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Abstract

While Vision-Language Models (VLMs) have
shown remarkable abilities, they invariably
generate flawed responses. Self-correction
that instructs models to refine their outputs
presents a promising solution to this issue.
Previous studies have mainly concentrated on
Large Language Models (LLMs), while the
self-correction abilities of VLMs, particularly
concerning both visual and linguistic informa-
tion, remain largely unexamined. This study
investigates the self-correction capabilities of
VLMs during both inference and fine-tuning
stages. We introduce a Self-Correction Learn-
ing (SCL) approach that enables VLMs to learn
from their self-generated self-correction data
through Direct Preference Optimization (DPO)
without relying on external feedback, facilitat-
ing self-improvement. Experimental results
demonstrate that although VLMs struggle to
self-correct effectively during iterative infer-
ence without additional fine-tuning and exter-
nal feedback, they can enhance their perfor-
mance and avoid previous mistakes through
preference fine-tuning when their generated
self-correction data are categorized into pre-
ferred and disfavored samples. This study em-
phasizes that self-correction is not merely a
refinement process; rather, it should enhance
models’ reasoning ability through additional
training, enabling them to generate high-quality
responses directly without further refinement.’

1 Introduction

Large Language Models (LLMs) have shown ex-
ceptional versatility across numerous natural lan-
guage processing domains (Sun et al., 2025; Chen
et al., 2024b). Building upon the foundational
capabilities of LLMs, Vision-Language Models
(VLMs) (Liu et al., 2024b; Zhu et al., 2024) in-
tegrate visual recognition and language under-
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!Code is available at https://github.com/ivy3h/SCL.
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Figure 1: Comparison of inference-based and training-
based self-correction. Inference-based methods aim to
refine an initial response over K iterations, keeping
model parameters fixed. Training-based methods focus
on training the model to directly generate high-quality
initial responses without iterative refinement.
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standing by combining pre-trained LLMs and vi-
sion models through instruction fine-tuning, lead-
ing to significant advancements in multimodal
tasks (Huang et al., 2024b; Peng et al., 2024).

Despite their robust vision-language understand-
ing capabilities, VLLMs are still prone to generating
inaccurate information (Wu et al., 2024b; Fan et al.,
2025; He et al., 2025; Zhang et al., 2025). Self-
correction, an approach enabling models to identify
and rectify mistakes in their outputs (Kamoi et al.,
2024), is thus a promising method for enhancing
the quality of VLM-generated responses. While
previous studies have predominantly focused on
self-correction in LLMs, the self-correction capa-
bilities of VLMs remain underexplored. Given that
VLMs integrate visual and linguistic information
during reasoning, self-correction in VLMs presents
additional challenges. This complexity arises from
the inherent difficulty of accurately aligning and
rectifying multimodal data, underscoring the criti-
cal need for a systematic investigation into VLM
self-correction to advance their performance in
vision-language reasoning tasks.

Existing self-correction strategies focus on the
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inference stage without parameter updates (Madaan
et al., 2023; Shinn et al., 2023; Li et al., 2024; Liu
et al., 2024a). These methods typically involve
instructing models to revise their initially gener-
ated answers by leveraging self-correction prompts.
While prior work has demonstrated the effective-
ness of inference-time self-correction in improv-
ing LLM performance on reasoning tasks (Madaan
et al., 2023), and such approaches offer advan-
tages like no dedicated training cost and opera-
tional simplicity, recent studies have reported con-
tradictory findings (Huang et al., 2024a; Xu et al.,
2024). This controversy highlights two main short-
comings of inference-time self-correction: (1) Un-
reliable performance: The effectiveness of self-
correction is highly sensitive to the formulation of
self-correction prompts (Li et al., 2024). (2) Lim-
itations of models’ reasoning abilities: Without
additional training to enhance their intrinsic rea-
soning capabilities, models often struggle to effec-
tively self-correct when confronted with identical
challenging tasks (Kamoi et al., 2024).

Besides these two challenges, a crucial distinc-
tion between existing self-correction methods dur-
ing the inference stage and the more natural human
self-correction process lies in their correction goals.
As illustrated in Figure 1, the former approach fo-
cuses on better refinement, specifically enabling the
model to correct its initial response through addi-
tional revisions (Madaan et al., 2023). Conversely,
the latter approach emphasizes better initial gener-
ation, aiming to provide the correct answer on the
first attempt without subsequent revisions (Zhang
et al., 2024a,b; Tong et al., 2024). This discrepancy
indicates that current inference-time self-correction
methods offer only a temporary solution for rec-
tifying mistakes. While a model can correct mis-
takes in its generated content through iterative self-
correction, its underlying reasoning ability remains
unchanged. Consequently, the model may continue
to produce suboptimal answers when faced with
identical questions in the future, leading to ineffi-
cient resource expenditure on repeated refinement.
Therefore, we emphasize the ultimate aim of self-
correction: not merely to fix initial mistakes but to
fundamentally improve the model’s capability to
generate correct answers directly.

In this paper, we investigate the self-correction
capabilities of VLMs through two research ques-
tions (RQs): (1) Inference-based self-correction
mechanisms: Can VLMs perform self-correction
during inference without external feedback?

(2) Training-based self-correction mechanisms:
Can VLMs improve their performance by learning
from their self-correction process and prevent simi-
lar future errors? Both RQs emphasize the concept
of self, exploring the intrinsic abilities of VLMs
to self-correct autonomously. For inference-based
mechanisms, we design three distinct visual self-
correction prompts. These prompts guide VLMs to
critically examine their initial responses by scruti-
nizing input image details, understanding contex-
tual cues, and comprehensively interpreting scenes.
For training-based mechanisms, we propose Self-
Correction Learning (SCL), which utilizes Direct
Preference Optimization (DPO) (Rafailov et al.,
2023) to empower VLMs to self-improve by learn-
ing from their own generated self-correction prefer-
ence data. The preference dataset, SELFCORSET,
is constructed based on the intrinsic self-correction
process during inference, where we designate the
correct responses as preferred and the incorrect
responses as disfavored.

We evaluate the intrinsic self-correction abilities
of VLMs and the efficacy of SCL across multiple-
choice questions (MCQ) benchmarks. Experimen-
tal results demonstrate that while VLMs initially
struggle with intrinsic self-correction, they can ben-
efit from learning from their self-correction sam-
ples. Specifically, VLMs fine-tuned with SCL are
better able to avoid previous errors and exhibit supe-
rior performance compared to existing preference
optimization methods for VLMs.

Our main contributions are as follows: Firstly,
we define the ultimate objective of self-correction
as not only rectifying initial errors but fundamen-
tally enhancing a model’s ability to generate accu-
rate responses directly. Secondly, we systemati-
cally evaluate the self-correction abilities of VLMs
during inference by developing three visual self-
correction prompts. We further analyze the reliabil-
ity of inference-based self-correction mechanisms.
Thirdly, we introduce Self-Correction Learning
(SCL), a novel approach that enables VLMs to
self-improve via DPO by leveraging self-generated
preference data. Our findings demonstrate the ef-
fectiveness of SCL and underscore the advantages
of training-based self-correction mechanisms.

2 Related Work

Vision-Language Models and Preference Fine-
Tuning. Vision-Language Models (VLMs), such
as GPT-4o0 (OpenAl, 2024a), MiniGPT-4 (Zhu
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et al., 2024), and LLaVA-1.5 (Liu et al., 2024b),
integrate the encoding of visual and textual data
to solve various multimodal tasks such as im-
age classification (Peng et al., 2024) and action
recognition (Deng et al., 2024). Human prefer-
ence alignment techniques have been widely ap-
plied to VLMs to train these models to gener-
ate content aligning with human intentions (Chen
et al., 2024e). For instance, Silkie constructs a
large-scale multimodal preference dataset anno-
tated by GPT-4V, and distills these preferences
into VLMs via Direct Preference Optimization
(DPO) (Li et al., 2023b). Preference Optimiza-
tion in VLLM with Al-Generated Dispreferences
(POVID) utilizes preference fine-tuning to mitigate
hallucinations (Zhou et al., 2024a). Calibrated Self-
Rewarding (CSR) incorporates an iterative learning
and rewarding paradigm into preference fine-tuning
for modality alignment (Zhou et al., 2024b). Simi-
larly, Inner Monologue Multi-Modal Optimization
(IMMO) utilizes a combination of supervised learn-
ing and reinforcement learning approaches, per-
forming an inner monologue to enhance model per-
formance on complex vision-language tasks (Yang
et al., 2024). While prior studies primarily achieve
VLM alignment with human preferences through
external feedback from humans or other language
models, our work focuses on the self-improvement
of VLMs through preference fine-tuning.
Intrinsic Self-Correction in Large Language
Models. Self-correction in Large Language Mod-
els (LLMs) aims to guide these models in rectifying
their flawed generated content, such as harmful out-
puts (Phute et al., 2024). Intrinsic self-correction
refers to a self-correction paradigm during infer-
ence where a model revises its output solely by
leveraging its inherent capabilities and the input
context, without external feedback (Huang et al.,
2024a; Kamoi et al., 2024; Liu et al., 2024a). This
iterative, multi-turn self-correction process is dis-
tinct from single-turn test-time inference of GPT-
ol (OpenAl, 2024b). While recent research has
demonstrated the effectiveness of intrinsic self-
correction (Madaan et al., 2023; Shinn et al., 2023;
Dhuliawala et al., 2024; Li et al., 2025), some stud-
ies indicate that LLMs face challenges with it. For
instance, intrinsic self-correction may sometimes
decrease output quality (Huang et al., 2024a) and
potentially introduce bias (Xu et al., 2024). These
conflicting results suggest that the self-correction
ability of LLMs remains unreliable without exter-
nal feedback. Previous work has primarily explored

the intrinsic self-correction abilities of LLMs on
unimodal tasks like arithmetic reasoning. Our study
investigates the intrinsic self-correction abilities of
VLMs on visual and language reasoning tasks.
Improvement in Language Models and Vision-
Language Models. The enhancement of Lan-
guage Models (LMs) can be broadly classified
into self-improvement and external improvement.
Self-improvement in LMs relies on their ability to
learn from the data they generate, whereas exter-
nal improvement involves leveraging external mod-
els or tools to enable LMs to learn from provided
data. Regarding self-improvement, Huang et al.
(2023); Wang et al. (2025b) show that LLMs can
self-improve by learning from self-generated data
selected via self-consistency (Wang et al., 2023).
Zhang et al. (2024b); Wu et al. (2024a); Huang
et al. (2025b) leverage the LLM’s self-evaluation
capability to generate training signals, such as for
mitigating factual inaccuracies and enhancing re-
sponse personalization. Kumar et al. (2024) in-
troduce SCoRe, a multi-turn online reinforcement
learning method that achieves self-correction im-
provements by training on self-generated data and
utilizing a two-stage training process to prevent be-
havior collapse. Additionally, Wang et al. (2025a)
propose Self-Improvement Modality Alignment
(SIMA) which uses in-context self-critic to improve
the modality alignment of VLMs. In SIMA, the
model generates two one-turn responses for each
question using greedy decoding and temperature
sampling. It is then prompted to critique these
responses as preferred or disfavored, thereby con-
structing a preference dataset. Distinguished from
SIMA, our work constructs a preference dataset
using pairs of initial and revised responses from
VLMs, generated during intrinsic self-correction.
For external improvement, Tong et al. (2024)
demonstrate that error data generated by strong
LLMs can enhance the reasoning capabilities of
weaker LLMs. Han et al. (2024) show that small
LMs can enhance their self-correction capabil-
ities through instruction fine-tuning. However,
this method still requires the generation of self-
modification responses. Our work emphasizes that
the goal of self-correction is not only to correct
mistakes iteratively, but rather to enhance the mod-
els’ ability to produce correct answers directly. We
explore whether VLMs can improve the quality
of their responses without further refinement steps
by leveraging both their successful and erroneous
intrinsic self-correction data for self-improvement.
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Figure 2: SCL begins with intrinsic self-correction applied to the VLM, generating four types of self-correction
samples. Correct responses from Type 2 and incorrect responses from Type 3 samples are designated as preferences
and disfavors, respectively, to construct the SELFCORSET preference dataset. The VLM then undergoes DPO on

SELFCORSET for self-improvement.

3 Methodology

The framework of Self-Correction Learning (SCL)
is illustrated in Figure 2, comprising three stages:
inference, dataset construction, and preference fine-
tuning. In the inference stage, we propose three
visual self-correction prompts and investigate the
intrinsic self-correction capabilities of VLMs to ad-
dress RQ1. Subsequently, in the dataset construc-
tion and fine-tuning stage, we create SELFCORSET
for each VLM based on its intrinsic self-correction
and explore RQ2 through DPO.

3.1 Inference: Intrinsic Self-Correction

Intrinsic self-correction comprises two distinct
stages: initial answer generation and refined an-
swer generation. During the initial answer gen-
eration stage, a Standard Prompt (SP) presents
the complete question to the VLM, ensuring all
requirements are included. For refined answer gen-
eration, the VLM engages in an iterative multi-turn
process to enhance its initial responses. Due to
computational resource constraints, we limit VLMs
to a single refinement turn. We apply a critical
prompt (Huang et al., 2024a) and develop three
visual self-correction prompts to evaluate VLMs’
intrinsic self-correction. The critical prompt di-
rectly guides models to detect issues in their initial
responses. The visual self-correction prompts in-
struct models to identify problems by scrutinizing
input image details, comprehending the portrayed
context, and comprehensively interpreting entire
scenes. Here are the prompts:

(1) Critical Prompt (CP): Review your previ-
ous answer and find problems with your answer.
Based on the problems you found, improve your
answer.

(2) Comprehensive Detail Prompt (VP-1): Re-
view your previous answer and ensure that all rel-

evant aspects of the image have been considered.
Are there any elements or details that you missed?
Based on your review, improve your answer.

(3) Contextual Understanding Prompt (VP-
2): Review your contextual understanding of the
image. Have you correctly interpreted the overall
context and purpose of the scene? Based on your
review, improve your answer.

(4) Comprehensive Scene Analysis Prompt
(VP-3): Review your answer and ensure that your
understanding of the image is comprehensive and
detailed. Are there any aspects of the scene that
you have omitted or misinterpreted? Based on your
review, improve your answer.

3.2 Data Construction: SELFCORSET

We construct the preference dataset SELFCORSET
using intrinsic self-correction outputs generated
from multiple-choice question (MCQ) samples.
These MCQ samples are obtained from several mul-
timodal MCQ datasets, including MMStar (Chen
et al., 2024c), MMBench (Liu et al., 2024c¢),
SEEDBench (Li et al., 2023a), ScienceQA (Lu
et al., 2022), MMT-Bench (Ying et al., 2024), and
MMEvalPro (Huang et al., 2025a). For MMEval-
Pro, all available samples are utilized. For the
remaining datasets, 500 samples are randomly
selected for evaluation, with the rest allocated
for SELFCORSET construction. Intrinsic self-
correction is conducted using the VP-1 prompt,
identified as the best-performing self-correction
prompt overall (Table 1).

The construction process for the SELFCORSET
dataset, using a VLM denoted as M, is
outlined as follows: Given an MCQ sam-
ple s = {Question,Image, Answer}, we
first perform intrinsic self-correction with VLM
M to obtain a self-correction sample s =
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review, improve your answer.

Question How many chairs are present in the image? A: Four B: Three C: Two D: Five

Initial response In the image, there are two blue chairs. So, the answer is C: Two.
Self-correction prompt Review your previous answer and ensure that all relevant aspects of the
image have been considered. Are there any elements or details that you missed? Based on your

Refined response After reviewing the image, | can confirm that there are indeed three chairs
present: two blue ones and one white one. Therefore, the correct answer is B: Three.

Correct answer: B

A: cube B: sphere C: cylinder

review, improve your answer.

the final answer is B: sphere.

Question The other object that is the same color as the large shiny thing is what shape?

Initial response The other object that is the same color as the large shiny thing is a cylinder. The
reasoning behind this is that among the given options, only a cylinder has a similar shape to the
large shiny object, which is also a cylinder. Therefore, the final answer is C: cylinder.

Self-correction prompt Review your previous answer and ensure that all relevant aspects of the
image have been considered. Are there any elements or details that you missed? Based on your

Refined response After reviewing the image, | can see that there are four objects in total: two green cubes, one purple
cylinder, and one large shiny object. The question asks for the shape of the object that is the same color as the large shiny
thing. Among the given options, only a sphere has a similar shape to the large shiny object, which is also a sphere. Therefore,

Correct answer: C

Figure 3: Two examples of intrinsic self-correction processes generated by InternLM-XComposer-2-7B.

{Question, Image, IR, RR}, where I R denotes
the initial response and RR is the refined re-
sponse. In this process, M generates I R when
prompted with the initial question and image.
Subsequently, RR is generated as a revision of
IR after M receives the self-correction prompt.
Based on the correctness of IR and RR, each
self-correction sample s’ is classified into four dis-
tinct types: Specifically, the corresponding correct-
ness of I R and RR for the four types of samples
are as follows: Type 1 (correct=-correct), Type 2
(incorrect=-correct), Type 3 (correct=-incorrect),
and Type 4 (incorrect=-incorrect). The =- symbol
denotes the transition of correctness from the initial
response (I RR) to the refined response (RR). Type
2 samples represent successful self-corrections, as
the model effectively revises an incorrect I R into
a correct RR. Conversely, Type 3 samples indicate
detrimental self-corrections, where the model er-
roneously alters a correct I R to an incorrect one.
The SELFCORSET preference dataset is then con-
structed using Type 2 and Type 3 samples accord-
ing to the following criterion: RR from Type 2
samples and I R from Type 3 samples are desig-
nated as preferred responses, as they represent cor-
rect answers. In contrast, / R from Type 2 samples
and RR from Type 3 samples are classified as dis-
favored responses. Figure 3 presents two examples
of Type 2 and Type 3 self-correction outputs gener-
ated by InternL.M-XComposer-2-7B. In the Type 2
example, the model successfully revises an incor-

rect IR (C: Two) to a correct RR (B: Three) after
reviewing the image. Conversely, the Type 3 exam-
ple shows a detrimental self-correction, where the
model incorrectly alters an initially correct IR (C:
cylinder) to an incorrect RR (B: sphere).

We construct three distinct SELFCORSET, one
for each of the three evaluated VLMs: LLaVA-
V1.5-7B (Liu et al., 2024b), LLaVA-V1.5-13B (Liu
et al., 2024b), and MiniCPM-Llama3-V2.5 (Yao
et al., 2024). This construction emphasizes the
uniqueness of self, as different VLMs possess dis-
tinct intrinsic self-correction behaviors and thus
generate unique sets of self-correction samples.
Each sample comprises a question, an image, a pre-
ferred response, and a disfavored response. Data
samples are provided in Appendix A.

3.3 Training: Learn from Self-Correction

We fine-tune the VLM using Direct Pref-
erence Optimization (DPO) (Rafailov et al.,
2023) on its dedicated preference dataset, SELF-
CORSET. We denote SELFCORSET as Dy, =
{(QW, 1), RY. Rﬁl)) N |, where Q) represents
the inp(u)t question, (@) is the corresponding im-

age, R is the preferred response, and Rg) is the
disfavored response. The DPO loss is defined as:

L(mo; mret) = —E(Q,1,R.,R,) l0g o f (703 Trer)] (1)

o (Rc|Q,1 7o (Rr|Q,I
where o represents the logistic sigmoid function,

my denotes the current VLM policy, s denotes
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RealWorldQA MMStar MMBench SEEDBench ScienceQA MMT-Bench Rank

SP 61.70 50.40 79.00 66.80 75.40 49.00 1.17
+CP 38.56 40.20 68.60 62.80 69.40 37.80 4.17
MiniCPM-Llama3-V2.5 + VP-1 48.50 46.20 76.40 64.80 73.00 37.00 3.00
+ VP-2 47.32 48.40 61.00 64.40 69.00 38.00 3.33
+ VP-3 43.00 48.00 54.00 69.80 54.40 40.60 333
SP 60.13 47.40 76.80 69.00 78.20 48.80 1.17
+CP 53.86 37.00 61.60 58.00 52.60 38.40 4.83
InternLM-XComposer-2-7B  + VP-1 54.50 48.00 70.80 67.00 62.60 38.60 2.50
+ VP-2 55.03 45.00 64.40 60.60 49.00 41.40 3.00
+ VP-3 54.51 39.00 61.80 59.60 58.80 39.00 3.50
SpP 50.46 32.20 68.40 65.60 65.80 36.00 1.00
+CP 36.60 24.00 54.00 36.20 56.80 32.00 2.33
LLaVA-V1.5-7B + VP-1 43.01 22.80 57.20 42.40 58.20 29.00 2.33
+ VP-2 17.78 18.60 45.40 29.00 45.80 12.00 5.00
+ VP-3 36.21 20.40 54.00 37.00 54.80 28.40 3.67

Table 1: Quantitative comparisons (%) of MiniCPM-Llama3-V-2.5, InternLM-XComposer-2-7B, and LLaVA-V1.5-
7B with intrinsic self-correction. Best results are bolded, and second-best are underlined. Rank indicates the overall
performance ranking across the evaluated benchmarks (lower is better).

the reference policy, and 3 is a hyperparameter
that controls the strength of the penalty against
deviating from the reference policy. Both 7y and
Tt are initialized with the same weight.

4 Experiments

4.1 Experimental Settings

Test Models. For intrinsic self-correction eval-
uation, we conduct experiments on three open-
source VLMs: MiniCPM-Llama3-V2.5 (Yao et al.,
2024), InternLM-XComposer-2-7B (Dong et al.,
2024), and LLaVA-V1.5-7B (Liu et al., 2024b).
MiniCPM-Llama3-V2.5 is an advanced VLM with
a total of 8B parameters. InternLM-XComposer-
2-7B is designed for the comprehension and com-
position of free-form text-image pairs. LLaVA-
V1.5-7B is a widely used VLM trained with visual
instructions. For self-correction training evaluation,
we conduct experiments on MiniCPM-Llama3-
V2.5, InternLM-XComposer-2-7B, LLaVA-V1.5-
7B, and LLaVA-V1.5-13B.

Evaluation Benchmarks. We conduct evalua-
tions on eight multimodal multiple-choice question
(MCQ) benchmarks: RealWorldQA (xAl, 2024),
MMStar (Chen et al., 2024¢c), MMBench-en (Liu
et al., 2024c), SEEDBench (Li et al., 2023a), Sci-
enceQA (Lu et al., 2022), MMT-Bench (Ying et al.,
2024), MMMU (Yue et al., 2024), and AI2D (Kem-
bhavi et al., 2016). For intrinsic self-correction, we
use the first six datasets with the following sample
counts for evaluation: RealWorldQA (765), MM-
Star (500), MMBench (500), SEEDBench (500),
ScienceQA (500), MMT-Bench (500). We further

incorporate two benchmarks to evaluate fine-tuned
models: MMMU (1050) and AI2D (3088). We
adopt accuracy and average rank as the metrics.

Training Baselines. We compare SCL
with three preference optimization methods:
POVID (Zhou et al., 2024a), CSR (Zhou et al.,
2024b), and SIMA (Wang et al., 2025a). POVID
leverages GPT to enhance the quality of ground
truth answers and employs DPO for training. CSR
incorporates iterative learning and a reward-based
paradigm into its preference fine-tuning process.
SIMA deploys in-context self-critic to construct
its preference dataset and utilizes DPO to enhance
the comprehension capabilities of VLM. We also
compare SCL with Supervised Fine-Tuning (SFT),
which directly utilizes the preferred responses of
SELFCORSET for fine-tuning.

Implementation Details. Intrinsic  self-
correction is conducted on a total of 26,981 sam-
ples. The resulting SELFCORSET dataset sizes
for each VLM are as follows: MiniCPM-LIlama3-
V2.5 (1,853), InternLM-XComposer-2-7B (2,361),
LLaVA-V1.5-7B (4,797), and LLaVA-V1.5-13B
(738). For computational efficiency, we adopt
LoRA(Hu et al., 2022), a widely recognized
Parameter-Efficient Fine-Tuning technique, for
training. We set the LoRA rank as 8. Training for
7/8B models is conducted on a single 4090 24GB
GPU with 1.5 GPU hours per epoch. Training for
13B models is conducted on a single V100 32GB
GPU with 1.5 GPU hours for three epochs.
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RealWorldQA MMStar MMBench SEEDBench ScienceQA MMT-Bench MMMU AI2D Rank

LLaVA-V1.5-7B 50.90 32.97 70.24 66.64 65.48 35.40 32.25 5271 4.50
+POVID 51.50 33.68 71.44 65.52 64.60 35.04 33.96 53.59 3.25
+CSR 51.03 32.59 70.44 65.12 64.76 33.76 34.63 53.34 4.25
+SIMA 49.41 32.40 71.04 64.68 64.68 34.84 35.14 53.01 4.38
+SFT 52.21 35.59 70.72 67.12 66.48 36.36 3295 52.73 3.00
+SCL(Ours) 52.71 36.11 71.00 67.84 66.56 36.96 33.62 54.81 1.63
LLaVA-V1.5-13B 54.85 35.25 74.40 69.40 71.36 40.08 34.88 5595 2.75
+SFT 56.59 36.33 75.16 69.32 71.88 40.48 3529 56.00 1.88
+SCL(Ours) 56.03 37.60 75.40 68.56 72.16 41.16 35.87 58.92 1.38
InternLM-XComposer-2-7B 60.45 47.70 76.60 68.90 78.30 49.20 56.48 80.27 3.00
+SFT 62.03 48.90 77.80 70.20 79.50 50.20 5795 80.66 1.75
+SCL (Ours) 62.23 49.60 77.00 70.60 79.90 50.20 58.20 81.11 1.13
MiniCPM-Llama3-V2.5 61.70 50.40 79.00 66.80 75.40 49.00 4524 77.56 3.00
+SFT 62.35 52.40 80.80 68.40 76.00 49.80 47.43 78.01 2.00
+SCL(Ours) 63.53 53.00 81.40 69.20 76.40 50.40 47.52 78.72 1.00

Table 2: Quantitative comparisons (%) of LLaVA-V1.5-7B, LLaVA-V1.5-13B, InternLM-XComposer-2-7B, and
MiniCPM-Llama3-V2.5 with SCL and baseline methods. Best results are bolded, and second-best are underlined.
Rank indicates the overall performance ranking across the evaluated benchmarks (lower is better).
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Figure 4: Distribution of self-correction examples of
MiniCPM-Llama3-V2.5 and InternLM-XComposer-2-
7B under VP-1 on ScienceQA.

4.2 Results and Analysis

VLMs struggle in intrinsic self-correction. Ta-
ble 1 presents the results of VLMs regarding in-
trinsic self-correction. It can be observed that, in
the majority of cases, VLMs achieve higher accu-
racy prior to intrinsic self-correction. For instance,
MiniCPM-Llama3-V2.5’s accuracy is 61.70% in
its initial generation but drops to only 48.50% af-
ter intrinsic self-correction under the VP-1 prompt.
These results consistently indicate that VLMs strug-
gle to achieve effective performance improvement
through intrinsic self-correction. Furthermore, the
effectiveness of intrinsic self-correction varies sig-
nificantly across different models, tasks, and self-
correction prompts. While MiniCPM-Llama3-
V2.5 improves its performance on SEEDBench
with the VP-3 prompt (66.80% — 69.80%), it fails
to self-correct on other benchmarks, highlighting
the inherent instability of intrinsic self-correction.

To further illustrate the correctness transition

during intrinsic self-correction, Figure 4 dis-
plays the distribution of self-correction sample
types for MiniCPM-Llama3-V2.5 and InternLM-
XComposer-2-7B on ScienceQA under the VP-
1 prompt. The proportion of Type 3 sam-
ples (correct=-incorrect) exceeds that of Type 2
(incorrect=-correct) for both models, indicating
that while models can revise incorrect answers,
they more frequently erroneously alter initially
correct answers. Consistent with the findings
of Huang et al. (2024a) regarding LLMs, which
reports degraded performance following intrin-
sic self-correction, our results suggest that VLMs
struggle to rectify their own answers reliably.

VLMs self-improve from their self-correction
examples. Table 2 shows the performance of SCL
in comparison to various preference optimization
baselines. SCL achieves state-of-the-art perfor-
mance for LLaVA-V1.5-7B on six benchmarks.
While SCL exhibits suboptimal performance on
MMMU, these results indicate that the preference
data derived from self-correction samples effec-
tively fine-tunes these models. All four evaluated
VLMs achieve the best overall performance as indi-
cated by the Rank metric. Despite using a relatively
small fine-tuning dataset, our findings demonstrate
that VLMs can benefit from both successful and
erroneous self-correction samples. This suggests
that VLMs possess a human-like behavior, i.e., ef-
fectively learning by internalizing the distinction
between successful corrections and the insights
gained from analyzing erroneous attempts. This
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ability enables them to efficiently enhance their
comprehensive reasoning capabilities.

4.3 Case Study

Figure 5 presents the initial responses generated by
LLaVA-V1.5-7B before and after preference fine-
tuning. Prior to fine-tuning, the model incorrectly
identified the sunrise as the primary object, mis-
interpreting it as the element that establishes the
mood and atmosphere of the scene. Following fine-
tuning with SCL, the model correctly recognizes
that the question seeks the object occupying the
most spatial area in the image and subsequently
produces the correct answer, demonstrating the
model’s ability to avoid previous errors through
preference fine-tuning.

5 Further Studies and Analysis

5.1 Reliability of Successful Intrinsic
Self-Correction

We observe that some successful refinements, clas-
sified as Type 2 self-correction cases, stem from
the model’s incidental guessing of the correct an-
swer after receiving a self-correction prompt, rather
than from proper reasoning of the task. For in-
stance, when presented with an image that does not
contain a teapot, models might respond with “The
teapot may exist behind the woman...” and then
conclude that a teapot is present in the image after
self-correction. This type of refinement reflects a
degree of uncertainty. Moreover, the reasoning be-
hind seemingly successful refinements may not be
entirely accurate. For example, in the Type 2 case
presented in Figure 3, the model correctly identifies
the number of chairs after self-correction but fails
to accurately determine their colors. These obser-
vations on the reliability of successful refinements
collectively indicate that VLMs possess limited ca-
pabilities for truly accurate refinement. Further
supporting data is provided in Appendix B.
Future research could explore the internal infor-
mation flow that mediates the transition from initial
to refined responses during intrinsic self-correction,
for instance, by visualizing attention weights to
improve both interpretability and reliability. More
importantly, cases where the final answer is correct
but the reasoning is flawed can negatively impact
the self-correction mechanism. Future work should
focus on designing more detailed evaluation criteria
that account for the correctness of intermediate rea-
soning steps, such as by leveraging a strong model

‘ TurnO0 Turn1 Turn 2 Turn 3

RealWorldQA (VP-1) | 61.70 48.50 39.22 42.61
MMStar (VP-2) 50.40 48.40 49.20 46.80
MMBench (VP-1) | 79.00 76.40 75.60 72.60
SEEDBench (VP-3) | 66.80 69.80 63.80 64.00

Table 3: Results (%) of MiniCPM-Llama3-V2.5 with
multi-turn intrinsic self-correction.

as an MLLM-as-a-judge (Chen et al., 2024a).

5.2 Multi-Turn Intrinsic Self-Correction

Table 3 presents the results of multi-turn intrin-
sic self-correction for MiniCPM-Llama3-V2.5 on
four benchmarks. Turn O represents the initial gen-
eration, while Turns 1 to 3 illustrate subsequent
intrinsic self-correction iterations. Notably, the ac-
curacy of the refined answers consistently degrades
over multiple turns, ultimately falling below the ini-
tial accuracy after three correction iterations. This
decline suggests that VLM find it challenging to
achieve effective intrinsic self-correction solely by
increasing the number of correction iterations.
Despite this observed degradation, multi-turn in-
trinsic self-correction may generate a richer, more
diverse set of self-correction samples. Each itera-
tive attempt may produce different types of errors
when responding to the same question, thereby
providing varied erroneous data for preference fine-
tuning. Therefore, future research could investigate
whether VLMs can derive greater benefits from
these additional, potentially more informative sam-
ples, even if the multi-turn accuracy diminishes.

5.3 Failure of VLM Intrinsic Self-Correction

We attribute the observed failures of intrinsic self-
correction in VLMs to several potential factors:
(1) Limited ability to judge correctness (Huang
et al., 2024a): VLMs may lack the fundamental
reasoning capabilities required to reliably detect
and revise their own errors. The inherent multi-
modal nature of these models—integrating both
visual and textual inputs—introduces additional
complexity, making it difficult for them to synthe-
size information across modalities and accurately
evaluate correctness. (2) Susceptibility to prompt
bias (Li et al., 2024): As demonstrated in Tablel,
self-correction performance varies notably with dif-
ferent prompts, suggesting a sensitivity to prompt
design. Existing self-correction prompts may not
sufficiently capture the intricate interplay between
visual and textual content, which may impair the
models’ ability to effectively revise their responses.
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Before A. The sunrise.

After B. The grassy field. ™

Question What is the primary subject of the image? A: The sunrise B: The grassy field C: The trees D: The fog

1. The image features a grassy field with a sunrise in the background. 2. The sunrise is the primary subject of
the image, as it sets the mood and atmosphere of the scene. 3. The grassy field and the fog contribute to
the overall aesthetic of the image, but the sunrise is the main focus.

1. The primary subject of the image is the grassy field. 2. The image features a foggy sunrise, which adds a
serene and atmospheric quality to the scene. 3. However, the focus is on the grassy field, which is the main
subject of the photo. 4. The other elements, such as the trees and the sunrise, contribute to the overall
composition and mood of the image, but they do not overshadow the grassy field as the primary subject.

Figure 5: LLaVA-V1.5-7B successfully answers the question after learning from its self-correction samples.

(3) Lack of a grounding mechanism: In contrast
to self-correction methods that utilize external feed-
back or oracle labels (Huang et al., 2024a; Shinn
et al., 2023), intrinsic self-correction operates with-
out explicit supervision. This absence of ground-
ing guidance limits the model’s ability to converge
on more accurate responses, resulting in ineffec-
tive or even detrimental revisions. Given these
challenges, future work could explore the design
of more diverse and task-specific self-correction
prompts tailored for multimodal settings. Addi-
tionally, incorporating a strong teacher model to
provide instructional feedback, or integrating ora-
cle labels during the self-correction process, may
help improve the reliability of revisions.

5.4 Effect of the Number of Training Samples

The limited proportion of Type 2 and Type 3 data,
as illustrated in Figure 4, coupled with the tendency
of more advanced models to generate fewer sam-
ples of these types, results in a relatively small
sample size for SELFCORSET. To explore the in-
fluence of fine-tuning data quantity, we randomly
divide SELFCORSET into five subsets, increasing
in 20% increments from 0%. We evaluate the im-
pact of these varying training set sizes on the per-
formance of LLaVA-V1.5-7B on SEEDBench and
AI2D, with the accuracy trend illustrated in Fig-
ure 6. Notably, even with smaller training datasets,
the fine-tuned model exhibits significant perfor-
mance gains. For instance, the model fine-tuned
on the p = 0.4 subset achieves an accuracy of
67.80% on SEEDBench, reflecting a 2.2% improve-
ment over the untrained model. These results in-
dicate that SCL effectively improves the model’s
performance despite the relatively modest size of
SELFCORSET. Moreover, as the number of train-
ing samples increases, the overall accuracy consis-
tently improves, showcasing the potential of SCL
with larger preference datasets. Therefore, future

-~ SEEDBench AI2D

I/.\l-/'./ss..so

70

67.80
65 66.40 66.60 67.40
I+
g 60
55
50
0.2 0.4 0.6 0.8 1
p

Figure 6: Results of LLaVA-V1.5-7B under different
proportions (p) of SELFCORSET.

research could explore more straightforward and
computationally efficient data augmentation meth-
ods to scale SELFCORSET and investigate SCL’s
performance under large-scale data conditions.

6 Conclusion

This work investigates the intrinsic self-correction
capabilities and limitations of Vision-Language
Models (VLMs) during the inference stage, and
their potential for self-improvement through fine-
tuning, across various multiple-choice question
(MCQ) benchmarks. We propose Self-Correction
Learning (SCL), a novel framework that employs
Direct Preference Optimization (DPO) to enable
VLMs to learn from their own self-correction re-
sponses. This approach aims to fundamentally en-
hance the models’ ability to generate correct an-
swers directly, rather than merely refining initial
errors. Our experiments reveal that while VLMs
face significant challenges and exhibit unreliable
performance during intrinsic self-correction, they
can effectively leverage their own self-correction
samples (both successful and erroneous) to self-
improve without requiring external feedback.
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Limitations

Given the challenges of evaluating absolute correct-
ness in open-ended multimodal tasks, this study pri-
marily focuses on MCQ benchmarks to assess the
accuracy of both initial and refined responses. How-
ever, this design inherently limits the exploration
of more complex vision understanding tasks, such
as visual question answering (Chen et al., 2025),
video question answering (Chen et al., 2024d; Fu
et al., 2024), and complex transportation system
navigation (Li et al., 2023c). Future work could
investigate fine-grained evaluation methods appli-
cable across a wider range of multimodal tasks, as
well as computational resource constraint-aware
adaptive reasoning (Huang et al., 2025c).

The current construction of SELFCORSET is tai-
lored to each VLM, leveraging the model’s own
preferred and disfavored responses to enable more
targeted self-improvement. However, this design
limits generalizability across different models. A
potential direction for future work is to develop a
unified version of SELFCORSET that can be ap-
plied across multiple VLMs. This would involve
identifying common error patterns shared among
VLMs and designing universal prompts that gener-
alize well across different architectures.
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A Data Examples of SELFCORSET

Our work introduces SELFCORSET, a novel dataset
derived from the intrinsic self-correction pro-
cesses of Vision-Language Models (VLMs) dur-
ing inference. For each sample, the dataset
captures both the VLM’s initial and refined
responses.  Specifically, SELFCORSET com-
prises Type 2 (incorrect=-correct) and Type
3 (correct=incorrect) self-correction instances,
where the correct responses are designated as pre-
ferred and the incorrect ones as disfavored. In this
section, we provide illustrative examples of the
dataset content (Table 4 to 9).

B Examples Supporting Further Studies

In our further studies, we argue that VLMs often
exhibit limited capabilities for genuinely accurate

refinement, and that even seemingly successful self-
corrections can be unreliable due to flawed under-
lying reasoning. To substantiate this claim, we
present two illustrative examples in Table 10.

In the first example, the model’s refined response
relies on the misleading assumption that a “Do
not board” sign directly indicates a lack of crowd-
ing on the platform. However, platform crowding
should primarily be assessed based on crowd den-
sity. Although the model ultimately selects the
correct answer (B. no), this decision stems from
an over-reliance on a single, potentially misleading
cue rather than a comprehensive understanding of
the entire visual scenario.

In the second example, the model confuses parti-
cle size with concentration during the refinement
process. The model infers concentration levels
from the size of the purple particles, entirely ne-
glecting the actual number of particles present.
While the model successfully corrects the error
in its initial response, the self-correction process
should have involved a proper reassessment of the
quantity of purple particles in the solution, not their
individual size.
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Q: What is the direction of this pull? A. toward her hand B.
away from her hand

I:

IR (disfavored): B. away from her hand. The person is pulling
a bottle away from their hand, which indicates that they are
moving the bottle in the opposite direction of their hand. This
action suggests that they are trying to remove the bottle from the
ground or from their hand, rather than placing it there.

RR (preferred): A. toward her hand. Upon reviewing the
image, it is clear that the person is pulling a bottle toward their
hand, rather than away from it. This action suggests that they
are trying to pick up the bottle or place it on the ground. The
person’s hand is positioned above the bottle, indicating that they
are in the process of lifting it.

Q: Detect and give a judgment of the anomalous object within

Q: How would you describe the appearance of the man playing
the drums? A. Young and long-haired B. Middle-aged with
glasses C. Old and bald D. Young with a beard

I: N

IR (preferred): C. Old and bald. The man playing the drums
is described as an older man with a bald head. This suggests that
he is not a young man, and his appearance is not typical of a
young musician. The fact that he is playing drums indicates that
he has some level of skill and experience in the field.

RR (disfavored): A. Young and long-haired. Upon reviewing
the image, it is clear that the man playing the drums is not an
older man with a bald head. Instead, he is described as a young
man with long hair. This suggests that he is not a middle-aged
man, and his appearance is more typical of a young musician.
The fact that he is playing drums indicates that he has some level
of skill and experience in the field

the given image. A. normal B. anomaly
o -

I:
IR (disfavored): B. anomaly. The image shows a group of
people walking on a sidewalk near a body of water. Among
them, there is a person wearing a backpack, which is an unusual
object in this context. The backpack is not a typical item one
would expect to see while walking on a sidewalk, as it is usually
associated with carrying personal belongings or items for outdoor
activities. The presence of the backpack in this scene might
indicate that the person is either on a trip or carrying something
specific, but it is not a common sight in this setting.

RR (preferred): A. normal. After reviewing the image, I
realized that the backpack is not an anomalous object in this
context. It is a common item that people carry while walking on
a sidewalk, especially if they are on a trip or carrying personal
belongings. The presence of the backpack does not indicate that
the person is carrying something specific or that they are on a
trip. Therefore, the backpack is not an anomalous object in this
scene.

Table 4: Type 2 samples of LLaVA-V1.5-7B.

Q: What landmark is this and where is it? A. Mecca in Saudi
Arabia B. Big Ben in London C. The Burj al Arab Hotel in Dubai
D. Tower of Pisa, Italy

I:
IR (preferred): D. Tower of Pisa, Italy. The image features
a tall, white tower with a clock on its side, which is the iconic
Tower of Pisa. The tower is located in Italy, and it is a famous
landmark known for its leaning structure. The presence of a large
group of people around the tower suggests that it is a popular
tourist attraction. The image also shows a clock on the side of
the tower, which is a distinctive feature of the structure.

RR (disfavored): A. Mecca in Saudi Arabia. I apologize for
the confusion in my previous response. After reviewing the
image, I realized that the Tower of Pisa is not the correct answer.
The image features a large clock tower, which is a prominent
landmark in Mecca, Saudi Arabia. The tower is known as the
Abraj Al-Bait Clock Tower and is a significant attraction for
pilgrims visiting the city. The image shows a large group of
people around the tower, indicating its popularity as a tourist
destination. The clock tower’s distinctive design and its location
in Mecca make it the most appropriate landmark in the image.
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Q: How many arrows are there in total in the picture? A. 1 B. 2
C.3D.4

S i Y
~

S~

I:

IR (disfavored): There are a total of 3 arrows in the picture.
The first arrow is pointing upwards, the second arrow is pointing
downwards, and the third arrow is pointing to the right.

RR (preferred): Upon reviewing my previous answer, I realized
that I missed the fact that there are two arrows pointing in the
same direction, which is upwards. Therefore, there are a total
of 4 arrows in the picture. The first arrow is pointing upwards,
the second arrow is pointing upwards as well, the third arrow is
pointing to the right, and the fourth arrow is pointing downwards.

Q: How many species are there in total? A.5B.6C.7D.8E. 9

Common
water flea

Algae

Q: Where do Teal and Dark Khaki intersect on the x-axis? A. 40
B. 44 C.60D. 80

title

e S S N

1 xaxis_label
IR (preferred): To find the intersection of Teal and Dark Khaki
on the x-axis, we need to look at the x-axis values for both lines.
Teal has a value of 40, while Dark Khaki has a value of 60. The
intersection occurs at the point where these two values meet,
which is at 44. Therefore, the answer is B. 44.

RR (disfavored): Upon reviewing my previous answer, | re-
alized that I made an error in my interpretation of the x-axis
values for Teal and Dark Khaki. Teal has a value of 40, while
Dark Khaki has a value of 80. The intersection occurs at the
point where these two values meet, which is at 60. Therefore,
the correct answer is C. 60.

Water snail

e

Kingfisher
I:

IR (disfavored): There are a total of 7 species in the diagram.
The diagram shows the food chain of a water ecosystem, with
each species being connected to the next one through arrows.
The species include algae, water flea, tadpole, great diving beetle,
and tapioca. The arrows indicate the flow of energy and nutrients
from one species to another, as each species consumes the one
before it.

RR (preferred): Upon reviewing my previous answer, [ realized
that I missed one species in the food chain. The correct answer
is 8 species. The diagram shows the food chain of a water
ecosystem, with each species being connected to the next one
through arrows. The species include algae, water flea, tadpole,
great diving beetle, tapioca, and two other species that are not

Tilapia Water plant

|

Great diving
beetle

Tadpole

Q: What color is the Howler Monkey? A. Blue B. Green C.
Brown D. Purple E. Black F. Dark brown G. White

P

IR (preferred): The Howler Monkey in the image is black. The
monkey is sitting on a tree branch, and its color is clearly visi-
ble. The monkey’s black fur stands out against the tree branch,
making it easy to identify the color of the monkey. Therefore,
the correct answer is E. Black.

RR (disfavored): Upon reviewing my previous answer, I no-
ticed that I did not consider the possibility of the monkey’s fur
appearing dark brown in certain lighting conditions. Therefore,
I would like to revise my answer to include the possibility of the
monkey’s fur appearing dark brown or brown. Therefore, the
correct answer is F. Dark brown.

explicitly identified. The arrows indicate the flow of energy and
nutrients from one species to another, as each species consumes
the one before it.

Table 6: Type 2 samples of LLaVA-V1.5-13B.
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Table 7: Type 3 samples of LLaVA-V1.5-13B.



Q: Select the amphibian below. 0: brown tree frog 1: wood-
pecker

I: - 5
IR (disfavored): The image features a frog, which is an am-
phibian. The brown tree frog (option 0) is also an amphibian,
but it is not depicted in the image; therefore, by elimination and
based on the visual characteristics of the animal in the picture,
the correct answer is 1 (woodpecker), as it does not match the
description of the amphibian shown.

RR (preferred): Upon reviewing the context, it’s clear that the
image showcases a frog, which is an amphibian. The correct

Q: Which term matches the picture? A. endotherms B. ec-
totherms

1771 A/

IR (preferred): The picture you provided shows a horse, which
is a mammal. Mammals are endotherms, meaning they can
regulate their body temperature internally. The term that matches
the picture is A. endotherms.

RR (disfavored): I have reviewed my previous answer and
considered all relevant aspects of the image. Based on my review,
I believe that the term ectotherms is more suitable to describe
the horse in the picture because horses are cold-blooded animals
that regulate their body temperature by external heat sources,
rather than internally like endotherms (warm-blooded animals).
Therefore, my final answer is B. ectotherms.

answer should be the amphibian present in the image. Therefore,
the improved answer is 0 (brown tree frog), as it matches the
description of the amphibian depicted in the image.

Q: Which solution has a higher concentration of green particles?
A. neither; their concentrations are the same B. Solution B C.
Solution A

I

Solvent volume: 40 mL Solvent volume: 40 mL.

I:
IR (disfavored): The concentration of particles in a solution
is determined by the volume of the solution and the number of
particles present. In this case, both Solution A and Solution B
have a solvent volume of 40 ml. Since there are more green
particles in Solution A than in Solution B, we can conclude that
Solution A has a higher concentration of green particles. Final
answer: C. Solution A

RR (preferred): After reviewing the image, it is clear that
there are more green particles in Solution B than in Solution
A. Therefore, the concentration of green particles is higher in
Solution B. Final answer: B. Solution B

Solution A Solution B

Q: Which term matches the picture? A. Hawaiian eruption B.
Strombolian eruption

IR (preferred): A Strombolian eruption is characterized by
moderate bursts of expanding gases that eject incandescent lava
fragments, as shown in the image with fiery lava being thrown
into the air. Hawaiian eruptions, on the other hand, are generally
less explosive and produce more fluid lava flows. The term that
matches the picture is B. Strombolian eruption.

RR (disfavored): I apologize for the mistake in my previous
answer. Upon reviewing the image, it is clear that the term that
matches the picture is A. Hawaiian eruption. This is because
the image shows a volcanic eruption with lava flowing and a
bright light at the top of the volcano, which are characteristics
of a Hawaiian eruption. Strombolian eruptions typically involve
explosive ejections of solid material and do not necessarily ex-
hibit such visible lava flows or bright lights as seen in the image.
Therefore, I have corrected my initial response to accurately
reflect the information provided in the image.

Table 8: Type 2 samples of MiniCPM-Llama3-V-2.5.
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Q: is this place crowded? A. yes B. no

IR: The place is crowded. People are waiting for the train, and
they are spread out along the platform. The final answer is A.
SC: Review your previous answer and ensure that all relevant as-
pects of the image have been considered. Are there any elements
or details that you missed? Based on your review, improve your
answer.

RR: I reviewed my previous answer and have identified a rel-
evant detail that was missed. The sign Do not board on the
platform indicates that the train may be not crowded, as it is
likely the reason why people are standing near it. Based on this
new information, I will revise my final answer to B.

Q: Which solution has a higher concentration of purple particles?
A. Solution A B. Solution B C. neither; their concentrations are
the same

Solvent volume: 45 mL. Solvent volume: 45 mL.

I: Solution A Solution B

IR: The concentration of particles in a solution is determined by
the volume of the solution and the number of particles present.
In this case, both Solution A and Solution B have the same
volume (45 ml). Therefore, to determine which solution has a
higher concentration of purple particles, we need to compare the
number of particles in each solution. Unfortunately, the informa-
tion provided does not include the number of particles in either
solution. Without this information, it is impossible to determine
which solution has a higher concentration of purple particles.
So, the final answer is C. neither; their concentrations are the
same.

SC: Review your previous answer and ensure that all relevant as-
pects of the image have been considered. Are there any elements
or details that you missed? Based on your review, improve your
answer.

RR: I apologize for the oversight in my previous response. Upon
reviewing the image, I can now see that Solution A has more
purple particles than Solution B. This is because Solution A has
larger concentrated purple particles, while Solution B has smaller
concentrated purple particles. Therefore, the final answer is A.
Solution A has a higher concentration of purple particles.

Table 10: Successful refinements (Type 2 samples) with
unreliable self-correction reasoning.
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