SEK: Self-Explained Keywords Empower Large Language Models
for Code Generation

Lishui Fan, Mouxiang Chen, Zhongxin Liu*
The State Key Laboratory of Blockchain and Data Security
Zhejiang University
{flscode,chenmx,liu_zx}@zju.edu.cn

Abstract

Large language models (LLMs) have achieved
impressive performance in code generation.
Despite the remarkable success, we observed
that LLMs often misunderstand or overlook
some problem-specific undertrained keywords
during code generation, compromising the ac-
curacy of the generated code. After explicitly
explaining these undertrained keywords using
well-trained terms in the prompt, LLMs are
more likely to generate correct code imple-
mentation. Inspired by this observation, we
propose a novel technique named SEK (Self-
Explained Keywords), which empowers an
LLM for better code generation by extract-
ing and explaining the key terms in the prob-
lem description with the LLM itself. Compre-
hensive experiments across four benchmarks,
i.e., HumanEval(+), MBPP(+), APPS and Big-
CodeBench, with five representative LLMs,
show that SEK can significantly improve LLMs
in code generation, yielding substantial and
consistent gains. For instance, SEK improves
the Pass@1 of DeepSeek-Coder-V2-Instruct
from 85.4% to 93.3% on the Humaneval bench-
mark. Further analysis confirms that SEK en-
ables the LLMs to shift their attention from
low-frequency keywords to their correspond-
ing explanations. Our code is available at
O https://github.com/ZJU-CTAG/SEK.

1 Introduction

Code generation aims to generate a code snippet
that meets the intent described in natural language.
This process can potentially reduce the costs of soft-
ware development (Xu et al., 2022; Yin and Neubig,
2017; Vaithilingam et al., 2022). Recently, the no-
table success of LLMs such as ChatGPT (OpenAl,
2022) and Llama-3 (Al@Meta, 2024) has substan-
tially enhanced the state-of-the-art in code gener-
ation. These LLMs demonstrate remarkable profi-
ciency in comprehending natural language descrip-
tions and translating them into code snippets.

*Corresponding author.

Given two positive integers a and b, return the even
digits between a and b, in ascending order.
For example:
generate_integers(2, 8) => (2, 4, 6, 8]
generate_integers(8, 2) => (2, 4, 6, 8]
generate_integers(10, 14) => []
Analyze the following key terms and their relationships
within the problem context
[even digits]: Digits that are divisible by 2 without a
remainder. In the context of the problem, they are 0, 2,
4,6,8

ifa>b:
ab=b,a #Ensurea<=b
even_digits = []
for num in range(a, b +1):
if 0 <= num <=9 and num % 2 == 0:
even_digits.append(num)
return even_digits v

Given two positive integers a and b, return
the even digits between a and b, in
ascending order.
For example:
generate_integers(2, 8) => [2, 4, 6, 8]
generate_integers(8, 2) => [2, 4, 6, 8]
generate_integers(10, 14) => []

ifa>b:
a,b=b,a #Ensurea<=b
even_digits = []
for num in range(a, b + 1):
ifnum % 2==0:
even_digits.append(num)
return even_digits

Figure 1: Motivating example. LLMs fail to handle the
low-frequency term even digits (even numbers between
0 and 9). Explicitly explaining this term helps LLMs
generate the correct solution.

Despite the remarkable success, we found that
LLMs often struggle to translate certain terms in
the problem description into corresponding code.
When these terms are semantically important in the
programming context (i.e., serving as a keyword),
this limitation can compromise the accuracy of the
generated code. An example is presented in Fig-
ure 1, where the coding problem requires returning
even digits within a given range in ascending or-
der. We found that LLMs fail to recognize that
this term refers to the even numbers between 0
and 9, leading to the omission of this constraint
in the generated conditional statements. One pos-
sible reason is the long-tail distribution of coding
training datasets (Chen et al., 2024c; Zhong et al.,
2024b), where some programming terms are rela-
tively low frequency in the training corpus and thus
undertrained. For example, even digits appears
only 832 times in the Python subset of the Star-
Coder2 (Lozhkov et al., 2024) pre-training dataset.
As a comparison, even numbers appears 15,951
times, causing the code implementation for even
numbers to potentially dominate that for even digits.
If we explicitly convert even digits into well-trained
terms by explaining it, the LLM can produce a cor-
rect implementation.

6249

Findings of the Association for Computational Linguistics: ACL 2025, pages 6249-6278
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Inspired by this example, we hypothesize that
we can boost LLMs for code generation by ex-
plicitly identifying and explaining certain key-
words. However, identifying proper keywords is
non-trivial and usually requires manual efforts. Al-
though statistical metrics like Inverse Document
Frequency (Salton and Buckley, 1988) can iden-
tify low-frequency terms, they may not be semanti-
cally important in the given context (Mikolov et al.,
2013; Pennington et al., 2014). Our key idea is that
such keywords can be identified and explained by
LLMs themselves. This idea is supported by three
observations: (1) prior studies show that LLMs can
effectively identify task-specific key items (Fang
et al., 2024; Fan et al., 2024); (2) our attention and
frequency analysis (detailed in Appendix E.5) in-
dicate that such LLM-selected keywords are both
semantically important (i.e., receive higher atten-
tion scores during generating code solutions) and
undertrained (i.e., have a relatively low frequency
in the code training set); and (3) although the di-
rect mapping from these keywords to code may be
undertrained in the small-scale code corpus, the
semantics of these keywords are typically under-
standable by LLMs after pre-training on large-scale
general corpora. This enables LLMs to describe
and explain these keywords using natural language.

Based on this idea, this work proposes Self-
Explained Keyword (SEK), a novel technique
leveraging LLMs’ own comprehension capabili-
ties to automatically identify and explain these
problem-specific keywords to enhance their un-
derstanding of coding problems. SEK employs
a carefully designed prompt with a few examples,
directing LLMs to focus on crucial keywords in
the problem description. We use a frequency-based
ranking algorithm to sort these keywords and fur-
ther prioritize low-frequency keywords, which are
then appended to the original problem description
to construct an augmented prompt. Overall, this
approach aligns with the working process of prag-
matic developers, which use auxiliary tools like
blackboards to highlight, explain, and rank impor-
tant parts of requirements (Andrew Hunt, 2000).

SEK enhances LLMs’ problem-solving capabili-
ties in a novel way, distinguishing itself from pre-
vious methods. As shown in Figure 2, unlike pre-
vious approaches that often rely on introducing ex-
ternal knowledge, such as human feedback (Chen
et al., 2023a; Wu et al., 2024; Dubois et al., 2024)
or the execution results of LLM-generated solu-
tions (Zhong et al., 2024b; Chen et al., 2023c;

(a) Directly generate solution.

A —
@
& @
Problem LLMs Solution

(b) Generate solution using internal knowledge such as CoT.

B & O @

Problem LLMs Intermediate steps Solution

(c) Generate solution using external knowledge such as feedback.

Tokens form external knowledge, e.g.,

human & , compilers3, ...

3
B & &
Problem LLMs Solution

(d) SEK, using LLM’s own knowledge to generate solution.

extract &

B explain Ak.”)

Problem LLMs Solution

Keywords

Figure 2: Schematic illustration of various gen-
eration approaches.

Zhong et al., 2024a), into the input, SEK operates
by distilling additional content from the problem
description using the LLM itself. While both SEK
and Chain-of-Thought (CoT) (Wei et al., 2022)
prompting leverage LLMs’ intrinsic knowledge,
they differ fundamentally in strategies. SEK fo-
cuses on guiding the LLM to attend to and better
understand specific keywords, targeting subcompo-
nents of the problem that are hard to map to code.
CoT, in contrast, encourages step-by-step reason-
ing about the whole problem to arrive at a solution.

We evaluate SEK with five representative LLMs,
including three open-source models and two closed-
source models, on four widely used code genera-
tion benchmarks. Experimental results demonstrate
that SEK effectively enhances code generation per-
formance. For example, SEK enables Llama-3.1
to achieve a relative improvement of 8.5% aver-
aged on the used benchmarks. Notably, DeepSeek-
Coder-V2-Instruct with SEK significantly outper-
forms it with standard prompting, achieving state-
of-the-art performance on several benchmarks (e.g.,
HumanEval: 85.4% to 93.3%). Furthermore, our
ablation studies indicate that the carefully designed
prompt and the ranking component of SEK are ef-
fective. Additionally, our attention analysis reveals
that SEK helps LLMs comprehend undertrained
keywords by redirecting attention to their explana-
tions. Our code is in the Supplementary Materials
and will be made public after review.

6250

2 Methodology

Code generation aims to generate a solution pro-
gram based on a problem description. Typically,
a problem description includes implementation re-
quirements, and several test cases to help further
understand the problem.

Figure 3 illustrates the overview of SEK. SEK
is designed to address the issue of LLMs’ misun-
derstanding of undertrained terms in the program
description due to the long-tail distribution in their
training data. To address it, one key is to leverage
the LLLM’s capabilities to identify and explain po-
tentially misunderstood keywords within the prob-
lem description. We employ a carefully crafted
prompt with a few-shot learning method to achieve
this. After obtaining the keywords and their ex-
planations, we introduce a frequency-based rank-
ing algorithm that prioritizes less frequent tokens,
which are more likely to be overlooked by the LLM.
These ranked keywords are then appended to the
original problem description, serving to guide the
LLM towards generating an accurate solution. The
process comprises three main steps:

KeyExtract & Explain (Section 2.1): Based on
the problem description, SEK constructs a prompt
to guide the LLM to identify and explain keywords
within the problem description.

KeyRank (Section 2.2): SEK employs a
frequency-based ranking algorithm to prioritize the
extracted keywords.

PromptEnrich (Section 2.3), SEK concatenates
the ranked keywords and their explanations with
the original problem description to create an en-
riched problem description. This comprehensive
formulation serves as the final input for the LLM
to generate code solutions.

2.1 KeyExtract & Explain

In this step, SEK extracts and explains keywords
from the given problem description. Our key in-
sight is that LLMs inherently possess strong un-
derstanding and reasoning abilities after training
on large-scale general corpora, enabling them to
explain crucial concepts within a problem descrip-
tion. The effectiveness of using LLMs for keyword
extraction has also been demonstrated by recent
studies (Maragheh et al., 2023; Lee et al., 2023).
Inspired by this insight, SEK uses the LLM itself
to perform the task with a prompt-based approach.

Specifically, SEK begins by designing a prompt
to instruct an LLM for keyword extraction and

explanation. The prompt is shown in Prompt for
KeyExtract & Explain in Figure 3, which consists
of three parts. First, it provides the overall instruc-
tion for the task, namely the generation of key-
words and their corresponding explanations. Then,
it specifies the format of input and output. Finally,
it provides detailed guidelines. Intuitively, terms
associated with input, output, and supplementary
content (i.e., clarifications of keywords or speci-
fications of value ranges) within the problem de-
scription are relatively important, as they contain
the problem’s core elements, objectives, and con-
straints (Guideline 1). For explanations, given the
potential ambiguity in natural language expressions
and the clarity of the public test cases, the gener-
ated explanations should be both precise and con-
sistent with these test cases (Guidelines 2,3). We
also impose limitations on the keyword quantity to
guarantee that the LLM identifies and outputs only
the important keywords in the problem description
(Guideline 4). The LLM is prompted to identify at
most three keywords and generate an explanation
for each identified keyword. Ultimately, to facili-
tate subsequent processing, we further emphasize
the output format (Guideline 5). Additionally, we
use several examples to leverage LLMs’ in-context
learning ability to understand and solve this task.

2.2 KeyRank

After extracting and explaining the keywords, the
next goal is to enhance the original prompt. Previ-
ous research has demonstrated that LL.Ms are sen-
sitive to the order of tokens in the prompt, known
as position bias (Li et al., 2024; Yu et al., 2024).
It highlights the need to carefully arrange the ex-
tracted keywords. Notably, pragmatic human devel-
opers tend to place more important keywords at the
beginning in practice (Andrew Hunt, 2000). This
preference may be reflected in the training dataset,
leading LLMs to also focus more on the keywords
written at the front. Therefore, we propose a set
of heuristic rules to rank keywords by importance,
namely KeyRank. The specific Algorithm is pro-
vided in the Appendix A.

We first examine the keywords extracted by two
LLMs (Llama 3.1 and DeepSeekCoder-V?2) for part
of the coding problems in the APPS training set.
These keywords can generally be categorized into
three types: (1) Function keywords, which match
the desired function names, such as count_nums
in Figure 3. (2) General keywords, which appear
in the problem description, like sum of digits

6251

Self-Explained Keyword (SEK)

[Prompt for KeyExtract & Explain]
[Demonstrations]
Analyze the given code problem. Try to extract the keywords from the
code problem. For each identified keyword:
1. Provide the keyword.
2. Give a formalized explanation of the keyword using technical
languages, referencing the test case to ensure accuracy and clarity.
Code Problem:
{Problem}
Provided Format:
[Keyword]: [Formalized explanation]
Guidelines:
- Prioritize keywords that are crucial to understanding the input
parameters, return content or supplementary information.
- Use precise languages in explanations and provide formalized definitions
where appropriate.
- Ensure explanations are consistent with the behaviors demonstrated in
the provided test cases.

)

Problem
Write a function count_nums which takes an array of integers
and returns the number of elements which has a sum of
digits > 0. If a number is negative, then its first signed digit
will be negative:

e.g. -123 has signed digits -1, 2, and 3...

Solution
def count_nums(arr):
def sum_of_digits(n):
ifn<0:

str_n = str(n)[1:]
return -int(str_n[0]) + sum(int(digit) for digit in str_n[1:])
else...

ﬁ - Limit to the top 1-3 important keywords to focus on core concepts.
~ &trictly adhere to the provided format, do not output anything else. /
&
Large Language Model U
[Q‘ E guag] KeyExtract & A
ﬁ ® | Explain [k.’y Large Language Model]
Enriched Problem g s
Write a function count_nums which takes an array of integers and ?e-;‘ . The fi _ hat defi h R b
returns the number of elements which has a sum of digits > 0... 3 [“’“”t—”‘,’ms]‘ The function na!'ne ¢ avt efines the 'opelzr;'atlon t(? , e...
= [sum of digits]: Refers to the arithmetic sum of the individual digits that...
= [signed digits]: Digits of a number that retain their original sign, especially...

{1 KeyRank

[sum of digits]: Refers to the arithmetic sum of the individual
digits that...

[signed digits]: Digits of a number that retain their original sign...
[count_nums]: The function name that defines the operation to...

Reranked Keyword
[sum of digits]: Refers to the arithmetic sum of the individual digits that... J

[signed digits]: Digits of a number that retain their original sign, especially...
[count_nums]: The function name that defines the operation to be... /

Figure 3: The overview of Self-Explained Keyword. The details in each step are omitted.

in Figure 3. (3) Abstract keywords, which do not
appear in any input; instead, they are abstract terms
summarized from multiple concepts. For exam-
ple, for two different concepts “substring before
the dot” and “substring after the dot” in the prob-
lem description, LLM may combine them into a
single keyword substring before/after the
dot. The proportions of these three categories are
22.5%, 59.9%, and 17.7%.

We hypothesize that abstract keywords are the
most important, as they encompass explanations
across multiple concepts. General keywords refer
to single concepts and are of secondary importance,
while function keywords, whose explanations have
already appeared in the problem description, are
the least important. Based on our investigation, we
propose ordering the keywords as abstract — gen-
eral — function. Further experiments demonstrate
that this heuristic combination order yields the best
results (Appendix F.1).

Moreover, since general keywords represent the
majority (59.9%) and LLMs could extract multiple
general keywords for a single problem, we further
perform an internal ranking of these general key-
words. We argue that a keyword is more important
if it appears more frequently in the problem de-
scription (i.e., higher term frequency). Conversely,
if a keyword appears less frequently in a corpus
(i.e., lower document frequency), the correspond-

ing code conversion could be more challenging
as we stated in the Introduction section, and thus
its explanation is more significant. Therefore, we
use the TF-IDF, a widely used metric that com-
bines term frequency (TF) and inverse document
frequency (IDF), to assess the importance of gen-
eral keywords. TF-IDF is calculated as follows:

Dl

TF-IDF = - .
L+ [{j:t; € dj}

"o
g ok ¢

The first term represents TF, where n; denotes
the number of times the keyword appears in the
problem description, and the denominator repre-
sents the total occurrences of all items with the
same number of grams. The second term represents
IDF, where | D] is the total number of documents
in the corpus, and the denominator represents the
number of documents containing the keyword ¢;.

We use the Python subset of the eval-codealpaca-
vl (Luo et al., 2023) as the corpus for computing
document frequency, which is generated by Chat-
GPT and can partially reflect the distribution of
LLMs’ training data. In addition, we demonstrate
that SEK is robust across various corpora.

2.3 PromptEnrich

After obtaining the ranked keywords and their ex-
planations, SEK integrates them with the original

6252

problem. As shown in the enriched problem in Fig-
ure 3, SEK appends the ranking results to the end
of the problem, providing additional explanations
for key concepts in the problem. It’s worth noting
that, to maintain the coherence of the problem con-
text, we insert the phrase “Analyze the following
key terms and their relationships within the prob-
lem context:” after the problem. This acts as a
semantic buffer, smoothly transitioning from the
original problem description to the appended key-
words. The enriched problem is then input into the
LLM to generate the final solution.

3 Experimental Setup

3.1 Studied LLMs, Benchmarks and
Evaluation Metric

We evaluate SEK using five representative
LLMs: the open-source LLMs Llama-3.1-70B-
instruct (Dubey and Abhinav Jauhri, 2024),
Mixtral-8x22B-instruct-v0.1 (Jiang et al., 2024),
and DeepSeek-Coder-V2-236B-Instruct-0724 (Zhu
et al., 2024)(accessed via the DeepSeek-Al API),
and the closed-source GPT-3.5-turbo-0125 (Ope-
nAl, 2022) and GPT-40-mini (OpenAl, 2024)(ac-
cessed via OpenAl’s API). Detailed specifications
for each LLM are provided in the Appendix B.
Following previous work (Chen et al., 2023b;
Dong et al., 2023; Jiang et al., 2023b; Hui et al.,
2024), We conduct experiments on four public
code generation benchmarks, HumanEval(+) (Chen
et al., 2021; Liu et al., 2024), MBPP(+) (Austin
et al., 2021; Liu et al., 2024), APPS (Hendrycks
etal., 2021) and BigCodeBench (Zhuo et al., 2024).
Considering the high cost of evaluating the entire
APPS test problems and BigCodeBench, following
prior work (Olausson et al., 2023; Le et al., 2024;
Yang et al., 2023), we select subsets of the two
benchmarks. Specifically, we use BigCodeBench-
Hard and randomly select 300 problems from the
APPS test set for evaluation!. To mitigate the uncer-
tainty introduced by random sampling, we conduct
multiple experiments with different sample seeds.
More details are in Appendix F.3. For detailed
descriptions of each benchmark, please refer to Ap-
pendix C. We evaluate model performance using
the Pass@ 1 metric, which measures the ability to

'There are three different difficulty levels of problems in
APPS, i.e., introductory, interview, and competition. Specif-
ically, based on the frequency distribution of problems with
different difficulty levels, we sample 60, 180, and 60 prob-
lems at the introductory, interview and competition levels,
respectively. All tasks are listed in Appendix F.3.

generate correct solutions in a single attempt.

3.2 Baselines

We compare SEK with six baseline approaches:
(1) Default LLLM code generation; (2) Zero-Shot
CoT (Chain-of-Thought) (Kojima et al., 2022);
(3) CoT (Wei et al., 2022); (4) One-Step CoT,;
(5) SelfEvolve (Jiang et al., 2023a); (6) Beam
Search (Wiseman and Rush, 2016). For a fair com-
parison, all baselines maintain identical demon-
stration counts with SEK. Details are provided in
Appendix D.

3.3 Implementation Details

Demonstration Selection Strategy. Inspired by
previous work (Wei et al., 2022; Mu et al., 2023;
Wang et al., 2023), we adopt a differentiated strat-
egy that varies based on benchmark complexity
(See Appendix E). To reduce bias, we employ an
LLM separated from our target LLMs (Claude-3.5-
Sonnet) to generate keywords and explanations for
each demonstration, which are then manually re-
viewed and refined (See Appendix E).

Configuration. We maintain consistent settings
across all LLMs, employing greedy decoding for
output generation. The maximum output length
is uniformly set to 2048 tokens. Specifically, the
LLMs accessed via APIs do not support Beam
Search. Thus, we only implement Beam Search
for Llama-3.1-70B-Instruct and Mixtral-8x22B-
Instruct-v0.1. Due to resource limitation, we com-
pare SelfEvolve using GPT-3.5-turbo following the
original paper (Jiang et al., 2023a) and addition-
ally use two open-sourced LLMs (Llama-3.1 and
Mixtral-8x22B).

4 Experimental Results

4.1 Main Results

Overall Performance. Table 1 presents the per-
formance of SEK. Overall, SEK substantially im-
proves code generation performance, achieving no-
table gains across various LLMs and datasets. We
observe that SEK achieves greater performance
improvements on HumanEval(+), APPS and Big-
CodeBench than MBPP(+). For instance, on Hu-
manEval, SEK demonstrates an absolute average
performance improvement of 4.4% over the De-
fault, whereas, it achieves an improvement of 1.8%
on MBPP. This may be because the problems in Hu-
manEval(+), APPS, and BigCodeBench are more
complex than those in MBPP, and simple prob-

6253

lems are easy to understand and alleviate the need
to extract and explain keywords. As shown in
Table 3, the average number of tokens per prob-
lem is 26.1 for MBPP, while those numbers are
67.7, 147.8 and more than 257.3 for HumanEval(+),
BigCodeBench and APPS. These results may indi-
cate that SEK can better improve LLMs’ problem-
solving capabilities on relatively complex problems
than on simple problems. To better understand the
effectiveness of SEK, we also conduct case studies
in Appendix L.

Performance on HumanEval(+), APPS and
BigCodeBench. These benchmarks are relatively
complex compared to MBPP, and better demon-
strate the effectiveness of SEK. SEK consis-
tently outperforms Default across most LLMs.
For instance, SEK achieves average absolute
improvements of 6.7%, 3.6%, and 3.7% on
APPS-Introductory, APPS-Interview, and APPS-
Competition, respectively. However, GPT-40-mini
is an exception, which experiences a slight perfor-
mance decline on Humaneval(+). This may be be-
cause the built-in prudence of GPT-40-mini (Huang
et al., 2024a) makes it tend to select more generic
keywords, and such generic keywords fail to help
LLMs understand low-frequency terms in the prob-
lem description. This conjecture is further under-
pinned by an observation that CoT similarly fails to
enhance GPT-40-mini’s performance. The consis-
tent improvements of SEK across most LLMs high-
light its effectiveness in enhancing the problem-
solving capabilities of LLMs.

Compared to Beam Search, which also explores
the search space twice, SEK shows notable perfor-
mance improvements. For instance, on Humaneval
and Humaneval+, SEK achieves absolute average
improvements of 4.0% and 3.7%, respectively, over
Beam Search. These can be attributed to SEK’s
unique technique: appending the problem’s criti-
cal parts to the end, enabling LL.Ms to focus on
and comprehend these key concepts. In contrast,
Beam Search merely expands the search space with-
out understanding the problem deeply, leading to
lower diversity in outputs (Li and Jurafsky, 2016).
Consequently, it cannot enhance problem-solving
capabilities in a targeted manner like SEK (See
Appendix K for different cases).

Compared to CoT, SelfEvolve, One-Step CoT,
and Zero-Shot CoT, SEK demonstrates a notable
and consistent performance advantage. For in-
stance, on Humaneval and Humaneval+, SEK
achieves absolute average performance improve-

ments of 7.2% and 6.5% over CoT. In contrast,
the performance of the four baselines is inconsis-
tent, sometimes even lower than Default. For in-
stance, with Mixtral-8x22B-Instruct-v0.1, SelfE-
volve’s performance on APPS-Interview is 0.5%
lower than Default. The unstable performance
of CoT can be attributed to its inherent unsuit-
ability for generation tasks (Sprague et al., 2024).
Similar phenomena have been observed in prior
work (Wang et al., 2024; Zhang et al., 2024; Luo
et al., 2024; Jiang et al., 2023b). While the four
baselines utilize LLMs to extract relevant knowl-
edge from problem descriptions, they differ in the
types of extracted knowledge. SEK focuses on low-
frequency keywords, which are more difficult to
be mapped to code implementation. This enables
SEK to effectively fill the knowledge gaps during
code generation. In contrast, the other three meth-
ods tend to merely restate the complete problem
description for problems in code generation bench-
marks. In addition, upon manual inspection of the
generated problem descriptions for One-Step CoT,
we identify that LLMs, without human interven-
tion, often struggle to consistently produce precise
whole-problem reformulations. Any errors in this
intermediate generation step can compromise the
overall description accuracy. In contrast, SEK fo-
cuses on analyzing specific keywords within the
problem description, which helps mitigate the po-
tential errors that might arise from whole-problem
reformulation. As a result, the four baselines are
less effective compared to SEK in code generation.

Performance on MBPP(+) SEK surpasses the
baselines across most LLMs on the relatively sim-
ple benchmark, further demonstrating SEK’s effec-
tiveness. For instance, when applied to Llama-3.1-
70B-Instruct, SEK achieves performance improve-
ments of 3.0% and 0.8% over SelfEvolve on MBPP
and MBPP+, respectively.

4.2 Discussion

We conduct additional experiments to comprehen-
sively evaluate SEK’s performance and robustness.

Guidelines in the prompt for KeyExtract &
Explain provide essential guidance for LLMs,
KeyRank effectively prioritizes keywords, and
generated explanations are important. Our ab-
lation studies confirm that both guidelines and
KeyRank play crucial roles in enhancing perfor-
mance. As shown in Figure 4(a)-4(b), We evaluate
Llama-3.1 and GPT-3.5-turbo on Humaneval (+).
Removing either the guidelines or the KeyRank

6254

APPS

APPS

APPS

BigCodeBench

Model Method HumanEval HumanEval+ MBPP MBPP+ . o Average
Introductory Interview Competition Hard
Default 78.0 73.8 87.6 70.9 50.0 15.0 5.0 27.7 51.0
Beam Search(2) 79.3 74.4 87.8 70.9 55.0 16.1 5.0 25.0 51.7
One-Step-CoT 79.3 73.2 71.7 574 50.0 17.2 33 284 47.6
Llama-3.1-70B-Instruct Zero-Shot-CoT 76.8 72.6 715 62,4 41.6 16.1 8.3 25.7 455
CoT 79.9 74.4 87.0 71.7 433 16.6 6.7 29.1 51.1
Self-Evolve 81.7 75.6 85.4 70.4 50.0 15.5 8.3 27.7 51.8
SEK 84.8 79.3 88.4 71.2 61.7 20.0 8.3 29.1 55.4
Default 76.2 72.0 73.8 64.3 28.3 7.7 1.6 20.9 43.1
Beam Search(2) 78.7 732 81.2 70.6 33.3 8.8 6.6 14.9 459
One-Step-CoT 72.0 66.5 79.6 66.9 31.6 6.1 1.6 182 42.8
Mixtral-8x22B-Instruct-v0.1 ~ Zero-Shot-CoT 75.0 68.3 79.9 672 28.3 8.3 1.6 19.6 435
CoT 72.0 65.9 78.0 68.0 31.6 3.8 5.0 16.9 42.7
Self-Evolve 56.7 50.0 68.5 60.1 33.3 72 5.0 189 375
SEK 81.1 75.6 79.1 66.9 33.3 10.0 6.6 223 46.9
Default 72.6 67.7 84.1 71.2 46.6 18.3 0.0 21.6 47.8
One-Step-CoT 70.1 65.9 78.6 66.1 53.3 16.1 1.6 16.2 46.0
GPT-3.5-turbo Zero-Shot-CoT 72.6 67.1 833 712 48.3 20.6 33 19.6 48.3
(API) CoT 58.5 54.9 84.1 68.8 41.6 17.2 1.6 189 432
Self-Evolve 73.2 67.7 823 66.7 45.0 19.4 1.6 18.5 46.8
SEK 75.6 69.5 84.1 72.5 53.3 20.6 5.0 223 50.4
Default 88.4 83.5 85.4 722 533 31.6 11.6 27.0 56.7
. One-Step-CoT 86.0 79.3 85.4 70.9 45.0 29.4 10.0 29.1 54.4
GPT-40-mini

(API) Zero-Shot-CoT 86.6 84.8 89.7 76.2 333 27.2 83 27.7 54.2
CoT 872 84.1 88.1 73.3 50.0 33.8 11.6 25.0 56.6
SEK 872 84.1 87.8 74.1 58.3 35.0 133 29.7 58.7
Default 85.4 823 89.4 75.1 70.0 36.1 10.0 304 59.8
Deepseekc(":;')vz'l“m“ CoT 88.4 823 905 754 60.0 405 10.0 277 59.4
SEK 93.3 854 90.2 76.2 75.0 41.1 13.3 33.1 63.5

Table 1: Pass@1 (%) results of SEK and baseline methods on HumanEval(+), MBPP(+), APPS of different difficulty
levels and BigCodeBench. Bold numbers indicate the best-performing baseline for each model.

Model Method Humaneval Humaneval+
Default 78.0 73.8
Llama-3.1-70B-Instruct SEK (Corpus A) 84.1 78.7
SEK (Corpus B) 84.8 79.3
Default 72.6 67.7
GP T;i;i;“rb" SEK (Corpus A) 75.6 713
SEK (Corpus B) 75.6 69.5

Table 2: SEK works under different corpus for Hu-
maneval(+). Corpus A is APPS training set, corpus B is
the Python subset of eval-codealpaca-v1.

module results in performance degradation. For
instance, removing the KeyRank module results
in performance decreases of 3.0% and 0.6% on
HumanEval and HumanEval+, respectively, for
GPT-3.5-turbo. Moreover, removing each guide-
line from the prompt individually also results in
performance degradation in most cases (See Ap-
pendix F.2). It is worth mentioning that even with-
out KeyRank, SEK remains comparable or superior
to the Default. For instance, without KeyRank mod-
ule, GPT-3.5-turbo shows a 3.0% improvement on
HumanEval compared to the Default, underscoring
the strength of SEK’s core mechanisms. We also
conduct an ablation study by removing generated
explanations from the enriched prompts. Experi-
mental results show that removing these explana-

tions leads to substantial performance drops across
different LLMs, demonstrating the importance of
generated explanations. See Appendix F.6 for more
details.

SEK demonstrates robustness to variations
in demonstrations, and the corpus used in
KeyRank. To show its performance is not tied
to a fixed set of keyword explanations within the
demonstrations used in KeyExtract & Explain, we
conduct experiments using two additional sets of
keyword explanations randomly generated from the
same LLM (i.e., Claude-3.5-Sonnet). As shown in
Figure 4(c), although there is performance variance
among different keyword explanations, as would
be expected when using exemplar-based prompting
(Gao et al., 2021; Min et al., 2022; Reynolds and
McDonell, 2021), the three sets of keyword expla-
nations consistently outperform the Default. Ad-
ditionally, to evaluate the robustness to the corpus
used in KeyRank, we select a different corpus, as
shown in Table 2. We observe that using SEK with
Llama-3.1 still shows a 6.1% absolute improve-
ment on Humaneval compared to Default. These
results demonstrate the robustness of SEK.

SEK enhances the model’s focus on core
keywords in the problem description (See Ap-
pendix H). Using a visualization tool, we analyze

6255

Default w/o KeyRank Default

w/o KeyRank Default Different Exp(B)

w/o Guidelines SEK w/o Guidelines SEK Different Exp(A) SEK
90 90 85
84.8
8 823 82.9 85 80 180787 123
80 80 79.3
Z80 77.4

® 75.6 ® 76.2 ® 751 7138
a75 2751 738 a 713
& 2815728 & £70 69.5 69.5

70 70 68.9 695 67.7

877 67.1
65 65 65
60 60 60

Llama-3.1 GPT-3.5-turbo Llama-3.1

(a) HumanEval

(b) HumanEval+

GPT-3.5-turbo Llama-3.1 GPT-3.5-turbo

(¢) HumanEval+

Figure 4: (a-b) Ablation experiments on the Humaneval(+) benchmarks with two LLMs. (c) Different explanations

of Demonstrations on Humaneval+ with two LLMs.

SEK’s behaviors from the perspective of atten-
tion distribution. We select a simple problem, i.e.,
“Write a function to find the nth nonagonal num-
ber”, choosing the keyword “nonagonal” with its
explanation for analysis. By comparing the atten-
tion distribution in Default and SEK, we observe
that SEK help the LLM allocate more attention to
the keyword and its explanation. This indicates
the way SEK used to enrich the prompt can help
LLMs better focus on key concepts in the problem
description, leading to improved code generation.

5 Related Work

LLM-based code generation: Recent advance-
ments in LLMs have significantly improved code
generation capabilities. Models like CodeGen (Ni-
jkamp et al., 2022), StarCoder (Li et al., 2023),
and GPT series (Black et al., 2022; Chen et al.,
2021) have demonstrated remarkable performance
in translating natural language descriptions into
code snippets. These models primarily use decoder-
only architectures and next-token prediction for
pre-training. A subset, including CodeT5 (Wang
et al., 2021) and PLBART (Ahmad et al., 2021),
employs encoder-decoder architectures. Our work
builds upon these foundations, focusing on enhanc-
ing LLMs’ problem-solving capabilities without
additional training.

Prompting techniques for code generation:
Prompting techniques for code generation can be
broadly categorized into three types: The first type
utilizes external knowledge to enhance LLMs’ un-
derstanding of coding problems or intermediate
outputs (Mu et al., 2023; Zhong et al., 2024a). For
example, CEDAR (Nashid et al., 2023) retrieves
relevant code examples from an external knowl-
edge base to help LLMs understand task require-
ments. The second type relies solely on LLMs’

inherent capabilities, using prompt design to guide
LLMs in generating code snippets that meet spe-
cific requirements (Wang et al., 2023; Yao et al.,
2024). For instance, Chain of Thought (Wei et al.,
2022) employs a step-by-step, chain-of-thought
style prompt to guide LLMs in producing correct
results. The third type integrates the previous two
types, leveraging both external knowledge and the
LLM’s inherent knowledge to solve coding prob-
lems (Tian and Chen, 2023; Chen et al., 2024b).
For example, Self-Debug (Chen et al., 2023c) uses
the code execution results or the code explanations
generated by the LLM itself to debug the incorrect
code multiple times. SEK belongs to the second
category. Different from other methods, it focuses
on improving LLLMs’ comprehension of the prob-
lem by identifying and explaining the key concepts
in the problem description with LLMs themselves.

Keyword extraction: Keyword extraction
methods have evolved from traditional statisti-
cal (Sparck Jones, 1972; El-Beltagy and Rafea,
2009; Rose et al., 2010) and graph-based ap-
proaches (Mihalcea and Tarau, 2004; Wan and
Xiao, 2008; Gollapalli and Caragea, 2014) to
more advanced techniques leveraging language
models (Mahata et al., 2018; Sun et al., 2020;
Arora et al., 2017). Recent works like At-
tentionRank (Ding and Luo, 2021) and LLM-
TAKE (Maragheh et al., 2023) use self-attention
mechanisms and language models to identify sig-
nificant keywords. Our work extends this concept
to the domain of code generation, using LL.Ms to
extract and explain problem-specific keywords to
enhance code solution generation.

6 Conclusion

In this work, we propose SEK, a simple yet ef-
fective method to enhance the code generation ca-

6256

pabilities of LLMs. SEK leverages the LLM to
extract and explain keywords from the problem
description, followed by ranking them based on
their frequency. Through extensive experiments,
we demonstrate that SEK facilitates LLMs in cap-
turing and clarifying key concepts within problems,
thereby generating more accurate code solutions.

Limitations

There are mainly two limitations of SEK. First, the
two-stage invocation process of SEK incurs addi-
tional computational overhead. Future work could
explore compressing the process into one invoca-
tion. The second limitation is that keywords are
extracted and explained by LLMs, of which the
quality cannot be guaranteed due to the hallucina-
tions of LLMs (Ji et al., 2023). Future research
could focus on enhancing the factual accuracy of
LLMs (Mitchell et al., 2022; Tang et al., 2023)
and proposing effective approaches for detecting
factual errors (Chen et al., 2024a; Min et al., 2023).

Ethics Statement

Our work complies with the ACL Ethics Policy.
All datasets and models are openly accessible. We
strictly adhere to the respective licensing condi-
tions of all openly accessible datasets and models,
ensuring that any derivative artifacts are used ex-
clusively for research purposes and not deployed
commercially. Additionally, all datasets used in
our work have been preprocessed by their original
curators to remove any identifying information and
offensive content. We have not identified any sig-
nificant ethical considerations associated with our
work.

Acknowledgments

This research is supported by Zhejiang Provin-
cial Natural Science Foundation of China (No.
LZ25F020003) and the National Natural Science
Foundation of China (No. 62202420).

References

WU Ahmad, S Chakraborty, B Ray, and KW Chang.
2021. Unified pre-training for program understand-
ing and generation. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies.

Al@Meta. 2024. Llama 3 model card.

et al. Andrew Hunt. 2000. The pragmatic program-
mer: from journeyman to master. Addison-Wesley
Longman Publishing Co., Inc.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017. A
simple but tough-to-beat baseline for sentence em-
beddings. In International conference on learning
representations.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Sidney Black, Stella Biderman, Eric Hallahan, Quentin
Anthony, Leo Gao, Laurence Golding, Horace
He, Connor Leahy, Kyle McDonell, Jason Phang,
Michael Pieler, Usvsn Sai Prashanth, Shivanshu Puro-
hit, Laria Reynolds, Jonathan Tow, Ben Wang, and
Samuel Weinbach. 2022. Gpt-neox-20b: An open-
source autoregressive language model. pages 95—
136.

Angelica Chen, Jérémy Scheurer, Tomasz Korbak,
Jon Ander Campos, Jun Shern Chan, Samuel R Bow-
man, Kyunghyun Cho, and Ethan Perez. 2023a. Im-
proving code generation by training with natural lan-
guage feedback. arXiv preprint arXiv:2303.16749.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2023b.
Codet: Code generation with generated tests. In
The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023. OpenReview.net.

Jifan Chen, Grace Kim, Aniruddh Sriram, Greg Durrett,
and Eunsol Choi. 2024a. Complex claim verification
with evidence retrieved in the wild. In Proceedings
of the 2024 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Pa-
pers), pages 3569-3587.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Mouxiang Chen, Hao Tian, Zhongxin Liu, Xiaoxue
Ren, and Jianling Sun. 2024b. JumpCoder: Go be-
yond autoregressive coder via online modification.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 11500-11520, Bangkok, Thai-
land. Association for Computational Linguistics.

Ruirui Chen, Chengwei Qin, Weifeng Jiang, and
Dongkyu Choi. 2024c. Is a large language model
a good annotator for event extraction? In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 17772—-17780.

6257

Xinyun Chen, Maxwell Lin, Nathanael Schaerli, and
Denny Zhou. 2023c. Teaching large language models
to self-debug. In The 61st Annual Meeting Of The
Association For Computational Linguistics.

Haoran Ding and Xiao Luo. 2021. Attentionrank: Un-
supervised keyphrase extraction using self and cross
attentions. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 1919-1928.

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. 2023.
Self-collaboration code generation via chatgpt. ACM
Transactions on Software Engineering and Method-

ology.

Abhimanyu Dubey and et al. Abhinav Jauhri. 2024. The
llama 3 herd of models. Preprint, arXiv:2407.21783.

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi
Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin,
Percy S Liang, and Tatsunori B Hashimoto. 2024.
Alpacafarm: A simulation framework for methods
that learn from human feedback. Advances in Neural
Information Processing Systems, 36.

Samhaa R El-Beltagy and Ahmed Rafea. 2009. Kp-
miner: A keyphrase extraction system for english and
arabic documents. Information systems, 34(1):132—
144.

Zezhong Fan, Xiaohan Li, Kaushiki Nag, Chenhao Fang,
Topojoy Biswas, Jianpeng Xu, and Kannan Achan.
2024. Prompt optimizer of text-to-image diffusion
models for abstract concept understanding. In Com-
panion Proceedings of the ACM on Web Conference
2024, pages 1530-1537.

Chenhao Fang, Xiaohan Li, Zezhong Fan, Jianpeng Xu,
Kaushiki Nag, Evren Korpeoglu, Sushant Kumar, and
Kannan Achan. 2024. Llm-ensemble: Optimal large
language model ensemble method for e-commerce
product attribute value extraction. In Proceedings
of the 47th International ACM SIGIR Conference on
Research and Development in Information Retrieval,

pages 2910-2914.

Tianyu Gao, Adam Fisch, and Danqgi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers).
Association for Computational Linguistics.

Sujatha Das Gollapalli and Cornelia Caragea. 2014. Ex-
tracting keyphrases from research papers using cita-
tion networks. In Proceedings of the AAAI confer-
ence on artificial intelligence, volume 28.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, et al. 2021.
Measuring coding challenge competence with apps.
In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track
(Round 2).

Sirui Huang, Yanggan Gu, Xuming Hu, Zhonghao Li,
Qing Li, and Guandong Xu. 2024a. Reasoning fac-
tual knowledge in structured data with large language
models. arXiv preprint arXiv:2408.12188.

Tao Huang, Zhihong Sun, Zhi Jin, Ge Li, and Chen
Lyu. 2024b. Knowledge-aware code generation with
large language models. In Proceedings of the 32nd
IEEE/ACM International Conference on Program
Comprehension, pages 52—63.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. 2024. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput-
ing Surveys, 55(12):1-38.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lam-
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2024. Mix-
tral of experts. Preprint, arXiv:2401.04088.

Shuyang Jiang, Yuhao Wang, and Yu Wang. 2023a. Self-
evolve: A code evolution framework via large lan-
guage models. arXiv preprint arXiv:2306.02907.

Xue Jiang, Yihong Dong, Lecheng Wang, Fang Zheng,
Qiwei Shang, Ge Li, Zhi Jin, and Wenpin Jiao. 2023b.
Self-planning code generation with large language
models. ACM Transactions on Software Engineering
and Methodology.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199—

22213.

Hung Le, Hailin Chen, Amrita Saha, Akash Gokul,
Doyen Sahoo, and Shafiq Joty. 2024. Codechain:
Towards modular code generation through chain of
self-revisions with representative sub-modules. In
The Twelfth International Conference on Learning
Representations.

Wanhae Lee, Minki Chun, Hyeonhak Jeong, and
Hyunggu Jung. 2023. Toward keyword generation
through large language models. In Companion Pro-
ceedings of the 28th International Conference on
Intelligent User Interfaces, pages 37—40.

Jiwei Li and Dan Jurafsky. 2016. Mutual information
and diverse decoding improve neural machine trans-
lation. arXiv preprint arXiv:1601.00372.

6258

R Li, LB Allal, Y Zi, N Muennighoff, D Kocetkov,
C Mou, M Marone, C Akiki, J Li, J Chim, et al. 2023.
Starcoder: May the source be with you! Transactions
on machine learning research.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue,
and Wenhu Chen. 2024. Long-context llms strug-
gle with long in-context learning. arXiv preprint
arXiv:2404.02060.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2024. Is your code generated by chatgpt
really correct? rigorous evaluation of large language
models for code generation. Advances in Neural
Information Processing Systems, 36.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
et al. 2024. Starcoder 2 and the stack v2: The next
generation. arXiv preprint arXiv:2402.19173.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2024. Wizardcoder:
Empowering code large language models with evol-
instruct. The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Aus-
tria, May 7-11, 2024.

Debanjan Mahata, John Kuriakose, Rajiv Shah, and
Roger Zimmermann. 2018. Key2vec: Automatic
ranked keyphrase extraction from scientific articles
using phrase embeddings. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 634-639.

Reza Yousefi Maragheh, Chenhao Fang, Charan Chand
Irugu, Parth Parikh, Jason Cho, Jianpeng Xu,
Saranyan Sukumar, Malay Patel, Evren Korpeoglu,
Sushant Kumar, et al. 2023. Llim-take: theme-aware
keyword extraction using large language models. In
2023 IEEE International Conference on Big Data
(BigData), pages 4318-4324. IEEE.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into text. In Proceedings of the 2004 con-
ference on empirical methods in natural language
processing, pages 404—411.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. In Ist International Conference
on Learning Representations, ICLR 2013, Scottsdale,
Arizona, USA, May 2-4, 2013, Workshop Track Pro-
ceedings.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike
Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer,
Luke Zettlemoyer, and Hannaneh Hajishirzi. 2023.
Factscore: Fine-grained atomic evaluation of factual
precision in long form text generation. In The 2023
Conference on Empirical Methods in Natural Lan-
guage Processing.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstrations:
What makes in-context learning work? In Proceed-
ings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 11048-11064.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D Manning, and Chelsea Finn. 2022. Memory-
based model editing at scale. In International Con-
ference on Machine Learning, pages 15817-15831.
PMLR.

Fangwen Mu, Lin Shi, Song Wang, Zhuohao Yu, Bin-
quan Zhang, Chenxue Wang, Shichao Liu, and Qing
Wang. 2023. Clarifygpt: Empowering llm-based
code generation with intention clarification. arXiv
preprint arXiv:2310.10996.

Noor Nashid, Mifta Sintaha, and Ali Mesbah. 2023.
Retrieval-based prompt selection for code-related
few-shot learning. In 2023 IEEE/ACM 45th Interna-
tional Conference on Software Engineering (ICSE),
pages 2450-2462. IEEE.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. Codegen: An open large language
model for code with multi-turn program synthesis.
The Eleventh International Conference on Learning
Representations.

Theo X Olausson, Jeevana Priya Inala, Chenglong
Wang, Jianfeng Gao, and Armando Solar-Lezama.
2023. Is self-repair a silver bullet for code genera-
tion? In The Twelfth International Conference on
Learning Representations.

OpenAl. 2022. ChatGPT.
OpenAl. 2024. GPT-40-mini.

OpenAl and et al. Josh Achiam. 2024. Gpt-4 technical
report. Preprint, arXiv:2303.08774.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP), pages 1532-1543.

Laria Reynolds and Kyle McDonell. 2021. Prompt
programming for large language models: Beyond
the few-shot paradigm. In Extended abstracts of the
2021 CHI conference on human factors in computing
systems, pages 1-7.

6259

Stuart Rose, Dave Engel, Nick Cramer, and Wendy
Cowley. 2010. Automatic keyword extraction from
individual documents. Text mining: applications and
theory, pages 1-20.

Gerard Salton and Christopher Buckley. 1988. Term-
weighting approaches in automatic text retrieval. In-
formation processing & management, 24(5):513—
523.

Karen Sparck Jones. 1972. A statistical interpretation
of term specificity and its application in retrieval.
Journal of documentation, 28(1):11-21.

Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez,
Dongwei Jiang, Manya Wadhwa, Prasann Singhal,
Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Dur-
rett. 2024. To cot or not to cot? chain-of-thought
helps mainly on math and symbolic reasoning. arXiv
preprint arXiv:2409.12183.

Yi Sun, Hangping Qiu, Yu Zheng, Zhongwei Wang, and
Chaoran Zhang. 2020. Sifrank: a new baseline for un-
supervised keyphrase extraction based on pre-trained
language model. /IEEE Access, 8:10896—10906.

Ziyi Tang, Ruilin Wang, Weixing Chen, Keze Wang,
Yang Liu, Tianshui Chen, and Liang Lin. 2023. To-
wards causalgpt: A multi-agent approach for faithful
knowledge reasoning via promoting causal consis-
tency in llms. arXiv preprint arXiv:2308.11914.

Zhao Tian and Junjie Chen. 2023. Test-case-driven
programming understanding in large language mod-
els for better code generation. arXiv preprint
arXiv:2309.16120.

Priyan Vaithilingam, Tianyi Zhang, and Elena L Glass-
man. 2022. Expectation vs. experience: Evaluating
the usability of code generation tools powered by
large language models. In Chi conference on hu-
man factors in computing systems extended abstracts,
pages 1-7.

Xiaojun Wan and Jianguo Xiao. 2008. Single document
keyphrase extraction using neighborhood knowledge.
In AAAI, volume 8, pages 855—-860.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023. Self-consistency im-
proves chain of thought reasoning in language mod-
els. The Eleventh International Conference on Learn-
ing Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH
Hoi. 2021. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 8696—8708.

Zihao Wang, Anji Liu, Haowei Lin, Jiaqi Li, Xi-
aojian Ma, and Yitao Liang. 2024. Rat: Re-
trieval augmented thoughts elicit context-aware rea-
soning in long-horizon generation. arXiv preprint
arXiv:2403.05313.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2024. Magicoder: Empowering
code generation with OSS-instruct. In Proceedings of
the 41st International Conference on Machine Learn-
ing, volume 235 of Proceedings of Machine Learning
Research, pages 52632-52657. PMLR.

Sam Wiseman and Alexander M Rush. 2016. Sequence-
to-sequence learning as beam-search optimization.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1296-1306.

Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane
Suhr, Prithviraj Ammanabrolu, Noah A Smith, Mari
Ostendorf, and Hannaneh Hajishirzi. 2024. Fine-
grained human feedback gives better rewards for lan-
guage model training. Advances in Neural Informa-
tion Processing Systems, 36.

Frank F Xu, Bogdan Vasilescu, and Graham Neubig.
2022. In-ide code generation from natural language:
Promise and challenges. ACM Transactions on
Software Engineering and Methodology (TOSEM),
31(2):1-47.

Xianjun Yang, Kexun Zhang, Haifeng Chen, Linda Pet-
zold, William Yang Wang, and Wei Cheng. 2023.
Zero-shot detection of machine-generated codes.
arXiv preprint arXiv:2310.05103.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 440-450.

Yijiong Yu, Huiqiang Jiang, Xufang Luo, Qianhui
Wu, Chin-Yew Lin, Dongsheng Li, Yuqing Yang,
Yongfeng Huang, and Lili Qiu. 2024. Mitigate posi-
tion bias in large language models via scaling a single
dimension. arXiv preprint arXiv:2406.02536.

Jinghan Zhang, Xiting Wang, Weijieying Ren, Lu Jiang,
Dongjie Wang, and Kunpeng Liu. 2024. Ratt:
Athought structure for coherent and correct llmrea-
soning. arXiv preprint arXiv:2406.02746.

Li Zhong, Zilong Wang, and Jingbo Shang. 2024a. De-
bug like a human: A large language model debugger
via verifying runtime execution step by step. In Find-

ings of the Association for Computational Linguistics
ACL 2024, pages 851-870.

6260

Li Zhong, Zilong Wang, and Jingbo Shang. 2024b.
Ldb: A large language model debugger via verify-
ing runtime execution step-by-step. arXiv preprint
arXiv:2402.16906.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang,
Peiyi Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo
Gao, Shirong Ma, et al. 2024. Deepseek-coder-v2:
Breaking the barrier of closed-source models in code
intelligence. arXiv preprint arXiv:2406.11931.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu,
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al.
2024. Bigcodebench: Benchmarking code genera-
tion with diverse function calls and complex instruc-
tions. arXiv preprint arXiv:2406.15877.

6261

A Aglorithm of KeyRank

Algorithm 1 KeyRank Procedure

Input: Keyword Set K, Problem P, Corpus C
Output: Ranked Keywords K,

1: Kg(*@,KaEQ,KyHQ

2: f < EXTRACTFUNCTIONNAME(P)

3: for each k in K, do

4. if £ = f then

5: Ky« KoU{(k,—1)}

6: else if £ € P then

7 K4+ Ky, U{(k, TF-IDF(k,P,C))}
8: else

9: Ko, + K, U{k}

10: end if

11: end for

12: K4 < SORTDESCENDING(K)
13: K, + K, UK,
14: return K,

First, we initialize the General Keywords, Ab-
stract Keywords, and output as Ky, K, Ky, re-
spectively. EXTRACTFUNCTIONNAME extracts
the method name if provided in the problem de-
scription. Otherwise, it returns a null value. Then,
keywords are classified and scored. They can be
divided into three classes: Abstract Keywords, Gen-
eral Keywords, and Function Keyword. Abstract
keywords do not appear in any input; they are ab-
stract terms summarized from multiple concepts
and stored in K,. General keywords denote items
in the problem description. We calculate their im-
portance using TF-IDF based on a code-related cor-
pus. General keywords and their scores are stored
in K,. Function keyword refers to the method
name for solving the problem. Its explanation
provides a coarse-grained description of the prob-
lem requirements. We assign a score of -1 to the
function keyword, and also store them in K. Fi-
nally, SORTDESCENDING sorts the keywords in
K, based on their scores. The keywords are com-
bined in the order of abstract, general, and function
keywords, and are then returned as the Ranked
Keywords.

B Studied LLMs

e Llama-3.1-70B (Dubey and Abhinav Jauhri,
2024) is an open-sourced, decoder-only language
model, pre-trained on 15t tokens from public
sources. In our experiments, we use the Llama-
3.1-70B-Instruct version.

e Mixtral-8 x22B (Jiang et al., 2024) is an open-
source, sparse Mixture-of-Experts (MOE) model
with 141B total parameters, utilizing 39B active

parameters. We use the Mixtral-8 x22B-Instruct-
v0.1 version.

e DeepSeek-Coder-V2-Instruct-0724 (Zhu et al.,
2024), developed by DeepSeek-Al, is an open-
source MoE code language model pre-trained on
10.2T tokens. The instruction-tuned version is
further trained on 11B tokens.

o GPT-3.5-turbo-0125 (OpenAl, 2022) is a close-
sourced LLM from OpenAl, building on GPT-3
with optimizations for more efficient text genera-
tion.

e GPT-40-mini (OpenAl, 2024) is a smaller,
cost-effective’ variant of GPT-4 (OpenAl and
Josh Achiam, 2024), offering strong performance
across various tasks.

C Benchmark Details

We use four widely-used benchmarks, i.e., Hu-
manEval(+), MBPP(+), APPS and BigCodeBench,
for evaluation. Table 3 presents their key statistics.
(1) HumanEval (Chen et al., 2021) consists of 164
hand-written programming problems, each includ-
ing a method signature, docstring, body, and unit
tests. We use both HumanEval and its extended
version, HumanEval+(Liu et al., 2024), which en-
hances the original with 80x additional test sam-
ples to address test case insufficiency (Liu et al.,
2024).

(2) MBPP (Austin et al., 2021) contains crowd-
sourced Python programming problems. Our study
uses the versions proposed by (Liu et al., 2024), in-
cluding MBPP and MBPP+. Each of them contain
399 tasks, and the latter adds 35 test samples.
(3) APPS (Hendrycks et al., 2021) includes 10,000
coding problems from open-access websites, split
equally into training and test sets. It includes two
problem formats: call-based format (input via func-
tion parameters) and standard input format (using
stdin/stdout). Problems are categorized into intro-
ductory, interview, and competition levels. There
are three different difficulty levels of problems in
APPS, i.e., introductory, interview and competi-
tion. Each of them has 1000, 3000, and 1000
tasks, respectively. Considering the cost of evalu-
ating the entire APPS test set and following prior
work (Olausson et al., 2023; Huang et al., 2024b;
Le et al., 2024; Yang et al., 2023), we randomly
select problems in accordance with the frequency
distribution of these difficulty levels and sample

2GPT-4 is not selected due to the high experimental cost
required.

6262

Benchmark Humaneval Humaneval+ MBPP MBPP+ APPS APP.S APP.S . BigCodeBench
Introductory Interview Competition

Problem 164 164 399 399 60 180 60 148

#Avg Tests 9.6 764.1 3.1 105.4 15.1 25.7 17.3 5.6

#Avg Tokens 67.7 67.7 26.1 26.1 257.3 319.8 3774 147.8

Table 3: Statistics of benchmarks: the total number of problems in each benchmark (Problems), the average number
of hidden test cases per problem (#Avg Tests), and the average number of space-separated tokens of the problem

(#Avg Tokens).

60, 180, 60 problems at the introductory, interview,
and competition levels, respectively.

(4) BigCodeBench (Zhuo et al., 2024) is a challeng-
ing benchmark for code generation, designed to as-
sess LLLMs’ capabilities in tool utilization and the
following of complex instructions. In the Comple-
tion configuration, LLMs are provided with a func-
tion signature and documentation to generate code,
along with a unit test. It comprises 1,140 code-
generation problems. Its subset, BigCodeBench-
Hard, is a curated subset with 148 problems that
are more user-centric and challenging. In this work,
we employ the BigCodeBench-Hard.

D Baselines

e Default LLLM: This approach is based on the
EvalPlus framework (Liu et al., 2024), us-
ing problems from the benchmark as input to
prompt LLMs for code generation. And for Big-
CodeBench, we employ its own framework. To
be noted, we use the results from the EvalPlus
and BigCodeBench leaderboards®. However, for
LLMs not listed on the leaderboards, we follow
corresponding frameworks to obtain their results.

e Zero-Shot CoT (Chain-of-Thought) (Kojima
et al., 2022): This approach first prompts the
LLM to “think step by step” for getting the inter-
mediate reasoning steps and then concatenates
the original problem description with the gener-
ated intermediate steps as input to get the code
solution.

e CoT (Wei et al., 2022): This approach generates
a series of reasoning steps during the solution-
generation process for each problem. To ensure
comparative fairness, both the CoT baseline and
SEK employ an equal number of demonstrations.

e One-Step CoT: This approach first prompts the
LLM to "Rephrase the problem description us-
ing precise language", and then uses this refined
description to guide code generation. Both One-

3https://evalplus.github.io/leaderboard.html
https://bigcode-bench.github.io/

Step CoT and SEK employ an equal number of
demonstrations.

e SelfEvolve (Jiang et al., 2023a): This approach

first uses LLMs to generate problem-specific
knowledge and produce initial code solutions
based on such knowledge. Then, it iteratively
refines code solutions with LLMs based on exe-
cution feedback. Notably, SelfEvolve uses differ-
ent prompt templates for different benchmarks
to extract knowledge. Since these prompt tem-
plates have been open-sourced, we consistently
apply its two-stage prompts on HumanEval (see
Appendix J) in our replication process. For a
fair comparison, we remove the self-refinement
module, and employ the same number of demon-
strations as SEK.

o Beam Search (Wiseman and Rush, 2016): This

approach employs distinct search beams and op-
timizes selection during the decoding process.
Given that SEK requires LLMs to explore search
space twice by modifying the LLM’s search
space through additional token insertion, we
demonstrate its benefit by comparing it with per-
forming two searches within the LLM’s original
search space,i.e., beam search with a beam size
of 2. We also demonstrate that with similar com-
putational costs, SEK consistently outperforms
beam search (Appendix F.4).

E Implementation Details

Computation Sources. All experiments with open-
source LLLMs are conducted in eight NVIDIA A800
GPUs for around 200 GPU hours. All LLMs are
loaded in float16 format.

Demonstration selection strategy. Specifically,
for HumanEval, we select the first two problems
as demonstrations. For MBPP, we choose the first
problem. For APPS, considering the model’s input
length limitation and to avoid randomness, we se-
lect the two shortest problems from the first five
problems in the training set. For BigCodeBench,
we select the first two problems from the full

6263

benchmark set, which are also not part of the
BigCodeBench-Hard subset. The reason for this
differentiated strategy is that HumanEval, APPS
and BigCodeBench problems are more complex,
requiring more examples, while MBPP problems
are relatively simple in form, and one example is
enough.

Keywords and explanations involved in
demonstrations. The prompt for KeyExtract & Ex-
plain uses several demonstrations to guide LLMs
to produce keywords and their explanations. To en-
sure the quality of each demonstration, we first em-
ploy Claude-3.5-Sonnet, an LLM separate from our
target LLMs, to generate multiple sets of keywords
and explanations for each demonstration. The gen-
erated contents are then manually reviewed, and
the most accurate set for each demonstration is se-
lected and used in the prompt. This can mitigate
the potential bias in human-generated explanations.

F Additional experiments

F.1 Influence of Keyword Combination
Orders

In KeyRank, we combine different types of key-
words based on the order of abstract — general —
function. We investigate the influence of keyword
combination orders by comparing the order used
by SEK with three alternative ordering strategies
using two LLMs, i.e., Llama-3.1-70B-Instruct and
Mixtral-8x22B-Instruct-v0.1. Table 4 presents the
experimental results, where the abbreviations Abs,
Gen, and Func denote abstract keywords, general
keywords, and function keywords, respectively. The
results reveal performance variations across differ-
ent keyword combination orders, indicating that the
order of different keyword types impacts LLMs’
comprehension of coding problems. The combina-
tion order used by SEK consistently yields optimal
performance, suggesting its rationality.

F.2 Influence of Guidelines

In Section 4.2, we investigate the effectiveness of
the guidelines in the KeyExtract & Explain prompt
as a whole. This section further investigates the
impact of each guideline by removing it from the
prompt and re-evaluate the performance of SEK
with two LLMs, i.e., Llama-3.1-70B-Instruct and
GPT-3.5-turbo on HumanEval(+). Table 5 presents
the experimental results, where the performance
of the two LLMs decreases in almost all cases,
indicating the contribution of each guideline to the

effectiveness of SEK.

F.3 More Experiments on APPS

In the main experiment, we randomly sample prob-
lems from the APPS test set for evaluation due to
limited resources. The performance of LLMs on
APPS may be affected by the randomness of the
selected samples. To mitigate this variability, we
conduct additional experiments by randomly select-
ing three new subsets of problems at the introduc-
tory level from the APPS test set and using two
LLMs for evaluation, i.e., Llama-3.1-70B-instruct
and GPT-3.5-Turbo. The number of sampled tasks
is fixed at 60, consistent with the main experiment.
For reproducibility, the selected tasks are provided
in Table 11. As shown in Table 6, SEK achieve op-
timal performance across different subsets. For in-
stance, considering Llama-3.1-70B-Instruct, SEK
outperforms the Default, Beam Search, and CoT
baselines by an average of 7.3%, 6.7%, and 10.6%,
respectively. This corroborates the credibility of
our conclusions.

F.4 Analysis of Performance and
Computational costs of Beam Search and
SEK

To investigate the impact of beam size on perfor-
mance, we conduct additional experiments with
varying beam sizes (2, 3, 5, and 10) using LLaMA-
3.1-Instruct-70B on Humaneval(+), MBPP(+) and
APPS. We are unable to include Mixtral-8x22B-
Instruct-v0.1 in these experiments due to mem-
ory constraints (Out-Of-Memory issues) at beam
sizes > 5. The results, presented in Table 7
and Table 8, demonstrate that SEK consistently
outperforms beam search across most scenarios,
even with larger beam sizes. Interestingly, we ob-
served that beam sizes of 5 and 10 occasionally
surpassed SEK’s performance on MBPP(+) and
APPS-Interview, which may be attributed to more
computation cost of beam search (see below for
details).

To quantify the computational resource usage
of each approach, we calculated the product of
the numbers of generated tokens and maintained
paths as the total computational cost. The compu-
tational cost are shown in Tables 9 and Table 10.
When comparing the scenarios with similar compu-
tational costs, SEK consistently outperforms beam
search. In the cases where beam search surpasses
SEK, beam search typically demands significantly
more computational resources. For instance, on

6264

Model Combination Order =~ HumanEval HumanEval+ Average
Default 78.0 73.8 75.9
Func_Abs_Gen 83.5 78.7 81.1
Func_Gen_Abs 84.1 79.3 81.7
Llama-3.1-70B-Instruct Gen_Func_Abs 84.1 78.7 81.4
Gen_Abs_Func 84.1 78.7 81.4
Abs_Func_Gen 84.1 78.0 81.1
SEK(Abs_Gen_Func) 84.8 79.3 82.1
Default 72.6 67.7 70.2
Func_Abs_Gen 72.0 68.3 70.2
Func_Gen_Abs 74.4 69.5 72.0
GPT&;;“"O Gen_Func_Abs 73.8 69.5 71.7
Gen_Abs_Func 72.0 68.3 70.2
Abs_Func_Gen 71.3 67.7 69.5
SEK(Abs_Gen_Func) 75.6 69.5 72.6

Table 4: The experiments of different combination orders on Humaneval(+) with two LLMs.

Model Ablations HumanEval HumanEval+
w/o Guideline(1) 854 78.7
w/o Guideline(2) 82.3 75.6
w/o Guideline(3) 81.7 76.8
Llama-3.1-70B-Instruct | 0, G ideline(4) | 81.1 76.2
w/o Guideline(5) 83.5 77.4
ALL Guidelines 84.8 79.3
w/o Guideline(1) 74.4 70.7
w/o Guideline(2) 73.2 69.5
GPT-3.5-turbo w/o Guideline(3) 70.7 67.7
(API) w/o Guideline(4) 70.1 66.5
w/o Guideline(5) 71.3 67.1
ALL Guidelines 75.6 69.5

Table 5: Ablation experiments on removing one guideline at a time from Keyword Prompt on HumanEval(+) with

two LLMs.

MBPP, beam search with sizes 5 and 10 consumed
approximately 890 and 1840 computational units
respectively, whereas SEK required only 412 units.
These results reinforce SEK’s efficiency in achiev-
ing superior performance.

F.5 Characteristics of Extracted Keywords

F.5.1 Semantic Importance of Extracted
Keywords

To validate whether the keywords extracted in the
KeyExtract & Explain phase are semantic impor-
tant terms, we conduct a comparative attention anal-
ysis between extracted keywords and other terms.
Specifically, we select the keywords generated
by Llama-3.1-70B-Instruct and Mixtral-8x22B-
Instruct-v0.1 on HumanEval, and we perform a
controlled comparison in which the extracted key-
words are compared with other terms of the same

n-gram length. We concatenate the problem de-
scription with the ground truth, feed the resulting
text into the LLM, and extract the attention scores
corresponding to these terms from its final layer.
Since these scores reflect the degree to which the
LLM focuses on specific terms during answer gen-
eration, higher attention values suggest greater se-
mantic importance. Figures 5(a)-5(c) for Llama-
3.1-70B-Instruct and Figures 6(a)-6(c) for Mixtral-
8x22B-Instruct-v0.1 consistently demonstrate that
the extracted keywords exhibit a right-skewed at-
tention distribution relative to other terms, thereby
providing evidence that SEK effectively identifies
semantically significant keywords.

F.5.2 Frequency of Extracted Keywords

We further investigate whether the extracted key-
words tend to be relatively low-frequency terms.

6265

Model Method Introductory(A) Introductory(B) Introductory(C) Average
Default 51.6 45.0 46.6 47.7
Beam Search(2) 55.0 45.0 45.0 48.3
One-Step CoT 48.3 48.3 48.3 48.3
Llama-3.1-70B-Instruct ~ Zero-Shot CoT 41.6 40.0 30.0 37.2
CoT 41.6 46.6 45.0 444
SelfEvolve 45.0 53.3 46.6 48.3
SEK 58.3 56.6 50.0 55.0
Default 45.0 51.6 43.3 46.6
One-Step CoT 53.3 48.3 41.6 47.7
GPT-3.5-turbo Zero-Shot CoT 48.3 51.6 50.0 50.0
(API) CoT 48.3 53.3 46.6 49.4
SelfEvolve 45.0 48.3 45.0 46.1
SEK 48.3 53.3 50.0 50.5

Table 6: The Pass@1 (%) results of SEK and baseline methods on differently sampled APPS-Introductory sets.

APPS APPS APPS

Method HumanEval HumanEval+ MBPP MBPP+ . . Average
Introductory Interview Competition

Default 78.0 73.8 87.6 70.9 50.0 15.0 5.0 54.3
Beam Search(2) 79.3 74.4 87.8 70.9 55.0 16.1 5.0 55.5
Beam Search(3) 78.0 74.4 87.8 72.2 533 20.0 6.6 56.0
Beam Search(5) 79.9 75.6 88.4 72.8 55.0 21.1 6.7 57.1
Beam Search(10) 79.9 75.0 88.9 72.5 56.6 21.1 8.3 57.5
SEK 84.8 79.3 88.4 71.2 61.7 20.0 8.3 59.1

Table 7: Table 7: The Pass@1 (%) results of Llama-3.1-Instruct-70B with SEK and beam search baselines on
HumanEval(+), MBPP(+) and APPS. The dashed line separates the Beam Search variants of which the computational
costs may be less than SEK (above) from those with costs greater than SEK (below).

Specifically, we choose the keywords generated by
Llama-3.1-70B-Instruct on HumanEval for anal-
ysis and use a controlled comparison where the
extracted keywords are compared with other terms
of the same n-gram length. We use TF-IDF scores
as a proxy to assess the frequency of the terms. We
conduct three separate experiments with different
instruction tuning datasets and pertaining datasets
for IDF calculations, including eval-codealpaca-
vl (Luo et al., 2023), OSS-Instruct (Wei et al.,
2024) and randomly selected samples from Python
subset of the Stack-V2 (Lozhkov et al., 2024),
which is pre-training data of the StarCoder?2.

As shown in Figure 7(a), Figure 7(b), and Fig-
ure 7(c), all experiments demonstrate consistent
results: the distribution of extracted keywords ex-
hibits a notable right-skewed pattern compared to
other terms, indicating higher TF-IDF scores. This
dual empirical analysis provides supporting evi-
dence that SEK tends to identify relatively low-
frequency terms as keywords.

F.6 Importance of Generated Explanations

To validate the effectiveness of keyword explana-
tions generated in the KeyExtract & Explain step,

we conduct an additional ablation experiment by re-
moving the generated explanations while retaining
the extracted keywords for code generation. We fol-
low the same experimental setup on HumanEval(+)
using Llama-3.1-70B-Instruct and GPT-3.5-turbo.
The results are shown in Table 12. It can be ob-
served that removing generated explanations from
the enriched prompts leads to performance drops,
demonstrating the importance of these explanations
for the code generation process.

G Selected APPS tasks

For reproducibility, we provide the complete list of
selected tasks of APPS in Table 13.

H Attention Analysis

We aim to explain SEK from the perspective of
attention distribution. We use BertViz* to present
explainability visualizations. Due to limited com-
putational resources, we select a short problem and
remove its test cases. Specifically, the problem de-
scription is “Write a function to find the nth nonag-
onal number.” and we select a keyword with its
explanation “[nonagonal]: A nine-sided polygon.

*https://github.com/jessevig/bertviz

6266

Method Introductory(A) Introductory(B) Introductory(C) Average
Default 51.6 45.0 46.6 47.7
Beam Search(2) 55.0 45.0 45.0 48.3
Beam Search(3) 50.0 45.0 45.0 46.7
Beam Search(5) 53.3 433 433 46.6
Beam Search(10) 53.3 45.0 48.3 48.9
SEK 58.3 56.6 50.0 55.0

Table 8: The Pass@1 (%) results of Llama-3.1-Instruct-70B of SEK and different number of beam sizes of beam
search baselines on differently sampled APPS-Introductory sets.

Method HumanEval MBPP APPS APP.S APP.S . Average
Introductory Interview Competition
Beam Search(2) 242.0 378.0 202.0 304.0 416.0 308.4
Beam Search(3) 723.0 538.0 286.0 435.0 611.0 518.6
Beam Search(5) 1200.0 890.0 455.0 685.0 1165.0 879.0
Beam Search(10) 2500.0 1840.0 960.0 1360.0 2410.0 1814.0
SEK 450.0 412.0 273.0 337.0 484.0 391.2

Table 9: The computational resource usage of SEK and Beam search with different beam sizes. Underline number
means the closest computational resource consumption to that of SEK of the same benchmark.

Nonagonal numbers represent the count of dots
forming nonagons of increasing size”. We select
Mixtral-8x22B-Instruct-v0.1 as the base model and
extract the attention from its last layer for analysis.

The key to this problem lies in understanding
“nonagonal”. With Default, Figure 8 shows the
overall attention distribution for the problem, while
Figure 9 displays the attention distribution for a
part of the keyword “nonagonal”. It can be ob-
served that most of the attention is allocated to the
beginning words, with the keyword “nonagonal"
receiving relatively less attention. This may lead to
insufficient focus on the core concept of the prob-
lem when generating code. In contrast, with SEK,
Figure 11 presents the overall attention distribution
of the LLM with SEK, and Figure 10 shows the
attention distribution for “nonagonal”. It can be
seen that the model allocates additional attention to
the added keywords and explanations, encouraging
the model to focus more on the core concepts of the
problem. With SEK, the LLM further distributes
attention to the added keywords and explanations,
which can enhance its understanding of the key
concepts in the problem.

g§egec==ss

Figure 11: Final layer of the attention visualization with
SEK

I Case Study

To further evaluate the effectiveness of SEK, we
conduct a qualitative analysis. As shown in Fig-
ures 12, we select one representative sample from
MBPP, use DeepSeek-Coder-V2-Instruct as the
base model, and compare the outputs of SEK with
Default and CoT. See Appendix M for more cases.

The problem aims to find the kth element in the
given array using 1-based indexing. The solutions
generated by Default and CoT both perform unnec-
essary sorting and are incorrect. This may be be-
cause the LLM incorrectly correlates the keyword
kth element with the sorting operation. In contrast,
SEK accurately interprets kth element and produces
the correct code solution. This is achieved by incor-
porating the guideline that ensures the explanations
are consistent with test cases in the problem de-
scription, demonstrating the effectiveness of SEK.

J Prompt For Self-Evolve

[
6267

Method Introductory(A) Introductory(B) Introductory(C) Average
Beam Search(2) 192.0 200.0 202.0 198.0
Beam Search(3) 281.6 308.0 308.0 299.2
Beam Search(5) 460.0 485.0 480.0 475.0
Beam Search(10) 970.0 1050.0 950.0 990.0

SEK 270.0 269.0 281.0 273.3

Table 10: The computational resource usage of SEK and Beam search with different beam sizes on differently
sampled APPS-Introductory sets. Underline number means the closest computational resource consumption to that

of SEK of the same benchmark.

! mm Keywords 35

3.0 | Other Terms
B ==+ Keywords Mean: 5.27e-03 3.0
25 Other Terms Mean: 4.37¢-03
: 2.5
> >
2.0
g 320
3 5
A 15 81s
1.0 1.0
0.5 0.5

0.0
1.6e-03 2.3e-03 3.3e-03 4.8e-03 6.9e-03 1.0e-02 1.4e-02 2.1e-02
Attention Score (log scale)

(a) 1-gram

= Keywords

0.0
1.6e-03 2.3e-03 3.3e-03 4.8e-03 6.9e-03 1.0e-02 1.4e-02 2.1e-02
Attention Score (log scale)

(b) 2-gram

m Keywords
Other Terms

==+ Keywords Mean: 5.19e-03

Other Terms Mean: 4.00e-03

Other Terms
—=- Keywords Mean: 5.15-03
Other Terms Mean: 4.08e-03

IS

Density
Now

1.6e-03 2.3eI703 3.3e-03 4.8e-03 6.9e-03 1.0e-02 1.4e-02 2.1e-02
Attention Score (log scale)

(c) 3-gram

Figure 5: Comparison of the attention distribution of extracted Keywords and other terms with Llama-3.1-70B-

Instruct.

Datasets Tasks

Introductory(A) 4029, 4032, 4050, 4054, 4060, 4099, 4116, 4131, 4132, 4148,
4157, 4166, 4180, 4206, 4211, 4232, 4251, 4256, 4283, 4289,
4317, 4320, 4323, 4332, 4343, 4356, 4417, 4451, 4469, 4471,
4527, 4538, 4541, 4542, 4546, 4599, 4625, 4640, 4676, 4680,
4704, 4721, 4748, 4774, 4780, 4781, 4787, 4800, 4806, 4826,
4837, 4864, 4868, 4878, 4888, 4896, 4924, 4926, 4930, 4943

Introductory(B) 4021, 4046, 4051, 4073, 4115, 4127, 4138, 4140, 4156, 4163,
4201, 4225, 4230, 4233, 4236, 4263, 4270, 4294, 4295, 4347,
4358, 4375, 4376, 4407, 4424, 4446, 4453, 4454, 4460, 4469,
4478, 4486, 4489, 4528, 4547, 4570, 4580, 4596, 4638, 4644,
4656, 4678, 4692, 4695, 4726, 4730, 4735, 4740, 4780, 4803,
4842, 4869, 4871, 4890, 4905, 4918, 4932, 4947, 4970, 4975

Introductory(C) 4018, 4028, 4042, 4085, 4102, 4134, 4146, 4172, 4201, 4203,
4257, 4274, 4281, 4309, 4314, 4324, 4353, 4356, 4387, 4418,
4447, 4461, 4465, 4473, 4474, 4486, 4499, 4506, 4510, 4528,
4560, 4592, 4604, 4617, 4627, 4701, 4704, 4710, 4712, 4713,
4716, 4719, 4723, 4732, 4763, 4772, 4801, 4812, 4867, 4879,
4893, 4898, 4907, 4924, 4929, 4944, 4957, 4973, 4974, 4975

Table 11: The tasks in different sampling Introductory
sets.

{Problem description}

For the above question, could you briefly teach me how to
solve it step by step in natural language? ’Dont write
the code in this step.

Listing 1: The first prompt of Self-Evolve

Based on the above idea, help me complete the function.
Be attention, you should only output the codes without any
explanation and natural language. Wrap your code with

me~n

Listing 2: The Second prompt of Self-Evolve

K Case Study of the Difference between
Beam Search and SEK

Despite expanding the search space, Beam Search
is still less effective than SEK due to its failure to

Model Method Humaneval Humaneval+

Default 78.0 73.8

Llama-3.1-70B-Instruct SEK w/o explanations 78.7 74.4
SEK 84.8 79.3

Default 72.6 67.7

GPT-3.5-turbo .

(API) SEK w/o explanations 72.6 68.9

SEK 75.6 69.5

Table 12: Ablation experiments on removing generated
explanations on HumanEval(+) with two LLMs.

deepen its understanding of the problem. To illus-
trate this, we use Problem 131 from Humaneval,
generated by Llama 3.1-70B-Instruct. Although
Beam Search and the Default implementations dif-
fer, neither approach fully comprehends the prob-
lem. Specifically, when handling odd digits, both
methods incorrectly return O when the product of
the odd digits is 1. In contrast, SEK not only identi-
fies but also correctly interprets the concept of odd
digits in the problem description, allowing it to han-
dle cases where the product of the odd digits equals
1 accurately. This demonstrates that SEK, by fo-
cusing on the underlying semantic understanding
of key problem concepts, develops a deeper com-
prehension of the task, ultimately leading to the
correct solution.

6268

1.0 | - Keywords T 14 | - Keywords
] Other Terms 1.0 Other Terms : 1 Other Terms
——- Keywords Mean: 2.71e-08 —- Keywords Mean: 2.51e-08 12 | ==- Keywords Mean: 2.58¢-08
0.8 Other Terms Mean: 1.45e-08 08 Other Terms Mean: 1.15e-08 : ! Other Terms Mean: 1.08e-08
’ 1.0
> > >
£'0.6 £ =
2 506 08
f= f = c
o Ja} o}
004 a 0.4 Q0.6
0.4
0.2 0.2 0.2

0.0-
1.6e-03 2.3e-03 3.3e-03 4.8e-03 6.9e-03 1.0e-02 1.4e-02 2.1e-02
Attention Score (log scale)

(a) 1-gram

0.0-
1.6e-03 2.3e-03 3.3e-03 4.8e-03 6.9e-03 1.0e-02 1.4e-02 2.1e-02
Attention Score (log scale)

(b) 2-gram

0.0+
1.6e-03 2.3e-03 3.3e-03 4.8e-03 6.9e-03 1.0e-02 1.4e-02 2.1e-02
Attention Score (log scale)

(c) 3-gram

Figure 6: Comparison of the attention distribution of extracted Keywords and other terms with Mixtral-8x22B-

Instruct.
3.0 = Keywords 35
: Other Terms 3.0
25 —=—- Keywords Mean: -1.32e+00 B
: Other Terms Mean: -1.88e+00 2.5
> ! >
£20 i Z20
c
g1s ! G 15
1.0 i 1.0
1
0.5 ! 0.5

1-0—2.40 10-192 10-0-50 0‘010—2.‘10 10-192

1071.45
TF * IDF Score (log scale)

10-0:98

(a) eval-codealpaca-v1

== Keywords
Other Terms

-=- Keywords Mean: -1.37e+00
Other Terms Mean: -1.90e+00

10-145

(b) OSS-Instruct

= Keywords
Other Terms

—=- Keywords Mean: -1.37e+00
Other Terms Mean: -1.91e+00

0'010—2.40 10-192 10-145 10-098 10-050

TF * IDF Score (log scale)

10-0.50

1070.98
TF * IDF Score (log scale)

(c) The Stack-v2

Figure 7: Comparison of the distribution of extracted Keywords and other terms with different corpus.

Difficulty Tasks

4007, 4032, 4049, 4050, 4054, 4060, 4114, 4116, 4132, 4148,
4157, 4166, 4180, 4211, 4215, 4232, 4251, 4283, 4289, 4317,
4323, 4332, 4343, 4356, 4372, 4417, 4439, 4451, 4469, 4527,
4540, 4541, 4546, 4549, 4582, 4585, 4599, 4625, 4631, 4640,
4676, 4678, 4704, 4721, 4774, 4781, 4787, 4800, 4806, 4826,
4837, 4861, 4864, 4868, 4878, 4888, 4924, 4926, 4929, 4930

6, 10, 35, 44, 56, 76, 82, 95, 105, 106, 115, 133, 135, 178, 188,
198, 210, 213, 231, 240, 248, 278, 300, 305, 319, 342, 357, 372,
371, 379, 420, 457, 460, 483, 484, 489, 546, 553, 566, 567, 584,
634, 664, 669, 675, 686, 696, 701, 734, 785, 817, 855, 861, 876,
903, 909, 914, 932, 973, 989, 993, 994, 1017, 1020, 1025, 1033,
1039, 1053, 1069, 1101, 1122, 1132, 1140, 1144, 1158, 1166,
1167, 1224, 1226, 1232, 1280, 1313, 1346, 1351, 1361, 1373,
1375, 1391, 1394, 1406, 1409, 1432, 1458, 1459, 1478, 1487,
1491, 1508, 1520, 1527, 1534, 1540, 1557, 1563, 1565, 1590,
1635, 1640, 1715, 1720, 1733, 1749, 1761, 1768, 1775, 1813,
1823, 1833, 1838, 1864, 1881, 1885, 1955, 1976, 1982, 1989,
2003, 2006, 2011, 2015, 2048, 2053, 2062, 2077, 2097, 2101,
2145, 2177, 2192, 2209, 2273, 2293, 2317, 2361, 2406, 2443,
2492, 2494, 2495, 2502, 2513, 2514, 2533, 2542, 2546, 2552,
2554, 2609, 2615, 2641, 2642, 2655, 2657, 2684, 2707, 2725,
2726, 2728, 2729, 2762, 2767, 2776, 2784, 2788, 2815, 2850,
2874, 2914, 2982, 2999

3009, 3024, 3031, 3071, 3097, 3131, 3138, 3171, 3188, 3204,
3206, 3210, 3211, 3252, 3262, 3263, 3298, 3301, 3313, 3319,
3326, 3372, 3379, 3445, 3456, 3479, 3481, 3501, 3517, 3535,
3573, 3579, 3618, 3629, 3654, 3680, 3684, 3690, 3713, 3721,
3727, 3731, 3733, 3745, 3762, 3775, 3786, 3788, 3802, 3803,
3843, 3863, 3882, 3886, 3893, 3901, 3943, 3945, 3948, 3972

Introductory

Interview

Competition

Table 13: The tasks in different difficulty levels of
APPS.

L Additional Results on Stronger LLM

To further investigate the effectiveness of SEK on
stronger LLMs, we conduct additional experiments
with Claude-3.5-Sonnet. Due to cost constraints
(similar to GPT-40), we limit our comparison to
three approaches: Default, CoT, and SEK across
all benchmarks. As shown in Table 14, the results
demonstrate that SEK outperforms both baseline

< <

5 3

s 2 s 3

2 3 £

§ 5 8 5% _S,2¢2 §85

s £ R VZEodeEsccs282
55 E.2¢2 §st
VZEaodoEscs2R2

[

gmcoTocEsET S

\ 2822 E°F5¢8 3

A @WEQOTDOEESETY = 3 = S E

9 £ S < £ =g 23 S ® 3

VE g = 2S5t 2 2
g 25
El 2

Figure 9: Attention vi-
sualization for a part of
the keyword "nonagonal”

Figure 8: The overall at-
tention visualization with

= °

- [£

§ 58] 538 2 8

2 3 5 g g c 2o £ g
- c§E c§ 2 856 56§Ecos Ec _ o _tag
4 §85 §8 £ 3 $85 s 25808, 88
VZEo2eEEcs2882 _2F~s<tc 0282 28225855082 86%5E7%
peccovecsEmy —EFESCL YYBTE STOELEBOLOED25 29
pE°52gL"S52% G-Bo< g $8§5 STgEEEC®EE5RES 2
VE § €% eE g5 H %% 2538%3 £8°%5 %%

s 32 g = 85¢ ° s 8

s 2 — 855 s g

2 28 5

Figure 10: Attention visualization for a part of the key-
word "nonagonal" with SEK.

approaches. These findings further confirm that
SEK remains effective even for LLMs with stronger
reasoning capabilities, demonstrating SEK’s strong
generalizability.

M More examples

We present an example from APPS-Introductory.
This problem requires solving an optimization prob-
lem to minimize the number of thieves while en-

6269

(—| MBPP #101

Write a function to find the kth element in the given array using 1-based indexing.
assert kth_element([12,3,5,7,19], 2) == 3
e S
def Kfnfelement(arr‘, k): def kth_element(arr, k):
Write a.Functlon to.Flnd'the kth element in the giv Find the kth element in the given array using 1-
en array using 1-based indexing. based indexin
assert kth_element([12,3,5,7,19], 2) == 3 g:
if k < 1 or k > len(arr): # Ensure the array is sorted
raise ValueError("k is out of bounds for the gi sorted_arr = sorted(arr)
" # Return the kth element using 1-based indexing
ven array")
return sorted_arr[k - 1]
return sorted(arr)[k-1]
\ l L AN x)
SeK
~N
[1-based indexing]: A method of indexing where the first element of a sequence is assigned the index 1. This contrasts with 0-based indexing, where the first
element is assigned the index 0. In the test case, the function is expected to use 1-based indexing, meaning the second element is accessed with the index 2,
not 1.
[kth element]: The element at the k-th position in a sequence, where k is a specified index. In the context of the test case, kth_element([12, 3, 5, 7, 19], 2) == 3,
the kth element refers to the second element in the array [12, 3, 5, 7, 19], which is 3.
def kth_element(arr, k):
Find the kth element in the given array using 1-based indexing.
Args:
arr (list): The input array.
k (int): The position of the element to find (1-based indexing).
Returns:
int: The kth element in the array.
if k < 1 or k > len(arr):
raise ValueError("k is out of the range of the array indices")
__ return arr[k - 1] 4)
Figure 12: A real case from MBPP generated by two baselines and SEK.
APPS APPS APPS BigCodeBench
Model Method HumanEval HumanEval+ MBPP MBPP+ . - g Average
Introductory Interview Competition Hard
Default 87.2 81.7 89.4 74.3 65.0 472 23.3 33.1 62.7
Claude-3-5-Sonnet
(API) CoT 92.6 85.4 90.6 712 71.7 48.9 233 33.8 65.4
SEK 93.9 87.8 91.5 77.5 71.7 494 25.0 33.8 66.3

Table 14: Additional results on stronger LLM.

suring that each thief steals the same number of
swords and accounting for all missing swords. This
solution requires the use of the greatest common
divisor (GCD). It can be seen that both CoT and
Default make the same mistake: they use the differ-
ence between the maximum and minimum sword
counts to calculate the number of swords each per-
son takes. In contrast, only SEK correctly utilizes
the GCD, resulting in the generation of accurate
code.

N Details of demonstrations used in
KeyExtract & Explain

6270

def digits(n):
"""Given a positive integer n, return the product of the odd digits.
Return @ if all digits are even.
For example:
digits (1)
digits(4)
digits(235)

== 1
== 9
== 15

Listing 3: A problem from Humaneval (problem ID 131)

def digits(n):
Given a positive integer n, return the product of the odd digits.
Return @ if all digits are even.

Args:
n (int): A positive integer.

Returns:

int: The product of the odd digits of n, or @ if all digits are even.
product = 1
for digit in str(n):

digit = int(digit)

if digit % 2 != o:
product *= digit
return product if product != 1 else @

Listing 4: The output of Default from Humaneval (problem ID 131)

Write a function to find the difference of the first even and first odd number of a given list.
assert diff_even_odd([1,3,5,7,4,1,6,8]1)==3

Listing 12: A problem from MBPP (problem ID 594)

Here is the completed function:

* T python

def diff_even_odd(lst):
first_even = None
first_odd = None

for num in lst:

if num % 2 == @ and first_even is None:
first_even = num
elif num % 2 != @ and first_odd is None:

first_odd = num

if first_even is not None and first_odd is not None:
break

if first_even is None or first_odd is None:
return None

return abs(first_even - first_odd)

Test case
assert diff_even_odd([1, 3

, 5, 7, 4

Listing 13: The output of Default from MBPP (problem ID 594)

6271

def digits(n):
"""Given a positive integer n, return the product of the odd digits.
Return @ if all digits are even.
For example:
digits (1)
digits(4)
digits(235)

product = 1
for digit in str(n):
if int(digit) % 2 != 0:
product *= int(digit)
return product if product != 1 else @

Listing 5: The output of Beam Search from Humaneval (problem ID 131)

[positive integer nl: The input parameter, a whole number greater than zero, which is the subject of the operation. The test
cases demonstrate this concept with inputs 1, 4, and 235

[product of the odd digits]: The result of multiplying all the odd digits together. In the test case digits(235), the product
of the odd digits is 3 * 5 = 15.

[odd digits]: Refers to the individual numerical digits within the input integer n that are not divisible by 2, i.e., 1, 3,
5, 7, and 9. In the test case digits(235), the odd digits are 2, 3, and 5.

def digits(n):
Given a positive integer n, return the product of the odd digits.
Return @ if all digits are even.

Args:
n (int): A positive integer.

Returns:

int: The product of the odd digits, or @ if all digits are even.
Convert the integer to a string to easily iterate over each digit
str_n = str(n)

Initialize the product to 1
product = 1

Initialize a flag to track if any odd digits were found
found_odd = False

Iterate over each character (digit) in the string
for char in str_n:
Convert the character back to an integer
digit = int(char)

Check if the digit is odd
if digit % 2 != o:
If the digit is odd, multiply it with the current product
product *= digit
Set the flag to True
found_odd = True

If no odd digits were found, return @
if not found_odd:
return @
Otherwise, return the product of the odd digits
else:
return product

Listing 6: The output of SEK from Humaneval (problem ID 131)

6272

There were n types of swords in the theater basement which had been used during the plays. Moreover there were exactly x
swords of each type. y people have broken into the theater basement and each of them has taken exactly z swords of
some single type. Note that different people might have taken different types of swords. Note that the values x, y
and z are unknown for you.

The next morning the director of the theater discovers the loss. He counts all swords — exactly a_i swords of the i-th
type are left untouched.

The director has no clue about the initial number of swords of each type in the basement, the number of people who have
broken into the basement and how many swords each of them have taken.

For example, if $n=3%$, $a = [3, 12, 6]% then one of the possible situations is $x=12$%, $y=5$% and $z=3$. Then the first three
people took swords of the first type and the other two people took swords of the third type. Note that you don't know
values x, y and z beforehand but know values of n and a.

Thus he seeks for your help. Determine the minimum number of people y, which could have broken into the theater basement,
and the number of swords z each of them has taken.

The first line of the input contains one integer n $(2 \le n \le 2 \cdot 107{5})$ — the number of types of swords.

The second line of the input contains the sequence a_1, a_2, \dots, a_n $(0 \le a_i \le 107{9})$%, where a_i equals to the
number of swords of the i-th type, which have remained in the basement after the theft. It is guaranteed that there
exists at least one such pair of indices (j, k) that $a_j \neq a_k$.

Print two integers y and z — the minimum number of people which could have broken into the basement and the number of
swords each of them has taken.

OQutput
53

Input
2
29

Output
17

Input
7
2 1000000000 4 6 8 4 2

Output
2999999987 2

Input
6
13 52 @ 13 26 52

OQutput
12 13

In the first example the minimum value of y equals to $5%, i.e. the minimum number of people who could have broken into the
basement, is $5%$. Each of them has taken 3 swords: three of them have taken 3 swords of the first type, and two
others have taken 3 swords of the third type.

In the second example the minimum value of y is 1, i.e. the minimum number of people who could have broken into the
basement, equals to 1. He has taken 7 swords of the first type.

Listing 7: A problem from APPS-Introductory (problem ID 4372)

6273

Below is a Python script with a self-contained function that solves the problem and passes corresponding tests:
“ T python
import math

Read the number of types of swords

n = int(input())

Read the sequence of remaining swords
a = list(map(int, input().split()))

Find the minimum and maximum values in the sequence
min_swords = min(a)
max_swords = max(a)

Calculate the number of swords each person took
z = max_swords - min_swords

Calculate the minimum number of people
y = 0
if z 1= 0:
for swords in a:
y += (swords - min_swords) // z

Output the result
print(y, z)

This script reads the input, calculates the minimum and maximum values of the remaining swords, and then computes the number
of people (“y) and the number of swords each person took (“z”). It ensures that the output is the minimum number of
people who could have broken into the basement and the number of swords each of them has taken.

Listing 8: The output of Default from APPS-Introductory (problem ID 4372)

Below is a Python script with a self-contained function that solves the problem and passes corresponding tests:
T python

Read the number of types of swords

n = int(input())

Read the sequence of remaining swords

a = list(map(int, input().split()))

Step 1: Find the minimum and maximum values in the array

min_swords = min(a)

max_swords = max(a)

Step 2: Calculate the number of swords each person took
z = max_swords - min_swords

Step 3: Calculate the minimum number of people

y =20
for swords in a:
if swords != max_swords:

y += (max_swords - swords) // z

Step 4: Print the result
print(y, z)

This script reads the input, calculates the minimum number of people ("y~) and the number of swords each person took (“z7),
and prints the result. The logic is based on finding the difference between the maximum and minimum values in the array
“a”, which represents the number of swords each person took (“z~), and then summing up the number of people required to
achieve this difference for each type of sword.

Listing 9: The output of CoT from APPS-Introductory (problem ID 4372)

6274

There were n types of swords in the theater basement which had been used during the plays. Moreover there were exactly x
swords of each type. y people have broken into the theater basement and each of them has taken exactly z swords of
some single type. Note that different people might have taken different types of swords. Note that the values x, y
and z are unknown for you.

The next morning the director of the theater discovers the loss. He counts all swords — exactly a_i swords of the i-th
type are left untouched.

The director has no clue about the initial number of swords of each type in the basement, the number of people who have
broken into the basement and how many swords each of them have taken.

For example, if $n=3$%$, $a = [3, 12, 6]% then one of the possible situations is $x=12$%, $y=5$% and $z=3$. Then the first three
people took swords of the first type and the other two people took swords of the third type. Note that you don't know
values x, y and z beforehand but know values of n and a.

Thus he seeks for your help. Determine the minimum number of people y, which could have broken into the theater basement,
and the number of swords z each of them has taken.

The first line of the input contains one integer n $(2 \le n \le 2 \cdot 10%{5})$ — the number of types of swords.

The second line of the input contains the sequence a_1, a_2, \dots, a_n $(@ \le a_i \le 107{9})$%, where a_i equals to the
number of swords of the i-th type, which have remained in the basement after the theft. It is guaranteed that there
exists at least one such pair of indices (j, k) that $a_j \neq a_k$.

Print two integers y and z — the minimum number of people which could have broken into the basement and the number of
swords each of them has taken.

OQutput
53

Input
2
29

Output
17

Input
7
2 1000000000 4 6 8 4 2

OQutput
2999999987 2

Input
6
13 52 @ 13 26 52

Output
12 13

In the first example the minimum value of y equals to $5%, i.e. the minimum number of people who could have broken into the
basement, is $5%. Each of them has taken 3 swords: three of them have taken 3 swords of the first type, and two
others have taken 3 swords of the third type.

In the second example the minimum value of y is 1, i.e. the minimum number of people who could have broken into the
basement, equals to 1. He has taken $7% swords of the first type.

fffff Keywords and Explanations-----

Analyze the following key terms and their relationships within the problem context:

[number of swords taken]: The quantity of swords, denoted as \(z \), that each person took. This value is derived from the
GCD of the differences between the initial number of swords and the remaining number of swords for each type. In the
first example, \(z = 3 \) is the result of calculating the GCD of the differences in the remaining swords.

[minimum number of people]: The smallest count of individuals, denoted as \(y \), who could have broken into the theater
basement and taken swords. This value is determined by the differences in the number of swords left of each type, \(
a_i \), and is calculated as the greatest common divisor (GCD) of these differences. In the first example, \(y = 5 \)
is derived from the differences between the remaining swords of each type.

Listing 10: The enriched problem of APPS-Introductory (problem ID 4372)

6275

Below is a Python script that solves the problem described:
T python
import math

from functools import reduce

def gcd(a, b):

while b:
a, b=>b, a%b
return a

def find_gcd(list):
x = reduce(ged, list)
return x

n = int(input())
a = list(map(int, input().split()))

Calculate the differences between the maximum and each element in a
differences = [max(a) - ai for ai in al

Find the GCD of all differences to determine the number of swords each person took (z)
z = find_gcd(differences)

Calculate the minimum number of people (y) by summing up the differences and dividing by z
y = sum(differences) // z

print(y, z)

This script reads the number of types of swords “n” and the list of remaining swords “a° from the input. It then calculates
the differences between the maximum number of swords and each type's remaining swords. The greatest common divisor
(GCD) of these differences is computed to find the number of swords each person took (z). Finally, it calculates the
minimum number of people (“y~) by summing up the differences and dividing by “z~. The results are printed as “y~ and

z

Listing 11: The output of SEK from APPS-Introductory (problem ID 4372)

Certainly! Below is a self-contained Python script that defines a function to find the difference between the first even and
first odd number of a given list, along with a corresponding test:

* T python

def diff_even_odd(numbers):
first_even = None
first_odd = None

for number in numbers:

if number % 2 == @ and first_even is None:
first_even = number

elif number % 2 != @ and first_odd is None:
first_odd = number

if first_even is not None and first_odd is not None:
break

if first_even is None or first_odd is None:
return None # Return None if either an even or odd number is not found

return abs(first_even - first_odd)

Test the function
assert diff_even_odd([1, 3, 5, 7

, 4, 1, 6, 8]) == 3

This script defines the “diff_even_odd™ function, which iterates through the given list to find the first even and first odd
numbers. It then calculates the absolute difference between these two numbers and returns it. The test case provided in
the problem statement is also included to verify the correctness of the function.

Listing 14: The output of CoT from MBPP (problem ID 594)

Write a function to find the difference of the first even and first odd number of a given list.
assert diff_even_odd([1,3,5,7,4,1,6,8])==

Analyze the following key terms and their relationships within the problem context:
[even number]: An integer that is divisible by 2 without leaving a remainder. In the provided list °[1,3,5,7,4,1,6,8]",
the first even number is ~4°.
[odd number]: An integer that is not divisible by 2, leaving a remainder of 1. In the provided list ~[1,3,5,7,4,1,6,8] , the
first odd number is ~1°.
[difference]: The mathematical operation of subtracting one number from another. In the context of the function, it
refers to the result of subtracting the first odd number from the first even number in the given list. For the test
case “diff_even_odd([1,3,5,7,4,1,6,8])==3", the difference is calculated as "4 - 1 = 3°.

assert diff_even_odd([1,3,5,7,4,1,6,8])==

Listing 15: The enriched problem of MBPP (problem ID 594)

6276

Here is the self-contained Python script that solves the problem described:

T python
def diff_even_odd(numbers):

Find the difference of the first even and first odd number of a given list.

Args:
numbers (list): A list of integers.

Returns:
int: The difference between the first even and first odd number.

first_even = None
first_odd = None

for num in numbers:

if first_even is None and num % 2 == 0:
first_even = num
if first_odd is None and num % 2 != @:

first_odd = num

if first_even is not None and first_odd is not None:
break

if first_even is None or first_odd is None:
raise ValueError("List must contain at least one even and one odd number.")

return first_even - first_odd

Test case
assert diff_even_odd([1, 3, 5, 7, 4, 1, 6, 81)

This script defines a function “diff_even_odd™ that takes a list of integers as input and returns the difference between the
first even number and the first odd number in the list. The function iterates through the list to find the first even
and first odd numbers and then calculates their difference. The test case provided in the problem statement is also
included to verify the function's correctness.

Listing 16: The output of SEK from MBPP (problem ID 594)

Demonstration 1:
Check if in given list of numbers, are any two numbers closer to each other than given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True

[closer to each other]: Describes two numbers in the list whose absolute difference is less than the given threshold. For
example, in the list [1.0, 2.8, 3.0, 4.0, 5.0, 2.0] with a threshold of 0.3, the numbers 2.8 and 3.0 are considered
closer to each other because [2.8 - 3.0| = 0.2, which is less than 0.3

[has_close_elements]: Function name that defines the operation to be implemented. It takes two arguments: a list of numbers
and a threshold value. The function should return True if any two numbers in the list have a difference smaller than
the threshold, and False otherwise.

Demonstration 2:
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group
into separate strings and return the list of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
>>> separate_paren_groups('() (C)) (CHYCN"
Lo (o), "tO0n'1

[balanced]: Refers to parentheses groups where each opening parenthesis '(' has a corresponding closing parenthesis ')' in
the correct order, without any mismatches. Examples of balanced groups include '()', '(Q))', and '(OQO)'. In a
balanced group, the number of opening and closing parentheses is always equal.

[nested parentheses]: Describes parentheses groups where complete inner pairs are fully contained within outer pairs, without
overlapping. The group '(()())' demonstrates this concept, containing two complete inner pairs '()' nested within an
outer pair. Nested groups can have multiple levels of nesting while still being balanced.

[separate_paren_groups]: Function name indicating the functionality to be implemented. This function takes a single string
argument containing multiple groups of nested parentheses. It should return a list of separated, independent
parentheses groups.

Listing 17: The selected demonstrations and corresponding keywords and explanations in Humaneval(+) benchmark

Write a function to find the shared elements from the given two lists.
assert set(similar_elements((3, 4, 5, 6),(5, 7, 4, 10))) == set((4, 5))

[shared elements]: Elements that appear in both input lists or sequences. In the test case, 4 and 5 are the shared elements
between (3, 4, 5, 6) and (5, 7, 4, 10), as they occur in both sequences.

[similar_elements]: Function name indicating the operation to be implemented. It takes two lists (or tuples) as input and
should return a collection of elements common to both input sequences.

Listing 18: The selected demonstrations and corresponding keywords and explanations in MBPP(+)

6277

Demonstration 1:

You have n barrels lined up in a row, numbered from left to right from one. Initially, the i-th barrel contains a_i
liters of water.

You can pour water from one barrel to another. In one act of pouring, you can choose two different barrels x and y (the
x-th barrel shouldn't be empty) and pour any possible amount of water from barrel x to barrel y (possibly, all
water). You may assume that barrels have infinite capacity, so you can pour any amount of water in each of them.

Calculate the maximum possible difference between the maximum and the minimum amount of water in the barrels, if you can pour
water at most k times.

Some examples: if you have four barrels, each containing 5 liters of water, and $k = 1$, you may pour $5% liters from the
second barrel into the fourth, so the amounts of water in the barrels are $[5, @, 5, 10]$, and the difference between
the maximum and the minimum is 10; if all barrels are empty, you can't make any operation, so the difference between
the maximum and the minimum amount is still 0.

The first line contains one integer t ($1 \le t \le 1000$%$) — the number of test cases.

The first line of each test case contains two integers n and k ($1 \le k < n \le 2 \cdot 10*5%) — the number of barrels
and the number of pourings you can make.

The second line contains n integers a_1, a_2, \dots, a_n ($0 \le a_i \le 107{9}$), where a_i is the initial amount of
water the i-th barrel has.

It's guaranteed that the total sum of n over test cases doesn't exceed $2 \cdot 10"5%$.

For each test case, print the maximum possible difference between the maximum and the minimum amount of water in the barrels,
if you can pour water at most k times.
————— Example-----

[barrels]: Containers numbered from 1 to n, where the i-th barrel initially contains a_i liters of water. In the first
example, there are 4 barrels, each containing 5 liters of water, represented as [5, 5, 5, 5]

[maximum differencel]: The largest possible gap between the fullest and emptiest barrels after performing up to k pourings.
For the first example, this value is 10, achieved by creating a barrel with 10 liters and another with @ liters.

Demonstration 2:

Mikhail walks on a Cartesian plane. He starts at the point $(@, 0)$, and in one move he can go to any of eight adjacent
points. For example, if Mikhail is currently at the point $(0, 0)$, he can go to any of the following points in one
move: $(1, 9)$; $(1, 1)S$; $(0, 1)$; $(-1, 1S$; $(-1, 0)$; $(-1, -1)$; $(0, -1)S$; $(1, -1)$.

If Mikhail goes from the point $(x1, y1)$ to the point $(x2, y2)$ in one move, and $x1 \ne x2$ and $y1 \ne y2$, then such a
move is called a diagonal move.

Mikhail has q queries. For the i-th query Mikhail's target is to go to the point (n_i, m_i) from the point $(0, 0)$ in
exactly k_i moves. Among all possible movements he want to choose one with the maximum number of diagonal moves. Your
task is to find the maximum number of diagonal moves or find that it is impossible to go from the point $(0, 0)$ to the
point (n_i, m_i) in k_i moves.

Note that Mikhail can visit any point any number of times (even the destination point!).

The first line of the input contains one integer q ($1 \le g \le 10%4$) — the number of queries.

Then q lines follow. The i-th of these q lines contains three integers n_i, m_i and k_i ($1 \le n_i, m_i, k_i \le
107{18}%) — x-coordinate of the destination point of the query, y-coordinate of the destination point of the query
and the number of moves in the query, correspondingly.

Print g integers. The i-th integer should be equal to -1 if Mikhail cannot go from the point $(@, 0)$ to the point $(n_i,
m_i)$ in exactly k_i moves described above. Otherwise the i-th integer should be equal to the the maximum number of
diagonal moves among all possible movements.

————— Example-----

One of the possible answers to the first test case: $(0, @) \to (1, @) \to (1, 1) \to (2, 2)$.

One of the possible answers to the second test case: $(0, @) \to (@, 1) \to (1, 2) \to (@, 3) \to (1, 4) \to (2, 3) \to (3,
2) \to (4, 3)$%.

In the third test case Mikhail cannot reach the point $(10, 1)$ in 9 moves.

[revisiting]: The ability to pass through any point, including the destination, multiple times during the journey. In the
second example (4, 3, 7), the optimal path includes revisiting coordinates: (@, @) = (@, 1) = (1, 2) = (0, 3) = (1, 4) =~
(2, 3) » (3, 2) » (4, 3). This feature allows for maximizing diagonal moves even when the direct path wouldn't utilize
all available moves.

Listing 19: The selected demonstrations and corresponding keywords and explanations in APPS

6278

