
Figure 21 demonstrates the prompt template for
converting question styles.

E KODCODE Examples

We present representative examples from KOD-
CODE subsets in Figure 22 to Figure 28. The
distribution of each subset is demonstrated in Fig-
ure 16.
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Prompt Template for Generating Coding Assessment Questions

## Task
Design a **Coding Assessment Question**.

## Objective
Analyze the provided sample questions and create an additional question that aligns with the

existing set in terms of style, complexity, and scope.

## Guidelines

### Question Style
- Carefully examine the format and presentation of the given questions.
- Maintain a consistent tone and language used in the original set.

### Question Length
- Ensure your new question is of comparable length to the existing ones.
- If the original questions vary in length, aim for the average length among them.

### Difficulty Level
- Assess the cognitive and technical challenges presented in the sample questions.
- Match the complexity of concepts, algorithms, or programming techniques required.

### Topic Alignment
- Identify the core programming concepts or domains covered in the existing questions.
- Create a question that explores a related or complementary area within the same general

topic.

### Question Uniqueness
- While maintaining similarity, ensure your new question is not a mere rephrasing of an

existing one.
- Introduce a novel problem or scenario that tests the same skills in a different context.

## Output
Create a new question that matches the style of the existing set of questions. Output one

new question only. Direct output the question, without adding question number or any
other text in the beginning.

## Question 1
{Seed 1}

## Question 2
{Seed 2}

## Question 3
{Seed 3}

## Question 4

Figure 17: Prompt Template for Generating Coding Assessment Questions
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Prompt Template for Algorithm Subset

## Task
Design a **Coding Assessment Question**.

## Objective
As an experienced programming instructor, you are designing programming questions to assess students' understanding of

algorithms and data structures provided in the code snippets. Your question should require students to write code
that demonstrates their comprehension of fundamental and advanced concepts from the code snippets.

## Guidelines

### Algorithm Analysis
Provide a thorough analysis of the algorithm or data structure provided in the code snippets, including but not limited

to the following aspects:

#### Core Identification
* **Algorithm/Data Structure**: State the name, type (e.g., sorting algorithm, tree data structure), and main purpose.
* **Complexity**: Outline time and space complexity.
* **Principles**: Summarize its core operational steps or key mechanisms.

#### Characteristics & Applications
* **Properties**: Highlight essential properties (e.g., sorting stability, traversal order).
* **Common Use Cases**: Describe typical scenarios where this algorithm or structure is effective.
* **Strengths/Limitations**: Identify its key advantages and drawbacks, and specify when it's most suitable to use or

avoid.

#### Implementation Challenges
* **Edge Cases**: Describe common edge cases students should consider.
* **Performance Bottlenecks**: Identify any parts that can slow down execution or use excess memory.
* **Error Scenarios**: Explain situations that might lead to incorrect results if not handled correctly.
* **Optimization Points**: Note potential improvements or alternatives to enhance performance.

### Question Style
Based on the above analysis, craft a question that is:
* **Challenging** and requires a well-thought-out coding solution.
* **Clear and self-contained**, with all necessary information for solving it provided.
* **Focused on function implementation**, specifying:

* Expected **input and output formats**.
* Any **constraints or limitations**.
* **Performance requirements**, if applicable.

* Enriched with a brief **scenario or context** (if it enhances clarity).
* Thoroughly examining the algorithm or data structure without referencing any example code directly.

## Output Format
Please use the following output format for consistency.

<|Analysis Begin|>

[Write your analysis here]

<|Analysis End|>

<|Question Begin|>

[Write the coding question here]

<|Question End|>

## Code Snippets

Figure 18: Prompt Template for Algorithm Subset
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Prompt Template for Docs Subset

## Task
Design a **Coding Assessment Question**.

## Objective
As an experienced programming instructor, you are designing programming questions to assess

students' understanding of {PACKAGE_NAME}. Your question should require students to
write code that demonstrates their comprehension of fundamental and advanced concepts of
this package.

## Guidelines

I will provide you with the documentation of {PACKAGE_NAME}. It could be a jupyter notebook,
txt, or rst file. Please use it to design the question.

You should first analyze the documentation provided and understand the design of the package.
Then, craft a question that is:

* **Challenging** and requires a well-thought-out coding solution.
* **Clear and self-contained**, with all necessary information for solving it provided.
* **Focused on function implementation**, specifying:

* Expected **input and output formats**.
* Any **constraints or limitations**.
* **Performance requirements**, if applicable.

## Output Format
Please use the following output format for consistency.

<|Analysis Begin|>

[Write your analysis here]

<|Analysis End|>

<|Question Begin|>

[Write the coding question here. If you believe this document is not enough to design a
question, please output "BAD_DOCUMENT" in this section.]

<|Question End|>

## Documentation
{CONTENT}

----------------
Now, please output the analysis and the question.

Figure 19: Prompt Template for Docs Subset
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Prompt Template for Generating Solutions and Tests

## Task:
Please Answer the question and generate unit tests to verify your answer.

## Output Format:
Your solution and unit tests should be presented in markdown Python code format within the

specified sections below. Ensure your code is within code blocks. For the tests, use
pytest style by defining individual test functions (without classes) and using assert
statements.

<|Solution Begin|>
[Solution Code in Python]
<|Solution End|>
<|Test Begin|>
[Unit Test Code in Python]
<|Test End|>

## Example
Below is an example output format implementing a simple a + b function.

<|Solution Begin|>
```python
def add(a, b):

"""
Returns the sum of a and b.
"""
return a + b

```
<|Solution End|>

<|Test Begin|>
```python
from solution import add

def test_add_positive_numbers():
assert add(2, 3) == 5

def test_add_with_zero():
assert add(0, 5) == 5
assert add(5, 0) == 5

def test_add_negative_numbers():
assert add(-1, -1) == -2

def test_add_mixed_sign_numbers():
assert add(-1, 3) == 2

```
<|Test End|>

## Question:

Figure 20: Prompt Template for Generating Solutions and Tests
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Prompt Template for Style Converter

## Task:
Please convert the given coding task to a coding completion task.

## Instruction

I will give you a coding task, and you goal is to convert it to a completion task. For example, if the coding task is "
Find the longest common prefix among a list of strings.", the completion should be a task requiring the user to
write a function that takes a list of strings as input and returns the longest common prefix as shown in the
example below. Please ensure that the completion task contains the function definition, necessary imports,
description, and test cases (if applicable).

I will provide you a coding task, along with a unit test and a solution. You can refer to them for the test cases and
the function definition, but do not put the solution in the completion task.

Coding Task: Find the longest common prefix among a list of strings.

Unit Test:
```python
from solution import longest_common_prefix

def test_longest_common_prefix():
assert longest_common_prefix(["flower", "flow", "flight"]) == "fl"
assert longest_common_prefix(["dog", "racecar", "car"]) == ""

```

Solution:
```python
def longestCommonPrefix(strs: List[str]) -> str:

# Sort the list of strings
strs.sort()

# Only need to compare first and last strings after sorting
first = strs[0]
last = strs[-1]

# Find the common prefix between first and last
i = 0
while i < min(len(first), len(last)) and first[i] == last[i]:

i += 1

return first[:i]
```

Completion Task you should generate:
```python
def longest_common_prefix(strs: List[str]) -> str:

""" Find the longest common prefix among a list of strings.
>>> longest_common_prefix(["flower", "flow", "flight"]) "fl"
>>> longest_common_prefix(["dog", "racecar", "car"]) ""
"""

```

Now, I will give you a coding task, and you goal is to convert it to a completion task.
## Input Information

Coding Task: [Coding Task Placeholder]

Unit Test: [Unit Test Placeholder]

Solution: [Solution Placeholder]

## Output Format:
<|Completion Begin|>
[Completion Task in Python]
<|Completion End|>

Please output the completion task strictly in the provided format, without adding any other information.

Figure 21: Prompt Template for Style Converter
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KODCODE Subset: Prefill

Write a function to find max and min from an array in Python. I am looking for an O(n) time
complexity solution.

Figure 22: Example of KODCODE Subset: Prefill

KODCODE Subset: Package

Design and implement a function that , given a list of integers , returns a new list where each
element is the product of all other elements in the list except the one at the current index.
You should solve this without using division and in O(n) time complexity.

The function should output:
- list: A list where each element is the product of all other elements in the input list except the

element at the current index.

You should write self -contained code starting with:
```
def product_except_self(nums):
```
The first example from KodCode: Package: You are tasked with creating a function that calculates

the similarity between two text documents based on the Jaccard similarity coefficient. The
Jaccard similarity coefficient is defined as the size of the intersection divided by the size
of the union of the sample sets. This function should take two strings as input , tokenize them
into words , and then compute the similarity.

#### Function Specification:

** Function Name **: `jaccard_similarity `

** Parameters **:
- `doc1 ` (str): The first document as a string.
- `doc2 ` (str): The second document as a string.

** Behavior **:
1. Tokenize both input strings into sets of words.
2. Compute the intersection of these sets.
3. Compute the union of these sets.
4. Calculate the Jaccard similarity coefficient: (size of intersection) / (size of union).
5. Return the Jaccard similarity coefficient as a float.

** Example **:
```python
def jaccard_similarity(doc1 , doc2):

# Tokenize the documents
set1 = set(doc1.split())
set2 = set(doc2.split())

# Compute intersection and union
intersection = set1.intersection(set2)
union = set1.union(set2)

# Calculate and return Jaccard similarity coefficient
return len(intersection) / len(union)

# Example usage
doc1 = "the cat in the hat"
doc2 = "the cat with a hat"
print(jaccard_similarity(doc1 , doc2)) # Output: 0.5
```

Figure 23: Example of KODCODE Subset: Package
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KODCODE Subset: Codeforces

Many citizens of Gridland have taken up gardening as a hobby. Each gardener has a rectangular plot
represented by a grid with $$$N$$$ rows and $$$M$$$ columns. Some cells in the grid may
already contain flowers. Each gardener wants to plant saplings in the remaining empty cells
such that no two saplings are adjacent to each other , neither horizontally , vertically , nor
diagonally. The goal is to determine the maximum number of saplings that can be planted in the
given grid.

### Input
- The first line of input contains two integers , $$$N$$$ and $$$M$$$ ($$$1 \leq N, M \leq 1000 $$$),

representing the dimensions of the grid.
- The next $$$N$$$ lines each contain $$$M$$$ characters , representing the grid. Each character is

either a 'F' (which means a flower is already planted in that cell) or an 'E' (which means the
cell is empty).

### Output
- Output a single integer , the maximum number of saplings that can be planted.

### Example

#### Input
```
3 4
E E E E
E F E E
E E E E
```

#### Output
```
4
```

### Explanation
The optimal arrangement of planting saplings would be:

```
S E S E
E F E E
S E S E
```

Placing saplings ('S') in this way ensures no two saplings are adjacent and maximizes the number of
saplings planted , which totals to 4 in this example.

Figure 24: Example of KODCODE Subset: Codeforces

KODCODE Subset: Leetcode

Given a list of integers `nums `, find the maximum product of any two distinct elements in the list.
Return the maximum product. For example , given `nums = [5, 3, -1, 9, -7]`, the maximum

product would be `5 * 9 = 45`.

Figure 25: Example of KODCODE Subset: Leetcode
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KODCODE Subset: Apps

## Task
Design a ** Matrix Multiplication Function **.

## Objective
Write a function that multiplies two matrices of compatible dimensions and returns the result. Your

implementation should include a check for dimension compatibility before attempting to
multiply the matrices.

## Guidelines

### Function Signature
```python
def matrix_multiply(A, B):

pass
```

### Input
- `A`: A list of lists representing matrix A, where each inner list represents a row of the matrix.
- `B`: A list of lists representing matrix B, where each inner list represents a row of the matrix.

### Output
- A new matrix representing the product of matrices A and B.

### Constraints
- The number of columns in matrix A should be equal to the number of rows in matrix B to be

compatible for multiplication.
- Both matrices can be empty , and the function should return an empty matrix in such cases.

### Example
```python
A = [

[1, 2, 3],
[4, 5, 6]

]

B = [
[7, 8],
[9, 10],
[11, 12]

]

print(matrix_multiply(A, B))
# Output: [[58, 64], [139, 154]]
```

### Explanation
The product of matrices A and B results in a new matrix where each element at position (i, j) is

calculated as the sum of element -wise products of row i from matrix A and column j from matrix
B.

### Constraints
1. Matrices A and B are rectangular.
2. Elements of matrices A and B can be any real numbers.

### Notes
- If the dimensions of the two matrices are incompatible , raise a ValueError with a message "

Incompatible dimensions for matrix multiplication ".
- The function should handle matrices with any number of rows and columns , but keep in mind the

complexity of your solution , as matrix multiplication can be time -consuming for very large
matrices.

Figure 26: Example of KODCODE Subset: Apps
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KODCODE Subset: Algorithm

You have been hired to develop a real -time weather dashboard that fetches and displays current
weather data for a given list of cities. Your task is to write a function that processes and
displays weather data from the OpenWeatherMap API for a specified list of cities. You need to
ensure robust handling of potential issues such as missing or malformed data. You will
implement the following function:

```python
def get_and_display_weather(cities: list) -> None:

"""
Fetches current weather data from the OpenWeatherMap API for a specified list of cities and
displays it in a formatted table.

The API endpoint to use is:
"http ://api.openweathermap.org/data /2.5/ weather?q={city}& appid ={ API_KEY }"

Requirements:
- Handle missing or malformed data gracefully , ensuring the program does not crash.
- Display weather information in degrees Celsius.

The table should display the following columns:
- City
- Weather (e.g., clear sky , rain)
- Temperature
- Humidity (%)
- Wind Speed (m/s)

Example of the table format:
```
+-------------+------------+-------------+-----------+------------+
| City | Weather | - Temperature

| Humidity (%) | Wind Speed (m/s) |
+-------------+------------+-------------+-----------+------------+
| New York | Clear sky | 22 | 55 | 5 |
| Los Angeles | Cloudy | 18 | 60 | 3 |
| ... |
+-------------+------------+-------------+-----------+------------+
```

Parameters:
- cities: list of strings representing the city names.

"""
pass

```

### Input/Output Format

- **Input **: A list of city names (e.g., ["New York", "Los Angeles", "Mumbai "]).
- ** Output **: The function should output the formatted table with the columns specified above.

### Constraints

- Do not assume the API will always return all required fields for each city.
- Consider edge cases where some fields might be missing or improperly formatted.
- Ensure that the temperature conversion to Celsius is accurate.

### Performance Requirements

- Efficient handling of network requests and JSON parsing.
- Ensure the table can handle multiple cities without significant delay in processing time.

Figure 27: Example of KODCODE Subset: Algorithm
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KODCODE Subset: Filter

Given a string , find the longest palindromic subsequence in that string.

Example:
Input: "banana"
Output: "anana"

Example:
Input: "abcd"
Output: "" (because there 's no palindromic subsequence)

Note: A subsequence is a sequence that appears in the same relative order , but not necessarily
contiguous.

Figure 28: Example of KODCODE Subset: Filter
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