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Abstract

Reinforcement Learning from Human Feed-
back (RLHF) has been shown to effectively
align large language models (LLMs) with hu-
man knowledge. However, the lack of human
preference labels remains a significant bottle-
neck when applying RLHF to a downstream
domain. Humans in RLHF play a critical role
in injecting reasoning preferences into LLM,
and we assume the reasoning process under-
lying human assessments may potentially be
replaced by reasoning pathways derived from
Knowledge Graphs (KGs). Inspired by this as-
sumption, we propose Reinforcement Learning
from Knowledge Graph Feedback (RLKGF),
a novel method that leverages KG semantics
and structure to derive RL rewards in the ab-
sence of manual annotations. Unlike Reinforce-
ment Learning from AI Feedback (RLAIF),
RLKGF directly integrates human priors en-
coded in KGs as the reward model, aligning
LLM responses with expert knowledge with-
out additional preference labeling or reward
model training. RLKGF structures context-
relevant facts into knowledge subgraphs and
defines rewards by simulating information flow
across semantic and logical connections be-
tween question and candidate response enti-
ties. Experiments on three public and one
private medical dialogue dataset demonstrate
that RLKGF significantly outperforms the com-
petitive RLAIF in improving LLM diagnos-
tic accuracy. The code is available at https:
//github.com/YanPioneer/RLKGF.

1 Introduction

Large language models (LLMs) like ChatGPT
(Ouyang et al., 2022) have shown remarkable po-
tential in tasks such as knowledge-based question-
and-answer (Q&A) (Liu et al., 2024) and intelligent
decision-making (Wang et al., 2025). As LLMs ad-
vance in specialized domains like medicine (Zhang
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Figure 1: Compared to RLHF and RLAIF, RLKGF
treats the knowledge graph (KG) as a reward model
(RM), directly providing rewards for LLM responses
without the need for preference labeling or reward
model training.

et al., 2023a), agriculture (Peng et al., 2023), and
law (Huang et al., 2023), the demand for factu-
ally accurate and helpful responses grows. Rein-
forcement learning from human feedback (RLHF),
regarded as a key driver of ChatGPT’s success,
aligns LLM outputs with human preferences and
enhances generation quality (Bai et al., 2022a). Its
effectiveness has also been validated in domain-
specific LLM adaptations (Yang et al., 2024b).
However, RLHF involves a complex training pro-
cess. First, a reward model is learned from ranked
human preference data. Subsequently, scores gen-
erated by the reward model are used to apply policy
optimization (Schulman et al., 2017). Despite its
benefits, the high cost of human annotation, incon-
sistent annotation standards, and potential biases
from subjective judgments hinder the widespread
application of RLHF.

Both self-reflection (Asai et al., 2023) and CoT
(Wei et al., 2022; Chu et al., 2024) approach in
LLMs highlight the advantage of leveraging their
embedded knowledge to enhance task performance.
Meanwhile, several works mention LLMs have
demonstrated human-like judgment capabilities in
certain aspects (Gilardi et al., 2023; Ding et al.,
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2023). Thus, automating preference selection for
model responses through LLMs is a natural pro-
gression. Self-refine (Madaan et al., 2024) and
Refiner (Paul et al., 2024) employ LLMs to eval-
uate and iteratively refine outputs through feed-
back. Additionally, Anthropic (Bai et al., 2022b)
and Google (Lee et al., 2023) directly use LLMs to
filter response data and train reward models with
the selected results to aid model training, essen-
tially conducting reinforcement learning from AI
feedback (RLAIF). Although RLAIF can distill the
evaluation ability of advanced LLMs into reward
models, its reliability remains limited by potential
knowledge gaps and hallucinations, particularly in
high-accuracy domains like medicine.

Current evaluations of LLM-generated responses
primarily emphasize the semantic relevance be-
tween responses and question contexts and the
correctness of logical reasoning chains (Li et al.,
2024). These criteria align with the implicit se-
mantic relationships and explicit structural connec-
tions among entities in knowledge graphs (KGs).
Since the inception of LLMs, KGs have been in-
strumental in tasks such as evaluation (Li et al.,
2024), knowledge injection (Wang et al., 2023),
and knowledge augmentation (Wen et al., 2023;
Zhang et al., 2023b), due to their structured fact
storage and annotation-free advantages. However,
these approaches predominantly treat KGs as static
knowledge repositories and leave LLMs to filter
and select relevant facts. This overlooks the se-
mantic associations between facts and fails to fully
exploit the structured connectivity of KGs.

Considering that entities with high linkage crit-
icality are more likely to reach each other during
inference and engage in greater semantic interac-
tions, both semantic relevance between factual en-
tities and the strength of logical connections in
KGs can serve as natural scoring mechanisms (Ya-
sunaga et al., 2021; Lin et al., 2019; Luo et al.,
2023). Building on this insight and inspired by
RLAIF, we propose Reinforcement Learning from
Knowledge Graph Feedback (RLKGF), which di-
rectly derives reward signals from KGs without
manual annotations. RLKGF treats the KG it-
self as a reward model and assigns reinforcement
learning (RL) rewards to LLM responses by simu-
lating semantic information flow and logical link
transmission between question and candidate re-
sponse entities on relevant subgraphs—without the
need for preference labeling or reward model train-
ing. The scoring process integrates local seman-

tic aggregation and global path reasoning among
factual entities. At the semantic level, RLKGF
employs graph neural networks (GNNs) for node-
level information exchange and computes semantic
relevance scores between question and candidate
response entities. Structurally, RLKGF initiates
reasoning from the question entities via random
walks across connected paths and transparently cal-
culates the criticality of path-connected entities
based on reachability probabilities. We validate
RLKGF in medical dialogue diagnosis tasks. Ex-
perimental results demonstrate that RLKGF out-
performs RLAIF in disease prediction accuracy,
which proves RLKGF’s effectiveness as a viable
alternative to RLHF. Further comparisons with su-
pervised fine-tuning and KG-based prompts high-
light RLKGF’s advantages in aligning LLMs with
knowledge. Besides, to eliminate potential contam-
ination from existing datasets, we also construct a
new medical dialogue diagnosis dataset (MED-D)
from unpublished electronic medical records. The
contributions of this study are:

• We propose RLKGF, a novel method for de-
riving feedback on LLM outputs from knowl-
edge graphs by integrating local semantic
aggregation and global logical connections
among factual entities.

• We introduce a new medical dialogue diag-
nosis dataset, MED-D, constructed from Chi-
nese electronic medical records. MED-D in-
cludes 20 diseases, 351 symptoms, and 3992
dialogue samples.

• Experimental results demonstrate that
RLKGF significantly improves LLM diagnos-
tic accuracy compared to RLAIF. This proves
RLKGF is a competitive alternative to RLHF
for knowledge alignment.

2 Related Work

2.1 Reinforcement Learning from Feedback
in LLMs

RLHF trains reward models on human-labeled pref-
erences and optimizes policy gradients based on
reward scores (Ouyang et al., 2022). It has proven
effective in enhancing the helpfulness and knowl-
edge accuracy of LLM outputs and is one of the
key drivers behind LLM success (Bai et al., 2022a).
However, the high cost of human preference anno-
tation limits RLHF’s scalability (Lee et al., 2023).
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As LLM capabilities evolve, models have demon-
strated human-like judgment in tasks such as sum-
marization (Stiennon et al., 2020), which prompts
researchers to leverage LLMs for output evalua-
tion. Self-reflection uses LLMs to filter irrelevant
information by assessing the relevance of generated
responses to retrieved content (Asai et al., 2023).
Self-refine employs LLMs for iterative feedback
to improve output quality (Madaan et al., 2024),
while Refiner uses an LLM-based critic to enhance
logical consistency in chain-of-thought reasoning
(Paul et al., 2024). Beyond these prompt-based
approaches, RRHF (Yuan et al., 2023) and RLAIF
(Lee et al., 2023) further explore utilizing LLM-
generated feedback for model training. RRHF
ranks responses from different sources using LLMs
and optimizes models through Rank Loss. RLAIF
introduces reinforcement learning (RL) from AI
feedback, where a high-performing LLM annotates
preferences across different responses and trains
a reward model. Despite reducing the need for
human labels, RLAIF faces challenges in special-
ized fields like medicine, where the demand for
accuracy clashes with LLMs’ knowledge gaps and
hallucinations (Huang et al., 2025).

2.2 LLMs with Knowledge Graphs

KGs store factual evidence in a structured for-
mat, which enables both evidence retrieval and
semantic aggregation of key entities (Lin et al.,
2019; Yasunaga et al., 2021; Yan et al., 2024).
The utilization of KGs in LLMs spans multiple
aspects, including supervised fine-tuning (SFT)
(Wang et al., 2023), retrieval-augmented genera-
tion (RAG) (Feng et al., 2023), and response evalu-
ation (Li et al., 2024). Bencao (Wang et al., 2023)
constructs Q&A pairs from medical KGs to supple-
ment training data for fine-tuning medical LLMs.
Several works (Zhang et al., 2023b; Wen et al.,
2023; Jiang et al., 2023) retrieve relevant evidence
from KGs prior as prompt to enhance response ac-
curacy and knowledge richness. Greaselm (Zhang
et al., 2022) integrates KG and textual informa-
tion through prefix prompting to improve seman-
tic fusion and correctness in Q&A tasks. Li et al.
(Li et al., 2024) uses commonsense KGs to detect
knowledge and logical errors in LLM-generated
responses. These approaches show that leverag-
ing KGs’ implicit semantics and explicit logical
connections can enhance LLM performance. How-
ever, most methods treat KGs merely as knowledge
bases, failing to exploit their potential for semantic

connectivity and logical link significance.

3 Method

In this section, we define the task and describe our
method, which directly utilizes the structural and
semantic information among factual entities in KGs
to provide feedback on model responses.

3.1 Task Definition

The disease diagnosis via Q&A task requires the
model to predict a disease d in the answer A based
on a patient’s symptom description [s1, s2, ..., sn]
in the question Q. Our focus is on using a med-
ical knowledge graph (MKG) containing factual
entities as a reward model to automatically assign
feedback R to model responses, i.e., RLKGF.

The MKG G = (V,E) is constructed based on
the standard (Li et al., 2025), where V includes all
symptom and disease entities in the dataset, and E
represents the relationships between these entities.
In this task, we only consider the relationship <
disease, causes, symptom >. After extracting the
patient’s information from the question, RLKGF
first locates the relevant symptom entities in the
MKG. It then identifies the disease entities con-
nected to those symptoms and any other symptoms
that these diseases may cause. Using the entities
and their relationships, we construct the person-
alized diagnostic subgraph g = (v, e), where v
represents the disease entities and related symp-
toms that may explain the patient’s condition, and
e represents the corresponding triple relationships.

RLKGF evaluates the correctness of the model’s
response through path reasoning and semantic ag-
gregation using graph-based random walk with
restart (RWR) (Tong et al., 2006) and GNNs, as de-
tailed in section 3.2 and section 3.3. After acquiring
feedback, RLKGF optimizes the model’s policy us-
ing the proximal policy optimization (PPO) (Schul-
man et al., 2017) to align LLM responses with
domain knowledge, as described in section 3.4.

3.2 Link Criticality Score via Structural
Information

Evaluating model responses typically involves
determining whether the response entity can be
reached from the question entity through multi-step
path reasoning, i.e., the correctness of the knowl-
edge link. Additionally, the stronger the association
between the question and candidate response en-
tities along the path, the higher the probability of
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Question: I feel nauseous 
and vomiting, accompanied 
by fever, diarrhea, and loose 
stools. What’s going on?

Response: The patient’s 
nausea, vomiting, and loose 
stools suggest a 
gastrointestinal issue, likely 
gastroenteritis, given the fever 
and diarrhea.
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Figure 2: The framework of RLKG.

reaching the response entity (Yasunaga et al., 2021).
Based on this, we apply RWR on the global paths
of the patient diagnosis subgraph. Starting from the
question entities, RWR calculates the probability of
reaching various candidate response entities, which
serves as their link criticality score. The calculation
process is as follows.

For a central entity i, we define the path connec-
tivity reachability from other entities in the knowl-
edge graph g = (v, e) as wi, where wi ∈ RN×1

and N = |v|. The value wi(j) is initialized by
Gaussian kernel function:

wi(j) = exp(−dis(i, j)2

2h2
) (1)

where h is the Gaussian bandwidth and j ∈ v.
The vector wi can be iteratively updated through

RWR on the graph, as shown in Equation 2. Specif-
ically, the random walk begins at the central en-
tity i, with a probability of 1 − c to return to i
and a probability of c to reach other entities along
the connected path. After several iterations, until
convergence, wi(j) represents the probability of
reaching entity j. Thus, wi captures the path-based
association weights of various factual entities in
the KG g relative to the central entity.

w
′
i = c · Ãiwi + (1− c) · ei (2)

Ãi ∈ RN×N is the probability transition matrix for
entity i, obtained by column normalization of the
adjacency matrix Ai of g. The element in the i-th
row and j-th column represents the connection flux

from entity j to entity i, i.e., wij

wj
, where wj is the

sum of weights of all paths associated with entity
j, and wij is the weight between entities i and j.
ei ∈ RN×1 is the starting node vector, with a value
of 1 for the central entity and 0 for all other entities.

For the patient-specific diagnostic subgraph g =
(v, e) and the symptom entities in the question
[s1, s2, ..., sn], we compute wsi for each symptom
entity si to capture the link criticality scores W
of each entity in g relative to the question entities,
where W ∈ Rn×N . From this, we extract the link
criticality matrix W ∗ between possible response
entities (diseases to be predicted) and question en-
tities, where W ∗ ∈ Rn×m. By normalization, we
acquire the structural path reasoning-based score
RP , which quantifies the correctness of the knowl-
edge links in the model’s response.

Rp = σ(W ∗) (3)

where Rp ∈ Rm, and m represents the number
of disease entities in the personalized diagnostic
subgraph g. σ(·) denotes the temperature softmax
(Hinton, 2015).

3.3 Semantic Relevance Score via Semantic
Aggregation

Semantic relevance between the model’s genera-
tion and the question is another important criterion
for evaluating response quality (Li et al., 2024). To
capture the semantic connections between factual
entities, we utilize graph convolutional networks
(GCNs) (Kipf and Welling, 2016), which induce
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node representations via iterative message passing
between neighbors on the graph. Specifically, we
apply a 2-layer GCN to iteratively process the fea-
ture matrix X ∈ RN×F of the factual entities in
the graph g, where F is the feature dimension. The
information propagation between layers is updated
by Equation 4.

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) (4)

where Ã = A + IN is the adjacency matrix with
self-connections, A ∈ RN×N is the adjacency ma-
trix and IN is the identity matrix. D̃ii =

∑
j Ãij

represents the degree matrix of entities, which
serves for normalization. W (l) denotes the weight
matrix for feature mapping. H(l) ∈ RN×D is the
input of the l-th layer of the neural network, with
H(0) = X .

Utilizing a 2-layer GCN to enable semantic infor-
mation interaction between entities, the semantic
feature representations of all entities are obtained
as shown in Equation 5, where Z ∈ RN×F .

Z = f(X,A) = σ(Â(ReLU(ÂXW 0)W 1)) (5)

Â = D̃− 1
2 ÃD̃− 1

2 and σ(·) indicates softmax.
We compute the semantic cosine similarity ma-

trix S∗ between the diseases to be predicted and
the symptom entities mentioned in the question
through the semantic features of all entities, where
S∗ ∈ Rn×m.

S∗(si, dj) =
Zsi · Zdj

||Zsi || · ||Zdj ||
(6)

si and dj represent the symptom entity mentioned
in the question and the potential disease entities
in the response, respectively. The relevance score
of the response to the question, derived from the
semantic aggregation of factual entities, is denoted
as Rs ∈ Rm.

Rs = σ(S∗) (7)

The feedback reward for the response, directly
obtained from the KG, is calculated based on both
the link criticality of the structural paths and the
semantic aggregation relevance, as shown in Equa-
tion 8, where µ is a learnable parameter.

R = µ(Rs) + (1− µ)(Rp) (8)

3.4 Reinforcement Learning Training
Framework

We employ PPO to implement reinforcement learn-
ing training for the LLMs. The policy πθold is ini-
tialized from the off-the-shelf LLMs and then opti-
mized to πθnew by maximizing the reward obtained

from the knowledge graph. To avoid excessive pol-
icy shifts that could lead to unreasonable responses,
we use PPO-Clipped, which restricts model updates
within a certain range. The optimization objective
is given by Equation 9.

LCLIP (θ) = E[min(r(θ)A∗, clip(r(θ), 1− ϵ, 1 + ϵ)A∗)] (9)

where r(θ) = πθnew
πθold

, and A∗ is the advantage func-
tion estimated for the model’s decisions. The hy-
perparameter ϵ constrains the policy update ratio
within the range [1 − ϵ, 1 + ϵ] via clip(r(θ), 1 −
ϵ, 1 + ϵ).

4 Experiment

4.1 Experimental Setup
We implement the model based on the PyTorch
framework and conduct training and testing on
one A800 80G GPU. The meanings and specific
settings of each hyper-parameter involved in the
model are detailed in Table 7.

4.2 Baselines
Models. We select smaller-scale, open-source
LLMs that can be trained on a single 80G A100
GPU as the backbone. These include seven LLMs
from the Qwen1.5 (Bai et al., 2023), Qwen2.5
(Yang et al., 2024a), InternLM2 (Cai et al., 2024),
and InternLM2.5 (Wu et al., 2024) series.

Methods. To comprehensively evaluate the per-
formance of RLKGF, we compare it with RLAIF
(Lee et al., 2023) (using GPT-4o-mini for prefer-
ences (Achiam et al., 2023)), SFT (including full
parameter tuning and LoRA) (Hu et al., 2021), as
well as the knowledge graph-based prompt tech-
nique (Zhang et al., 2023b; Wen et al., 2023).

4.3 Datasets
We utilize three public medical dialogue diagnosis
datasets: MZ (Wei et al., 2018), DXY (Xu et al.,
2019), and GMD (Liu et al., 2022). These datasets
are derived from real-world medical dialogue diag-
nosis records, with the number of diseases, symp-
toms, and dialogues summarized in Table 1.

To avoid potential data leakage, where pub-
lic data might have been used for LLM training,
we construct a new dataset, MED-D. MED-D is
collected from offline electronic medical records
(EMRs). These EMRs are sourced from cooperat-
ing hospitals and have been anonymized. We filter
14,277 EMRs and choose 20 diseases that could be
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Dataset MZ DXY GMD MED-D

Language Chinese Chinese Chinese Chinese
# Diseases 4 5 12 20
# Symptoms 66 41 118 351
# Dialogue Samples 710 526 2390 3992
# Avg. Symptoms/Q&A 5.61 4.77 5.47 17.57

Table 1: Medical Dialogue Datasets. "# Avg. Symp-
toms/Patient" signifies the average number of symptoms
per patient in the dataset.

diagnosed through Q&A without additional tests.
With the assistance of medical experts, we iden-
tify 351 associated symptoms. Subsequently, we
extract symptom and disease entities from the se-
lected EMRs using named entity recognition to
construct Q&A pairs. All extracted diseases and
symptoms are manually aligned with the corre-
sponding ICD-9 terms and reviewed by domain
experts. We use the accuracy of disease prediction
as the evaluation metric. The complete data pro-
cessing procedure can be found in Appendix A.1.2.

4.4 Main Results

RLAIF vs. RLKGF. Table 2 shows the perfor-
mance of different LLMs trained using only RLAIF
and RLKGF. RLKGF Base represents the accu-
racy achieved by directly selecting the response
entity with the highest feedback score from the
knowledge graph. From the experimental results,
we observe the following. Detailed prompts and
analysis can be found in Appendix A.1.4.

i. Advantages of RLKGF. Our results demon-
strate that RLKGF outperforms RLAIF by 5.67%,
10.73%, 8.38%, and 1.21% across four datasets,
respectively. This indicates the feasibility and ef-
fectiveness of using KGs for feedback on model
responses. It validates that leveraging KGs as re-
ward models in the medical domain may be a more
reliable approach than LLM-based preference la-
beling.

ii. Small models are limited by instruction
adherence. Among different models, Qwen2.5-
0.5b-instruct performs poorly, with only 32.39%
on the MZ dataset. We analyze its outputs before
and after training and find that it has poor instruc-
tion adherence and fails to make correct predic-
tions from the given diseases. Although training
improves its instruction-following ability, knowl-
edge injection remains suboptimal. In section 4.6,
we present the performance of models trained with
supervised fine-tuning, where full-parameter SFT
on Qwen2.5-0.5b-instruct achieves only 7.60% ac-

Backbone Method GMD DXY MZ MED-D

GPT-4o-mini Base 0.6460 0.4262 0.5289 0.5345

RLKGF Base 0.7908 0.8252 0.6846 0.805

Qwen2.5-3B
-Instruct

Base 0.6360 0.4531 0.3789 0.3553
RLAIF 0.6722 0.6537 0.5469 0.3600
RLKGF 0.7113 0.7314 0.6268 0.3800

Qwen2.5-1.5B
-Instruct

Base 0.4840 0.2359 0.1845 0.1982
RLAIF 0.5635 0.4595 0.4343 0.2908
RLKGF 0.6109 0.5890 0.5070 0.3025

Qwen2.5-0.5B
-Instruct

Base 0.2469 0.0981 0.0042 0.1273
RLAIF 0.3092 0.2135 0.0282 0.1350
RLKGF 0.3278 0.2654 0.3239 0.1475

Qwen1.5-4B
-Chat

Base 0.4038 0.4000 0.4176 0.1893
RLAIF 0.5816 0.3139 0.5610 0.2083
RLKGF 0.5914 0.6893 0.5986 0.2525

Qwen1.5-1.8B
-Chat

Base 0.3335 0.2291 0.0423 0.1342
RLAIF 0.4686 0.2783 0.3568 0.1650
RLKGF 0.4784 0.3366 0.3592 0.2050

InternLM2.5
-1.8B-Chat

Base 0.2092 0.3981 0.4507 0.1850
RLAIF 0.4393 0.4369 0.5493 0.1950
RLKGF 0.5356 0.4757 0.5704 0.2025

InternLM2.5
-1.8B-Chat

Base 0.3305 0.2718 0.2042 0.1667
RLAIF 0.2929 0.4078 0.4507 0.2175
RLKGF 0.4686 0.4272 0.5282 0.2300

Table 2: RLKGF vs. RLAIF. The bolded values repre-
sent the best performance of the current model on the
dataset.

curacy. Preliminary analysis suggests that the
MZ dataset’s sparsity is insufficient to correct the
initially learned model parameters. Additionally,
smaller models may be more sensitive to loss de-
sign, and how to better inject knowledge into them
requires further investigation.

iii. Explore more effective KG feedback meth-
ods. Furthermore, by comparing the prediction ac-
curacy of models using only the KG, KG feedback-
trained models, GPT-4o-mini predictions, RLAIF,
and SFT, we find that although trained LLMs show
some performance improvement, they still fall far
short of the optimal target. Therefore, further ex-
ploration is needed on how to fully utilize factual
knowledge and construct reasonable feedback to
guide model training.

RLAIF with different LLMs With the optimiza-
tion and updates of LLMs, many open-source mod-
els have surpassed the GPT series in certain appli-
cations, such as Qwen2.5-72B (Yang et al., 2024a)
and DeepSeek (Liu et al., 2024). We replace GPT-
4o-mini with these two models for response pref-
erence labeling and compare their potential advan-
tages. The model comparison results are shown in
Table 3.

The results indicate that GPT-4o-mini outper-
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Figure 3: "w/o RWR" refers to the ablation of the link criticality score. "w/o GCN" refers to the ablation of the
semantic relevance score.

Backbone Method GMD DXY MZ

Qwen2.5-3B
-Instruct

GPT-4o-mini 0.6722 0.6537 0.5469
Qwen2.5-72B 0.6792 0.6408 0.4671
DeepSeekV3 0.6778 0.6505 0.3850

Qwen2.5-1.5B
-Instruct

GPT-4o-mini 0.5635 0.4595 0.4343
Qwen2.5-72B 0.5563 0.5275 0.2371
DeepSeekV3 0.5593 0.3042 0.4108

Qwen1.5-4B
-Chat

GPT-4o-mini 0.5816 0.3139 0.5610
Qwen2.5-72B 0.6025 0.6246 0.5822
DeepSeekV3 0.5816 0.5599 0.5822

InternLM2.5
-1.8B-Chat

GPT-4o-mini 0.4393 0.4369 0.5493
Qwen2.5-72B 0.3096 0.3010 0.5423
DeepSeekV3 0.3305 0.3010 0.5563

InternLM2
-1.8B-Chat

GPT-4o-mini 0.2929 0.4078 0.4507
Qwen2.5-72B 0.4519 0.4078 0.4577
DeepSeekV3 0.4477 0.3883 0.1972

Table 3: RLAIF with different LLMs.

forms other competitive open-source LLMs in the
medical domain. Although high-capacity open
LLMs enhance performance, leveraging existing
knowledge bases for feedback presents a viable and
effective alternative, particularly when considering
resource efficiency and performance.

RLKGF demonstrates better generalization ca-
pability compared to SFT. We conduct an ex-
periment to compare the generalization ability of
RLKGF and SFT. Specifically, we use Qwen2.5-
3B-Instruct as the base model, train it on the GMD
dataset using both RLKGF and SFT and evalu-
ate the models on the DXY dataset. As shown in
Table 4, the model trained with RLKGF demon-
strates clear generalization to a different dataset,
while the SFT-trained model even underperforms
the untrained baseline, which highlights the supe-
rior generalization capability of RLKGF.

4.5 Ablation Study

Component Ablation. As shown in Figure 3, ab-
lating the link criticality scores derived from struc-

Backbone Method DXY

Qwen2.5-3b-Instruct
Base 0.4531

RLKGF on GMD 0.6117
SFT on GMD 0.3680

Table 4: Generalization comparison between RLKGF
and SFT.

Disease Probability (RWR)

Disease Probability (GCN)

Q: The patient felt discomfort in the pharynx for 3 days, usually sweat 
profusely, no history of hypertension, diabetes. What disease has he got?

Thyroiditis

Rhinitis

Coronary 
Heart Disease

Pharyngeal 
Discomfort

Sweating 
Profusely

Giddy

Lose 
Weight

Nasal 
Obstruction

Runny Nose

Thyroiditis

Rhinitis

Coronary 
Heart Disease

Pharyngeal 
Discomfort

Sweating 
Profusely

Giddy

Lose 
Weight

Nasal 
Obstruction

Runny Nose

Question Entity Candidate Response Entity

Figure 4: A case demonstrating GCN’s local semantic
aggregation and RWR’s global reachability.

tural information via RWR leads to an average per-
formance decrease of 1.73%, 1.67%, and 2.28%
on the GMD, DXY, and MZ. Similarly, remov-
ing the semantic relevance feedback from semantic
features results in a performance drop of 1.76%,
1.49%, and 2.65%. These findings highlight the
importance of both global structural and semantic
information from the knowledge graph in evaluat-
ing LLM responses. From the results, it can be
seen that, in general, structural information plays a
more significant role compared to semantic infor-
mation. We preliminarily attribute this to the fact
that KGs inherently extract factual knowledge into
structured information, which results in two key
characteristics: 1) Structural features are its distin-
guishing advantage over contextual knowledge; 2)
The semantic information contained in the KGs is
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Backbone Method GMD DXY MZ

Qwen2.5-3B
-Instruct

with GCN 0.7113 0.7314 0.6268
with GAT 0.6987 0.6990 0.5822

Qwen2.5-1.5B
-Instruct

with GCN 0.6109 0.5890 0.5070
with GAT 0.5914 0.5696 0.5305

Qwen2.5-0.5B
-Instruct

with GCN 0.3278 0.2654 0.3239
with GAT 0.3152 0.2233 0.2089

Qwen1.5-4B
-Chat

with GCN 0.5914 0.6893 0.5986
with GAT 0.5872 0.6246 0.5728

Qwen1.5-1.8B
-Chat

with GCN 0.4784 0.3366 0.3592
with GAT 0.714 0.3754 0.3850

InternLM2.5
-1.8B-Chat

with GCN 0.5356 0.4757 0.5704
with GAT 0.5356 0.4660 0.5704

InternLM2
-1.8B-Chat

with GCN 0.4686 0.4272 0.5282
with GAT 0.4477 0.4078 0.4437

Table 5: Aggregating Semantic Information using GCN
and GAT for LLMs Semantic Relevance Feedback.

not as rich as that in medical textbooks.
Figure 4 illustrates a case where structural or

semantic features dominate. GCN relies on lo-
cal neighbor interactions for representation learn-
ing. When the question entity is more strongly
connected to a candidate response entity in its lo-
cal neighborhood, it has a greater influence on the
prediction. In contrast, RWR considers the global
topological structure of the knowledge graph. This
allows RWR to assign different weights to candi-
date response entities based on the global connec-
tions between them and the question entity, which
GCN does not capture. The complete experimental
results are presented in Appendix A.1.4.

Different Semantic Aggregation Models. As
discussed in section 4.4, the semantic information
in KGs is relatively concise. Therefore, further ex-
ploration for leveraging KG semantics is essential
for providing more accurate feedback on the se-
mantic relevance of LLMs responses. To preserve
the structured semantics of KGs and ensure the
generalizability of the method, we employ a dual-
head graph attention mechanism (GAT) (Veličković
et al., 2017) to dynamically assign weights to dif-
ferent neighbors and compute semantic relevance
scores between response entities and question enti-
ties using attention weights. The results are shown
in Table 5.

The results indicate that RLKGF with GAT out-
performs RLAIF 4.57%, 8.60%, and 5.23%, which
validates the advantage of using GAT to aggre-
gate structured semantics for feedback. However,

RLKGF with GCN yields an average advantage
of 1.10%, 2.13%, and 3.15% over GAT. We find
that the overall prediction accuracy achieved with
GAT-trained attention weights is lower than that of
GCN. This may be due to GCN’s deeper learning
of node representations.
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Figure 5: RLKGF Base obtained with different restart
probabilities c.

The Impact of Restart Probability c. In sec-
tion 3.2, we iteratively update the reachability
matrix of entities relative to the question entities
through RWR. The parameter 1− c represents the
probability of returning to the initial entity during
each random walk. By setting different values of
c, we investigate the impact of structural informa-
tion, as described in Figure 5. The results show
that setting a larger c helps improve the accuracy
of reward feedback. This is because reducing the
probability of returning to the initial node during
RWR enables the model to explore a broader range
of triple relationships, allowing for more compre-
hensive use of the global structural information in
knowledge graphs and a more accurate assessment
of connection flux across knowledge links.

4.6 Further Analysis

Analysis of Knowledge Injection Methods. To
assess the performance of current mainstream meth-
ods for integrating knowledge into LLMs, we com-
pare Full Fine-Tuning (FT), Low-Rank Adaptation
(LoRA) (Hu et al., 2021), and Prompt techniques
(Zhang et al., 2023b). The KG-based prompt used
in Table 9 does not involve retrieval; instead, it
directly provides the relevant patient subgraph in
triple format (i.e., containing accurate information)
to the LLMs. We include the results and the prompt
used in Appendix A.1.4 and A.1.3. KG Prompt
(Triple) refers to directly feeding KG triples into
LLMs, while KG Prompt (Text) converts the triples
into textual prompts.
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Diseases Relationship Completeness Rate Diagnostic Accuracy

Allergic Rhinitis 0.6250 0.8888
Upper Respiratory Infection 0.7826 0.7391

Pneumonia 0.5517 0.2941
Hand Foot and Mouth Disease 0.4090 0.55

Pediatric Diarrhea 0.3333 0.25
Total 0.5267 0.5243

Table 6: The impact of knowledge graph completeness
on RLKGF diagnostic accuracy.

The results lead to several key observations: 1)
Although converting triples to text reduces input
length, the associations between symptoms and dis-
eases become less explicit compared to structured
triples, leading to performance drops in many mod-
els. 2) Supervised fine-tuning remains the most
effective method for knowledge injection, espe-
cially with large datasets. 3) The performance gap
between LoRA and FT is minimal. 4) LLMs are ca-
pable of capturing correct information from exten-
sive prompts, but this ability diminishes with sparse
data. Additionally, training on domain-specific data
improves comprehension of longer texts. As noted
in RLAIF (Lee et al., 2023), RLHF and RLAIF
typically achieve around 70% of the performance
of SFT. Our RLKGF method consistently meets
this standard, further validating its effectiveness.

RLKGF’s Dependence on KG Completeness.
RLKGF calculates link criticality and semantic rel-
evance between entities based on the global topol-
ogy and semantic aggregation of KGs, which is
compatible with different KG schemas. However,
the effectiveness of RLKGF is affected by KG in-
completeness. To investigate this, we conduct ex-
periments on the DXY dataset using the Chinese
MKG proposed by Li et al. (Li et al., 2025).

Taking all <disease, causes, symptom> triples
in DXY as the reference, we evaluate the coverage
of such relations in the MKG and the diagnosis
accuracy achieved using this MKG. As shown in
Table 6, incomplete KGs result in decreased perfor-
mance compared to experiments with a complete
KG (see Table 2). Moreover, diseases with lower
KG coverage exhibit significantly lower diagnos-
tic accuracy. This limitation of RLKGF is also
discussed in Section 5.

Case Study. We present two examples from the
GMD dataset in Figure 10. In Example 1, the
model’s diagnosis aligns with the expert’s primary
diagnosis, while in Example 2, the model makes
an incorrect diagnosis. Analysis of the diagnos-
tic subgraph reveals that in Example 1, although
the patient’s symptoms are related to multiple dis-

eases, the diagnosis is relatively straightforward
and less challenging. In Example 2, as the number
of diseases linked to the symptoms increases, the
model struggles to pinpoint the correct diagnosis.
This indicates that while RLKGF can achieve ini-
tial alignment between the model and knowledge,
its performance still lags behind human experts
in complex reasoning scenarios (i.e., identifying
accurate results from multiple related diseases).

5 Conclusion

The semantic correlations and link criticality in-
herent in KGs closely mirror the semantic and
logical relevance humans use to evaluate LLM re-
sponses. Building on this, we propose RLKGF,
which directly employs KGs as a reward model
to provide feedback to LLMs without the need
for human annotation or separate reward model
training. RLKGF utilizes both local semantic in-
teractions and global path reachability to define
reinforcement learning rewards. In the context of
medical dialogue diagnosis, RLKGF outperforms
RLAIF, which relies on model-embedded knowl-
edge. We also compare various knowledge injec-
tion methods, such as SFT and KG-based prompts,
offering valuable insights into the effective use of
KGs. Although this work highlights the potential
of RLKGF, several limitations remain. First, its
generalization to other tasks and domains has not
been explored. Additionally, we employ PPO to
train LLMs, and there may be more suitable reward
structures and training methods to explore.

Limitations

Although this work demonstrates the potential of
RLKGF, several issues need to be addressed. The
quality of feedback derived from knowledge graphs
depends heavily on the completeness and accuracy
of the graph itself, particularly in open domains.
Our experiments are limited to disease diagnosis
tasks without exploring RLKGF’s generalization to
other tasks and domains. Additionally, due to data
limitations, we do not conduct experiments across
a broader medical framework.

The current task format is single-turn Q&A, and
future work should explore multi-turn dialogues to
better leverage the potential advantages of knowl-
edge graph structure and semantics in multi-step
reasoning. Moreover, RLKGF currently focuses
primarily on entity-level feedback for model re-
sponses, with limited focus on overall response
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fluency. Furthermore, experimental comparisons
show that although RLKGF improves consistency
between model responses and knowledge, there
is still significant room for enhancement. Design-
ing appropriate reward ranges and investigating the
impact of different methods on model parameter
adjustments are crucial for continuous knowledge
learning.
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A Appendix

A.1 Experiment

A.1.1 Experimental Setup
The meanings and specific settings of each hyper-
parameter involved in the model are detailed in
Table 7. Although the parameter µ can be treated
as a learnable variable, we empirically find that
assigning it a small fixed value leads to better per-
formance. This may be attributed to the relatively
sparse semantic information present in the current
dataset.

Hyper-parameter Meaning Setting

batch size Batch size of training 16
update frequency Policy update frequency 50

ϵ PPO-Clipped parameter 0.2
γ Discount factor of RL 0.99
lr Initial learning rate 1.00E-05

train epochs Number of training epochs 5
hidden size Hidden neuron size of GCN 128

F Semantic feature dimension 100
c RWR restart probability 0.7

Table 7: Hyper-parameter settings. The meanings and
specific settings of each hyper-parameter.

A.1.2 Datasets
We construct a new dataset, MED-D. MED-D is
collected from offline EMRs. The details on data
sources, anonymization, data extraction, and qual-
ity control are shown in Figure 6.

• Data Source and Anonymization. Our
EMRs originate from a tertiary hospital in
Guangdong Province, China. All data have
been anonymized by removing sensitive infor-
mation such as patient names, addresses, ID
numbers, and contact details. Only key fields,
including chief complaints, medical history,
past history, diagnoses, and auxiliary exami-
nations, are retained.

• Data Selection and Annotation. We filter
14,277 EMRs and choose 20 diseases that
could be diagnosed through Q&A without ad-
ditional tests. With the assistance of medi-
cal experts, we identify 351 associated symp-
toms. We then employ a medical named en-
tity recognition (NER) model (trained using
BERT-BiLSTM-CRF (Li et al., 2025)) to au-
tomatically extract symptom and disease enti-
ties, including entity names, types, locations,
and negation/affirmation labels.

• Terminology Alignment. To address synony-
mous symptom expressions (e.g., "lower back
pain" vs. "lumbar pain"), all extracted symp-
toms and diseases are manually aligned with
the corresponding ICD-9 terms.

• Quality Control and Expert Evaluation. To
ensure data quality, we hire four professional
doctors to assess the data for textual accu-
racy, diagnostic correctness, and symptom rel-
evance. Each entry is validated by at least two
experts and rated on a 0-5 scale (5 for the best).
Annotation consistency is measured using the
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"住院号"：{
"Hospital Number" : {
        "入院相关": {
        "Hospital admission related ": {
                "性别": "男",
                "Gender ":" Male ",
                "年龄": "69岁",
                "Age": "69 years old",
                "主诉": "胸闷1+月。",
                "Chief Complaint ":" Chest tightness 1+ month." ,
               "现病史”: “1+月前患者无明显诱因出现胸闷,活动时…… ”
                "History of Present Disease" : "1+ month ago, the patient 
had no obvious cause of chest tightness, and when he was active..."
                "既往史": "否认“肝炎、伤寒”等传染病史, ……",
                "Previous History ":" Denied "hepatitis, typhoid" and other 
infectious history..." ,
                "体格检查": "发育正常,营养中等,神清,查体合作, ……",
                "Physical Examination ":" normal development, medium 
nutrition, mental clarity, physical examination cooperation..." ,
                "辅助检查": "胸部CT提示:1、双肺继发型肺结核,……",
                "Auxiliary Examination ":" Chest CT suggests :1. Secondary 
pulmonary tuberculosis..." ,
                "家族史”: “家庭成员均体健,否认类似病史, ……",
                "Family History" : "All family members are in good health, 
denying similar medical history..." ,
                "入院诊断": "双肺继发型肺结核涂(待)初治",
                "Admission diagnosis ":" secondary pulmonary tuberculosis 
smear (to be) treated ",
                "最后诊断": "肺结核",
                "Final diagnosis ":" Tuberculosis ",
                ……
                }
        ……
}

Anonymized EMRs
{
            "主要诊断": "肺结核",
            "Main Diagnosis ":" Tuberculosis ",
            "主诉实体": [
                "E=胸闷\tT=complaintsymptom\tP=1:3\tS=present"
            ],
 " Chief Complaint Entity ": [
     "E= chest tightness\tT=complaintsymptom\tP=1:3\tS=present”
  ],
            "现病史实体": [
                “E=时感气促\tT=complaintsymptom\tP=20:22\tS=present",
                "E=发热\tT=complaintsymptom\tP=25:27\tS=present",
                 ……
            ],
"Present History Entity ": [
    "E= shortness of 
breath\tT=complaintsymptom\tP=20:22\tS=present",
    "E= fever\tT=complaintsymptom\tP=25:27\tS=present",
    ......
],
            "既往史实体": [
                "E=肝炎\tT=disease\tP=28:30\tS=absent",
                "E=伤寒\tT=disease\tP=31:33\tS=absent",
……
            ]
"Past History Entity": [
    "E= hepatitis\tT=disease\tP=28:30\tS=absent",
    "E= typhoid\tT=disease\tP=31:33\tS=absent",
    ......
]
}

Entity Extraction
{
            "主要诊断": "肺结核",
            "Main Diagnosis ":" Tuberculosis ",
            "主诉实体": [
                "E=胸闷\tT=complaintsymptom\tP=1:3\tS=present"
            ],
 " Chief Complaint Entity ": [
     "E= chest tightness\tT=complaintsymptom\tP=1:3\tS=present”
  ],
            "现病史实体": [
                “E=时感气促\tT=complaintsymptom\tP=20:22\tS=present",
                "E=发热\tT=complaintsymptom\tP=25:27\tS=present",
                 ……
            ],
"Present History Entity ": [
    "E= shortness of 
breath\tT=complaintsymptom\tP=20:22\tS=present",
    "E= fever\tT=complaintsymptom\tP=25:27\tS=present",
    ......
],
            "既往史实体": [
                "E=肝炎\tT=disease\tP=28:30\tS=absent",
                "E=伤寒\tT=disease\tP=31:33\tS=absent",
……
            ]
"Past History Entity": [
    "E= hepatitis\tT=disease\tP=28:30\tS=absent",
    "E= typhoid\tT=disease\tP=31:33\tS=absent",
    ......
]
}

Structured Data

Named Entity 
Recognition Terminology 

Alignment 

and
Quality Control 

Figure 6: The Dataset Construction Process.

Intraclass Correlation Coefficient (ICC), and
only data with ICC > 0.9 are retained.

A.1.3 Prompt
For datasets like MZ/DXY/GMD, only patient
symptom entities and doctor diagnosis labels are
available. We construct the inputs by concatenating
symptom information using a templated approach.
Specifically, the data includes two types of symp-
toms: "True" symptoms, which the patient has, and
"False" symptoms, which the patient does not have.
We convert these symptoms into text format, as
illustrated in Figure 7 and Figure 8.

The Prompts Applied for Model Generation.
The prompt used for LLM generation is shown
in Figure 7.

Model Generation
#01 你是一个专科医生。
#01 You are a specialist physician.
#02 你的任务是模拟现实的专科医生进行疾病诊断。任务是根据患者症状信息进行诊断，诊断结果在给定的疾病
列表中选择一个进行输出。
#02 Your task is to simulate a real-world specialist and perform disease diagnosis based on the patient’s symptom 
descriptions. The diagnosis must be selected from a predefined list of diseases.
#03 注意，只返回一个疾病作为预测结果，如果无法给出，输出UNKNOW。
#03 Note: Only return one disease as the predicted result. If no suitable diagnosis can be made, return UNKNOWN.
#04 以下是你所在门诊涉及的疾病：
#04 The list of diseases covered in your clinic is as follows:

{{此处替换成疾病}}
{{Replace with the list of diseases}}

#05 对话示例如下，请严格按照示例给出的输出格式进行输出，无需给出任何解释，如果列表中的疾病都不满足，
直接输出UNKNOW：
#05 Below are example dialogues. Please strictly follow the output format shown, and do not provide any additional 
explanations. If none of the diseases in the list match, simply output UNKNOWN:

示例1：输入:患者恶心呕吐、解稀便、发热、腹泻，是怎么了？, 输出:应该是得了肠炎。
Example 1: Input: The patient has nausea, vomiting, loose stools, fever, and diarrhea. What could it be? Output: It is 
likely gastroenteritis.
示例2：输入:患者老是心悸、头昏、胸闷、胸骨后疼痛，无背痛，怎么回事？, 输出:可能是冠心病。
Example 2: Input: The patient experiences frequent palpitations, dizziness, chest tightness, and pain behind the sternum, 
but no back pain. What could it be? Output: It may be coronary heart disease.

输入: {{患者的症状信息}} , 输出:
Input: {{Enter the patient’s  sysptom information}} Output: 

Figure 7: The Prompts Applied for Model Generation.

KG-based Prompt. The knowledge graph as a
prompt input to LLMs is shown in Figure 8.

KG-based Model Generation

#01 你是一个基于知识图谱进行诊断的专科医生。
#01 You are a specialist physician who performs diagnosis based on a knowledge graph.

#02 你的任务是模拟现实的专科医生进行疾病诊断。任务是根据患者症状信息、结合给出的知识图谱中包含的疾

病和症状的关系进行诊断，诊断结果在给定的疾病列表中选择一个进行输出。
#02 Your task is to simulate a real-world specialist and make a diagnosis based on the patient’s symptoms, using the 
relationships between diseases and symptoms provided in the knowledge graph. The diagnosis must be selected from a 
predefined list of diseases.

#03 注意，只返回一个疾病作为预测结果，如果无法给出，输出UNKNOW。
#03 Note: Only return one disease as the predicted result. If no suitable diagnosis can be made, return UNKNOWN.
#04 以下是背景知识图谱信息：
#04 The background knowledge graph information is as follows:

{{此处替换成KG三元组/三元组的文本描述}}
{{Replace with KG triples/the text description}}

#05 以下是你所在门诊涉及的疾病：
#05 The diseases covered in your clinic are as follows:

{{此处替换成疾病}}
{{Replace with the list of diseases}}

#06 对话示例如下，请严格按照示例给出的输出格式进行输出，无需给出任何解释，如果列表中的疾病都不满足，

直接输出UNKNOW：
#06 Below are example dialogues. Please strictly follow the output format shown, and do not provide any additional 
explanations. If none of the diseases in the list match, simply output UNKNOWN:

示例1：输入:患者恶心呕吐、解稀便、发热、腹泻，是怎么了？, 输出:应该是得了肠炎。
Example 1: Input: The patient has nausea, vomiting, loose stools, fever, and diarrhea. What could it be? Output: It is 
likely gastroenteritis.

示例2：输入:患者老是心悸、头昏、胸闷、胸骨后疼痛，无背痛，怎么回事？, 输出:可能是冠心病。
Example 2: Input: The patient experiences frequent palpitations, dizziness, chest tightness, and pain behind the sternum, 
but no back pain. What could it be? Output: It may be coronary heart disease.

输入: {{患者的症状信息}} , 输出:
Input: {{Enter the patient’s  sysptom information}} Output: 

Figure 8: KG-based Prompt for Model Generation.

A.1.4 Experiment Analysis
RLAIF vs. RLKGF. Model Parameters and
Version Iterations. Comparing LLMs within the
same series but with different parameter sizes (e.g.,
Qwen1.5-3b vs. Qwen1.5-1.5b), larger models
consistently perform better and show more sub-
stantial improvements after training. This suggests
that larger parameter sizes help models learn more
knowledge. Additionally, newer versions within
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Backbone Method GMD DXY MZ

Qwen2.5-3B-Instruct
RLKGF 0.7113 0.7314 0.6268

w/o RWR 0.7071 0.6926 0.5728
w/o GCN 0.7071 0.6796 0.5775

Qwen2.5-1.5B-Instruct
RLKGF 0.6109 0.5890 0.5070

w/o RWR 0.5788 0.5696 0.5516
w/o GCN 0.5872 0.5825 0.4953

Qwen2.5-0.5B-Instruct
RLKGF 0.3278 0.2654 0.3239

w/o RWR 0.3180 0.2388 0.2653
w/o GCN 0.3180 0.2388 0.2512

Qwen1.5-4B-Chat
RLKGF 0.5914 0.6893 0.5986

w/o RWR 0.5886 0.6472 0.5798
w/o GCN 0.5844 0.6667 0.5822

Qwen1.5-1.8B-Chat
RLKGF 0.4784 0.3366 0.3592

w/o RWR 0.4603 0.3657 0.3286
w/o GCN 0.4756 0.3495 0.3592

InternLM2.5-1.8B-Chat
RLKGF 0.5356 0.4757 0.5704

w/o RWR 0.4812 0.4660 0.5775
w/o GCN 0.4644 0.4757 0.5704

InternLM2-1.8B-Chat
RLKGF 0.4686 0.4272 0.5282

w/o RWR 0.4686 0.4175 0.4789
w/o GCN 0.4644 0.4175 0.4930

Table 8: "w/o RWR" refers to the ablation of the link
criticality score obtained using structural information.
"w/o GCN" refers to the ablation of the semantic rele-
vance score obtained through semantic features.

the same series outperform older ones, likely due
to the inclusion of more knowledge and optimized
training methods.

The model struggles to solve more complex
problems. Across multiple datasets, we observe
that as dataset size increases, model performance
tends to decline. This not only indicates that LLMs
struggle to achieve high accuracy across broader
scenarios but also poses a challenge to KG-based
scoring. As the number of entities grows, questions
become longer, complicating the model’s ability to
learn from extended texts. Additionally, the gap
in scores between different entities from the KG
may shrink, which could lead to a more uniform
distribution, as shown in Figure 9. This is similar to
human preferences, where selecting the best option
from fewer answers is relatively easier.

… … … …
MZ DXY GMD MED-D

Decrease in the Score Gap

Figure 9: As the number of selectable responses in-
creases, the score gap narrows.

Component Ablation The ablation results can
be found in Table 8.

Analysis of Knowledge Injection Methods. Ta-
ble 9 shows the performance of different knowl-
edge injection methods.

Backbone Method GMD DXY MZ MED-D

GPT-4o-mini
Base 0.6460 0.4262 0.5289 0.5345

KG Prompt (Triple) 0.7569 0.7563 0.6275 0.6638
KG Prompt (Text) 0.6731 0.5772 0.5669 -

Qwen2.5-3B
-Instruct

Base 0.6360 0.4531 0.3789 0.3553
FT 0.7552 0.4951 0.4253 0.4823

LoRA 0.7334 0.5038 0.4591 0.4843
KG Prompt (Triple) 0.7054 0.6495 0.6648 0.4671
KG Prompt (Text) 0.6452 0.5126 0.5768 0.4655

RLKGF 0.7113 0.7314 0.6268 0.3800
RLKGF + KG Prompt (Triple) 0.7490 - - -

Qwen2.5-1.5B
-Instruct

Base 0.4840 0.2359 0.1845 0.1982
FT 0.7066 0.4380 0.4035 0.3863

LoRA 0.7041 0.3543 0.3929 0.3543
KG Prompt (Triple) 0.6397 0.4680 0.4352 0.3825
KG Prompt (Text) 0.6188 0.5757 0.4803 0.3575

RLKGF 0.6109 0.5890 0.5070 0.3025
RLKGF + KG Prompt (Triple) 0.7113 - - -

Qwen2.5-0.5B
-Instruct

Base 0.2469 0.0981 0.0042 0.1273
FT 0.4920 0.3388 0.0760 0.2510

LoRA 0.4209 0.1252 0.0240 0.1860
KG Prompt (Triple) 0.4490 0.1515 0.0556 0.1525
KG Prompt (Text) 0.2870 0.1388 0.0373 0.1225

RLKGF 0.3278 0.2654 0.3239 0.1475
RLKGF + KG Prompt (Triple) 0.4519 - - -

Qwen1.5-4B
-Chat

Base 0.4038 0.4000 0.4176 0.1893
FT 0.6866 0.6067 0.5260 0.3956

LoRA 0.6485 0.6048 0.5556 0.3080
KG Prompt (Triple) 0.5540 0.4350 0.4754 0.1722
KG Prompt (Text) 0.4820 0.5184 0.3507 0.2022

RLKGF 0.5914 0.6893 0.5986 0.2525
RLKGF + KG Prompt (Triple) 0.6987 - - -

Qwen1.5-1.8B
-Chat

Base 0.3335 0.2291 0.0423 0.1342
FT 0.5656 0.3320 0.2408 0.3233

LoRA 0.5364 0.2864 0.1795 0.2600
KG Prompt (Triple) 0.2970 0.2786 0.0894 0.0392
KG Prompt (Text) 0.3326 0.2641 0.1188 0.1105

RLKGF 0.4784 0.3366 0.3592 0.2050
RLKGF + KG Prompt (Triple) 0.5690 - - -

InternLM2.5
-1.8B-Chat

Base 0.2092 0.3981 0.4507 0.1850
FT 0.7573 0.7184 0.5985 0.4683

LoRA 0.5828 0.5563 0.5859 0.3916
KG Prompt (Triple) 0.2594 0.4757 0.4648 -
KG Prompt (Text) 0.3180 0.3204 0.3380 0.1800

RLKGF 0.5356 0.4757 0.5704 0.2025
RLKGF + KG Prompt (Triple) 0.6192 - - -

InternLM2
-1.8B-Chat

Base 0.3305 0.2718 0.2042 0.1667
FT 0.7280 0.7766 0.6760 0.4836

LoRA 0.7012 0.7116 0.6394 0.4080
KG Prompt (Triple) 0.2971 0.3883 0.0634 -
KG Prompt (Text) 0.3556 0.3204 0.0775 0.0875

RLKGF 0.4686 0.4272 0.5282 0.2300
RLKGF + KG Prompt (Triple) 0.4979 - - -

Table 9: Comparison of Different Knowledge Injection
Methods.

Case Study. We compare LLMs’ responses with
expert diagnoses, presenting two examples in Fig-
ure 10.
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Case Study 1
患者目前头晕，耳痛伴有听力下降，大概是什么疾病导致的？
The patient is currently experiencing dizziness and ear pain accompanied by hearing loss. What is the most likely disease 
causing these symptoms?

医学知识图谱子图：

Medical Knowledge Graph Subgraph: ('鼻炎', '导致', '鼻塞'), ('鼻炎', '导致', '咽部不适')…… ('鼻炎', '导致', '眼痒')， ('
鼻炎', '导致', '头晕'),('鼻炎', '导致', '耳痛'), ('脑外伤', '导致', '头痛'), ('脑外伤', '导致', '头晕'), ('脑外伤', '导致', '呕吐'), ('
脑外伤', '导致', '意识障碍'), ('脑外伤', '导致', '颈前疼痛'), ('脑外伤', '导致', '耳鸣'), ('脑外伤', '导致', '发热')…… ('外耳

炎', '导致', '耳鸣'), ('外耳炎', '导致', '恶心'), ('外耳炎', '导致', '呕吐'),  ('外耳炎', '导致', '耳痒'), ('外耳炎', '导致', '耳痛'), 
('外耳炎', '导致', '听力下降'), ('外耳炎', '导致', '鼻塞'), ('外耳炎', '导致', '发热'), ('外耳炎', '导致', '咽部不适')
(‘Rhinitis’, ‘causes’, ‘Nasal Congestion’), (‘Rhinitis’, ‘causes’, ‘Throat Discomfort’),......, (‘Rhinitis’, ‘causes’, ‘Itchy 
Eyes’), (‘Rhinitis’, ‘causes’, ‘Dizziness’), (‘Rhinitis’, ‘causes’, ‘Ear Pain’), (‘Brain Trauma’, ‘causes’, ‘Headache’), 
(‘Brain Trauma’, ‘causes’, ‘Dizziness’), (‘Brain Trauma’, ‘causes’, ‘Vomiting’), (‘Brain Trauma’, ‘causes’, 
‘Consciousness Disorder’), (‘Brain Trauma’, ‘causes’, ‘Anterior Neck Pain’), (‘Brain Trauma’, ‘causes’, ‘Tinnitus’), 
(‘Brain Trauma’, ‘causes’, ‘Fever’), ......, (‘Otitis Externa’, ‘causes’, ‘Tinnitus’), (‘Otitis Externa’, ‘causes’, ‘Nausea’), 
(‘Otitis Externa’, ‘causes’, ‘Vomiting’), (‘Otitis Externa’, ‘causes’, ‘Itchy Ears’), (‘Otitis Externa’, ‘causes’, ‘Ear Pain’), 
(‘Otitis Externa’, ‘causes’, ‘Hearing Loss’), (‘Otitis Externa’, ‘causes’, ‘Nasal Congestion’), (‘Otitis Externa’, ‘causes’, 
‘Fever’), (‘Otitis Externa’, ‘causes’, ‘Throat Discomfort’)

RLKGF训练后模型回复：由症状判断大概率是得了外耳炎。
RLKGF-Based Model Prediction: Based on the symptoms, the most likely disease is Otitis Externa.

专家诊断标签：外耳炎。
Expert Diagnosis Label: Otitis Externa.

Case Study 2
患者目前咳嗽，鼻塞，咽部不适且流涕、发热，应该得了什么病？
The patient is currently experiencing cough, nasal congestion, throat discomfort, runny nose, and fever. What is the most 
likely disease?

医学知识图谱子图：
Medical Knowledge Graph Subgraph:

('肠炎', '导致', '发热'), ('肠炎', '导致', '呕吐'), ('肠炎', '导致', '腹痛'), ('肠炎', '导致', '口渴'), ('肠炎', '导致', '咽部不适'), ('
肠炎', '导致', '腹泻')……('哮喘', '导致', '咽部不适'), ('哮喘', '导致', '气喘'), ('哮喘', '导致', '咳嗽'), ('哮喘', '导致', '鼻塞

'),('哮喘', '导致', '发热')…… ('冠心病', '导致', '胸闷'), ('冠心病', '导致', '胸骨后疼痛'), ('冠心病', '导致', '心悸'), ('冠心病

', '导致', '乏力'), ('冠心病', '导 致', '发热'), ('冠心病', '导致', '咽部不适')……('肺炎', '导致', '发热'), ('肺炎', '导致', '咳嗽'), 
('肺炎', '导致', '鼻塞'), ('肺炎', '导致', '流涕'), ('肺炎', '导致', '气喘'), ('肺炎', '导致', '咳痰'), ('肺炎', '导致', '咽部不适'), ('
肺炎', '导致', '胸闷气促'),…… ('鼻炎', '导致', '鼻塞'), ('鼻炎', '导致', '咽部不适'), ('鼻炎', '导致', '咳嗽'), ('鼻炎', '导致', '
流涕'), ('鼻炎', '导致', '头痛'), ('鼻炎', '导致', '眼痒'), ('鼻炎', '导致', '呼吸困难'), ('鼻炎', '导致', '鼻出血')……('甲状腺炎

', '导致', '颈前疼痛'), ('甲状腺炎', '导致', '乏力'), ('甲状腺炎', '导致', '咽部不适'), ('甲状腺炎', '导致', '甲状腺轻度肿大

'),('甲状腺炎', '导致', '发热')……('皮炎', '导致', '皮疹'), ('皮炎', '导致', '瘙痒'), ('皮炎', '导致', '咽部不适'), ('皮炎', '导致', 
'发热')……('外耳炎', '导致', '耳鸣'), ('外耳炎', '导致', '耳痒'), ('外耳炎', '导致', '耳痛'), ('外耳炎', '导致', '听力下降'), ('
外耳炎', '导致', '鼻塞'), ('外耳炎', '导致', '发热'), ('外耳炎', '导致', '咽部不适'), ('外耳炎', '导致', '咳嗽')……
(‘Enteritis’, ‘causes’, ‘Fever’), (‘Enteritis’, ‘causes’, ‘Vomiting’), (‘Enteritis’, ‘causes’, ‘Abdominal Pain’), (‘Enteritis’, 
‘causes’, ‘Thirst’), (‘Enteritis’, ‘causes’, ‘Throat Discomfort’), (‘Enteritis’, ‘causes’, ‘Diarrhea’), ......, (‘Asthma’, ‘causes’, 
‘Throat Discomfort’), (‘Asthma’, ‘causes’, ‘Wheezing’), (‘Asthma’, ‘causes’, ‘Cough’), (‘Asthma’, ‘causes’, ‘Nasal 
Congestion’), (‘Asthma’, ‘causes’, ‘Fever’), ......, (‘Coronary Heart Disease’, ‘causes’, ‘Chest Tightness’), (‘Coronary 
Heart Disease’, ‘causes’, ‘Retrosternal Pain’), (‘Coronary Heart Disease’, ‘causes’, ‘Palpitations’), (‘Coronary Heart 
Disease’, ‘causes’, ‘Fatigue’), (‘Coronary Heart Disease’, ‘causes’, ‘Fever’), (‘Coronary Heart Disease’, ‘causes’, ‘Throat 
Discomfort’), ......, (‘Pneumonia’, ‘causes’, ‘Fever’), (‘Pneumonia’, ‘causes’, ‘Cough’), (‘Pneumonia’, ‘causes’, ‘Nasal 
Congestion’), (‘Pneumonia’, ‘causes’, ‘Runny Nose’), (‘Pneumonia’, ‘causes’, ‘Wheezing’), (‘Pneumonia’, ‘causes’, 
‘Sputum Production’), (‘Pneumonia’, ‘causes’, ‘Throat Discomfort’), (‘Pneumonia’, ‘causes’, ‘Shortness of Breath’), ......, 
(‘Rhinitis’, ‘causes’, ‘Nasal Congestion’), (‘Rhinitis’, ‘causes’, ‘Throat Discomfort’), (‘Rhinitis’, ‘causes’, ‘Cough’), 
(‘Rhinitis’, ‘causes’, ‘Runny Nose’), (‘Rhinitis’, ‘causes’, ‘Headache’), (‘Rhinitis’, ‘causes’, ‘Itchy Eyes’), (‘Rhinitis’, 
‘causes’, ‘Dyspnea’), (‘Rhinitis’, ‘causes’, ‘Nasal Bleeding’), ......, (‘Thyroiditis’, ‘causes’, ‘Anterior Neck Pain’), 
(‘Thyroiditis’, ‘causes’, ‘Fatigue’), (‘Thyroiditis’, ‘causes’, ‘Throat Discomfort’), (‘Thyroiditis’, ‘causes’, ‘Mild Thyroid 
Enlargement’), (‘Thyroiditis’, ‘causes’, ‘Fever’), ......, (‘Dermatitis’, ‘causes’, ‘Rash’), (‘Dermatitis’, ‘causes’, ‘Itching’), 
(‘Dermatitis’, ‘causes’, ‘Throat Discomfort’), (‘Dermatitis’, ‘causes’, ‘Fever’), ......, (‘Otitis Externa’, ‘causes’, ‘Tinnitus’), 
(‘Otitis Externa’, ‘causes’, ‘Itchy Ears’), (‘Otitis Externa’, ‘causes’, ‘Ear Pain’), (‘Otitis Externa’, ‘causes’, ‘Hearing 
Loss’), (‘Otitis Externa’, ‘causes’, ‘Nasal Congestion’), (‘Otitis Externa’, ‘causes’, ‘Fever’), (‘Otitis Externa’, ‘causes’, 
‘Throat Discomfort’), (‘Otitis Externa’, ‘causes’, ‘Cough’)

RLKGF训练后模型回复：由症状判断可能是鼻炎引起的。
RLKGF-Based Model Prediction: Based on the symptoms, the likely cause is Rhinitis.

专家诊断标签：肺炎。
Expert Diagnosis Label: Pneumonia.

Figure 10: Examples of LLM and expert diagnostic results.
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