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Abstract

The integration of large language models
(LLMs) into electronic design automation
(EDA) has significantly advanced the field,
offering transformative benefits, particularly
in register transfer level (RTL) code genera-
tion and understanding. While previous stud-
ies have demonstrated the efficacy of fine-
tuning LLMs for these generation-based tasks,
embedding-based tasks, which are equally crit-
ical to EDA workflows, have been largely over-
looked. These tasks, including natural language
code search, RTL code functionality equiva-
lence checking, and performance prediction,
are essential for accelerating and optimizing
the hardware design process. To address this
gap, we present DeepRTL2, a family of ver-
satile LLMs that unifies both generation- and
embedding-based tasks related to RTL. By si-
multaneously tackling a broad range of tasks,
DeepRTL2 represents the first model to provide
a comprehensive solution to the diverse chal-
lenges in EDA. Through extensive experiments,
we show that DeepRTL2 achieves state-of-the-
art performance across all evaluated tasks.

1 Introduction

The rapid advancement of large language mod-
els (LLMs) has had a profound impact on var-
ious domains (Singhal et al., 2023; Bran and
Schwaller, 2024), including electronic design au-
tomation (EDA). Recently, LLMs have shown re-
markable potential in automating and enhancing
tasks related to the generation and understanding
of register transfer level (RTL) code (Liu et al.,
2024; Zehua et al., 2024; Zhao et al., 2024; Liu
et al., 2025). These models are capable of gener-
ating RTL code from high-level natural language
instructions or summarizing the functionality of
existing RTL code, thereby substantially improv-
ing the efficiency of hardware design workflows.

“These authors contributed equally.

While the application of LLMs to these generation-
based tasks has yielded impressive results, their
full potential at the RTL stage remains underex-
plored, particularly in embedding-based tasks that
are equally crucial to the design process.

Embedding-based tasks like natural language
code search, RTL code functionality equivalence
checking, and performance prediction are vital for
accelerating and optimizing the hardware design
process. Natural language code search allows de-
signers to quickly query large RTL codebases with
simple natural language descriptions, enabling effi-
cient identification and reuse of relevant modules,
thus reducing search time. Moreover, verification
and optimization are two key time-consuming bot-
tlenecks in hardware design. RTL code functional-
ity equivalence checking can significantly reduce
the time spent on verification by quickly assessing
whether two designs are functionally equivalent.
Performance prediction tasks, such as power, per-
formance, and area (PPA) estimation, enable early
evaluation of RTL design efficiency. Accurate per-
formance predictions can guide RTL code opti-
mization, minimizing the need for time-intensive
trial-and-error. Together, these tasks enhance code
reuse, verify functionality, and provide early per-
formance feedback, resulting in a more streamlined
and efficient design workflow. Previous methods
have attempted to apply machine learning solu-
tions for hardware design verification (Vasudevan
et al.,, 2021) and performance prediction (Fang
et al., 2023), but they are typically design-specific,
lack generalizable representations for RTL designs,
or do not operate directly at the RTL stage.

In this paper, we introduce DeepRTL2, a fam-
ily of versatile LLMs designed to address both
generation- and embedding-based tasks related to
RTL. By unifying these tasks in a single model,
DeepRTL2 offers a comprehensive solution to the
multifaceted challenges inherent in EDA. Unlike
previous work, which has primarily focused on
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Figure 1: The overview of DeepRTL2. It can handle both generation- and embedding-based tasks at the RTL stage.
For generation-based tasks, it performs RTL code generation and understanding. For embedding-based tasks, it uses
cosine similarity scores between the embeddings of RTL code and functional descriptions to assess their match,
enabling natural language code search. Additionally, cosine similarity between RTL code embeddings and rewritten
code embeddings is used for functionality equivalence checking. Furthermore, a prediction model, such as XGBoost,
can be applied to predict area and delay metrics based on code embeddings.

generation, DeepRTL2 is the first model to provide
a unified framework for handling a broad range
of critical EDA tasks, including code generation,
understanding, natural language code search, func-
tionality equivalence checking, and performance
prediction. Figure 1 provides an overview of our
model. To achieve this, we have carefully curated
a comprehensive dataset and developed new bench-
marks for each task, with a particular focus on
the embedding-based tasks, for which no existing
datasets or benchmarks are available. We have
adopted state-of-the-art decoder-only models, such
as Llama-3.1 (Dubey et al., 2024) and DeepSeek-
Coder (Guo et al., 2024), as our base models for
fine-tuning, given their superior performance over
other architectures in the open-source LLM space.
To enable these models to handle both generation-
and embedding-based tasks, we adapt the genera-
tive representational instruction tuning (GRIT) ap-
proach (Muennighoff et al., 2025) for fine-tuning,
ensuring that DeepRTL?2 can effectively manage
the diverse tasks at the RTL stage. Through ex-
tensive experimentation, we demonstrate that the
DeepRTL2 series achieves state-of-the-art perfor-
mance across all evaluated tasks.

2 Related Works

2.1 Register Transfer Level in EDA

Register transfer level (RTL) is a key abstraction
in EDA that describes the flow of data between
registers and the operations performed on this data.

It is typically expressed using hardware description
languages (HDLs), with Verilog being the most
widely used HDL in the industry. Thus, throughout
this paper, we use the terms RTL code and Ver-
ilog code interchangeably. In modern hardware
design, engineers usually begin with specifications
in natural language, which are then manually trans-
lated into HDLs before synthesizing the circuit
elements (Blocklove et al., 2023). RTL serves as
an intermediary between high-level design specifi-
cations and low-level implementation details, en-
abling designers to describe intricate digital sys-
tems while retaining flexibility for synthesis into
gate-level representations. Within EDA workflows,
RTL plays a crucial role in various phases, includ-
ing functional verification, performance estimation,
synthesis, and optimization. Efficient handling of
RTL code is essential for minimizing design time,
improving performance, and ensuring correctness.

2.2 LLMs for RTL

With the rapid development of artificial intelli-
gence (Al), there has been increasing interest in
leveraging these technologies to automate and en-
hance RTL-based design workflows (Chen et al.,
2024). A key area of focus has been the use of
LLMs for RTL code generation and understand-
ing, which has shown great promise in improving
hardware design efficiency (Thakur et al., 2023;
Liu et al., 2023; Lu et al., 2024). Recent works
have fine-tuned open-source LLMs to generate
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high-quality RTL code from natural language de-
scriptions (Chang et al., 2024; Liu et al., 2024;
Thakur et al., 2024; Zehua et al., 2024; Zhang
et al., 2024; Zhao et al., 2024), achieving signifi-
cant improvements in the automation of hardware
design process. Additionally, models like Deep-
RTL (Liu et al., 2025) have extended these capabil-
ities by introducing RTL code understanding tasks,
i.e., summarizing the functionality of existing code,
which facilitates collaboration and comprehension
among hardware designers. Despite the great suc-
cess achieved in these generation-based tasks, prior
research has largely overlooked embedding-based
tasks, which are equally critical for addressing chal-
lenges in EDA. Embedding-based tasks, such as
natural language code search, RTL code function-
ality equivalence checking, and performance pre-
diction, are essential for improving the efficiency
of code reuse, verification, and optimization within
hardware design workflows. Unlike generation-
based tasks, which focus on producing new RTL
code, embedding-based tasks involve understand-
ing and analyzing existing designs, providing valu-
able insights into design reusability, correctness,
and performance. Meanwhile, even if some studies
have applied machine learning techniques for hard-
ware design verification (Vasudevan et al., 2021)
and performance prediction (Fang et al., 2023),
these efforts are either design-specific, lack gener-
alizable representations for RTL designs, or do not
operate directly at the RTL stage. In contrast, this
work introduces DeepRTL2, a versatile model ca-
pable of handling both generation- and embedding-
based tasks, achieving superior performance across
all evaluated tasks despite its versatility.

2.3 Embedding Capabilities of Decoder-Only
LLMs

Compared to bidirectional encoders like BERT (De-
vlin, 2018) and encoder-decoder architectures like
T5 (Raffel et al., 2020), decoder-only LLMs have
demonstrated superior performance across a range
of language tasks (Brown et al., 2020). However,
their potential for text embedding tasks was largely
overlooked until recently. In recent years, sev-
eral studies have focused on adapting decoder-only
LLMs for language embedding tasks (Jiang et al.,
2023; Wang et al., 2023; BehnamGhader et al.,
2024; Springer et al., 2024; Lei et al., 2024; Lee
et al., 2024). Notably, Muennighoff et al. (2025)
introduce the GRIT training strategy, which em-
ploys a multi-task training objective function to

enable a single decoder-only LLM to both generate
content and encode text into fixed-length vectors.
Despite their success on various language embed-
ding benchmarks, these models primarily focus on
general embedding tasks, which limits their effec-
tiveness on specialized tasks like RTL embedding-
based tasks. To the best of our knowledge, there
is no model that has been specifically trained for
RTL embedding, despite its critical role in optimiz-
ing hardware design workflows. DeepRTL2 is the
first model explicitly designed for RTL embedding-
based tasks, outperforming general-purpose text
embedding models on our benchmarks.

3 Dataset

Previous research has predominantly focused on
generation-based tasks, resulting in a notable gap
in available datasets for the embedding-based tasks
considered in this paper. Moreover, the availability
of RTL code is limited even for generation-based
tasks, due to the proprietary nature of hardware
designs. To fill this gap, we have curated a compre-
hensive dataset tailored to support both generation-
and embedding-based tasks at the RTL stage. Fur-
thermore, we have established new benchmarks
specifically for the embedding-based tasks, which
have been largely neglected in previous work.

3.1 Generation-Based Tasks
3.1.1 RTL Code Generation

RTL code generation involves automatically syn-
thesizing RTL code from user-defined natural lan-
guage descriptions, streamlining hardware design
and enabling a more accessible development pro-
cess. To construct a high-quality dataset for this
task, we follow the data construction pipeline
proposed in DeepRTL (Liu et al., 2025), given
its demonstrated effectiveness in generation-based
tasks. The process begins by collecting .v files
from GitHub' using the keyword Verilog. Each
file is then segmented into individual Verilog mod-
ules, with each module representing a distinct func-
tional unit. To ensure dataset quality and reduce
redundancy, we remove modules that are predomi-
nantly composed of comments or lack structurally
complete module and endmodule declarations. Ad-
ditionally, we apply MinHash and Jaccard similar-
ity metrics (Yan et al., 2017) to eliminate duplicates.
To further refine the dataset, we employ the Stagira
Verilog parser (Chen et al., 2023) to filter out mod-

"https://github.com/
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Figure 2: The annotation process for the RTL code
generation/understanding dataset. After obtaining the
high-level functional description, we prompt GPT-40 to
rephrase it into a user query format, which is then used
to construct the natural language code search dataset.

ules containing syntax errors, ensuring that only
syntactically valid Verilog code is retained.

For annotation, we adopt the chain-of-thought
(CoT) prompting strategy used in DeepRTL, lever-
aging GPT-4o (Hurst et al., 2024), a state-of-the-art
LLM, to generate structured and informative an-
notations. Specifically, we first query GPT-40 to
insert line-level comments into the Verilog mod-
ules, then extract line-level descriptions, pairing
individual lines of RTL code with corresponding
natural language explanations. Next, we prompt
GPT-4o0 to generate a detailed specification for each
module, comprising a summary of the module’s
functionality and a comprehensive explanation of
its implementation process. By integrating these
specifications with the module code, we construct
high-level functional descriptions—succinct one-
sentence summaries that capture the core func-
tionality of each Verilog module. The resulting
dataset consists of Verilog modules enriched with
line-level comments, detailed specifications, and
succinct high-level functional descriptions, facili-
tating both generation and understanding tasks in
RTL design. Figure 2 provides an overview of the
annotation process. For specifics on the prompts
used, please refer to DeepRTL. To ensure the qual-
ity of the generated annotations, we have conducted
human evaluations, as detailed in Appendix A.

To further expand the training dataset and im-
prove model performance, we augment our dataset
with open-source Verilog datasets from RTL-
Coder (Liu et al., 2024), MG-Verilog (Zhang et al.,
2024), and DeepCircuitX (Li et al., 2025). These
datasets provide additional RTL designs with di-
verse structures and functionalities, while also in-
corporating different annotation strategies. The di-
versity in annotations improves the model’s adapt-

ability to varying description styles, enhancing its
robustness across various RTL-related tasks.

3.1.2 RTL Code Understanding

RTL code understanding focuses on summarizing
the functionality of existing Verilog code, enhanc-
ing collaboration and comprehension among hard-
ware designers. The dataset for this task is derived
from the RTL code generation dataset, with Verilog
code as input and corresponding natural language
description as output. In the absence of a standard-
ized benchmark for this task, we build upon the
benchmark introduced in DeepRTL, which origi-
nally comprises 100 Verilog designs. To improve
evaluation reliability and ensure broader coverage,
we extend this benchmark to include 500 high-
quality Verilog modules with diverse functional-
ities. Each module is annotated by professional
hardware designers with a concise summary of its
functionality along with a detailed description of
the specific operations involved in its execution.
This extended benchmark establishes a more ro-
bust and comprehensive foundation for evaluating
RTL code understanding capabilities.

3.2 Embedding-Based Tasks
3.2.1 Natural Language Code Search

Natural language code search refers to the process
of querying a large codebase using natural language
to find relevant code snippets. It involves embed-
ding both the user query and each code snippet into
vectors, then calculating their similarity. The snip-
pet with the highest similarity score is considered
the best match for the user’s requirements. This
task is particularly crucial for hardware design, as
it enables code reuse, improves efficiency, and ac-
celerates the transition from user specifications to
RTL code. For this task, we reuse the dataset and
benchmark from the RTL code understanding task.
However, since the functional descriptions in the
understanding dataset often contain specific iden-
tifiers, introducing the risk of data leakage, and
are too complex for direct use in practical code
search, we employ GPT-4o to rephrase the descrip-
tions into a user query format, as shown in Figure 2.
The rephrasing ensures that the new descriptions
meet the following conditions: (1) no references to
specific identifiers, (2) retention of the core func-
tionality and high-level logic, and (3) clarity and
simplicity, resembling how a user would query for
relevant code based on its functionality. After this
rephrasing process, we obtain the natural language
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Figure 3: The feedback-driven code rewrite process.

code search dataset and benchmark in the format
{(user_query;, RTL_code;)}!" ;. For details on the
prompt used to rephrase the functional descriptions,
please refer to the Appendix B.

3.2.2 Functionality Equivalence Checking
Functionality equivalence checking is a critical ver-
ification step in hardware design, ensuring that dif-
ferent RTL implementations exhibit identical be-
havior despite structural differences. To construct a
dataset for this task, we develop a feedback-driven
CoT prompting strategy using GPT-40, as shown in
Figure 3. Given a Verilog module, we first prompt
GPT-4o to introduce significant modifications to its
internal logic while preserving its intended func-
tionality. We then use Yosys (Wolf et al., 2013) to
perform logic equivalence checking (LEC), which
verifies whether the original and modified designs
are functionally equivalent. Based on Yosys feed-
back—classified as equivalent, inequivalent, or syn-
tax error—we iteratively refine the modifications.
Specifically, we incorporate the original design,
rewritten design, and verification results into the
prompt to guide GPT-40 in generating alternative
implementations. This process is repeated for two
to three rounds per design, ensuring a diverse set
of functionally equivalent and inequivalent pairs.
The resulting dataset consists of paired RTL de-
signs, where some maintain functional equivalence
while others introduce subtle variations. Since only
implementation details differ, distinguishing equiv-
alent from inequivalent designs presents a signifi-
cant challenge for models. Additionally, we adapt
RTLLM v2.0 (Lu et al., 2024), a Verilog generation
benchmark, to construct a new benchmark for func-
tionality equivalence checking. Applying the same
feedback-driven CoT strategy to its 50 verified Ver-
ilog designs, we generate multiple alternative im-
plementations, expanding our benchmark to 400
code pairs. This benchmark provides a diverse and
well-validated resource for evaluating functionality
equivalence checking. For further details on this
process, please refer to the Appendix C.

3.2.3 Performance Prediction

Performance prediction plays a crucial role in the
early stages of hardware design, enabling designers
to estimate key circuit characteristics before physi-
cal implementation. Accurate predictions allow for
informed architectural decisions, reducing design
iterations and improving overall efficiency. Among
the commonly used PPA metrics, delay and area are
the primary focus in early-stage evaluations, as ac-
curate power estimation requires detailed workload
to specify the circuit’s dynamic behavior, which is
unavailable at the RTL stage. In this work, we con-
struct a performance prediction dataset by synthe-
sizing and mapping RTL designs into netlists using
Yosys (Wolf et al., 2013) with the SkyWater 130nm
technology library (Google, 2021). We then uti-
lize open-source ABC (Brayton and Mishchenko,
2010) tool to extract delay and area metrics, where
delay metric is reported by the static timing analy-
sis, and area metric reflects the total logic footprint,
which directly impacts manufacturing cost. This
process provides a dataset that captures essential
performance characteristics of RTL designs, facili-
tating learning-based performance estimation. For
a comprehensive summary of all dataset statistics,
please refer to the Appendix D.

4 Methodology

4.1 Model Training

We choose Llama-3.1 (Dubey et al., 2024) and
DeepSeek-Coder (Guo et al., 2024) as the base
models for training. Specifically, we fine-tune
meta-llama/Llama-3.1-8B-Instruct’ and deepseek-
ai/deepseek-coder-6.7b-instruct’. Our training con-
sists of two stages. In the first stage, we follow
the curriculum learning strategy adopted by Deep-
RTL (Liu et al., 2025) and train the base model
solely on RTL code generation and understanding
data. In the second stage, we incorporate embed-
ding data into the training set and train the model
on both RTL code generation/understanding and
embedding tasks, utilizing the training framework
of GRIT (Muennighoff et al., 2025).

4.1.1 First-Stage Training

Following DeepRTL, we apply a curriculum learn-
ing strategy in the first stage of our training pipeline,
which can be further divided into four sub-stages:

2https://huggingface.co/meta—llama/Llama-3.
1-8B-Instruct

3https://huggingface.co/deepseek—ai/
deepseek-coder-6.7b-instruct
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Model syntax function

pass@1 pass@5 pass@10 | pass@1 pass@5 pass@10
GPT-3.5 56.50% 69.72% 71.75% | 30.10% 39.59%  41.40%
GPT-40 72.00% 7731%  78.53% | 49.70% 56.80%  58.84%
ol-preview 76.20% 83.71% 84.00% | 50.00% 60.86% 62.52%
CodeV-CodeLlama 47.70% T74.96%  82.20% | 22.00% 39.49%  45.74%
CodeV-CodeQwen 51.50% 77.71%  82.17% | 23.10% 44.54%  52.22%
CodeV-DeepSeek 57.60% 80.23%  83.25% | 30.00% 49.63% 54.74%
DeepRTL-220m 60.69% 78.81% 80.88% | 28.79% 45.86%  49.66%
DeepRTL-16b 63.79% 74.82%  80.05% | 3891% 47.24% 51.72%
Llama-3.1 3240% 57.01% 62.76% | 14.60% 26.04% 30.16%
DeepSeek-Coder 59.30% 72.38%  74.67% | 31.40% 39.59%  42.57%
DeepRTL2!*!-Direct (Llama) 54.48% 63.52% 67.99% | 16.28% 28.78%  32.76%
DeepRTL2'*!-Direct (DeepSeek) | 60.60% 73.12%  75.70% | 32.50% 44.42%  47.96%
DeepRTL2!*! (Llama) 67.90% 77.53% 79.52% | 43.70% 49.98%  50.00%
DeepRTL2!%! (DeepSeek) 63.50% 76.74%  80.10% | 39.70% 51.96% 54.70%
DeepRTL2 (Llama) 68.30% 81.31% 83.36% | 33.70% 49.57%  52.90%
DeepRTL2 (DeepSeek) 71.60% 80.58%  81.75% | 38.50% 52.62%  55.99%

Table 1: The performance evaluation for RTL code generation using the pass @k metric, with k set to 1, 5, and 10.
The best results among all models are bolded, and the best results among open-source models are underlined.

Model F1

text-embedding-3-small 0.189
text-embedding-3-large 0.290
GritLM-7B 0.269
DeepRTL2"*"%74 (Llama) 0.476
DeepRTL2">herd (DeepSeek) | 0.464
DeepRTL2 (Llama) 0.463
DeepRTL2 (DeepSeek) 0.453

Table 2: The performance evaluation for natural lan-
guage code search using the F1 metric. The best result
is bolded, and the second-best result is underscored.

training with line-level data, module-level data with
specifications, module-level data with high-level
descriptions, data with varying prompts. For details
on these sub-stages, please refer to Appendix E.

4.1.2 Second-Stage Training

Following GRIT, in the second stage of training,
we combine the generation/understanding and em-
bedding tasks. For the generation/understanding
training, we reuse the high-quality data from the
fourth sub-stage of the first-stage training. For the
embedding task, we employ contrastive learning to
learn contextualized representations that preserve
the semantic information of the original text and
code. Details for constructing the contrastive learn-
ing training set can be found in Appendix F. In the
embedding part of the second-stage training, we
first use data that does not contain hard negatives
and then incorporate data with hard negative sam-

ples. For more details on the loss functions at dif-
ferent sub-stages, please refer to Appendix G. For
additional details on the hyperparameters and hard-
ware resources used, please refer to Appendix H.

4.2 Model Evaluation

For RTL code generation, we utilize the latest ver-
sion of the widely adopted RTLLM v2.0 bench-
mark (Lu et al., 2024), which contains 50 designs
paired with corresponding natural language descrip-
tions and testbenches. To measure Verilog gener-
ation accuracy, we use the pass @k metric, which
estimates the proportion of problems that can be
solved at least once within k attempts:

- (%9
) ] @

where n > k represents the total number of trials
for each problem, and c denotes the number of trails
that pass the functional check. In our experiments,
we set n = 20 to mitigate randomness in results.
The pass @k metric is reported for both syntactical
and functional accuracy. Following RTLCoder (Liu
et al., 2024), we evaluate performance across multi-
ple generation temperatures (0.2, 0.5, and 0.8) and
report the best performance across these settings.
For RTL code understanding, we use the bench-
mark constructed in Section 3.1.2. To evaluate the
model’s performance, we apply both traditional ma-
chine translation metrics—BLEU (Papineni et al.,

problems

pass@k := E [
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Model BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR Emb. Sim. GPT Score
GPT-3.5 3.34 28.20 10.46 25.11 20.36 0.740 0.510
GPT-40 4.59 29.26 11.48 25.74 22.78 0.761 0.549
ol-preview 3.73 28.00 10.39 24.98 20.48 0.748 0.535
CodeV-DeepSeek 3.05 25.14 9.78 23.25 20.23 0.705 0.495
CodeV-CodeQwen 2.80 2491 8.27 2275 21.07 0.747 0.499
DeepRTL-220m 13.06 37.56 19.85 34.72 34.37 0.806 0.600
DeepRTL-16b 12.85 3743 19.34 34.63 33.09 0.802 0.597
Llama-3.1 2.68 25.37 10.39 23.75 17.16 0.730 0.430
DeepSeek-Coder 2.56 24.52 7.72 22.45 22.83 0.756 0.571
DeepRTL2'*!-Direct (Llama) 11.28 34.29 16.35 33.63 27.73 0.754 0.580
DeepRTL2'!-Direct (DeepSeek) | 12.07 36.37 17.78 33.78 28.56 0.767 0.602
DeepRTL2'! (Llama) 13.34 37.74 19.54 34.76 33.46 0.798 0.594
DeepRTL2' (DeepSeek) 13.53 37.52 19.68 34.68 33.28 0.814 0.612
DeepRTL2 (Llama) 13.84 37.97 20.69 34.42 34.75 0.813 0.603
DeepRTL2 (DeepSeek) 13.96 37.93 20.73 34.34 34.74 0.820 0.616

Table 3: The performance evaluation for RTL code understanding. BLEU-4 refers to the smoothed BLEU-4 score,
while Emb. Sim. represents the embedding similarity metric. The best results are highlighted in bold, and the

second-best results are underscored.

2002), ROUGE (Lin, 2004), and METEOR (Baner-
jee and Lavie, 2005)—which primarily assess lexi-
cal similarity, as well as the embedding similar-
ity and GPT score metrics introduced in Deep-
RTL (Liu et al., 2025), which focus on semantic
similarity. This combination of evaluation met-
rics provides a comprehensive assessment of the
model’s ability to understand RTL code, capturing
both surface-level and deeper, semantic-level un-
derstanding. For further details on how to compute
these metrics, please refer to the Appendix L.

For natural language code search, we utilize the
benchmark introduced in Section 3.2.1. To assess
the model’s ability to retrieve relevant code from
a large codebase based on a user’s query, we fol-
low the bitext mining setting from MTEB (Muen-
nighoff et al., 2022). In our evaluation process,
the inputs consist of two sets: the first set contains
functional descriptions, while the second set con-
sists of Verilog code snippets. For each description
in the first set, the best matching code snippet in
the second set is identified using cosine similarity.
We report F1 score, precision, and recall for each
model, with F1 serving as the primary evaluation
metric for natural language code search.

For functionality equivalence checking, we uti-
lize the benchmark introduced in Section 3.2.2. To
evaluate the models’ ability to check functional
equivalence, we follow the pair classification set-
ting from MTEB (Muennighoff et al., 2022). In
this evaluation, the inputs consist of several pairs
of RTL codes. For each pair, the model assigns a
binary label: 1 for "functionally equivalent" and O
for "functionally inequivalent". The binary label

is determined by calculating the cosine similarity
of their embeddings and comparing the similarity
score to a predefined threshold. For each model,
we first identify the optimal accuracy threshold and
compute the accuracy score. We then determine the
best F1 threshold and report the F1, precision, and
recall scores. Finally, we calculate the average pre-
cision score based on the similarity scores of the
code pairs and their corresponding ground-truth
labels. Average precision is the primary evalua-
tion metric for RTL code functionality equivalence
checking, with other metrics also reported.

For performance prediction, we use the dataset
introduced in Section 3.2.3. This task aims to test
the expressive power of code embeddings for pre-
dicting performance metrics, such as area and de-
lay, at the early stage of RTL design. To achieve
this, we first encode each code snippet into a fixed-
length vector and create a new dataset in the for-
mat {(code_embedding € RP area € R, delay €
R);}™ ,, where p is the embedding dimension and
n is the dataset size. The dataset is then split into
training and test sets at an 80:20 ratio. In this paper,
we use XGBoost (Chen and Guestrin, 2016) as the
regression model, training separate models for area
and delay prediction. The trained models are eval-
uated on the test set using r2_score, mean absolute
percentage error (MAPE) and root relative squared
error (RRSE), with their formulas provided below:

S (i — Ui)?

2
ST w—g? @

r2_score(y,y) =1 —

1 & R
MAPE(y, ) = = |%| % 100%  (3)
i=1 ¢
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5 Experimental Results

5.1 Generation-Based Tasks

For comparison, we select several baseline models:
the state-of-the-art commercial models, OpenAl’s
GPT-3.5, GPT-40, and o1-preview, which represent
the most advanced general-purpose LLMs currently
available. We also include the CodeV series (Zhao
et al., 2024), a collection of leading open-source
models specifically designed for RTL code genera-
tion, as well as the original DeepRTL models (Liu
etal., 2025), which have shown strong performance
in both RTL code generation and understanding.
All these models have demonstrated excellent capa-
bilities in Verilog generation-based tasks (Liu et al.,
2025), making them strong baselines for evaluating
the performance of DeepRTL2. Additionally, we
report the performance of base models, Llama-3.1
and DeepSeek-Coder, to show the effectiveness of
our dataset construction and training strategy.
Table 1 reports the pass@Fk results for RTL code
generation across different models, with k set to 1,
5, and 10. The results show that ol-preview out-
performs all other models, likely due to its design
for addressing complex tasks, including program-
ming. The DeepRTL2 models, however, achieve
the best performance among all open-source mod-
els, with results comparable to GPT-40. The per-
formance improvement from base models to Deep-
RTL?2 highlights the effectiveness of our dataset
construction process and training strategy. Further-
more, DeepRTL?2 outperforms the original Deep-
RTL models, likely due to the incorporation of
additional open-source datasets, aside from data
sourced from GitHub, and the inclusion of more
diverse problem formulations that enhance Deep-
RTL2’s generalization ability. Given that Deep-
RTL?2 is a multi-task model and the generation
benchmark may overlap with the training data used
by OpenAI’s models, these results highlight Deep-
RTL2’s impressive performance for this task.
Table 3 presents the results for RTL code un-
derstanding. Since the CodeV-Codel.lama model
outputs random messages for this task, we ex-
clude it from the comparison. The results show
that DeepRTL2 models significantly outperform
all other models, including the previous state-of-
the-art DeepRTL models, underscoring its strong
capabilities in RTL code understanding. Notably,

DeepRTL2 surpasses GPT-40 by a substantial mar-
gin, despite the fact that its training data is anno-
tated using GPT-40. The main reason is that during
benchmark testing, all models, including GPT-4o,
are required to generate high-level functional de-
scriptions directly from RTL code. As shown in
Appendix A, CoT-based annotations are more ac-
curate than direct annotations. This enhanced anno-
tation quality contributes to DeepRTL2’s superior
performance in RTL code understanding.

5.2 Embedding-Based Tasks

Since none of the existing models are specifi-
cally designed for RTL embedding-based tasks,
the baselines used for the generation-based tasks,
e.g., CodeV series and DeepRTL models, perform
poorly in this setting. These models show near-
zero performance, with an F1 score close to O on
the natural language code search task and an aver-
age precision of approximately 0.5 on the func-
tionality equivalence checking task. Therefore,
we select state-of-the-art general-purpose embed-
ding models as baselines for comparison. These
include OpenAI’s text embedding models (text-
embedding-3-small, text-embedding-3-large) (Nee-
lakantan et al., 2022) and open-source models like
GritLM-7B (Muennighoff et al., 2025).

Table 2 presents the F1 scores for the natural lan-
guage code search task. The results show that our
DeepRTL2 models outperform all baseline models
by a significant margin, demonstrating the effec-
tiveness of our dataset and training strategy for
this task. For the full evaluation results on natural
language code search, please refer to Appendix J.

Table 5 presents the average precision scores for
the functionality equivalence checking task. The
results show that DeepRTL2 models outperform
all other baselines, demonstrating their effective-
ness in capturing functional relationships between
RTL modules. The full evaluation results are in
Appendix J. It is important to emphasize that our
embedding-based verification is not intended to re-
place the traditional verification process, but rather
to serve as an efficient preliminary step that can
significantly streamline the verification flow.

Table 4 presents the results for performance pre-
diction on area and delay. Our DeepRTL?2 series
models outperform the baseline models across all
metrics. These results highlight that the code em-
beddings generated by the DeepRTL2 models are
more expressive for predicting performance-related
metrics such as area and delay.
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Model Area Delay

r2_score MAPE RRSE | r2_score MAPE RRSE
text-embedding-3-small 0.603 5568 0.630 | 0.608  0.883 0.626
text-embedding-3-large 0.699 4446 0548 | 0.699  0.705 0.548
GritLM-7B 0.651  3.878 0591 | 0.651 0726 0.591
DeepRTL2"*%74 (Llama) 0.510  2.828 0.700 | 0.735 0471 0515
DeepRTL2">"97d (DeepSeek) | 0.805 2947 0.445 | 0.743 0449 0.507
DeepRTL2 (Llama) 0.759 1966 0.490 | 0.773 0469 0.476
DeepRTL2 (DeepSeek) 0.773 1.598 0476 | 0.772 0.448 0478

Table 4: The performance evaluation for performance prediction on area and delay using r2_score, MAPE and
RRSE metrics. The best results among all models are bolded, and the second-best results are underscored.

Model Average Precision
text-embedding-3-small 0.565
text-embedding-3-large 0.498
GritLM-7B 0.541
DeepRTL2"%"%74 (Llama) 0.518
DeepRTL2"%"474 (DeepSeek) 0.481
DeepRTL2 (Llama) 0.667
DeepRTL2 (DeepSeek) 0.591

Table 5: The performance evaluation for RTL code
functionality equivalence checking using the average
precision metric. The best result among all models is
bolded, and the second-best result is underscored.

5.3 Ablation Studies

In this section, we conduct ablation studies to
demonstrate the effectiveness of different dataset
components and training strategies. In the first
training stage, we adopt a curriculum learning strat-
egy, where the model is progressively trained on
line-level data, module-level data with specifica-
tions, module-level data with high-level descrip-
tions, and data with varying prompts. While the
benefits of curriculum learning have been shown
in DeepRTL (Liu et al., 2025), we extend this
analysis with additional comparisons. Specifically,
we compare our first-stage model (DeepRTL2!5%)
with a variant trained without curriculum learning
(DeepRTL2'**-Direct), both focused on generation-
based tasks. As shown in Table 1 and Table 3, the
incorporation of curriculum learning significantly
improves performance for both code generation
and understanding tasks. When we further intro-
duce the second-stage training, i.e., GRIT-based
fine-tuning, the performance improves even more,
demonstrating the effectiveness of both curriculum
learning and GRIT-based fine-tuning strategies.

In the second training stage, we combine con-
trastive learning and curriculum learning to ensure
that our model performs effectively on embedding-
based tasks. Specifically, we start with data that
excludes hard negatives and gradually introduce

hard negative samples, which improves overall
performance. To evaluate this strategy, we com-
pare DeepRTL?2 with and without hard negatives
(DeepRTL2"O'h‘”"d) in Tables 2, 4, and 5. Since
hard negatives primarily influence contrastive learn-
ing, these comparisons focus on embedding-based
tasks, with negligible impact on generation-based
performance. The results show a minor drop in
natural language code search accuracy but substan-
tial gains in functionality equivalence checking and
performance prediction. Despite the small accuracy
decrease in the natural language code search task,
DeepRTL2 still outperforms powerful baseline em-
bedding models. This improvement in functionality
equivalence checking and performance prediction
justifies our decision to integrate hard negatives
into the training process.

6 Conclusion

In this work, we present DeepRTL2, a novel fam-
ily of LLMs that unifies both generation- and
embedding-based tasks at the RTL stage, offer-
ing a comprehensive solution to the diverse chal-
lenges in EDA. By addressing critical tasks in-
cluding RTL code generation, understanding, nat-
ural language code search, functionality equiva-
lence checking, and performance prediction, Deep-
RTL2 significantly improves the efficiency of hard-
ware design workflows. To develop DeepRTL2,
we have curated a comprehensive dataset and es-
tablished new benchmarks specifically designed
for these tasks, particularly the embedding-based
ones, for which no suitable resources previously
existed. Furthermore, we adapt the GRIT approach
to fine-tune the model, enabling it to manage both
generation- and embedding-based tasks effectively.
Extensive experimentation demonstrates that Deep-
RTL2 achieves state-of-the-art performance across
all evaluated tasks, advancing the application of
LLMSs in hardware design.
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Limitations

There are two main limitations in our work. First,
due to the multi-task nature of our model and con-
straints in time and computing resources, we may
not have employed the most optimal training strat-
egy and hyperparameter settings to maximize per-
formance across all tasks. Second, performance
prediction directly at the RTL stage is challenging,
as RTL designs typically lack detailed information
about delay and area metrics. Although our model
outperforms others in the evaluation, a significant
gap remains in achieving accurate predictions. We
hypothesize that incorporating the control data flow
graph (CDFG) of RTL designs, which offers a more
structured representation of the design’s behavior,
may facilitate better learning of performance char-
acteristics. In future work, we plan to explore how
incorporating CDFG into the DeepRTL2 model se-
ries could improve the model’s ability to predict
performance metrics more accurately.
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A Human Evaluation of Generated
Annotations

To evaluate the reliability and accuracy of GPT-40-
generated annotations, we conduct a human eval-
uation focusing primarily on the accuracy of high-
level functional descriptions, as this is the most
challenging and critical aspect of the generation-
based tasks. We randomly sample 200 annotated
RTL modules and ask professional hardware de-
signers to verify the correctness of the generated
descriptions. The human evaluation results show
that approximately 90% of these annotations are
accurate. In comparison, when we test direct an-
notations, i.e., generating high-level functional de-
scriptions directly from the original code, the ac-
curacy drops significantly to 70%. This significant
difference further demonstrates the effectiveness of
the CoT-based annotation strategy.

Additionally, GPT-4o0 is employed for rewriting
RTL code in the functionality equivalence check-
ing task. For this task, we address concerns about
accuracy by using EDA tools to verify the function-
ality equivalence of the rewritten code against the
original code. Therefore, all the data collected for
this task is validated as ground truth, ensuring the
quality and correctness of the rewritten RTL code.

B Prompt For Rephrasing Descriptions

Figure 4 shows the instruction given to GPT-40
to rephrase the code descriptions into their corre-
sponding user query formats.

C Code Rewrite Instructions

Figure 5 illustrates the code rewrite instructions
provided to GPT-4o for constructing the function-
ality equivalence checking dataset. The leftmost

1 will provide a Verilog code snippet that defines a module, along with its
corresponding natural language description. The description may reference specific
identifiers in the code, such as variable names and module names. Your task is to
rephrase the description by following these steps:

1. Remove any references to specific identifiers (e.g., module names, variable names,
and specific signals).

2. Retain the core functional meaning and high-level logic of the description.

3. Ensure the rephrased description is concise and suitable for a query, resembling
how a user would search for the relevant code based on its functionality.

4. Avoid unnecessary technical details and long-winded explanations. Keep it simple
and to the point.

Please return only the rephrased description.
code:

text:

Figure 4: The instruction for rephrasing the code de-
scription into the user query format.

column presents the instruction used during the ini-
tial rewrite process, where only the original RTL
code is available. The subsequent three columns
represent instructions based on previously rewrit-
ten code, corresponding to the following cases: (1)
equivalent rewritten code, (2) inequivalent rewrit-
ten code, and (3) rewritten code with syntax errors.
Notably, in addition to the code itself, we also in-
clude the functional description and specification
from Section 3.1.1. This additional context helps
the model better understand the intended function-
ality, leading to improved accuracy in rewriting the
code while preserving its functionality.

D Dataset Statistics

Table 6 presents the overall statistics for all datasets
used across the evaluated tasks. Except the perfor-
mance prediction datasets, all datasets listed in this
table are utilized for model training. For the per-
formance prediction datasets, we split them in an
80:20 ratio, creating a training set with 15,000 sam-
ples and a test set with 3,766 samples. For perfor-
mance prediction, we regress area and delay based
on code embeddings, without tuning the model.

E Details of First-Stage Training

In Section 3.1.1, we construct a dataset consisting
of Verilog modules enriched with line-level com-
ments, detailed specifications, and succinct high-
level functional descriptions. These three levels
of annotations correspond to the first three sub-
stages of our first-stage training pipeline. In the
first sub-stage, we train the model using line-level
data, where each line of Verilog code is paired with
a corresponding natural language comment. The
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You are an expert in Verilog RTL code design, with extensive experience in optimizing code for performance, power, and area (PPA). Given the following Verilog code, please rewrite it to achieve the same
functionality using a different implementation approach, while considering potential improvements to PPA metrics.

The provided code is:
"{code}"

Functional Description (a high-level description of the functionality of the Verilog code):

"{functional_description}"

(detailed i

"{specification}"

of the Verilog code):

Rewritten Code (the existing rewritten code
that is functionally equivalent to the original
code):

"{rewritten_code}"

Rewritten Code (the existing rewritten code

that is functionally inequivalent to the original

code):
"{rewritten_code}"

Rewritten Code (the existing rewritten code
that contains syntax errors):
"{rewritten_code}"

Please rewrite the code to retain the same functionality but with a different implementation style. You can use the functional description and specification as a reference, but note that these are not fully

accurate. Therefore, treat the provided code as the "golden reference" for the intended functionality.

I encourage you to propose significant changes that may lead to improvements in PPA after synthesis. However, it is crucial that the rewritten code performs exactly the same as the original.

In summary, your task is to:
1. Keep the same functionality as the original
code.

2. Significantly change the implementation
style.

3. Consider potential improvements to PPA
metrics after synthesis, such as optimization
for area, timing, or power consumption.

In summary, your task is to:

1. Keep the same functionality as the original
code.

2. Ensure that the new implementation differs
from the provided rewritten code, using a
different implementation style.

3. Consider potential improvements to PPA
metrics after synthesis, such as optimization
for area, timing, or power consumption.

In summary, your task is to:

1. Keep the same functionality as the original
code.

2. Take into account the discrepancies
between the original code and the rewritten
code. Use the rewritten code as a reference
and make adjustments to ensure the final
version retains the intended functionality of
the original code.

3. Consider potential improvements to PPA
metrics after synthesis, such as optimization

In summary, your task is to:

1. Keep the same functionality as the original
code.

2. Take into account the syntax errors present
in the rewritten code. Ensure that the new
code is syntactically correct and functions as
intended, while preserving the original
functionality.

3. Consider potential improvements to PPA
metrics after synthesis, such as optimization
for area, timing, or power consumption.

Please provide the rewritten code in the following format:
“verilog
[rewritten code]

Note: Output only the rewritten code and do not include any i ions or A

for area, timing, or power consumption.

ensure that only the implementation of the internal logic of the code is modified; you are

forbidden to change the module head declaration.

Initial Equal

Unequal Syntax Error

Figure 5: The code rewrite instructions used to construct the functionality equivalence checking dataset.

second sub-stage utilizes module-level data with
specifications, providing more detailed descriptions
of the Verilog modules. The third sub-stage focuses
on module-level data with high-level functional de-
scriptions, offering a broader functional overview
of the code. To further refine the dataset and adapt
it to a wider range of scenarios, we introduce a
fourth sub-stage, where GPT-40 generates varying
prompts based on the high-quality data from the
third sub-stage. These varying prompts represent
different problem descriptions used to generate Ver-
ilog code. We find that incorporating this sub-stage
improves the model’s performance and robustness,
as it allows the model to better generalize across a
wide range of code generation tasks.

F Contrastive Learning Training Set
Construction

In the second-stage training, we apply contrastive
learning to enable the model to (1) determine
whether a Verilog module matches a given func-
tional description; and (2) assess whether two Ver-
ilog code snippets are functionally equivalent.

To construct a dataset for contrastive learning,
we first prompt GPT-4o0 to rewrite Verilog code
snippets from the natural language code search
training set. The rewrite process is illustrated in

Figure 3. After several iterations, we combine the
original natural language code search training set
with their rewritten code snippets, resulting in four
types of new data samples:

* type a: {original_text, original_code}

* type b: {original_text, original_code, equiva-
lent_code}

* type c: {original_text, original_code, inequiv-
alent_code}

* type d: {original_text, original_code, equiva-
lent_code, inequivalent_code}

Since the format of an original data sample in the
natural language code search training set is {orig-
inal_text, original_code}, the four types of data
samples correspond to the following scenarios:

* type a corresponds to the case where all rewrit-
ten code snippets contain syntax errors.

* type b corresponds to the case where all rewrit-
ten code snippets, free of syntax errors, are
functionally equivalent to the original code.

* type c corresponds to the case where all rewrit-
ten code snippets, free of syntax errors, are not
functionally equivalent to the original code.
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Task Description Source Count
Line Level DeepRTL2 341310

DeepRTL2 45519

Module Level (Detailed Specification) | MG-Verilog 10035

. . DeepCircuitX | 32809

RTL Code Generation/Understanding DeepRTL2 16376

. . RTLCoder 25001

Module Level (High-Level Description) MG-Verilog 10037

DeepCircuitX | 38179

Natural Language Code Search N/A DeepRTL2 59700

. . . . Equal Pairs DeepRTL2 9532

Functionality Equivalence Checking Unequal Pairs DeepRTL2 33330

- Area DeepRTL2 18766

Performance Prediction Delay DeepRTL2 13766

Table 6: The overall dataset statistics for all evaluated tasks.

* type d corresponds to the case where some
rewritten code snippets, free of syntax er-
rors, are functionally equivalent to the original
code, while others are not.

For all four types of data samples, we convert them
into contrastive learning samples as follows:

* type a:
— {"query": original_code, "pos": origi-
nal_text, "neg": None}
— {"query": original_text, "pos": origi-
nal_code, "neg": None}
* type b:
— {"query": original_code, "pos": origi-
nal_text, "neg": None}
— {"query": original_text, "pos": origi-

nal_code, "neg": None}

— {"query": original_code, "pos": equiva-
lent_code, "neg": None}

— {"query": equivalent_code, "pos": origi-
nal_code, "neg": None}

* typec:
— {"query": original_code, "pos": origi-
nal_text, "neg": inequivalent_code}

— {"query": original_text, "pos": origi-
nal_code, "neg": None}

* type d:
— {"query": original_code, "pos": origi-
nal_text, "neg": inequivalent_code}

— {"query": original_code, "pos": equiva-
lent_code, "neg": inequivalent_code}

— {"query": original_text, "pos": origi-
nal_code, "neg": None}

— {"query": equivalent_code, "pos": origi-
nal_code, "neg": inequivalent_code}

In each of the contrastive learning samples above,
the key “pos” refers to the positive instance of the
query code/text, while the key “neg” refers to the
hard negative instance. In the embedding part of
the second-stage training, we first use samples col-
ored blue that do not contain hard negatives and
then incorporate samples colored purple with hard
negative instances.

G Training Loss Function

In the second stage of training, we combine gen-
eration/understanding and embedding tasks. For
generation/understanding, we reuse high-quality
data from the fourth sub-stage of the first training
stage. For the embedding tasks, we apply con-
trastive learning to learn contextualized represen-
tations that preserve the semantic information of
text and code. In the embedding part of the second-
stage training, we first use data without hard nega-
tives and later incorporate data with hard negatives.
The embedding loss function is defined as follows:

EF — exp <0'(f9($¢);f9($i+))> )
Sj—Zexp( (fo(:), fol ﬂ)) ©
=1 T
M N
S =S exp <U(f9($z);f0( : >>) -
j=1
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Model Precision Recall F1 (Main Metric)
text-embedding-3-small 0.173 0.241 0.189
text-embedding-3-large 0.273 0.340 0.290
GritLM-7B 0.255 0.320 0.269
DeepRTL2"* "% (Llama) 0.469  0.497 0.476
DeepRTL2""%7d (DeepSeek) | 0.456  0.489 0.464
DeepRTL2 (Llama) 0.450 0.493 0.463
DeepRTL2 (DeepSeek) 0.443 0.481 0.453

Table 7: The full performance evaluation results for natural language code search. The best results among all models

are bolded, and the second-best results are underscored.

M
1 Ef
Eembl = _M § IOg < :.) (8)
i=1 :

]
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Lemp2 = _M Zlog <S++ZS_> )
i=1 { (

where M is the batch size, x; is the i-th training
sample, fy is the embedding function (in this paper,
we use position-weighted mean pooling method
introduced in SGPT (Muennighoff, 2022) to ob-
tain sentence embeddings), 7 is the temperature
hyperparameter, and o is the similarity function
(typically cosine similarity). ycf is the positive in-
stance of the ¢-th training sample, while z; is the
hard negative of the i-th training sample. L.;.p1
represents the embedding loss when no hard neg-
ative is available for each training sample, while
Lempz corresponds to the embedding loss when a
hard negative instance is present for each sample.

For generation/understanding, we adopt the tra-
ditional next-token cross-entropy loss:

N
1 i i
ﬁgen = —N Zlogp(fe,n(x( ))|f9,7](x(< )))
i=1

(10)
where 7) is the language modeling head used for
generation-based tasks. In the second-stage train-
ing, we first use £1 = Lemp1 + Lgen as the loss
function, then switch to Lo = Lempz + Lgen.

H Hyperparameters

All experiments are conducted on a cluster
equipped with eight NVIDIA A800 GPUs, each
with 80GB of memory. Tables 9 and 10 present the
hyperparameter settings used in the first-stage and
second-stage training, respectively.

I Understanding Evaluation Metrics

To evaluate the models’ understanding capabilities
of RTL code, we apply both traditional machine
translation metrics—BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), and METEOR (Banerjee and
Lavie, 2005)—which primarily assess lexical simi-
larity, as well as the embedding similarity and GPT
score introduced in DeepRTL (Liu et al., 2025),
which focus on semantic similarity. These met-
rics measure the similarity between the generated
descriptions and the ground truth summaries.

Specifically, BLEU measures the proportion of
n-grams (sequences of n words) in the generated
text that also appear in the reference text. It cal-
culates the overlap of n-grams (typically up to a
length of 4), with higher scores assigned to more
matches. BLEU is precision-focused and rewards
the accurate use of words or phrases in the gener-
ated descriptions. In our evaluation, we report the
smoothed BLEU-4 score to address zero counts in
higher-order n-grams, which helps to avoid penal-
izing models for small discrepancies.

ROUGE is a recall-based metric that evaluates
the proportion of n-grams in the reference summary
that are present in the generated summary. For our
evaluation, we report ROUGE-1 (unigram over-
lap), ROUGE-2 (bigram overlap), and ROUGE-L
(longest common subsequence).

METEOR combines both precision and recall
while also accounting for synonymy, stemming,
and word order. It computes unigram precision and
recall and applies a penalty for word order mis-
matches. For calculating these traditional machine
translation metrics, we directly use the correspond-
ing functions from Python libraries nltk (for BLEU
and METEOR) and rouge (for ROUGE).

In contrast to the lexical metrics, embedding
similarity and GPT score evaluate semantic simi-
larity by assessing how well the generated descrip-
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Model Average Precision (Main Metric) Accuracy  Fl1 Precision Recall
text-embedding-3-small 0.565 0.581 0.646 0.525 0.840
text-embedding-3-large 0.498 0.544 0.647 0.478 1.000
GritLM-7B 0.541 0.613 0.661 0.503 0.960
DeepRTL2™"7 (1 Jama) 0.518 0.594  0.661 0497  0.987
DeepRTL2" " (DeepSeek) 0.481 0.581 0.658 0.497 0.973
DeepRTL2 (Llama) 0.667 0.681 0.723 0.575 0.973
DeepRTL2 (DeepSeek) 0.591 0.619 0.708 0.552 0.987

Table 8: The full performance evaluation results for RTL code functionality equivalence checking. The best results
among all models are bolded, and the second-best results are underscored.

Hyperparameter Name Value
finetuning_type lora
per_device_train_batch_size 4
gradient_accumulation_steps 4
Ir_scheduler_type cosine
warm_up_ratio 0.1
learning_rate 5e-5
epochs 3

Table 9: Hyperparameters selected for the first training
stage of DeepRTL2.

Hyperparameter Name Value
finetuning_type full
per_device_embedding_batch_size 4
per_device_generative_batch_size 4
gradient_accumulation_steps 8
Ir_scheduler_type linear
warmup_ratio 0.03
learning_rate 2e-5
epochs 1
temperature (7) 0.02

Table 10: Hyperparameters selected for the second train-
ing stage of DeepRTL2.

tion captures the underlying meaning of the RTL
code, rather than focusing solely on surface-level
word matches. Embedding similarity computes the
cosine similarity between the embeddings of the
generated description and the ground truth sum-
mary, derived from OpenAl’s text-embedding-3-
large model. This metric rewards models for pro-
ducing descriptions that are semantically closer to
the reference, even if the wording differs. The GPT
score, based on GPT-4o0, quantifies the semantic
coherence between descriptions by assigning a sim-
ilarity score between O and 1, where 1 indicates
perfect alignment. Unlike lexical metrics, the GPT
score focuses on semantic accuracy rather than ex-
act word matching. For the prompt used in calcu-
lating the GPT score, please refer to DeepRTL.

Together, these metrics offer a comprehensive
evaluation of both lexical precision and semantic
accuracy, providing a holistic view of the model’s
understanding of RTL code.

J Full Evaluation Results

J.1 Natural Language Code Search

The full evaluation results for natural language
code search are presented in Table 7. Results
show that the DeepRTL2 models significantly out-
perform all baseline models across all metrics.
Specifically, DeepRTL2 (Llama) and DeepRTL2
(DeepSeek) achieve F1 scores of 0.463 and 0.453,
respectively, surpassing the best baseline model,
GritLM-7B, which scores 0.269. The higher pre-
cision and recall scores for the DeepRTL2 models
indicate that they are more effective at retrieving
relevant code snippets based on user queries, high-
lighting the strength of our dataset and training
framework. These results confirm that DeepRTL2
excels in natural language code search, demonstrat-
ing its superior ability to handle hardware-specific
queries compared to the baseline models.

J.2  Functionality Equivalence Checking

The full evaluation results for RTL code function-
ality equivalence checking are presented in Table 8.
Results show that the DeepRTL2 models outper-
form all baseline models across all metrics. Specif-
ically, DeepRTL2 (Llama) achieves the highest
performance with an average precision score of
0.667, F1 score of 0.723, and accuracy of 0.681. In
comparison, the best-performing baseline model,
GritLM-7B, achieves an average precision of 0.541,
an F1 score of 0.661, and accuracy of 0.613. More-
over, DeepRTL2 (DeepSeek) also shows strong
performance, with an average precision of 0.591
and an F1 score of 0.708. The significantly higher
precision and recall scores for DeepRTL2 mod-
els indicate their superior capability in identifying
functionally equivalent RTL code compared to the
baseline models. These results confirm that Deep-
RTL2 excels in functionality equivalence check-
ing, demonstrating its effectiveness in hardware-
specific tasks over general-purpose models.
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