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Abstract

This paper presents a novel framework for
vision-aided unsupervised constituency pars-
ing (VUCP), leveraging multimodal large lan-
guage models (MLLMs) pre-trained on diverse
image-text or video-text data. Unlike previous
methods requiring explicit cross-modal align-
ment, our approach eliminates this need by
using pre-trained models like Qwen-VL and
VideoLLaVA, which seamlessly handle multi-
modal inputs. We introduce two multi-agent
debating mechanisms–consensus-driven (CD)
and round-driven (RD)–to enable cooperation
between models with complementary strengths.
Extensive experiments demonstrate that our ap-
proach achieves state-of-the-art performance
on both image-text and video-text datasets for
VUCP, improving robustness and accuracy.

1 Introduction

Unsupervised constituency parsing (UCP), which
extracts syntactic structures from unannotated text,
has long relied on textual context and semantic cues
for sequence labeling (Yang and Tu, 2022, 2023).
By assigning syntactic tags to tokens, these models
aim to uncover hierarchical structures within sen-
tences (Gu et al., 2022; Tseng et al., 2023). How-
ever, recent advances in natural language process-
ing (NLP) have revealed the limitations of a purely
textual approach, especially in domains like so-
cial media or instructional content, where visual
information such as images or videos often appears.
Studies have explored how incorporating visual
information can improve constituency parsing ac-
curacy, highlighting that visual context provides
crucial cues absent in text alone, thereby aiding the
resolution of syntactic ambiguities. This has led to
the development of vision-aided unsupervised con-
stituency parsing (VUCP) (Zhao and Titov, 2020).

However, leveraging multimodal data for unsu-
pervised parsing presents several challenges. Two
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Figure 1: (a) Previous studies need image-text or video-
text aligned training with single model. (b) Our ap-
proach employs multi-modal aligned large language
model (MLLMs) with multiple MLLMs’ cooperation.

key issues persist: First, prior work (Zhang et al.,
2021, 2022) necessitates explicit alignment be-
tween textual and visual data during training, re-
quiring labor-intensive image-text or video-text
correspondences, as shown in Figure 1 (a). This
approach limits scalability due to the need for
large, curated, and synchronized datasets. By us-
ing multimodal large language models (MLLMs)
pre-trained on diverse cross-modal datasets, we
eliminate the need for additional alignment, offer-
ing significant resource savings for VUCP. Second,
existing methods (Shayegh et al., 2024c,a; Hou
and Li, 2024; Zhang et al., 2025) often focus on
optimizing a single model, overlooking the com-
plementary strengths of multiple models (Li et al.,
2023a, 2024). For example, Model A may strug-
gle with adjective phrase identification but perform
well on noun phrases, while Model B excels at the
reverse. By combining their strengths (Tran et al.,
2025) as shown in Figure 1 (b), we believe that
VUCP could be significantly improved.

To address these challenges, we propose a novel
multi-MLLM debating (MMD) framework for
VUCP. The MLLMs we use, such as Qwen-VL
(Bai et al., 2023) and VideoLLaVA (Lin et al.,
2023), have been pre-trained on vast image-text
pairs and can naturally process both image-text
and video-text inputs, bypassing the need for ex-
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pensive cross-modal alignment. Furthermore, we
introduce two multi-agent debating mechanisms
within our framework, where models, each with dif-
ferent strengths, collaborate in either a consensus-
driven (CD) mode or round-driven (RD) mode. In
CD mode, the judge checks for consensus at each
round, while in RD mode, a judge selects the best
answer among the outputs of both models across
all rounds. These debating modes facilitate collab-
orative decision-making, improving accuracy and
robustness. The key contributions of this work are:
• We propose a framework that eliminates the

need for additional cross-modal alignment, leverag-
ing pre-trained MLLMs to process both image-text
and video-text inputs for VUCP.
• We introduce two multi-agent debating mecha-

nisms that combine the strengths of different mod-
els, enhancing VUCP’s accuracy and robustness.
• Through extensive experiments and detailed

analysis, we demonstrate that our MMD ap-
proach achieves state-of-the-art performance on
both image-text and video-text datasets for VUCP.

2 Related Work

Unsupervised Constituency Parsing. Supervised
constituency parsing (CP) is limited by the high
cost and time required for dataset annotation (Cui
et al., 2022). Unsupervised CP addresses this by
leveraging large unannotated corpora (Cao et al.,
2020; Shayegh et al., 2024b). Liu et al. (2023) intro-
duce a simple probabilistic context-free grammar
(PCFG) with independent left and right productions
for unsupervised parsing. In vision-aided scenarios,
Zhao and Titov (2020) propose image-aware unsu-
pervised CP through text-image matching, while
Zhang et al. (2022) align text spans with video
using pre-trained PCFGs for video-aided parsing.
However, these methods focus on single-model
optimization and ignore the potential of other ho-
mologous models for unsupervised constituency
parsing (VUCP).

In contrast, our work utilizes two unsupervised
debate mechanisms, involving interactions among
multiple homologous multimodal large language
models (MLLMs) to enhance VUCP performance.

Multi-agent Collaboration. A limited number
of multi-agent approaches have been applied to
NLP tasks (Du et al., 2024; Liang et al., 2024),
and none to VUCP. Existing methods largely fo-
cus on large-scale supervised learning with multi-
ple agents (Estornell and Liu, 2024; Wang et al.,
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Figure 2: The overall architecture of our MMD frame-
work with two kinds of argument selection schemes: (a)
consensus-driven scheme checks the consensus of both
outputs at each round. (b) round-driven scheme selects
the best argument among the outputs.

2024b) and knowledge extraction (Liu et al.,
2024b). Our approach introduces a novel multi-
MLLM debate framework with two argument se-
lection schemas, representing the first such attempt
in VUCP.

3 Methodology

Figure 2 illustrates the simplified framework of our
approach.

Task Definition: In the context of large lan-
guage models (LLMs), constituency parsing is rede-
fined as sequence generation tasks. Given an input
sentence X = {X1, X2, . . . , Xn} nd a pre-trained
model M, the sentence structure is analyzed and
predicted as follows:

Y = M(X) ∼ PM(Y |X) =
V∏

i=1

PM(yi | y<i;X)

(1)
where V denotes the vocabulary set.

3.1 Warm-Start of MLLMs for VUCP
LLMs often struggle with constituency parsing
tasks due to their limited expertise in accurately
predicting constituent spans. To address this, we
adopt a bracket-based serialization structure, which
avoids issues caused by missing symbols and pro-
vides a more intuitive format, e.g.,

(I (am ((a big fan) (of (american football)))))
To warm up the backbone MLLMs for con-

stituency parsing (CP), we fine-tune them using
a subset of general, widely-used corpora (Marcus
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Dataset NP VP PP SBAR ADJP ADVP

Coco-val 16936 6170 8580 484 469 350
Coco-test 16930 5949 8668 453 449 364
YouCook2 7452 2471 3231 99 65 20

Table 1: The number statistics of each phrase on different datasets.

et al., 1993) from diverse domains (unseen in test
sets), optimizing the following loss function:

Loss = − 1

T

T∑

t=1

N∑

i=1

yt,i log(ŷt,i) (2)

where T is the sequence length, N is the vocabulary
size, yt,i is the true label of the i-th word at the t-th
time step (one-hot encoded vector), and ŷt,i is the
predicted probability of the i-th word at the t-th
time step.

3.2 Multi-MLLM Debating Mechanism
Without losing its generality, we use two MLLMs
to design our approach, as shown in Figure 2. After
the above warm up, we obtain the affirmative de-
bater L and negative debater V , we leverage multi-
round interactions between the models to encour-
age dialectical thinking on constituency parsing
(CP) results. To create a debating atmosphere for
them, we first set up system instructions then:

For the affirmative party L, it generates what
it believes to be the correct CP result on the input
sentence X , denoted as:

Aff1 = L.ask(X)

= arg max p(Yaff1 |Prompt,X; θL)
(3)

where the function .ask() represents the probabilis-
tic sequence generation by auto-regressive schema
p(wi|w<i) parameterized on θL of the tuned model
L. In the first round, the prompt is simply given:
Please perform constituency parsing on the follow-
ing sentence: X .

For negative party, we feed the above primary
result Aff, along with the debating prompt, into
V . It evaluates the potential errors on Aff, reasons
through them, raises objections, and proposes its
result:

Neg1 = V.ask(Aff1)

= arg max p(Yneg1 |Prompt,Aff; θV)
(4)

where Prompt denotes the instruction to make
each debater express their arguments based on the

previous debate history, which can refer to ap-
pendix.

Upon providing the instructions outlined above,
the model generates the parsing result it deems
correct, which is presented after the final token:
Your_result.

For the judge party J , its role is to oversee and
regulate the debate process through two primary
mechanisms: 1) As depicted in Figure 2 (a), it
determines whether the outputs of the two models
are consistent in the current round by invoking the
function: J .ask(Aff1,Neg1). If the result is True,
the debate concludes; otherwise, it proceeds to the
next round. 2) As illustrated in Figure 2 (b), at the
conclusion of the maximum number of iterations,
it selects the optimal argument among all generated
results: J .ask(Aff1,Neg1, . . . ,Affn,Negn), where
n denotes the total number of rounds.

4 Experimentation

For a thorough evaluation of our MMD, we conduct
extensive experiments and detailed analysis.

4.1 Experimental Setting

Datasets. For the image-text scenario, the valida-
tion and test sets from MSCOCO (Lin et al., 2014)
are selected following (Zhao and Titov, 2020). For
the video-text scenario, the test set from YouCook2
(no val) are selected following (Zhang et al., 2021,
2022). The phrase number of each label on all
datasets can refer to Table 1.

For warm up, we randomly select 450 different
samples from the PTB (Marcus et al., 1993) train-
ing set, which never appear in the above testing
data.

Evaluation Metrics. Our study adheres to the
evaluation frameworks established by (Zhang et al.,
2021) and (Zhao and Titov, 2020). During the test-
ing phase, we exclude single-word and sentence-
level spans from consideration and instead focus
on assessing two key metrics: the corpus-level av-
erage F1 (C-F1) and the sentence-level average F1
(S-F1). The calculation of C-F1 is given by the
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COCO-Val COCO-Test YouCook2
Model C-F1 S-F1 Model C-F1 S-F1 Model C-F1 S-F1
VC-PCFG 58.34 58.26 VC-PCFG 59.30 59.40 PTC-PCFG 58.90 63.20
GPT-4o-mini 74.30 74.91 GPT-4o-mini 73.85 74.66 GPT-4o-mini 69.91 70.72
BLIVA 76.26 75.45 BLIVA 76.54 75.82 Qwen2-VL 78.21 77.12
LLM-enhanced ST 86.80 86.22 LLM-enhanced ST 86.48 85.99 LLM-enhanced ST 82.41 82.34
LLaVA-1.5 76.72 71.36 LLaVA-1.5 77.25 72.13 VideoLLaVA 75.34 77.20
Qwen-VL 74.30 73.55 Qwen-VL 74.62 73.93 InternVL2 82.53 82.49
MMD (CD) 85.62 86.26 MMD (CD) 86.29 86.30 MMD (CD) 82.59 83.03
MMD (RD) 88.01 88.20 MMD (RD) 87.89 88.08 MMD (RD) 83.37 84.20

Table 2: Performance comparison of different models on COCO-Val, COCO-Test, and YouCook2 datasets.

formula:

C-F1 =
2 · TP

2 · TP + FP + FN
(5)

Here, TP denotes the total number of constituents
that are correctly predicted, FP represents the to-
tal number of constituents predicted incorrectly,
and FN signifies the total number of correct con-
stituents that are overlooked.

For S-F1, its formula is expressed as:

S-F1 =
1

n

n∑

i=1

F1i (6)

where n refers to the total number of sentences,
and F1i is the F1 score corresponding to the i-th
sentence.

Baselines. 1) VC-PCFG (Zhao and Titov,
2020): SOTA for image-text scenario. 2) GPT-
4o-mini: outperforming GPT-3.5 Turbo while re-
ducing costs by over 60%. 3) BLIVA (Hu et al.,
2024): SOTA on various vision-language tasks.
4) LLM-enhanced ST (Li et al., 2023b): SOTA
on cross-domain constituency parsing using self-
training with LLMs. 5) LLaVA-1.5 (Liu et al.,
2024a): SOTA across 11 benchmarks with just
1.2M publicly available data. 6) Qwen-VL (Bai
et al., 2023): SOTA in various real-world dialog
tasks with image-text context. 7) PTC-PCFG
(Zhang et al., 2022): SOTA for video-text scenario.
8) Qwen2-VL (Wang et al., 2024a): competitive
performance on various video-language tasks. 9)
VideoLLaVA (Lin et al., 2023): outperforming
Video-ChatGPT and achieveing superior results
across multiple video-text benchmarks. 10) In-
ternVL2 (Chen et al., 2024): SOTA on various
video-language tasks.

Implementation Details. Due to the resource
constraint, we employ the 7B or 8B version for
MLLMs. Specifically, for the text + image dataset,

we use LoRA fine-tuning with llava-v1.5-7b and
Qwen-VL-Chat as aff and neg. For the text
+ video dataset, we use LoRA fine-tuning with
VideoLLaVA-7B and InternVL2-8B as aff and
neg. For judge, we leverage the Baichuan2-13B
(Baichuan, 2023) to unify the processing for both
scenarios.

4.2 Main Experimental Results

We compare several state-of-the-art baselines with
our proposed Multi-MLLM Debate (MMD) ap-
proach across three datasets, as shown in Table 2.
The key findings are as follows:

Both closed-source models (e.g., GPT-4o-mini
with 35B parameters) and open-source models (e.g.,
BLIVA and Qwen2-VL) significantly outperform
traditional state-of-the-art approaches for Visual-
Universal Constituency Parsing (VUCP) without
the use of large language models (LLMs), such as
VC-PCFG and PTC-PCFG. This highlights the ef-
fectiveness of LLMs for UCP tasks, motivating our
adoption of LLMs for parsing. Our MMD with CD
(Constraint Debating) performs worse than MMD
with RD (Relaxed Debating) and slightly lags be-
hind the best-performing baseline LLM-enhanced
ST. This may be attributed to the overly stringent
consistency constraints of the CD approach, under-
scoring the importance of selecting an appropriate
debating strategy for VUCP. Overall, MMD (RD)
outperforms all other methods, demonstrating the
efficacy of our proposed multi-MLLM debating
framework.

4.3 Case Study

Figure 3 illustrates an example of constituency pars-
ing for the sentence “A girl and a woman holding
umbrellas”. In the first round, both models produce
errors or incomplete results. However, following
the second round of debate, Qwen successfully
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Figure 3: A real example of two-round process in our MMD and UCP results comparison of the best-performed
baseline (LLM-enhanced ST) and our MMD with consensus-driven (CD) and round-driven (RD) modes.

generates the correct parsing. This highlights the
potential of our approach to iteratively refine pre-
dictions through collaborative model interactions.
Additionally, the top-performing baseline, ST, fails
to correctly parse the final constituent due to its in-
ability to access visual modality. Similarly, MMD
(CD) does not fully label "A girl", potentially due
to incorrect detection of the number of girls. These
cases reveal areas for improvement in both existing
models and our own approach, emphasizing the
need for careful design and further refinement to
yield the best MMD (RD).

4.4 Discussion

Our in-depth investigations show that consensus
is typically achieved after 2-3 rounds of discus-
sion. Beyond this, additional discussions tend to
diminish performance, as observed in Figures 4
and 5 of the appendix. This is primarily due to the
model generating more debate content with longer
contextual input, which may induce hallucinations.

In practice, the occurrence of reaching consensus
is much fewer than that of forced termination. Sim-
ilar to real-life debate competitions, consensus is
often hard to attain, and termination via time limits
or a judging party is common. While consensus-
reaching is an expected scenario, a perfect solution
remains elusive, which will be a focus of our future
exploration.

Currently, no correlation between debate length
and input structural properties has been found. We
will further investigate this aspect in future re-
search.

5 Conclusion

We present MMD, a novel framework advanc-
ing vision-aided unsupervised constituency parsing
through pre-trained MLLMs and multi-agent de-
bates. By eliminating cross-modal alignment costs
and synergizing model strengths via RD/CD pro-
tocols, MMD achieves SOTA performance (about
10% F1 gains vs. single MLLM) on image/video-
text benchmarks. The debate mechanisms effec-
tively resolve syntactic ambiguities by integrat-
ing complementary predictions, while pre-trained
MLLMs ensure scalable multimodal processing.
This work demonstrates the viability of resource-
efficient, collaboration-driven parsing in complex
multi-modal contexts, offering new directions for
unsupervised syntactic analysis.
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7 Limitations

While MMD demonstrates strong performance, it
inherits constraints from pretrained MLLMs, such
as biases in training data and limited generaliza-
tion to low-resource languages. The debate mech-
anisms, though effective, increase inference time
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compared to single-model approaches. Addition-
ally, performance may degrade in domains with
sparse visual-textual correlations. Future work
should address these issues by enhancing model
robustness, optimizing computational efficiency,
and exploring lightweight alignment strategies for
broader applicability.
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A Details of Our Approach

For negative party, we feed the above primary re-
sult Aff, along with the debating prompt, into V .
It evaluates the potential errors on Aff, reasons
through them, raises objections, and proposes its
result:

Neg1 = V.ask(Aff1)

= arg max p(Yneg1 |Prompt,Aff; θV)
(7)

where Prompt denotes the instruction to make
each debater express their arguments based on the
previous debate history:

· · · Please evaluate the potential errors based
on prior result of constituent parsing and pro-
vide the answer you think is right. The output
must be a nested bracketing structure without
any extra content, containing all the words of
the sentence, and the number of "(" must match
the number of ")". Here are some examples for
your reference and learning. Please format the
output according to the examples.
Sentence: "The children ate the cake with a
spoon"
Prior_result: (The (children ((ate (the cake))
(with (a spoon)))))
Your_result: ((The children) ((ate (the cake))
(with (a spoon))))
· · ·
Sentence: "The little boy likes red tomatoes"
Prior_result:(The (little boy) (likes (red toma-
toes)))
Your_result: ((The little boy) (likes (red toma-
toes)))
Sentence: X
Prior_result: Aff
Your_result:

B Details of Experimental Setting

B.1 Datasets

MSCOCO (Lin et al., 2014) provides five descrip-
tive sentences for each image. Its validation set
and test set each contain 1,000 images and 5,000
corresponding sentences. The data preprocessing
method follows (Shen et al., 2019; Kim et al., 2019;
Zhao and Titov, 2020), where all punctuation is re-
moved.

YouCook2 (Zhou et al., 2018) consists of 89
cooking recipes. Each video includes an average
of six procedural steps, annotated with temporal

boundaries and described using imperative English
sentences. Its test set, used for experimental evalu-
ation, contains 3,310 video-sentence pairs.

B.2 Implementation Details
For the text + image dataset, LoRA fine-tuning uses
llava-v1.5-7b and Qwen-VL-Chat, with learning
rates set to 2e-4 and 1e-5, and the maximum output
length of the LLM is set to 2048. For the text +
video dataset, LoRA fine-tuning uses VideoLLaVA-
7B and InternVL2-8B, with learning rates both set
to 2e-4, and the maximum output length of the
LLM is set to 2048. The temperature is set to 0.2
to increase model determinism. The models in
this study are implemented using PyTorch and the
Huggingface Transformers library.

B.3 Baselines
1) VC-PCFG (Zhao and Titov, 2020): A 2020
model for visually grounded constituency parsing,
which extends probabilistic context-free grammars
(PCFG) with end-to-end differentiable learning and
integrates image-text alignment with a language
modeling objective.

2) GPT-4o-mini: A compact multimodal model
launched by OpenAI in 2024, supporting both text
and image inputs, featuring a 128K context window.
It outperforms GPT-3.5 Turbo while reducing costs
by over 60%.

3) BLIVA (Hu et al., 2024): An enhanced ver-
sion of InstructBLIP with a Visual Assistant, im-
proving performance on text-rich and general VQA
tasks.

4) LLM-enhanced ST (Li et al., 2023b): A
method for cross-domain constituency parsing that
enhances traditional self-training by using large lan-
guage models (LLMs) to generate domain-specific
raw corpora iteratively. The approach incorporates
grammar rules to guide the LLM and criteria for se-
lecting pseudo instances, outperforming traditional
self-training methods.

5) Qwen-VL (Bai et al., 2023): A vision-
language model series based on Qwen-LM, de-
signed for text and image understanding, excelling
in image captioning, question answering, and vi-
sual grounding, with a strong performance in real-
world dialog tasks.

6) LLaVA-1.5 (Liu et al., 2024a): A large
multimodal model that improves LLaVA’s vision-
language cross-modal connector with CLIP-ViT-L-
336px and MLP projection, achieving state-of-the-
art performance across 11 benchmarks with just
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Figure 4: The performance trend of C-F1 with different
maximum iteration rounds for debating.

1.2M publicly available data.
7) PTC-PCFG (Zhang et al., 2022): A model

that leverages loosely correlated video-text data
to induce syntactic grammars without relying on
manually designed features. Trained on large-scale
YouTube data with no direct text-video alignment,
it outperforms previous methods on three unseen
datasets, achieving higher F1 scores despite domain
shifts and noisy labels.

8) Qwen2_VL (Wang et al., 2024a): An up-
graded version of Qwen-VL, featuring dynamic
image resolution and Multimodal Rotary Position
Embedding (M-RoPE) for enhanced multimodal
processing.

9) InternVL2 (Chen et al., 2024): A multimodal
large language model in the InternVL series. It
outperforms most open-source models and is com-
petitive with commercial models across tasks like
document comprehension, chart analysis, OCR, sci-
entific problem-solving, and cultural understand-
ing.

10) VideoLLaVA (Lin et al., 2023): A unified
vision-language model that integrates images and
videos into the same language feature space, ad-
dressing misalignment in previous approaches. It
outperforms Video-ChatGPT and achieves supe-
rior results across multiple image and video bench-
marks, showing mutual enhancement between im-
ages and videos.

C Analysis and Discussion

To investigate the performance trend with the itera-
tion number increasing, we report the performance
of our MMD when the maximum iterations n is set
as 1, 2, 3 and 4 as shown in Figure 4 and 5. From

Figure 5: The performance trend of S-F1 with different
maximum iteration rounds for debating.

these figures, we can see that on all datasets, as the
maximum number of iterations increases, the per-
formance of our MLD first improves and then de-
creases. Among them, the performance is the best
in the second max iterations, significantly exceed-
ing all baselines. This indicates that our method
requires multiple iterations to make the two mod-
els help each other, but not necessarily the more
iterations the better. Additionally, on the dataset
YouCook2, the performance impact of different
max iteration times is not significant. This may be
due to the characteristics of this video-text dataset,
in which video contains a large amount of informa-
tion. By effectively capturing helpful information
for the text from the beginning, it can already make
accurate predictions. So the following discussion
of our MMD may not be very necessary.

D Details of Experiments

We compare many advanced baselines with our
proposed Multi-MLLM Debating (MLD) approach
on three datasets of different domains as follows:

D.1 Overall Comparison
We first report the overall performance on all kinds
of constituency labels as shown in Table 2.

The following observations can be drawn from
this table:

(1) The MMD approach, which leverages de-
bates between multiple LLMs (Qwen-VL and
LLaVA-1.5 for COCO datasets; VideoLLaVA and
InternVL2 for YouCook2), consistently achieves
the highest scores across all metrics and datasets.
This highlights the strength of the multi-MLLM
debate strategy in improving parsing accuracy.
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(2) Traditional parsing methods like VC-PCFG
and PTC-PCFG show significantly lower perfor-
mance, especially on metrics like C-F1 and S-F1,
when compared to modern LLM-based approaches.
This indicates the limitations of traditional models
in handling complex multimodal data.

(3) LLM-enhanced ST, which involves self-
training using traditional parsers and LLM-
generated corpora, achieves competitive results
across all datasets. This demonstrates the impor-
tance of leveraging both traditional and modern
methodologies for boosting model performance.

(4) While GPT-4o-mini performs better than tra-
ditional methods, it falls behind fine-tuned or de-
bated models like BLIVA and InternVL2. This
suggests that general-purpose large models require
fine-tuning or debate mechanisms to excel in con-
stituency parsing tasks.

D.2 Fine-grained Comparison
We also report the fine-grained performance on
each type of constituent, such as verb phrases (VP),
prepositional phrase (PP), and subordinated clause
(SBAR), which is shown in Table 3, 4 and 5 . From
these tables, we can observe that most baselines
cannot maintain stable performance on different
datasets or constituent categories, while our MMD
outperforms other methods significantly in all sce-
narios. This indicates that our approach can adapt
to various scenarios through multi-MLLM debating
strategy.
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Table 3: Different Models’ Performance on the COCO Validation Dataset

Model NP VP PP SBAR ADJP ADVP C-F1 S-F1
VC-PCFG 50.97 83.32 84.14 88.02 75.48 88.57 58.34 58.26
GPT-4o-mini 65.68 62.72 75.17 84.30 18.55 87.14 74.30 74.91
BLIVA 71.46 68.64 63.17 65.70 14.29 48.86 76.26 75.45
LLM-enhanced ST* 89.42 74.88 74.98 55.79 7.25 44.00 86.80 86.22
Qwen-VL 67.50 60.47 75.26 84.71 21.54 64.00 74.30 73.55
LLaVA-1.5 56.32 76.94 75.86 84.92 28.78 65.71 76.72 71.36
MMD (CD) 80.34 88.28 83.20 91.11 18.97 80.54 85.62 86.26
MMD (RD) 82.82 90.24 86.91 95.04 28.36 83.71 88.01 88.20

Table 4: Different Models’ Performance on the COCO Test Dataset.

Model NP VP PP SBAR ADJP ADVP C-F1 S-F1
VC-PCFG 54.90 83.20 80.90 89.00 38.80 86.30 59.30 59.40
GPT-4o-mini 65.26 63.10 73.58 77.48 17.37 84.07 73.85 74.66
BLIVA 71.52 69.93 63.00 68.87 14.25 52.75 76.54 75.82
LLM-enhanced ST* 88.89 74.65 73.96 61.59 9.35 43.68 86.48 85.99
Qwen-VL 67.04 61.22 76.26 87.64 19.60 66.76 74.62 73.93
LLaVA-1.5 57.04 77.58 77.46 90.29 28.51 65.38 77.25 72.13
MMD (CD) 80.71 86.15 80.26 88.21 19.22 78.25 86.29 86.30
MMD (RD) 82.64 90.27 86.88 96.91 26.50 81.87 87.89 88.08

Table 5: Different Models’ Performance on the YouCook2 Dataset

Model NP VP PP SBAR ADJP ADVP C-F1 S-F1
PTC-PCFG 78.70 69.90 80.50 58.90 43.20 65.00 58.90 63.20
GPT-4o-mini 66.56 68.11 85.11 83.84 27.69 65.00 69.91 70.72
Qwen2_VL 76.70 61.51 85.36 85.86 53.85 40.00 78.21 77.12
LLM-enhanced ST* 84.22 40.83 79.85 8.08 24.62 20.00 82.41 82.34
InternVL2 79.70 64.39 92.42 89.90 46.15 60.00 82.53 82.49
VideoLLaVA 73.94 43.42 82.20 80.81 36.92 55.00 75.34 77.20
MMD (CD) 81.62 65.51 89.90 90.35 49.38 61.21 82.59 83.03
MMD (RD) 86.51 69.04 94.15 92.93 56.92 65.00 83.37 84.20
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