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Abstract

Existing multimodal sentiment analysis (MSA)
methods have achieved significant success,
leveraging cross-modal large-scale models
(LLMs) and extensive pre-training data. How-
ever, these methods struggle to handle MSA
tasks in low-resource languages. While mul-
tilingual LLMs enable cross-lingual transfer,
they are limited to textual data and cannot ad-
dress multimodal scenarios. To achieve MSA
in low-resource languages, we propose a novel
transfer learning framework named Language
Family Disentanglement and Rethinking Trans-
fer (LFD-RT). During pre-training, we estab-
lish cross-lingual and cross-modal alignments,
followed by a language family disentangle-
ment module that enhances the sharing of lan-
guage universals within families while reduc-
ing noise from cross-family alignments. We
propose a rethinking strategy for unsupervised
fine-tuning that adapts the pre-trained model
to MSA tasks in low-resource languages. Ex-
perimental results demonstrate the superior-
ity of our method and its strong language-
transfer capability on target low-resource lan-
guages. Code and models are available at
https://github.com/ShuoyuGuan/LFD-RT.

1 Introduction

Sentiment analysis aims to detect the sentiment
orientations of opinion data. It can be applied to
various domains, including market analysis, so-
cial media monitoring, and finance and investment.
Current advanced social platforms offer diverse
multimodal opinion data, thereby extending sen-
timent analysis beyond its traditional reliance on
textual data to encompass multimodal sentiment
analysis (MSA). Early research in multimodal sen-
timent analysis primarily centers on the fusion
of multimodal representations, with the progres-
sion ranging from basic feature-level fusion (Po-
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ria et al., 2018; Zadeh et al., 2018) to more so-
phisticated decision-level (Chen and Yang, 2020)
and hybrid approaches (Han et al., 2021). Later,
the research roadmap was dispersed into various
fine-grained tasks such as multimodal pre-training
models (Lu et al., 2019), modality-invariant rep-
resentation learning (Hazarika et al., 2020), senti-
ment analysis under missing uncertain modalities
(Zeng et al., 2022) and few-shot learning (Yang
et al., 2023). However, none of these works can be
utilized for multimodal sentiment analysis in low-
resource languages. Multilingual models can han-
dle this problem. Early studies focused on leverag-
ing multilingual LLMs (e.g., mBERT (Pires, 2019),
XLM (Conneau and Lample, 2019)) and adversar-
ial training (Dong et al., 2020) for cross-lingual
transfer. Subsequently, multi-view-based methods
(Fei and Li, 2020) and contrastive learning(Lin
et al., 2023) have emerged for MSA. However,
these multilingual methods were designed solely
for textual data. Thakkar et al. (Thakkar et al.,
2024) first attempted to conduct the multimodal
and multilingual sentiment analysis task. Nonethe-
less, the proposed model is overly simplistic and
fails to account for the cross-linguistic alignment
and cross-lingual noise resistance.

In summary, the key problem we aim to address
in this paper is that current multimodal methods
struggle to adapt to data in low-resource languages
due to their dependence on large-scale training data
that is typically available from high-resource lan-
guages. Multilingual models can address the chal-
lenge of data scarcity; however, they are primarily
applied to single-modal textual data.

Inspired by the disentanglement technique in
(Ge et al., 2024) and the language family concept
in linguistics, we propose a transfer learning frame-
work called Language Family Disentanglement
and Rethinking Transfer. During the pre-training
phase, we conduct cross-lingual and cross-modal
alignments. For aligned cross-lingual features, we

6513

mailto:email@domain
mailto:email@domain
https://github.com/ShuoyuGuan/LFD-RT


develop a module for language family disentan-
glement to share language universals within the
same family, while reducing the noise generated
by cross-family alignments. Then, we use a fu-
sion operation to perform a linguistic-to-modal
transfer. We further establish a masked language
task to recalibrate the fused representation and con-
duct the sentiment semantic learning task using
double classifiers. During the fine-tuning stage,
we propose a novel rethinking strategy to achieve
unsupervised fine-tuning of the pre-trained classi-
fiers. The two classifiers conduct a double check
on the predictions from the input data. If they
reach an agreement, the predicted label serves as
a pseudo-label for prediction and backpropagation.
If there is inconsistency, the data are sent back as
input to conduct a masked prediction task and up-
date the model parameters. In this manner, we
finally achieve unsupervised fine-tuning, enabling
the pre-trained model to adapt to downstream MSA
in low-resource languages. The experimental re-
sults demonstrate the efficacy of our methodology
and its robust cross-linguistic transferability to low-
resource target languages.

2 Related Works

As most of the existing work has been reviewed in
the Introduction, we briefly supplement some of
the latest representative research.
Multimodal Sentiment Analysis. Li et al. (Li
et al., 2024) introduced sample-level contrast and
category-guided prototype extraction to handle un-
certain missing modalities. Zhu et al. (Zhu et al.,
2024) fused video information into text semantics
via a text-based cross-modal approach, while Zhao
et al. (Zhao et al., 2025) utilized pseudo-data gen-
eration for MSA.
Multilingual Sentiment Analysis. Kanayama et
al. (Kanayama et al., 2024) enhanced generative
methods by incorporating sentiment extractors and
external polarity data. Miah et al. (Miah et al.,
2024) performed sentiment analysis by translating
foreign languages into English.

3 Methodology

3.1 Problem Definition

Given a text-image tuple (T, I), our goal is to de-
velop a model that can accurately predict the sen-
timent label y. This model supports diverse senti-
ment classification tasks, including but not limited

to the Ekman Emotion Classification Task (Anger,
Disgust, Fear, Joy, Sadness, Surprise, Neutral).

3.2 Overall Framework
As shown in Figure 1, we employ a pre-training
and unsupervised fine-tuning paradigm as our trans-
fer learning framework. In the pre-training phase,
we first perform cross-linguistic and cross-modal
alignments. Then, we use language family disen-
tanglement to mitigate noises induced by linguistic
characteristics in cross-lingual alignment, such as
lexical, syntactic, and morphological differences.
Finally, we train multiple sentiment classifiers on
aligned disentangled representations to capture sen-
timent semantics. After pre-training, the entire
pre-trained model is transferred. During the unsu-
pervised fine-tuning stage, we design a rethinking
fine-tuning strategy to adapt the multiple sentiment
classifiers without supervised signals while keep-
ing the other components of the pre-trained model
frozen.

3.3 Pre-training
We utilize two data sets for pre-training. One
set, denoted by Dcm = {Ti, Ii,yi}1≤i≤N , is em-
ployed for cross-modal process. Here, Ti repre-
sents an opinion text in the anchor language (a
high-resource language, such as English), Ii de-
notes its corresponding image, and yi is the ground
truth label for (Ti, Ii). Another set, denoted as
Dcl = {T̂j , T

ts
j }1≤j≤M , is used for the cross-

lingual computations. In this set, T̂j is the anchor
text, and T ts

j represents its translation in another
low-resource language. Note that Ti and T̂j are
different; the former are opinion texts while the
latter is not.
Cross-lingual Alignment. This component is de-
signed for cross-lingual transfer. We employ a
pre-trained Multilingual BERT (mBERT) as the
encoder:

xan
j = mBERT (T̂j)

xts
j = mBERT (T ts

j )
(1)

A contrastive learning strategy is then applied to the
feature vectors, enabling the model to explore the
similarities and differences between texts in diverse
languages, thereby achieving cross-lingual align-
ment. Considering that cross-lingual knowledge is
transferred to cross-modal representations in the
following module, we employ unified contrastive

https://huggingface.co/google-bert/bert-base-
multilingual-cased
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Figure 1: The overall framework.

loss (Li et al., 2023b) for cross-lingual alignment
because it can simultaneously align cross-lingual
texts and image-text pairs. The loss function is:

LCLA = Lucl(xanj , xtsj ) =

−E∼Dcl

[
log

exp(s(xanj , xtsj ))/τ)
M∑
j=1

exp(s(xanj , xts¬j)
)/τ)

+ log
exp(s(xanj , xtsj ))/τ)

M∑
j=1

exp(s(xanj , xts¬j)/τ)

]
(2)

where τ is a temperature hyperparameter.
Cross-modal Alignment. This component per-
forms a cross-modal alignment using a method
similar to the cross-lingual alignment:

xan
i = mBERT (Ti)

xim
i = CLIP (Ii)

(3)

LCMA = Lucl(xani , ximi ) (4)

The only difference is that we use a CLIP (Radford
et al., 2021) as the encoder for the input images.
Language Family Disentanglement. After cross-
lingual alignment, the aligned features are fed
into a language family disentanglement module.
We use this module to mitigate the negative im-
pacts of noises induced by linguistic characteris-
tics while maximizing the retention of beneficial

transfer knowledge. Cross-lingual transfer learn-
ing involves leveraging the structural, syntactic, se-
mantic, and cultural similarities and differences be-
tween languages. Closely related languages, such
as English and Frisian, exhibit significant over-
laps in grammatical structures, vocabulary seman-
tics, and linguistic features. For instance, both
languages share similar noun inflections for gen-
der, number, and case, as well as comparable verb
tense and voice systems. These shared linguistic
properties can serve as inductive biases, facilitat-
ing more effective cross-lingual knowledge transfer
by reducing the domain gap between source and
target languages. However, for distantly related
languages, such as English and Chinese, these simi-
larities diminish, and differences become more pro-
nounced, introducing noise that can hinder transfer
performance. The challenge, therefore, lies in de-
signing models that can effectively capture and pre-
serve shared linguistic universals while minimizing
the interference caused by language-specific varia-
tions.

Coincidentally, language families serve as a ro-
bust indicator of linguistic similarities and differ-
ences. Languages within the same family share
common origins and exhibit similar syntactic, mor-
phological, and phonological patterns, and vice
versa. The concept of a language family offers
a valuable strategy, enabling the retention of rel-
evant features within the same family while fil-
tering out noise from different families. To this
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end, we design a language detangler as shown in
Figure 1. We first use 13 family disentanglers
fk:1≤k≤K : xts

j → fkj to generate the family-
related features . The disentangler function is:

fkj = Wkxts
j (5)

where Wk:1≤k≤K are parameter matrices for K
family disentanglers. Then, family-related features
Fj = [f1j f

2
j · · · fKj ] are fed into the cross-attention

mechanism to calculate the correlations with fea-
tures of the aligned anchor language features as
follows:

Qj = WqFj

Kj = WkX
an
j

Vj = WvX
an
j

Uj = softmax

(
QjK

T
j√

dk

)
Vj (6)

where Wq,Wk and Wv are parameter matrices.
U = [u1

j u
2
j · · · uK

j ] are anchor-correlation fea-
tures, and we input them into linear projection to
obtain the final predictions Pj = [p1

j p
2
j · · · pK

j ]
as following:

Pj = WlUj (7)

We implement a masked language task to ensure
that samples within the same language family (i.e.,
anchor family) are more closely grouped, coupled
with a KL divergence regularization task to pro-
mote a uniform distribution between samples from
different families. The loss function for the masked
language task is:

Lmask1 = LMASK(T tr
j ,pj) =

− 1

M

M∑

j=1

r|T tr
j |∑

p=1

w
T tr
j

p log
(
pk=anchor
jp

) (8)

where w
T tr
j

p represents the vocabulary probability
distribution for masked words in position p, and
pk=anchor
jp signifies that the predicted word proba-

bility in position p of the translated text belongs to
the same family as the anchor language. r repre-
sents the masking probability, and |T tr

j | denotes the
total number of words in the text T tr

j . We employ
the same masking strategy as BERT (Kenton and
Toutanova, 2019). The KL divergence regulariza-
tion loss is:

LKL =
1

M

M∑

j=1

P k ̸=anchor
j log

P k ̸=anchor
j

Puniform
(9)

K = 13 is the total number of language families covering
all the languages in our dataset.

where P k ̸=anchor
j denotes the probability distribu-

tion of translated texts originating from language
families distinct from that of the anchor language,
and Puni signifies a uniform distribution. We reg-
ulate the samples from other language families to
achieve a uniform distribution with a high degree of
chaos, indicating significant information disorder.
This is in line with the objective of alleviating the
noise effects of other language families. Combin-
ing the two tasks mentioned above, the language
family disentanglement loss function is:

LLFD = (α1Lmask1 + α2LKL) (10)

where α1 and α2 are hyperparameters.
Cross-modal Fusion. In the cross-modal interac-
tion pipeline, we employ a cross-attention mecha-
nism, enhanced through language family disentan-
glement, to process aligned multimodal representa-
tions. This approach promotes knowledge transfer
from linguistic to visual modalities, while enabling
cross-modal fusion. The computations are:

qi = Wqx
im
i

ki = Wkx
an
i

vi = Wvx
an
i

zi = softmax

(
qik

T
i√

dk

)
vi (11)

Note that the parameter matrices Wq, Wk and
Wv are shared by the cross-attention of the lan-
guage family disentanglement module. Next, we
fed fused representation into two multilayer per-
ceptions (MLP1 and MLP2) for predicting the
sentiment orientations:

o1∨2i = MLP1∨2(zi) (12)

LMLP1∨2 = LCE(yi,o
1∨2
i )

= − 1

N

N∑

i=1

yi log
(
o1∨2i

) (13)

Both perceptions have one hidden layer, utilize
ReLU as the activation function, and share the same
cross-entropy loss function. To mitigate the seman-
tic shift caused by the fusion operation, we also
incorporate a masked language loss to recalibrate
the semantics of the fused representation. We em-
ploy another projection layer along with the same
masked language strategy used in the language fam-
ily disentanglement module. The computational
equations are:

Pi = W1′Zi (14)
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Figure 2: An intuitive explanation of rethinking unsu-
pervised fine-tuning.

Lmask2 = LMASK(Ti,pi) (15)

Thus, the combined loss function for sentiment
analysis is:

LSA = (β1LMLP1 + β2LMLP2 + β3Lmask2)
(16)

where β1 and β2 are weight coefficients. By com-
bining the loss functions from the above modules,
we arrive at the final optimization loss for the pre-
training part:

LossPT = (LAlign + LFCD + LSA) (17)

Note that we only use the labeled multimodal data
in the high-resource language for pre-training.

3.4 Unsupervised Rethinking Fine-tuning

Table 1: MSA data statistics

Meld
Train Val Test
5548 2710 2511

CH SIMS
Train Val Test
1462 665 655

Dataset Languages

Meld

en eo es et eu
fi fr he hu id
io ka ar mg ml
oc sk sw ta te
tg tl tr

CH SIMS zh ja jv ko tt

Table 2: Languages in Meld and CH SIMS dataset.

Fine-tuning is a crucial step in adapting the pre-
trained model for low-resource languages. In real-

world scenarios, we commonly encounter the chal-
lenge of limited data resources in minority lan-
guages. To address this challenge, we design an
unsupervised learning method called rethinking
fine-tuning. This method draws inspiration from
the answer consistency check with multiperson
cross-validation, as illustrated in Figure 2. Specifi-
cally, during the fine-tuning phase, the pre-trained
models are used as initialization. We fine-tune
the two MLPs and fixed the other components of
the model. The dataset for fine-tuning is denoted
as Dlow = {T low

s , I lows }1≤s≤S , where T low
s is the

opinion text in the target low-resource language,
and its corresponding image is represented as I lows .
The forward computation process is identical to
that of the pre-training (note that input text is pro-
cessed by the disentangler of its corresponding lan-
guage family, i.e., Fx). For the two pre-trained
MLP classifiers, we develop an unsupervised re-
thinking strategy to tune their parameters: If both
classifiers yield the same label, we deem this label
a pseudo-label for backpropagation; if they pro-
duce different labels, it indicates a divergence in
their understanding of the sentiment semantics of
the input data. In this case, the input data pairs
are returned and used as model inputs for masked
language training. This approach is the same as the
training method that addresses the semantic shift
problem during the pretraining process. The loss
functions for rethinking fine-tuning are:

LossFT =





if ŷ1s = ŷ2s = ŷs :
LSC = λ1LMLP1 + λ2LMLP2 ,

if ŷ1s ̸= ŷ2s :
LMASK(T low

s ,ps),
(18)

where LMLP1∨2 = LCE(ŷs,o
1∨2
s ). ŷ1s and ŷ2s are

the predicted one-hot labels of the MLP1 and MLP2

respectively. ŷs is the pseudo-label. The objectives
of the masked language task in the pre-training
and fine-tuning stages differ; the former aims to
solve the semantic shift problem of fused features,
whereas the latter aims to rethink the sentiment
semantics of the input data. Therefore, we recon-
struct a new linear projection layer to generate ps

for the masked language task in the fine-tuning
stage. By employing a rethinking strategy, we con-
duct an unsupervised fine-tuning. We use double
MLP checkers because the experimental results
indicate that adding more checkers does not signif-
icantly enhance performance; rather, it increases
the model complexity and the risk of conflicting
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outcomes.

3.5 Inference

During the inference phase, the final predicted label
is determined through agreement between the two
classifiers. In cases of disagreement, the class with
the highest predicted probability is assigned as the
output.

4 Experiments

4.1 Datasets and Language Families

We employ two MSA datasets with different gran-
ularities for evaluation: 1) a fine-grained 7-level
Ekman MSA dataset called Meld. Collected from
the TV series "Friends", it contains 1,433 conversa-
tions, 13,708 utterances, and 304 speakers. Each
utterance is labeled as anger, disgust, sadness, joy,
surprise, fear, or neutral. 2) A coarse-grained 5-
level MSA dataset called CH SIMS: A Chinese
multimodal sentiment analysis dataset with 2,281
video clips. Each utterance is labeled as positive,
weakly positive, negative, weakly negative, or neu-
tral. The video-text pairs are used for training. We
adhere to the data splitting procedure outlined in
Table 1. To create the validation and test sets, we
translate English and Chinese texts into 22 and 4
other languages, respectively, using Google Trans-
late. The complete set of 28 language abbreviations
that follow the ISO 639 standard is presented in Ta-
ble 2. The bold abbreviations are English (en) and
Chinese (zh), which serve as the anchor languages.
Note that our primary emphasis is on multilingual
learning. Therefore, we exclude the audio data, as
it pertains to a single language, and instead focus
solely on texts and images.

For the cross-lingual task in the pretraining stage,
we select 124,037 text pairs from WikiMatrix .
The corpus is a large-scale multilingual parallel
dataset released by Facebook, comprising 135 mil-
lion parallel sentences. The collected pairs feature
28 languages, including Esperanto, Tamil, and oth-
ers, with English serving as the anchor language.
Similarly, we also collect 26,965 text pairs in Chi-
nese (anchor language) and other 4 languages from
WikiMatrix. The two gathered datasets are used
for pretraining in the Meld and CH SIMS tasks.
Table 3 illustrates the language family affiliations
of all languages used in the experiments.

https://github.com/facebookresearch/LASER/tree
/main/tasks/WikiMatrix

https://www.ethnologue.com/

Language Family
eo -
es IE
et U
eu -
fi U
fr IE
gl IE
he AA
hu U
id AN
io -
ja JR
jv AN
ka K

Language Family
ko KR
ar AA
mg AN
ml Drav.
oc IE
sk IE
sw NC
ta Drav.
te Drav.
tg IE
tl AN
tr Trk.
zh ST

Table 3: Language-family affiliation.

4.2 Implementation details

We optimize the hyperparameters on the valida-
tion set through a sequential tuning strategy, where
each hyperparameter is individually adjusted while
the others remain fixed. The final configuration is
as follows: the temperature hyperparameter in the
contrastive loss is set to τ = 0.07, and the masking
probability is r = 15%. The weighted hyperpa-
rameters of the loss functions are configured as:
α1 = 0.3, α2 = 0.1, β1 = β2 = 1, β3 = 0.3, and
λ1 = λ1 = 0.5. We use the Adam optimizer with
a learning rate of 5× 10−6.

All experiments were performed on an NVIDIA
RTX 3090 GPU, which required 20 hours of train-
ing time. Our hyperparameter selection was guided
by preliminary grid search and empirical validation:
temperature τ ∈ (0, 0.1) with 0.01 increments, and
task weights α1, α2 ∈ (0, 1) with 0.05 increments.
The parameter sensitivity analysis revealed an in-
verted U-shaped performance curve, where exces-
sive α1 (> 0.3) caused sentiment-task dominance
degradation, while α2 > 0.1 induced random mask-
ing behavior. These observations align with the
theoretical expectations. Optimal parameters were
determined as τ = 0.07, α1 = 0.3, α2 = 0.1, with
the masking ratio fixed at BERT’s standard 15%.

4.3 Baselines

Large language models (LLMs) have exhibited re-
markable proficiency in MSA tasks, prompting us
to adopt the top-performing LLMs as our base-
line methodologies. The baselines can be catego-
rized into three groups: 1) multilingual baselines,
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including mBERT (Pires, 2019), XLM-R (Con-
neau, 2019), and Llama 3.2 (Dubey et al., 2024);
2) multimodal baselines, comprising CLIP (Rad-
ford et al., 2021), BLIP-2 (Li et al., 2023a) and
GPT-4o (2024); and 3) hybrid baselines combining
multilingual and multimodal LLMs. L+C: We use
Llama 3.2 and CLIP as text and image encoders,
respectively. We then employ concatenation for
multimodal feature fusion. We fix CLIP and use
Lora to fine-tune Llama. M2SA (Thakkar et al.,
2024): This is the current state-of-the-art method
for multimodal and multilingual sentiment analysis.
It employs XLMR-SM and CLIP encoders along
with concatenation for feature fusion.

To ensure fairness, we use the same labeled MSA
training data for both the multimodal and hybrid
baselines. We remove images and rely solely on
the labeled texts to train the multilingual baselines.
We use accuracy and the weighted average F1 score
as evaluation metrics.

4.4 Result Analysis
Main comparisons. Table 4 shows the compari-
son results on Meld. For the overall classification
results, multilingual baselines perform worse than
the multimodal baselines. This indicates that ad-
ditional modal data, such as visual modality, can
enhance the performance of single-modal models
using textual data. L + C and M2SA perform sig-
nificantly worse than GPT-4o on the F1 measure,
demonstrating that merely combining multilingual
and multimodal LLMs does not yield performance
gains. Conversely, this may lead to negative effects
due to the noise introduced by cross-language fu-
sion and the semantic shift resulting from linguistic-
modality fusion. Our method, which benefits from
custom-designed modules for cross-lingual noise
and semantic shift, performs better than the base-
line methods. The slightly lower performance of
our method compared to GPT-4o in handling emo-
tions, such as Disgust and Fear, may be attributed
to the relatively small number of pre-training sam-
ples for these categories. This data imbalance
likely confers GPT-4o with a comparative advan-
tage in addressing such scenarios, as its extensive
pre-training on diverse datasets enhances its robust-
ness to minority categories.
Cross-lingual performances. Table 5 presents
the F1 scores across different languages. English,
Spanish, and French belong to the Indo-European
language family. The transfer performance from
English to French is superior to that from En-

glish to Spanish, which can be attributed to the
closer linguistic relationship between English and
French, characterized by greater similarities in lan-
guage structure and vocabulary. Notably, the model
demonstrates exceptional transfer performance for
several low-resource languages, including Occitan
and Tajik. When combined with its robust aver-
age performance across 23 languages, these results
strongly validate the efficacy of language family
disentanglement in enhancing cross-lingual trans-
fer capabilities. Furthermore, the model’s consis-
tent performance across various low-resource lan-
guages from diverse language families underscores
its resilience to cross-lingual noise and highlights
its strong generalization capabilities beyond lin-
guistic boundaries.
Generalization ability. Table 6 shows the model’s
overall and cross-language performance on the CH-
SIMS dataset. The overall trends align with Table
4, with our method outperforming baselines. The
balanced dataset enables the Llama and CLIP com-
bination to fully use their complementary strengths.
The model achieves higher F1 scores for picto-
graphic languages (Chinese, Korean, and Japanese),
while performance is slightly lower for alphabetic
languages like Javanese and Tatar. Nonetheless,
the results underscore the model’s robust capability
in cross-lingual sentiment analysis.

4.5 Ablation Study

To evaluate the contribution of each component
in LFD-RT, we conduct an ablation study, with
results shown in Table 7. Removing the image
modality (w/o CLIP) or removing the text modal-
ity (w/o mBERT) results in the most significant
performance degradation, highlighting the impor-
tance of multimodal information for performance
improvement. Eliminating the language family dis-
entangler (w/o LFD) or double cross-alignments
(w/o DSA) also leads to notable performance drops,
demonstrating their equal importance. Addition-
ally, removing the rethinking fine-tuning module
(w/o RFT) degrades the model performance, as this
module enables self-adaption to downstream MSA
tasks in low-resource languages.

5 Conclusion

In this paper, we propose a multilingual multi-
modal sentiment analysis framework leveraging
language family disentanglement and rethinking
transfer. During pre-training, we first perform
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Meld

Method Anger Disgust Fear Joy Neutral Sadness Surprise All
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

mBERT 15.7 19.1 5.8 8.9 10.9 14.1 28.0 26.3 75.6 65.1 12.0 11.6 21.5 22.4 46.5 32.9
XLM-R 16.3 19.7 5.4 10.1 6.7 9.4 21.8 15.3 80.7 65.5 5.2 8.3 25.0 24.0 47.7 36.3
Llama 3.2 18.1 24.5 20.2 15.5 11.6 8.7 48.2 43.4 73.1 69.4 10.3 13.1 33.6 34.7 50.3 46.9
CLIP 12.0 17.8 7.2 12.4 9.7 11.3 30.3 35.3 81.4 68.3 1.1 2.3 22.0 29.8 48.6 42.5
BLIP2 15.3 16.1 8.4 10.5 9.3 10.7 29.1 32.1 80.5 66.5 10.3 12.8 21.7 27.4 48.0 44.7
GPT-4o 21.2 28.1 11.7 16.5 13.0 15.5 25.7 32.5 81.8 66.7 14.2 19.4 24.1 28.5 50.8 48.6
L + C 20.6 25.2 17.3 20.8 11.5 13.1 51.0 40.0 81.1 70.1 7.4 10.6 34.6 35.2 51.6 44.1
M2SA 20.1 23.8 21.3 17.5 12.4 19.6 38.6 43.8 82.3 70.7 14.6 21.1 24.7 27.0 53.5 43.8
LFD-RT 21.7 27.7 22.0 24.1 12.1 17.2 49.1 45.3 83.7 71.1 15.2 22.4 35.1 37.8 54.7 49.1

Table 4: Comparison results on Meld.

Meld
Method English Spanish French Occitan Tamil Luxembourgish Tajik Avg.
mBERT 42.3 33.8 33.1 32.2 34.3 35.1 32.4 32.9
XLM-R 42.6 35.9 34.2 30.7 32.6 36.0 33.9 36.3
Llama 56.1 44.6 55.4 44.8 36.0 25.7 43.9 46.9
CLIP 51.8 41.5 47.7 40.9 39.7 39.4 43.6 42.5
BLIP2 52.2 40.1 43.5 40.6 36.1 37.1 42.8 44.7
GPT-4o 55.6 34.9 61.5 35.7 41.3 43.8 44.0 48.6
L + C 44.3 40.0 41.7 39.4 38.2 44.0 46.5 44.1
M2SA 43.7 44.9 41.2 40.0 40.4 41.9 41.3 43.8
LFD-RT 57.0 46.6 52.7 46.1 43.5 44.6 47.3 49.1

Table 5: Comparison results on different languages.

CH SIMS
Method Acc. F1
mBERT 34.3 32.1
XLM-R 34.8 30.9
Llama 3.2 35.1 32.2
CLIP 31.1 24.0
BLIP2 37.4 32.1
GPT-4o 21.5 23.8
L + C 38.8 34.1
M2SA 37.1 33.7
LFD-RT 40.1 34.3

CH SIMS
Method Chinese Japanese Korean Javanese Tatar Avg.
mBERT 36.9 40.0 28.3 25.2 25.5 32.1
XLM-R 38.1 38.6 29.7 23.5 24.7 30.9
Llama 37.8 39.0 30.6 28.9 24.8 32.2
CLIP 30.2 34.4 16.4 18.7 17.7 24.0
BLIP2 37.6 39.2 28.3 28.6 26.8 32.1
GPT-4o 32.0 24.3 26.7 18.3 17.7 23.8
L + C 40.3 39.7 35.2 27.4 28.1 34.1
M2SA 39.8 41.0 32.7 28.9 26.3 33.7
LFD-RT 41.0 40.3 33.3 29.7 27.0 34.3

Table 6: Comparison results on CH SIMS.

cross-lingual and cross-modal alignment, followed
by disentangling language families to facilitate the
sharing of language universals within the same
family while minimizing noise from cross-lingual
alignment across different families. To address low-
resource language challenges, we introduce a novel
double-check rethinking strategy for unsupervised

fine-tuning. Experimental results demonstrate the
superiority of our approach and highlight the effec-
tiveness of language family-based transfer learning.

Limitations

Although our approach demonstrates promising re-
sults, it is subject to two primary limitations. First,
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Method Acc F1
w/o CLIP 48.1 42.3
w/o mBERT 48.9 43.4
w/o LFD 51.4 47.1
w/o DSA 51.3 47.4
w/o RFT 53.8 47.6
LFD-RT 54.7 49.1

Table 7: Ablation results of DFD-RT on Meld.

constrained by the limited scale of pre-training data,
our model’s performance on minority-class emo-
tions has hindered its overall effectiveness. Sec-
ond, we relied solely on coarse-grained language
family information, overlooking the fine-grained
hierarchical structure of language families, groups,
branches, and individual languages. Consequently,
the model’s ability to differentiate between lan-
guages within the same family remains insufficient.
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