
Findings of the Association for Computational Linguistics: ACL 2025, pages 6830–6842
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

PROMTEC: Fast LLM Inference Decoding using Prompt Multi-Lookup
with Template Database and Common Sequences

Alan Chi-Man Lee*1, Wing-Sun Cheng2, Calvin Chun-Kit Chan1

1Department of Information Engineering, The Chinese University of Hong Kong, 2RISKSIS
{lcm123, ckchan}@ie.cuhk.edu.hk marco.cheng@risksis.com

Abstract

We propose PROMTEC, a novel multi-faceted
approach to accelerate the inference of large
language models (LLMs) by leveraging three
key techniques: Prompt Multi-Lookup, Tem-
plate Datastore, and Common Sequences meth-
ods. Prompt Multi-Lookup enhances the au-
toregressive decoding efficiency by generat-
ing multiple candidate sequences from context.
Template Datastore exploits structured patterns,
particularly in mathematical and code genera-
tion tasks, to enable fast and accurate candidate
generation. Common Sequences optimize infer-
ence by precomputing frequent short sequences
in specialized domains. For mathematical gen-
eration, PROMTEC achieves a 3.91× speedup
on the miniF2F benchmark. For code genera-
tion, it achieves up to a 4.23× speedup on the
HumanEval benchmark. This work highlights
the potential of integrated candidate generation
to accelerate LLM inference while maintaining
high-quality outputs.

1 Introduction

Large Language Models (LLMs) are crucial in nu-
merous applications, including question answering,
program synthesis, and task automation (Devlin
et al., 2019; Brown et al., 2020; Zhang et al., 2022;
Touvron et al., 2023). However, the significant in-
ference costs and time-consuming autoregressive
decoding processes pose substantial challenges.

The need for efficient token generation is height-
ened by inference-time scaling, which requires gen-
erating longer outputs for complex tasks (Zhong
et al., 2024). Multi-agent and pipelined LLM sys-
tems improve accuracy and reliability but suffer
from long response times due to sequential process-
ing stages (Wang et al., 2024; Santhanam et al.,
2024).

Speculative decoding has emerged as a promis-
ing technique to accelerate LLM output speed

*Corresponding author

(Leviathan et al., 2023; Chen et al., 2023; Miao
et al., 2024; Cai et al., 2024; Zhang et al., 2024;
Lin et al., 2024). This method allows LLMs to ver-
ify multiple tokens in a single forward pass using
small draft models or additional decoding heads,
reducing latency. However, it faces limitations such
as the need for high-quality draft models, increased
GPU memory usage, and orchestration complexity
(Chen et al., 2024; Li et al., 2024).

Recent advancements have integrated additional
decoding heads directly into the LLM, utilizing
its final hidden representations (Cai et al., 2024).
While addressing some challenges of separate draft
models, this approach still requires fine-tuning and
additional GPU memory, which can be substantial
for large models (Grattafiori et al., 2024). Comple-
menting speculative decoding, tree attention modi-
fies traditional attention mechanisms to verify mul-
tiple sequences more efficiently (Cai et al., 2024;
Miao et al., 2024). By structuring tokens hierar-
chically, tree attention allows parallel verification
of multiple speculative paths, enhancing decoding
efficiency.

Despite these advancements, there remains sub-
stantial room for improvement in the speed and effi-
ciency of LLM inference. We propose PROMTEC,
which integrates several novel methods to fur-
ther accelerate the autoregressive decoding process.
Our contributions include:

1. Prompt Multi-Lookup: This method en-
hances string matching techniques to generate
multiple candidate sequences from a given input
prompt. By leveraging high n-gram overlaps be-
tween the input and output sequences, it effectively
reduces decoding time by reusing previously seen
subsequences.

2. Template Datastore: Targeting frequent
sequences in domains such as mathematics and
code generation, this method constructs a trie struc-
ture of normalized patterns. By efficiently match-
ing these patterns with input sequences, it gener-

6830



ates high-quality speculative candidates that signif-
icantly speed up the decoding process.

3. Common Sequences: This method focuses
on generating candidate sequences based on com-
monly occurring tokens and single-variable formu-
lae, particularly in specialized domains like mathe-
matics, physics, and computer science.

We evaluate PROMTEC on the miniF2F bench-
mark for mathematical generation. Our experi-
ments demonstrate substantial improvements in
generation speed, achieving up to a 3.91× speedup
over standard autoregressive decoding. We ex-
tend our evaluation to code generation tasks us-
ing the HumanEval benchmark, where PROMTEC
achieves a significant speedup of up to 4.23×. Ad-
ditionally, we provide a detailed analysis of the
relationship between the number of candidate se-
quences and the mean accepted tokens, highlight-
ing the efficiency gains and potential limitations of
each component.

2 Related Works

2.1 Speculative Decoding

Speculative Decoding, a Draft-then-Verify strat-
egy, accelerates inference by generating multiple
potential tokens at each step and verifying them
against the target Language Model (LLM) (Xia
et al., 2023). This approach builds on Blockwise
Decoding (Stern et al., 2018), which used addi-
tional FFNN heads in the Transformer decoder for
multi-token generation, validated by the LLM.

Advancements include using smaller LLMs for
drafting (Chen et al., 2023; Leviathan et al., 2023)
and integrating FFNN heads directly into the target
LLM for parallel token generation (Cai et al., 2024).
Other methods involve subprocesses or adaptive
layer skipping for efficiency (Yang et al., 2024;
Zhang et al., 2024), and learnable tokens for better
parallel decoding (Monea et al., 2023).

PLD / LLMA (Saxena, 2023; Yang et al., 2023)
uses high n-gram overlap between input and out-
put to speed up decoding by matching n-grams in
the input. REST (He et al., 2024) retrieves po-
tential tokens from a pre-built datastore. These
advancements highlight speculative decoding’s ver-
satility and potential to significantly accelerate the
inference process while maintaining high-quality
outputs.

2.2 Tree Attention

Tree attention (Spector and Re, 2023; Cai et al.,
2024; Miao et al., 2024) enhances traditional causal
attention by compressing multiple sequences into a
single merged sequence with a hierarchical struc-
ture. This prevents sibling token interference and
allows parallel verification of multiple speculative
paths, significantly boosting the efficiency and qual-
ity of speculative decoding. Tree-based specula-
tion, as refined by SpecInfer (Miao et al., 2024),
further improves this by enabling simultaneous ver-
ification of various candidate sequences, stream-
lining the inference process and ensuring coherent,
accurate outputs.

3 Method

3.1 Prompt Multi-Lookup

The PLD / LLMA method (Saxena, 2023; Yang
et al., 2023) can only generate at most one candi-
date sequence in each retrieval step. We improve
by generating multiple candidate sequences in each
step from the prompt. Incorporating the idea from
SpecInfer (Miao et al., 2024), these candidate se-
quences can then be organized in a token tree struc-
ture, where each node represents a sequence of
speculated tokens. This tree-based approach al-
lows for the parallel verification of multiple draft
sequences against the LLM, significantly increas-
ing the number of generated tokens in a single
decoding step and improving the success rate of
verification.

To generate multiple candidate sequences from a
given input prompt, we uses a reversed Z-function
algorithm to efficiently identify matching suffixes
within the prompt. The Z-function (Gusfield, 1997)
computes an array that, for each position in the
reversed prompt, gives the length of the longest
substring starting from that position which matches
a prefix of the reversed prompt. The Z-function
algorithm is provided in Appendix A. By focusing
on non-zero Z-values, we can efficiently locate
positions within the prompt that have repeating
patterns or suffixes.

The process begins by reversing the input prompt
and then computing the Z-function for the reversed
sequence. This reversed Z-array enables the iden-
tification of suffixes that match previous subse-
quences within the prompt. We filter out the po-
sitions corresponding to non-zero Z-values since
they indicate matches, and select the top positions
based on their Z-values to ensure we retrieve the

6831



most significant matches. We set the last element
in the Z-array to zero to avoid self-matching.

From these identified positions, we generate the
candidate sequences by extracting subsequences
of a specified length from the prompt, starting just
after each identified match. This approach ensures
that multiple candidate sequences, each represent-
ing a plausible continuation of the prompt, are gen-
erated. The number of candidates and the length
of each candidate sequence can be controlled by
parameters, allowing for flexible and efficient gen-
eration. Setting the number of candidates to be 1
is equivalent to the PLD method. The algorithm is
summarized in Algorithm 2 in Appendix B.

3.2 Template Datastore

To further optimize the speculative inference, we
utilize a template-based method targeting patterns
of frequent sequences in math formulae and code
generation.

Templates construction To build the templates
for mathematical generation, we start with a collec-
tion of LaTeX formulae that serve as the raw pat-
terns. These patterns are preprocessed to replace
variables with placeholders to normalize and gen-
eralize the sequences. Specifically, non-command
segments in the LaTeX strings are identified and
their variables are replaced with unique negative
tokens representing variable placeholders. This
normalization helps in identifying and matching
patterns with slight variations in variable names.

Once the patterns are normalized, they are tok-
enized using a tokenizer. The tokenized patterns
are then used to create a trie structure datastore,
which is efficient for prefix searching and pattern
matching. The trie has two types of edges, exact
and wildcard edges. An exact edge connects a node
to a positive-valued node, which corresponds to a
non-variable token. A wildcard edge connects a
node to a negative-valued node, which corresponds
to a variable placeholder. See Figure 1.

Templates retrieval The process begins at the
root node of the trie. The prefix is examined token
by token. For each token in the prefix, the method
attempts to follow the corresponding edge in the
trie. If an exact match is found for the current token,
the method proceeds to the next level of the trie.
Simultaneously, the method checks for wildcard
edges in each node, allowing it to match variable
placeholders that can represent any token. This

Figure 1: Template and trie structure datastore construc-
tion example. Yellow edges correspond to wildcard
edges and green edges correspond to exact edges.

dual approach ensures a comprehensive search that
accounts for both exact and flexible matches.

As the traversal progresses, the values stored
in each visited node are collected. If the end of
the prefix is reached, the traversal stops and the
collected values are returned. The collected values
form a list of relevant patterns that are considered
for candidate sequence generation. See Step 1 in
Figure 2.

Pattern pruning Due to the constraint of in-
creased decoding time for a larger number of candi-
date sequences described in section 4.2.1, we must
reduce the number of retrieved patterns to retain
the high-quality sequences only. From the matched
list of relevant patterns, we construct another trie.
We call this a candidate trie. Candidate trie ag-
gregates the frequency of the matching patterns to
prioritize more commonly occurring continuations.
Each node in this trie reflects the frequency of se-
quences it holds, influenced by both exact and wild-
card matches found in the initial trie, as illustrated
in Step 2 in Figure 2. This frequency-based pri-
oritization ensures that the speculative candidates
generated are statistically significant.

From the candidate trie, we generate potential
continuations of the input prompt. The trie is tra-
versed using a combination of a priority queue and
a depth-first search up to a specified depth or length,
using frequency to guide the traversal (Step 3 in
Figure 2). This assembles the most frequently oc-
curring sequences into speculative candidates.

Subsequently, the speculative candidates are re-
fined and verified. Placeholder tokens within these
candidates are substituted back with the actual vari-
able names that appear in the current context. Place-
holders with different values are forced to substi-
tute with different variable names, illustrated in

6832



Figure 2: Overview of the Template Datastore method.

Step 4 in Figure 2. Any placeholder token and its
subsequent tokens are removed if the substitution
cannot be made. This context-aware substitution
guarantees that the generated candidates are not
only syntactically correct but also meaningful in
the given context.

Lastly, we implement a fallback mechanism us-
ing a datastore introduced in He et al., 2024. If
the trie structure does not yield sufficient specula-
tive candidates, the system queries this datastore
for other potential sequences. This scenario oc-
curs when LLM is generating uncommon math
expressions or regular narrative text. This fallback
mechanism enhances the system’s ability to handle
diverse and unforeseen input scenarios.

Code generation extension Rather than using
LaTeX formulae, we use code samples as raw pat-
terns. Each code variable may correspond to more
than one tokens, unlike variables in mathemati-
cal formulae. The tokens for each code variables
are replaced with one negative-valued placeholder.
During the trie traversal in templates retrieval, the
search logic is modified to allow wildcard edges to
match with multiple placeholders.

3.3 Common Sequences

We also generate candidate sequences based on
common sequences of tokens. This method pri-
marily targets short sequences involving single-
variable formulae and commonly occurring tokens
that appear in specialized domains, especially in

mathematics, physics, and computer science.

Single variable formulae In a mathematical con-
text, expressions involving single variables are par-
ticularly common. Variables often appear encapsu-
lated within delimiters like dollar signs, forming
structures such as "$x$".

The context is decoded to extract variables using
a utility function that identifies formulae and their
associated variables. Single-variable formulae are
generated by converting the variable strings into
token IDs and surrounding them with token IDs
representing the dollar signs. This ensures the gen-
erated formulae are consistent with the expected
tokenized format. These formulae are immediately
added to the list of candidate sequences.

Common tokens In addition to variable-centric
expressions, common tokens such as transitional
phrases like "Therefore," are prevalent in the dis-
course of these specialized domains. If the number
of single-variable formulae is insufficient to meet
the required number of retrievals, the method sup-
plements the remaining slots with common token
sequences collected from datasets. Each common
token sequence is truncated to the desired length
before being added to the candidate list.

Code generation extension Instead of extracting
math variables from the context, the utility function
is modified to extract code variables. The neces-
sity of adding dollar sign delimiters and common
tokens are removed for code generation.

6833



3.4 Draft verification and acceptance

The aforementioned methods will retrieve multiple
candidate sequences in parallel. Many of these se-
quences share common prefixes. We build a token
tree from the retrieved candidate sequences and
construct a pseudo sequence from the token tree
using breadth-first search. Hence, each candidate is
a subsequence of the pseudo sequence, thereby con-
solidating common prefixes to appear only once.
We then follow the attention strategy presented in
Cai et al., 2024; Miao et al., 2024; Spector and
Re, 2023 to construct the tree attention mask. An
example is given in Figure 3.

Figure 3: Candidate verification example.

We follow He et al., 2024 to obtain the condi-
tional probability distribution at each token posi-
tion. We then generate new tokens by sampling
from this distribution. Next, we verify if these
sampled tokens match the corresponding tokens in
the draft. If they do, we sequentially accept them
until we encounter a discrepancy. From the first er-
ror onwards, all subsequent tokens in the draft are
disregarded. This ensures that the final sequences
generated through our method align precisely with
those produced by traditional autoregressive gener-
ation methods.

4 Experiment

4.1 Experimental Setup

Dataset and model We conduct experiments on
the miniF2F (Zheng et al., 2022) dataset from Ope-
nAI and HumanEval (Chen et al., 2021). The
miniF2F dataset consists of 244 test statements and

244 validation statements, encompassing formal-
ized versions of Olympiad-type problems. These
problems span various subdomains of mathematics
and difficulty levels, offering a benchmark for for-
mal mathematical reasoning across different formal
systems. HumanEval is a collection of 164 pro-
gramming challenges written by humans, aimed at
evaluating models’ ability to generate Python code.
Each problem comes with a docstring that serves as
a prompt for creating the solution. We compare the
generation speed of standard autoregressive gener-
ation, speculative decoding (Leviathan et al., 2023;
Chen et al., 2023) that leverages a small draft LM to
generate a single candidate sequence and use LLM
to verify the candidate tokens, REST datastore (He
et al., 2024), and our method. We employ Llama 2
(Touvron et al., 2023) for mathematical generation
and Code Llama (Rozière et al., 2024) for code
generation. We use their 7B configurations, with
a maximum generation limit of 512 tokens. All
experiments are conducted on a single NVIDIA
RTX4090 GPU and 32 CPU cores. All results are
averaged across 10 different runs.

Sampling strategy We implement greedy sam-
pling for the LLM. At each decoding step, greedy
sampling selects the token with the highest proba-
bility. Our method ensures that only draft tokens
that align with those sampled from the language
model are accepted. Consequently, the sequences
produced through our approach are indistinguish-
able from those generated by conventional autore-
gressive methods.

Baselines We implement speculative decoding
(Leviathan et al., 2023; Chen et al., 2023), PLD
(Saxena, 2023) and REST (He et al., 2024) as the
baselines for comparison. For the small draft LM
used in speculative decoding, we adopted TinyL-
lama 2 1B trained by Ayoola, 2023. Following
REST, we construct the REST datastore using data
derived from UltraChat (Ding et al., 2023), which
consists of around 774K conversations from Chat-
GPT.

Templates and Common tokens For mathemati-
cal generation, we use the MathBridge (Jung et al.,
2024) dataset to construct templates and common
tokens. MathBridge contains approximately 23 mil-
lion LaTeX formulae paired with the corresponding
mathematical spoken sentences, and the context
before and after the formulae. For code genera-
tion, we use the Python pretraining code from The

6834



Stack (Kocetkov et al., 2022) dataset, which con-
tains 2.7M Python code samples, to construct code
templates.

Metrics The first metric is Throughput, which
is the average number of tokens generated for the
LLM in one second. The second metric that we use
is Mean Accepted Tokens (MAT), which is com-
puted as the ratio of the length of the generated
tokens to the number of forward steps taken by the
LLM. If L denotes the length of the generated to-
kens and F represents the number of forward steps
taken, the MAT is:

MAT =
L

F

4.2 Hyperparameters

4.2.1 Token Tree Size and Forward Time
Trade-off

In our analysis of the speculative inference process,
we discovered a significant relationship between
the latency of language model forward passes and
the complexity of the token tree used for generating
candidate sequences. Specifically, we observe that
the logarithm of the LLM’s forward time is linearly
proportional to the number of nodes in the token
tree, as shown in Figure 4. Mathematically, this
relationship can be expressed as:

log(Forward Time) = m× (no. of Nodes) + c

where m is the proportional constant, and c is a
constant offset.

This result underscores an inherent trade-off be-
tween the number of candidate sequences and the
inference latency. While generating a larger num-
ber of candidate sequences can potentially improve
the accuracy and robustness of the model’s predic-
tions, it also increases the complexity of the token
tree, thereby elevating the computational cost and
time required for the forward pass. Consequently,
excessively expanding the number of candidate se-
quences may lead to diminishing returns in perfor-
mance due to the increased latency.

To optimize the balance between inference effi-
ciency and the quality of speculative decoding, it is
crucial to limit the number of candidate sequences.
This ensures that, while the model benefits from the
diversity of candidates, it remains computationally
feasible and responsive.

Figure 4: Log mean forward time against different token
tree sizes with regression line.

Method Max seq. len Max no. of seq.
Speculative 5 1
REST 8 29
PLD 12 1
Prompt 12 5
Template 8 29
Common 3 5

Table 1: Maximum candidate length and number used
in our experiments.

4.2.2 Candidate number and length tuning

To determine the optimal hyperparameters for our
candidate generation methods, we utilize Optuna
(Akiba et al., 2019), an automatic hyperparameter
optimization framework. Optuna facilitates effi-
cient and scalable optimization of hyperparameters
through an exploration-exploitation balance. The
optimization process involved selecting the maxi-
mum sequence length and the maximum number
of sequences for each of the candidate generation
methods, including Prompt Multi-Lookup, Tem-
plate Datastore, and Common Sequences. The opti-
mization objective is to minimize the runtime taken
on validation set of the miniF2F dataset. The opti-
mized parameters are shown in Table 1. To com-
pare the baseline REST datastore with our Tem-
plate datastore, we have set the same parameters
on them. Also, to compare the baseline PLD with
our Prompt Multi-Lookup method, the same maxi-
mum candidate length is enforced. The maximum
number of candidates used in speculative decoding
and PLD is 1 as they can only generate and verify
a single candidate sequence in each forward pass.

6835



4.3 Main Results

4.3.1 Evaluation on Mathematical Generation
We conducted extensive evaluations of our candi-
date generation methods on the miniF2F bench-
mark, both on the validation and test sets. Table
2 compares the generation speed of various con-
figurations of our methods with baseline methods,
specifically standard autoregressive decoding, spec-
ulative decoding, REST and PLD.

PROMTEC exhibits a notable improvement in
the generation speed compared to all baseline meth-
ods, achieving a performance increase of 3.87×
to 3.91× for Llama2 on the miniF2F benchmark.
These empirical findings underscore the effective-
ness of our approach in accelerating the LLM gen-
eration process.

Speculative decoding, while achieving a high
MAT due to the high-quality candidate sequences
generated by the small speculative model, demon-
strates lower throughput compared to REST and
PLD. This reduced throughput is primarily because
the time taken for the small speculative model to
produce a candidate is longer than the time re-
quired by retrieval-based methods. Consequently,
although speculative decoding benefits from accu-
rate candidate sequences, it does not match the
efficiency of REST and PLD in terms of generation
speed.

Impact of Prompt Multi-Lookup PLD, which
generates only one candidate sequence at a time,
is outperformed by our Prompt Multi-Lookup
method. While PLD efficiently leverages string
matching to produce a single candidate sequence,
our Prompt Multi-Lookup method enhances this ap-
proach by generating multiple candidate sequences
in each retrieval step. This capability allows for par-
allel verification of these sequences, significantly
increasing the number of tokens generated in a sin-
gle decoding step and improving overall through-
put. As a result, the Prompt Multi-Lookup method
not only maintains the efficiency of PLD but also
offers superior performance by producing more
candidate sequences simultaneously, achieving up
to a 2.80× speedup on the miniF2F benchmark.

Impact of Template Datastore Our Prompt
Multi-Lookup method is significantly enhanced by
incorporating the Template Datastore. The Tem-
plate Datastore improves the results by providing
structured patterns, particularly in math formulae
generation, allowing for a more efficient and ac-

curate generation of candidate sequences. When
comparing Prompt + Template (which achieves a
speedup of 3.79×) with Prompt + REST (which
achieves a speedup of 2.92×), it is evident that the
Template Datastore performs better, especially in
mathematical contexts. The Template Datastore’s
focus on frequent sequences and its ability to han-
dle variable placeholders make it more effective in
generating high-quality speculative candidates for
math-related content than the REST method. Fur-
ther, when we combine Prompt + Template with
REST (which has a speedup of 3.72×), the addi-
tion of REST shows minimal improvement, indi-
cating that the Template Datastore is capable of
handling the candidate generation efficiently on
its own. This suggests that REST is largely re-
placeable by the Template Datastore, particularly
in domains where structured patterns and frequent
sequences are prevalent.

Impact of Common Sequences The inclusion
of Common Sequences in our Prompt + Template
method can further enhance the speedup by a small
amount. By targeting short, frequently occurring
sequences and single-variable formulae, the Com-
mon Sequences method complements the Template
Datastore. This additional layer of candidate gen-
eration slightly improves the overall generation
speed, making the combined approach of Prompt
+ Template + Common even more efficient, with
a 3.87× speedup over the autoregressive decoding
baseline.

4.3.2 Evaluation on Code Generation

We conducted a thorough evaluation of our code
generation methods on the HumanEval benchmark
with the same parameters derived in Section 4.2.2,
focusing on the effectiveness and speed of our ap-
proaches. Table 3 presents the results, highlighting
the throughput, Mean Average Time (MAT), and
speedup of various configurations of our methods
against the baseline autoregressive decoding.

By incorporating Prompt Multi-Lookup method
alone, we observe a speedup of 3.88×. The addi-
tion of Template Datastore further boosts perfor-
mance, achieving a speedup of 4.22×. The combi-
nation of Prompt Multi-Lookup, Template Datas-
tore, and Common Sequences results in the highest
performance, reaching a speedup of 4.23×.

It is important to note that our Prompt Multi-
Lookup, Template Datastore, and Common Se-
quences methods can be executed in parallel, and

6836



miniF2F val miniF2F test
Method Throughput MAT Speedup Throughput MAT Speedup
Autoregressive Decoding 55.56 1.00 1.00× 55.56 1.00 1.00×
Speculative Decoding 91.84 3.46 1.65× 90.32 3.51 1.63×
REST 98.71 1.56 1.78× 96.53 1.54 1.74×
PLD 138.50 2.03 2.49× 138.37 2.07 2.49×
Prompt 155.19 2.35 2.79× 155.32 2.39 2.80×
Prompt + REST 162.09 2.54 2.92× 162.00 2.59 2.92×
Prompt + Template 212.63 3.52 3.83× 210.53 3.55 3.79×
Prompt + Template + REST 208.79 3.57 3.76× 206.56 3.60 3.72×
Prompt+Template+Common 217.32 3.66 3.91× 215.07 3.70 3.87×

Table 2: Generation speed of Llama2 7B on miniF2F benchmark with baselines and different settings of our
methods.

HumanEval
Method Throughput MAT Speedup
Autoregressive Decoding 55.57 1.00 1.00×
Prompt 215.42 4.37 3.88×
Prompt + Template 234.41 5.69 4.22×
Prompt + Template + Common 235.26 5.74 4.23×

Table 3: Generation speed of Code Llama 7B on HumanEval benchmark with PROMTEC extended for code
generation.

the average time required for retrieval is less than
1ms. This extremely small retrieval time is practi-
cally negligible, further underscoring the efficiency
of our methods. By performing these operations
concurrently, we can maintain high throughput and
rapid candidate sequence generation without any
significant impact on overall performance.

4.4 Analysis of MAT vs Number of
Candidates

To better highlight the strengths and limitations
of each component, we analyze the impact of the
number of candidate sequences on the Mean Ac-
cepted Tokens for our Prompt Multi-Lookup, Tem-
plate Datastore, and Common Sequences genera-
tion methods. Figure 5 shows the results for a range
of candidate sequences from 1 to 50.

For the Prompt Multi-Lookup method, MAT in-
creases rapidly from 2.03 to 2.35 as the number of
candidate sequences increases from 1 to 5. Beyond
this point, the MAT continues to improve gradually,
reaching a stable value of 2.40 at around 15 can-
didate sequences. After which the gains become
negligible. This behavior can be attributed to the
inherent limitation of the Prompt Multi-Lookup
method: it cannot suggest many candidates due
to the typically short length of prompts, which re-

Figure 5: Mean accepted tokens for Prompt Multi-
Lookup, Template Datastore and Common Sequences
for various maximum number of retrieved candidate
sequences.

stricts the number of possible suffix matches.
For the Template Datastore method, its MAT

starts at 1.63 for a single candidate and increases
steadily as more candidates are added. It reaches
a stable value of 2.38 at 40 candidate sequences.
This indicates that the Template method continues
to benefit from additional candidate sequences up
to a higher threshold compared to the Prompt Multi-
Lookup method.

6837



The MAT for the Common Sequences method re-
mains lower compared to the Prompt Multi-Lookup
and Template Datastore methods. This is be-
cause the Common Sequences method produces
lower quality candidates, as it takes less informa-
tion about the context into consideration. While
it targets short, frequently occurring sequences
and single-variable formulae, it lacks the depth of
contextual understanding provided by the Prompt
Multi-Lookup and Template Datastore methods.

These findings emphasize the importance of op-
timizing the number of candidate sequences for
each method to achieve a balance between MAT
improvement and computational efficiency. The
negligible retrieval time for our components fur-
ther underscores the efficiency and practicality of
these approaches in enhancing language model per-
formance.

5 Conclusion

This study introduced a novel approach to en-
hancing the efficiency of Large Language Models
(LLMs) by integrating Prompt Multi-Lookup, Tem-
plate Datastore, and Common Sequences methods.
These techniques collectively improve the speed
of autoregressive decoding by generating multiple
candidate sequences efficiently. Our evaluations
on the miniF2F benchmark demonstrate signifi-
cant speedups, achieving up to a 3.91× improve-
ment over standard methods. Additionally, on the
HumanEval benchmark for code generation, our
methods achieve up to a 4.23× speedup. This ap-
proach outperforms existing speculative decoding
techniques, offering a scalable solution for faster
LLM inference while maintaining high-quality out-
puts. Moreover, we performed an ablation study
to understand the individual contributions of each
component to the overall performance improve-
ment. Future work can explore further optimiza-
tions and applications to larger models and other
domains.

Limitations

The limitations of our work are as follows:

• The effectiveness of the Template Datastore
heavily relies on the availability of high-
quality domain-specific templates. While this
approach showed significant improvements in
mathematical and code generation tasks, its
performance may degrade in domains where

structured patterns are less prevalent or harder
to define.

• The construction of code templates is code-
language dependent, which may limit the gen-
eralizability of our approach to other program-
ming languages.

• The common tokens in the Common Se-
quences method are language dependent,
which may reduce its effectiveness across dif-
ferent natural languages.

References
Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru

Ohta, and Masanori Koyama. 2019. Optuna: A next-
generation hyperparameter optimization framework.
In The 25th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, pages
2623–2631.

Odunusi Abraham Ayoola. 2023. Tinyllama-2-1b-
miniguanaco.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu
Peng, Jason D. Lee, Deming Chen, and Tri Dao.
2024. Medusa: Simple llm inference acceleration
framework with multiple decoding heads. Preprint,
arXiv:2401.10774.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023. Accelerating large language model
decoding with speculative sampling. Preprint,
arXiv:2302.01318.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen

6838

https://huggingface.co/abdgrt/Tinyllama-2-1b-miniguanaco
https://huggingface.co/abdgrt/Tinyllama-2-1b-miniguanaco
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2401.10774
https://arxiv.org/abs/2401.10774
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2302.01318


Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. Preprint,
arXiv:2107.03374.

Zhuoming Chen, Avner May, Ruslan Svirschevski,
Yuhsun Huang, Max Ryabinin, Zhihao Jia, and
Beidi Chen. 2024. Sequoia: Scalable, robust, and
hardware-aware speculative decoding. Preprint,
arXiv:2402.12374.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. Preprint, arXiv:1810.04805.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi
Zheng, Shengding Hu, Zhiyuan Liu, Maosong Sun,
and Bowen Zhou. 2023. Enhancing chat language
models by scaling high-quality instructional conver-
sations. Preprint, arXiv:2305.14233.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, Arun Rao, Aston Zhang, Aurelien Ro-
driguez, Austen Gregerson, Ava Spataru, Baptiste
Roziere, Bethany Biron, Binh Tang, Bobbie Chern,
Charlotte Caucheteux, Chaya Nayak, Chloe Bi,
Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy,
Elina Lobanova, Emily Dinan, Eric Michael Smith,
Filip Radenovic, Francisco Guzmán, Frank Zhang,
Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis An-
derson, Govind Thattai, Graeme Nail, Gregoire Mi-
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen,
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Is-
han Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park,
Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang,
Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,
Joseph Rocca, Joshua Johnstun, Joshua Saxe, Jun-
teng Jia, Kalyan Vasuden Alwala, Karthik Prasad,
Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth
Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer,
Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal
Lakhotia, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins,

Louis Martin, Lovish Madaan, Lubo Malo, Lukas
Blecher, Lukas Landzaat, Luke de Oliveira, Madeline
Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar
Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kam-
badur, Mike Lewis, Min Si, Mitesh Kumar Singh,
Mona Hassan, Naman Goyal, Narjes Torabi, Niko-
lay Bashlykov, Nikolay Bogoychev, Niladri Chatterji,
Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick
Alrassy, Pengchuan Zhang, Pengwei Li, Petar Va-
sic, Peter Weng, Prajjwal Bhargava, Pratik Dubal,
Praveen Krishnan, Punit Singh Koura, Puxin Xu,
Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj
Ganapathy, Ramon Calderer, Ricardo Silveira Cabral,
Robert Stojnic, Roberta Raileanu, Rohan Maheswari,
Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ron-
nie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sa-
hana Chennabasappa, Sanjay Singh, Sean Bell, Seo-
hyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sha-
ran Narang, Sharath Raparthy, Sheng Shen, Shengye
Wan, Shruti Bhosale, Shun Zhang, Simon Van-
denhende, Soumya Batra, Spencer Whitman, Sten
Sootla, Stephane Collot, Suchin Gururangan, Syd-
ney Borodinsky, Tamar Herman, Tara Fowler, Tarek
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias
Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal
Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh
Ramanathan, Viktor Kerkez, Vincent Gonguet, Vir-
ginie Do, Vish Vogeti, Vítor Albiero, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit-
ney Meers, Xavier Martinet, Xiaodong Wang, Xi-
aofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xin-
feng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen,
Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao,
Zacharie Delpierre Coudert, Zheng Yan, Zhengxing
Chen, Zoe Papakipos, Aaditya Singh, Aayushi Sri-
vastava, Abha Jain, Adam Kelsey, Adam Shajnfeld,
Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand,
Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei
Baevski, Allie Feinstein, Amanda Kallet, Amit San-
gani, Amos Teo, Anam Yunus, Andrei Lupu, An-
dres Alvarado, Andrew Caples, Andrew Gu, Andrew
Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchan-
dani, Annie Dong, Annie Franco, Anuj Goyal, Apara-
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yaz-
dan, Beau James, Ben Maurer, Benjamin Leonhardi,
Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Han-
cock, Bram Wasti, Brandon Spence, Brani Stojkovic,
Brian Gamido, Britt Montalvo, Carl Parker, Carly
Burton, Catalina Mejia, Ce Liu, Changhan Wang,
Changkyu Kim, Chao Zhou, Chester Hu, Ching-
Hsiang Chu, Chris Cai, Chris Tindal, Christoph Fe-
ichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty,
Daniel Kreymer, Daniel Li, David Adkins, David
Xu, Davide Testuggine, Delia David, Devi Parikh,
Diana Liskovich, Didem Foss, Dingkang Wang, Duc
Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn,
Emily Wood, Eric-Tuan Le, Erik Brinkman, Este-
ban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun,

6839

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2402.12374
https://arxiv.org/abs/2402.12374
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2305.14233
https://arxiv.org/abs/2305.14233
https://arxiv.org/abs/2305.14233


Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat
Ozgenel, Francesco Caggioni, Frank Kanayet, Frank
Seide, Gabriela Medina Florez, Gabriella Schwarz,
Gada Badeer, Georgia Swee, Gil Halpern, Grant
Herman, Grigory Sizov, Guangyi, Zhang, Guna
Lakshminarayanan, Hakan Inan, Hamid Shojanaz-
eri, Han Zou, Hannah Wang, Hanwen Zha, Haroun
Habeeb, Harrison Rudolph, Helen Suk, Henry As-
pegren, Hunter Goldman, Hongyuan Zhan, Ibrahim
Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis,
Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher,
Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy
Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan Mc-
Phie, Jonathan Torres, Josh Ginsburg, Junjie Wang,
Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khan-
delwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Ki-
ran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
Huang, Lailin Chen, Lakshya Garg, Lavender A,
Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrst-
edt, Madian Khabsa, Manav Avalani, Manish Bhatt,
Martynas Mankus, Matan Hasson, Matthew Lennie,
Matthias Reso, Maxim Groshev, Maxim Naumov,
Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Pa-
tel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark,
Mike Macey, Mike Wang, Miquel Jubert Hermoso,
Mo Metanat, Mohammad Rastegari, Munish Bansal,
Nandhini Santhanam, Natascha Parks, Natasha
White, Navyata Bawa, Nayan Singhal, Nick Egebo,
Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich
Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz,
Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin
Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pe-
dro Rittner, Philip Bontrager, Pierre Roux, Piotr
Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel
Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu
Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky
Wang, Russ Howes, Ruty Rinott, Sachin Mehta,
Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara
Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov,
Satadru Pan, Saurabh Mahajan, Saurabh Verma,
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind-
say, Shaun Lindsay, Sheng Feng, Shenghao Lin,
Shengxin Cindy Zha, Shishir Patil, Shiva Shankar,
Shuqiang Zhang, Shuqiang Zhang, Sinong Wang,
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala,
Stephanie Max, Stephen Chen, Steve Kehoe, Steve
Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal
Remez, Tamar Glaser, Tamara Best, Thilo Koehler,
Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim
Matthews, Timothy Chou, Tzook Shaked, Varun
Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai
Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad
Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu,
Vladimir Ivanov, Wei Li, Wenchen Wang, Wen-

wen Jiang, Wes Bouaziz, Will Constable, Xiaocheng
Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo
Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao,
Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary
DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang,
Zhiwei Zhao, and Zhiyu Ma. 2024. The llama 3 herd
of models. Preprint, arXiv:2407.21783.

Dan Gusfield. 1997. Simple Uniform Preprocessing for
Linear-time Pattern Matching. Cambridge University
Press.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D. Lee,
and Di He. 2024. Rest: Retrieval-based speculative
decoding. Preprint, arXiv:2311.08252.

Kyudan Jung, Sieun Hyeon, Jeong Youn Kwon, Nam-
Joon Kim, Hyun Gon Ryu, Hyuk-Jae Lee, and Jaey-
oung Do. 2024. Mathbridge: A large corpus dataset
for translating spoken mathematical expressions into
latex formulas for improved readability. Preprint,
arXiv:2408.07081.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia
Li, Chenghao Mou, Carlos Muñoz Ferrandis, Yacine
Jernite, Margaret Mitchell, Sean Hughes, Thomas
Wolf, Dzmitry Bahdanau, Leandro von Werra, and
Harm de Vries. 2022. The stack: 3 tb of permissively
licensed source code. Preprint, arXiv:2211.15533.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. Preprint, arXiv:2211.17192.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang
Zhang. 2024. Eagle-2: Faster inference of lan-
guage models with dynamic draft trees. Preprint,
arXiv:2406.16858.

Feng Lin, Hanling Yi, Hongbin Li, Yifan Yang, Xiaotian
Yu, Guangming Lu, and Rong Xiao. 2024. Bita: Bi-
directional tuning for lossless acceleration in large
language models. Preprint, arXiv:2401.12522.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao
Cheng, Zeyu Wang, Zhengxin Zhang, Rae Ying Yee
Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chu-
nan Shi, Zhuoming Chen, Daiyaan Arfeen, Reyna
Abhyankar, and Zhihao Jia. 2024. Specinfer: Accel-
erating large language model serving with tree-based
speculative inference and verification. In Proceed-
ings of the 29th ACM International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, Volume 3, ASPLOS ’24, page
932–949. ACM.

Giovanni Monea, Armand Joulin, and Edouard Grave.
2023. Pass: Parallel speculative sampling. Preprint,
arXiv:2311.13581.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna

6840

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.1017/CBO9780511574931
https://doi.org/10.1017/CBO9780511574931
https://arxiv.org/abs/2311.08252
https://arxiv.org/abs/2311.08252
https://arxiv.org/abs/2408.07081
https://arxiv.org/abs/2408.07081
https://arxiv.org/abs/2408.07081
https://arxiv.org/abs/2211.15533
https://arxiv.org/abs/2211.15533
https://arxiv.org/abs/2211.17192
https://arxiv.org/abs/2211.17192
https://arxiv.org/abs/2406.16858
https://arxiv.org/abs/2406.16858
https://arxiv.org/abs/2401.12522
https://arxiv.org/abs/2401.12522
https://arxiv.org/abs/2401.12522
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335
https://arxiv.org/abs/2311.13581


Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron
Grattafiori, Wenhan Xiong, Alexandre Défossez,
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar-
tin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. 2024. Code llama: Open foundation mod-
els for code. Preprint, arXiv:2308.12950.

Keshav Santhanam, Deepti Raghavan, Muham-
mad Shahir Rahman, Thejas Venkatesh, Neha Kunjal,
Pratiksha Thaker, Philip Levis, and Matei Zaharia.
2024. Alto: An efficient network orchestrator for
compound ai systems. In Proceedings of the 4th
Workshop on Machine Learning and Systems, Eu-
roMLSys ’24, page 117–125, New York, NY, USA.
Association for Computing Machinery.

Apoorv Saxena. 2023. Prompt lookup decoding.

Benjamin Spector and Chris Re. 2023. Accelerating llm
inference with staged speculative decoding. Preprint,
arXiv:2308.04623.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit.
2018. Blockwise parallel decoding for deep autore-
gressive models. Preprint, arXiv:1811.03115.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. Preprint, arXiv:2307.09288.

Zilong Wang, Zifeng Wang, Long Le, Huaixiu Steven
Zheng, Swaroop Mishra, Vincent Perot, Yuwei
Zhang, Anush Mattapalli, Ankur Taly, Jingbo Shang,
Chen-Yu Lee, and Tomas Pfister. 2024. Specula-
tive rag: Enhancing retrieval augmented generation
through drafting. Preprint, arXiv:2407.08223.

Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu
Wei, and Zhifang Sui. 2023. Speculative decod-
ing: Exploiting speculative execution for accelerating
seq2seq generation. Preprint, arXiv:2203.16487.

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin
Jiang, Linjun Yang, Rangan Majumder, and Furu
Wei. 2023. Inference with reference: Lossless

acceleration of large language models. Preprint,
arXiv:2304.04487.

Seongjun Yang, Gibbeum Lee, Jaewoong Cho, Dimitris
Papailiopoulos, and Kangwook Lee. 2024. Predictive
pipelined decoding: A compute-latency trade-off for
exact llm decoding. Preprint, arXiv:2307.05908.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen,
Gang Chen, and Sharad Mehrotra. 2024. Draft
& verify: Lossless large language model accel-
eration via self-speculative decoding. Preprint,
arXiv:2309.08168.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open
pre-trained transformer language models. Preprint,
arXiv:2205.01068.

Kunhao Zheng, Jesse Michael Han, and Stanislas
Polu. 2022. Minif2f: a cross-system benchmark
for formal olympiad-level mathematics. Preprint,
arXiv:2109.00110.

Tianyang Zhong, Zhengliang Liu, Yi Pan, Yutong
Zhang, Yifan Zhou, Shizhe Liang, Zihao Wu, Yan-
jun Lyu, Peng Shu, Xiaowei Yu, Chao Cao, Hanqi
Jiang, Hanxu Chen, Yiwei Li, Junhao Chen, Huawen
Hu, Yihen Liu, Huaqin Zhao, Shaochen Xu, Haixing
Dai, Lin Zhao, Ruidong Zhang, Wei Zhao, Zhenyuan
Yang, Jingyuan Chen, Peilong Wang, Wei Ruan, Hui
Wang, Huan Zhao, Jing Zhang, Yiming Ren, Shihuan
Qin, Tong Chen, Jiaxi Li, Arif Hassan Zidan, Afrar
Jahin, Minheng Chen, Sichen Xia, Jason Holmes,
Yan Zhuang, Jiaqi Wang, Bochen Xu, Weiran Xia,
Jichao Yu, Kaibo Tang, Yaxuan Yang, Bolun Sun, Tao
Yang, Guoyu Lu, Xianqiao Wang, Lilong Chai, He Li,
Jin Lu, Lichao Sun, Xin Zhang, Bao Ge, Xintao Hu,
Lian Zhang, Hua Zhou, Lu Zhang, Shu Zhang, Ning-
hao Liu, Bei Jiang, Linglong Kong, Zhen Xiang,
Yudan Ren, Jun Liu, Xi Jiang, Yu Bao, Wei Zhang,
Xiang Li, Gang Li, Wei Liu, Dinggang Shen, Andrea
Sikora, Xiaoming Zhai, Dajiang Zhu, and Tianming
Liu. 2024. Evaluation of openai o1: Opportunities
and challenges of agi. Preprint, arXiv:2409.18486.

6841

https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://doi.org/10.1145/3642970.3655844
https://doi.org/10.1145/3642970.3655844
https://github.com/apoorvumang/prompt-lookup-decoding/
https://arxiv.org/abs/2308.04623
https://arxiv.org/abs/2308.04623
https://arxiv.org/abs/1811.03115
https://arxiv.org/abs/1811.03115
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2407.08223
https://arxiv.org/abs/2407.08223
https://arxiv.org/abs/2407.08223
https://arxiv.org/abs/2203.16487
https://arxiv.org/abs/2203.16487
https://arxiv.org/abs/2203.16487
https://arxiv.org/abs/2304.04487
https://arxiv.org/abs/2304.04487
https://arxiv.org/abs/2307.05908
https://arxiv.org/abs/2307.05908
https://arxiv.org/abs/2307.05908
https://arxiv.org/abs/2309.08168
https://arxiv.org/abs/2309.08168
https://arxiv.org/abs/2309.08168
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2109.00110
https://arxiv.org/abs/2109.00110
https://arxiv.org/abs/2409.18486
https://arxiv.org/abs/2409.18486


A Z function

The Z-function is a powerful algorithm used in
string processing to compute an array of values that
represent the longest substring starting from each
position in the string, which matches a prefix of the
string. The algorithm is given in Algorithm 1. This
function is particularly useful in pattern matching.
The Z-function is efficient and runs in linear time,
making it suitable for various applications in string
matching and text processing. This function is
instrumental in the Prompt Multi-Lookup method
described in Section 3.1, where it helps identify
matching suffixes within the prompt to generate
multiple candidate sequences.

Algorithm 1 Z-function
Input: s: The input array of token IDs.
Output: Z-array.

1: Initialize z array with the length of s.
2: Set (l, r)← (0, 0)
3: for i from 1 to n− 1 do
4: if i ≤ r
5: z[i] = min(r − i+ 1, z[i− l])
6: else
7: z[i] = 0
8: end if
9: while i+z[i] < n and s[z[i]] = s[i+z[i]]

do
10: z[i] = z[i] + 1
11: end while
12: if i+ z[i]− 1 > r
13: l = i
14: r = i+ z[i]− 1
15: end if
16: end for
17: return z

B Prompt Multi-Lookup Algorithm

Algorithm 2 Prompt Multi-Lookup

Input: prompt: The input prompt
retrieve_len: Length of each retrieved se-
quence
retrieve_num: Number of sequences to re-
trieve

Output: A list of candidate sequences.
1: prompt_rev = reverse prompt
2: z_arr = z_function(prompt_rev)
3: z_arr_rev = reverse z_arr
4: Set the last element of z_arr_rev to 0.
5: Identify non-zero elements in z_arr_rev.
6: k = min (retrieve_num, number of non-zero

elements).
7: Initialize retrieved_seqs← []
8: Get top-k indices based on z_arr_rev values.

9: for each position p in top-k indices do
10: Add prompt[p+1 : p+1+retrieve_len]

to retrieved_seqs.
11: end for
12: return retrieved_seqs

6842


