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Abstract

To mitigate the hallucination and knowl-
edge deficiency in large language mod-
els (LLMs), Knowledge Graph (KG)-based
Retrieval-Augmented Generation (RAG) has
shown promising potential by utilizing KGs as
an external resource to enhance LLM reason-
ing. However, existing KG-RAG approaches
struggle with a trade-off between flexibility and
retrieval quality. Modular methods prioritize
flexibility by avoiding the use of KG-fine-tuned
models during retrieval, leading to fixed re-
trieval strategies and suboptimal retrieval qual-
ity. Conversely, coupled methods embed KG
information within models to improve retrieval
quality but at the expense of flexibility. In this
paper, we propose a novel flexible modular
KG-RAG framework, termed FRAG, which
synergizes the advantages of both approaches.
FRAG estimates the hop range of reasoning
paths based solely on the query and classifies it
as either simple or complex. To match the com-
plexity of the query, tailored pipelines are ap-
plied to ensure efficient and accurate reasoning
path retrieval, thus fostering the final reasoning
process. By using the query text instead of the
KG to infer the structural information of rea-
soning paths and employing adaptable retrieval
strategies, FRAG improves retrieval quality
while maintaining flexibility. Moreover, FRAG
does not require extra LLM fine-tuning or calls,
significantly boosting efficiency and conserv-
ing resources. Extensive experiments show that
FRAG achieves state-of-the-art performance
with high efficiency and low resource consump-
tion. The code for our method is publicly avail-
able at https://github.com/gzy02/FRAG.

1 Introduction

Large language models (LLMs) excel in various
NLP tasks but are prone to hallucinations (2023)
and errors (2023a) when answering questions that
require knowledge beyond training data. These

*Equal contribution
†Corresponding author

Retrieval

Query 

Context
LLMs

KGs

Reasoning 

Paths

Search

Ranking

Augmented

Retrieval

Generation

Query 

Context
LLMs

KGs

Augmented

LLMs

Fine-tuning

Correct 

Reasoning Info

Reasoning 

Paths

Modular KG-RAG

Coupled KG-RAG

Figure 1: Modular and Coupled KG-RAG Frameworks

limitations undermine the trustworthiness of LLMs
and raise security concerns (2024). To mitigate
these issues, retrieval-augmented generation (RAG)
(2020; 2020; 2023) has been developed, which
dynamically retrieves information from external
sources during the retrieval phase, while the gener-
ation phase leverages this retrieved data to improve
generation quality. Previous RAG methods (2022a;
2023; 2024; 2024) relying on unstructured data of-
ten struggle with capturing relevant knowledge and
may introduce noise, hindering effective reason-
ing. In response to these challenges, knowledge
graphs (KGs) are increasingly being integrated
into RAG (i.e., KG-RAG) as external knowledge
sources (2022; 2024; 2024; 2024; 2024). KGs of-
fer editable and explicit knowledge in a structured
format, clarifying the context and multi-level inter-
relations among entities. KG-RAG retrieves “rea-
soning paths” that are relevant to the query, provid-
ing concise and structured contextual information
to enhance the reasoning ability of LLMs (2018a;
2019; 2021; 2023a; 2024).

There are two lines of research on KG-RAG
frameworks, as shown in Figure 1, depending on
their ways of integration with LLMs during the
retrieval phase, resulting in either modular or cou-
pled KG-RAG. The former separates the retrieval
process from LLMs, prioritizing isolation, flexi-
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bility, and scalability, while the latter tightly inte-
grates KGs, improving generation quality but at
the expense of increased complexity and reduced
flexibility and scalability.

Modular KG-RAG frameworks (2023; 2023b;
2023; 2024), aligning with conventional RAG prin-
ciples, are developed to keep independence be-
tween the retrieval phase and KG-fine-tuned LLMs
or specific models, while meeting essential criteria
of isolation, flexibility, and scalability. This iso-
lation prevents interference with LLMs’ internal
reasoning. Flexibility is achieved through seam-
less plug-and-play integration with external KG
sources, and scalability allows these frameworks to
effectively handle large KGs and complex queries.
This is accomplished by using traditional algo-
rithms for reasoning path search (2024; 2024; 2024)
and ranking (2024; 2024), without requiring any ad-
ditional fine-tuning to incorporate KGs information
prior to reasoning. Despite the advantages, modular
KG-RAG frameworks face challenges, due to their
lack of prior knowledge about KGs and correct
reasoning paths. This limitation impedes effective
adjustment of searching and ranking parameters,
leading to inferior generation quality (2023; 2023;
2023b). For example, research like ToG (2024)
highlights that fixed search parameters can result
in redundancy in simple tasks with short reasoning
paths or the omission of critical details in more
complex tasks with longer paths, ultimately weak-
ening the reasoning capabilities of LLMs.

In contrast, coupled KG-RAG frameworks,
while offering enhanced retrieval of reasoning
paths, come with significant overhead due to the
extensive fine-tuning of LLMs with embedded KG
information (2024b; 2024; 2024a). For instance,
RoG (2024b) not only use KGs as an external
knowledge base but also fine-tune LLMs or train
the specific models with KGs information, enabling
the generation of “relation paths” grounded in KGs
as retrieval templates tailored to the query context.
While this method enhances retrieval and genera-
tion quality, it compromises key advantages offered
by modular KG-RAG frameworks, such as the iso-
lation of the retrieval process, flexibility in integrat-
ing various external sources, and scalability to KGs
of different sizes (2023; 2023), not to mention the
substantial expense involved in fine-tuning LLMs.

This leads us to our research goal: Can we
develop a solution that combines the strengths
of both frameworks? Specifically, can we im-
plement lightweight pre-computation to obtain
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Figure 2: Analysis of Semantic and Structural Informa-
tion in Reasoning Paths

sufficient information to guide the settings of
ranking and searching parameters during the re-
trieval phase, thereby enhancing generation quality
while maintaining isolation, flexibility, and scala-
bility—without the extensive overhead associated
with fine-tuning LLMs for specific KGs?

In this work, we propose a novel and flexible
modular KG-RAG framework, called the FRAG. In
a nutshell, FRAG dynamically adapts the retrieval
process based on the complexity of the query con-
text to improve reasoning accuracy, without requir-
ing KGs information. As shown in Figure 2, we
analyzed the information sources associated with
the correct reasoning path P for a query context
q on the KG. A path P comprises two types of
information: semantic (i.e., entities and relations)
and structural (i.e., number of hops). Semantic in-
formation mainly originates from KGs and is hard
to perceive and utilize in advance. However, struc-
tural information is related to both KGs and the q
(2024a). Generally, the more complex the query
context q, the greater the number of hops in the
path P (i.e., indicating a more difficult reasoning
task) (2019; 2020). Thus, within a tolerable margin
of error, we can predict the number of hops in P
based solely on the query context q. The predicted
number of hops can then serve as a key factor in
enhancing the non-specific retrieval process.

Starting from the above insights, the FRAG
framework is primarily featured by two key mod-
ules: “Reasoning-aware" and “Flexible-retrieval".
The reasoning-aware module considers three key
aspects of structural information prediction. First,
to reduce the impact of inherent prediction errors,
it simplifies the prediction task by estimating the
coarse-grained hop range, categorizing the reason-
ing complexity from the query context as either
simple or complex based on a hop count threshold.
Second, it collects KGs and queries across vari-
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ous domains, extracting semantic and statistical
features from the query context to train a flexible
and generalizable cross-domain classifier. Finally,
an optimization strategy utilizing feedback from
LLMs is employed to enhance classifier perfor-
mance on specific KGs as needed.

The flexible retrieval module refines the KG-
RAG retrieval process into a “preprocessing, re-
trieval, and postprocessing" pipeline, facilitating
the tailored customization of its three components
for both simple and complex reasoning tasks. Each
component is built on traditional algorithms and
models, ensuring the generality of our framework.
For simple reasoning tasks, which typically in-
volve shorter reasoning paths, we employ breadth-
first search (BFS) and ranking as the core retrieval
strategies, enabling efficient and accurate retrieval.
In contrast, for complex reasoning tasks character-
ized by longer reasoning paths, we advocate for the
use of shortest path retrieval and ranking to min-
imize computational overhead and reduce noise,
thereby improving retrieval effectiveness.

The remainder of this paper is organized as fol-
lows: In Section 2, we review RAG and KG-RAG
frameworks. Section 3 covers basic KG-RAG con-
cepts. Section 4 details the FRAG framework de-
sign. Section 5 evaluates FRAG on benchmark
datasets against SOTA methods. Finally, Section 6
summarizes our work and future directions.

2 Related Work

Retrieval-augmented generation (RAG). RAG
(2021) enhances LLMs by integrating retrieved
knowledge during contextual learning, mitigating
knowledge gaps and hallucination issues. The
NaiveRAG frameworks (2023; 2023c; 2023a) re-
trieve top-k relevant documents and incorporates
them into the prompt for more accurate responses.
Later advancements (e.g.modular RAG (2023d;
2023b), advanced RAG (2022b; 2024)) improved
retrieval accuracy with additional modules. How-
ever, document-based RAG introduces noise and
excessive context, impacting reasoning perfor-
mance (2022a). Recent studies (2024) focus on
altering the storage format of external knowledge.
Recently, GraphRAG (2024) unifies various knowl-
edge into (knowledge) graph format, transforming
retrieval into a fine-grained knowledge path search,
enhancing key information extraction.

RAG based on Knowledge Graphs (KG-
RAG). KGs, known for dynamic, explicit, and

structured knowledge representation, are increas-
ingly used as knowledge bases for RAG. KG-RAG
(2024; 2024) retrieves the top-k reasoning paths
relevant to the query, providing concise and accu-
rate contextual information for LLMs reasoning.
As outlined in Section 1, KG-RAG frameworks
are categorized as Modular or Coupled, based on
whether KGs information is fine-tuned into the
LLMs. The latest modular approach, like ToG
(2024), enhances retrieval accuracy by replacing
traditional ranking models with LLMs. However,
ToG still struggle due to a lack of prior KG knowl-
edge and the need for frequent LLM calls. For
coupled framework, the most recent method, RoG
(2024b), fine-tunes LLMs with KG information,
allowing them to generate "relation paths" as query
templates that directly retrieve the correct reason-
ing paths from KGs. However, RoG compromises
interpretability, efficiency in knowledge updates,
and the generality of the RAG process across dif-
ferent domain KGs.

3 Preliminary

Knowledge Graph. A Knowledge Graph (KG),
G = {(s, r, e) | s, e ∈ V, r ∈ E}, is a structured
method to represent entities (V ) and their relation-
ships (E). KGs use triples (s, r, e), where s and e
are the start and end entity, and r is the relationship,
to capture vast domain-specific knowledge.

General Process of KG-RAG. Following ex-
isting works (2023b; 2023; 2024b; 2024; 2024;
2024), KG-RAG involves two main stages: re-
trieval and generation. Given a query q, the
first stage constructs a set of candidate “reason-
ing paths” by matching q with entities and rela-
tionships in the KGs. This is done by search-
ing for relevant triples (s, r, e) from KG (G):
Retrieve(q,G) → {Pi}. The retrieved reasoning
paths set {Pi} are then ranked by their relevance to
q. A reasoning path Pi can be formally defined as:
Pi = (s, r1,m1, r2, . . . , rk−1,mk−1, rl, e), where
s is the starting entity, e is the answer entity, mjs
are the intermediate entities, and rjs are the rela-
tionships connecting these entities. The number
of hops in a path, equal to the number of rela-
tionships, determines the path’s length l. For a
given query q, a correct reasoning path includes
the correct answer entity corresponding to q. In the
generation stage, the top-k ranked paths augment
the query, forming an enriched query q′. This q′

is then fed into LLMs to generate the final output:
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Generate(q′,LLM)→ output.
Simple and Complex Reasoning in KG-RAG.

Following prior works on reasoning tasks in
KGs (2013; 2014; 2019; 2020), KG-RAG rea-
soning tasks can be categorized into simple and
complex reasoning, based on the minimum num-
ber of hops required to find the correct answer
from the KG. Given a threshold δ1, if the min-
imum hop count hmin of the reasoning path is
less than or equal to δ, the problem is catego-
rized as simple; otherwise, it is classified as
complex: Type(q) = Simple if hmin(q,G) ≤
δ else Complex. For queries with multiple correct
answers, the minimum hops across all correct rea-
soning paths are considered. This formal classi-
fication helps in distinguishing the complexity of
reasoning tasks within KG-RAG frameworks.

4 Methodology

4.1 Overview

As illustrated in Figure 3, FRAG consists of three
modules. The reasoning-aware module classifies
reasoning tasks as either simple or complex based
on the query. To promote the module effectiveness,
we incorporate an optimization strategy that lever-
ages the feedback from LLMs to refine the original
classifier. In the subsequent flexible-retrieval mod-
ule, we refine the KG-RAG retrieval process into a
“preprocessing-retrieval-postprocessing" pipeline,
tailored retrieval schemes are applies to identify ac-
curate reasoning paths for both simple and complex
tasks. Finally, the identified reasoning paths, to-
gether with the questions, are fed to LLMs to gener-
ate answers in the reasoning module. FRAG offers
two key advantages. First, compared to other mod-
ular approaches, FRAG’s reasoning-aware module
perceives and utilizes the structural information of
reasoning paths, thereby enhancing the retrieval
process. Second, by decoupling from specific KG
information, the modular retrieval module grants
FRAG greater generality than coupled methods.

4.2 Reasoning-aware Module

Identifying the complexity of a query is a prereq-
uisite for applying targeted solutions. For a rea-
soning task, FRAG classifies it as either simple or
complex based on the minimum hop count of the
correct reasoning paths in KGs. Given the require-
ment to dissociate from the reasoning-related KG

1In this paper, we set δ = 2, as most real-world reasoning
tasks of KG-RAG involve paths within 2 hops (2021a).

for generality, it is impractical to obtain the pre-
cise reasoning paths and, consequently, the exact
number of hops.

Extensive research in knowledge graph question
answering (KGQA), along with our empirical ex-
periments, has shown that the hop count of the
correct inference path is closely linked to specific
statistics in the query, such as the number of en-
tities, relations, and clauses (2020; 2022; 2022;
2024b; 2024a). Recognizing the relationship be-
tween the structural information of reasoning paths
and the query, FRAG seeks to approximate the
number of hops based solely on the query, thus
categorizing the query accordingly.

To implement this, we train a binary classifier
using a set of public KGQA datasets, each con-
sisting of a fundamental KG and a substantial
set of queries Q paired with corresponding an-
swers A. Prior to training, for each query q ∈ Q,
we identify all of the shortest reasoning paths
from the query entities Entq to the answer enti-
ties in Enta ∈ A. The minimum hop H among
all reasoning paths of this query determines the
query label Y: Y = 1 (Complex), ifH ≥ δ;
Y = 0 (Simple), ifH < δ. Here the threshold
δ is set to 2 as noted earlier. To capture the query’s
information, relevant statistics can be extracted and
encoded. For simplicity, the entire query is encoded
as: hq = QueryEncoder(q) ∈ RLq×d, where
QueryEncoder can be any encoding mechanism,
such as a language model. (e.g., BERT (2019)),
word embeddings (e.g., Word2Vec (2013)), or
TF-IDF. This way, the classification loss L of
the binary classifier during training is computed
as: L = −∑

q∈Q
∑

yq∈Y yq · log p(yq|q). Here,
p(yq|q) = Decoder(hq) represents the probability
that q is classified as either simple or complex.

Notably, unlike approaches that fine-tune LLMs
or train specific models with reasoning-related
KGs, which might be domain-specific or propri-
etary, our method leverages generic, publicly avail-
able datasets for training. The use of reasoning-
irrelevant KGs maintains the generality of our
method while making the reasoning-aware module
applicable to other approaches that could benefit
from the idea of reasoning task classification.

Since the reasoning-aware task requires only
an estimation of the hop range rather than a fine-
grained perception of reasoning path, a binary clas-
sifier is sufficient for most reasoning tasks. More-
over, we also introduce an optional approach to
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complexity, routing them into either simple or complex reasoning pathways. 2) Subsequently, FRAG leverages
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retrieval of high-quality and contextually relevant reasoning paths. 3) Finally, the retrieved reasoning paths are
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further optimize classification performance. This
method leverages feedback from large language
models (LLMs) to refine query labels, enhancing
overall accuracy. Specifically, during the reason-
ing phase, we prompt LLMs not only to generate
standard responses, but also to identify the most
relevant reasoning path, from a predefined set of in-
put paths. This approach allows us to derive a more
accurate hop count, resulting in a refined label yfb
that better represents the complexity of the query.
These refined query-label pairs are collected and
used to fine-tune the pre-trained binary classifier:
Generate(q′,LLM) → answer, yfb;Classifier =
FastAdaptation(Classifier, yfb). Here, q′ is the en-
riched query with reasoning paths, and yfb is the
refined label. Such an optimization strategy re-
quires only gathering feedbacks from the LLM,
without necessitating additional fine-tuning or calls
to LLMs. The prompt used for reasoning is detailed
in Appendix A.5.

4.3 Flexible-retrieval Module

The retrieval module aims to accurately identify
reasoning paths relevant to the query from the
KG. To achieve this, we propose a preprocessing-
retrieval-postprocessing pipeline. The preprocess-
ing step shrinks the retrieval scope, by extracting
subgraphs consisting of significant entities and re-
lations from the original KG. During the retrieval
step, tailored to the categorization of simple and
complex queries, two distinct strategies are applied
to search for reasoning paths. In the postprocess-
ing step, redundant reasoning paths are carefully
filtered out to prevent the introduction of noise and
unnecessary computational cost to the reasoning

process. Note that our framework is highly flexible,
allowing the use of various method combinations
across the three modules of the pipeline. In our
implementation, we employ traditional and widely
used algorithms known for their effectiveness.

Preprocessing. Given a KG as G = (V,E)
and an entity set Entq from query q, we ex-
tract subgraphs Gs

k = (V s
k , E

s
k) for each entity

s ∈ Entq, where each subgraph Gs
k is a k-th order

subgraph centered on the entity s. We then take
the union of these subgraphs to form the subgraph
Gk =

⋃
s∈Entq

Gs
k = (Vk, Ek) ⊆ G. The parame-

ter k, serving as an upper bound on the hop counts
among all shortest reasoning paths, is adjusted by
the complexity of the queries.

To further prune the subgraph Gk, we remove
less relevant entities and edges based on the eval-
uation of their significance. In the entity-based
subgraph pruning, we employ a generalized rank-
ing mechanism (GRM) (e.g., Random Walk with
Restart (RWR); Personalized PageRank (PPR);
PageRank-Nibble (PRN)), to assess the impor-
tance of the entities v ∈ Vk relative to the query
entities Entq, and then select the top n entities
Ṽ ⊆ Vk: R(v) = GRM(Gk, Entq); Ṽ =
{vi | i ∈ top-n(R(v))} , where R(v) represents
the importance score of entity v relative to the
query entities Entq. The top n entities Ṽ ⊆ Vk,
along with relations Ẽ ⊆ Ek between Ṽ , form a
subgraph G̃. Likewise, in the edge-based subgraph
pruning, we apply an edge ranking model (ERM) as
a retriever (e.g., BM25; SentenceTransformer), on
G̃ to rank the relations r ∈ Ẽ based on their seman-
tic similarity to the query q: S(r) = ERM(q, Ẽ);
Ê = {rj | j ∈ top-m(S(r))} , where S(r) repre-
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sents the similarity score of query q relative to
the relations set Ẽ of G̃. By selecting the top-m
relations Ê ⊆ Ẽ and the corresponding entities
V̂ ⊆ Ṽ , we construct a more focused subgraph
Ĝ = (V̂ , Ê).

Retrieval. Upon obtaining the subgraph Ĝ in
the preprocessing, the retrieval step aims to iden-
tify reasoning paths relevant to queries on it. Un-
like KGQA tasks, where reasoning paths typically
contain the answer (2020; 2022; 2022), in RAG,
these paths serve as auxiliary component. They
provide value by highlighting intermediate entities
and relations that may help supplement missing in-
formation in LLMs. However, reasoning paths with
excessive intermediate entities and relations intro-
duce redundant information that can burden both re-
trieval and reasoning. In other words, it introduces
a trade-off between acquiring more information and
maintaining efficiency. Thus, for simple queries,
which typically involve shorter reasoning paths, a
broader retrieval approach is essential to minimize
information loss. Consequently, the Breadth-First
Search (BFS) algorithm is employed, allowing for
efficient traversal of all reasoning paths P between
the query entities Entq and the entities V̂ within
Ĝ: P = {Pi} = PathRetrieve(Ĝ); Pi = {s r1−→
m1

r2−→ m2
r3−→ · · · rk−→ e|s ∈ Entq,mj ∈ V̂ }.

In contrast, for complex queries with longer rea-
soning paths, increasing the retrieval paths not only
exponentially escalates computational cost but also
introduces a large amount of redundant information.
This underscores the need for efficiency and prun-
ing. For reasoning paths with the same start and
end entities, the shortest path is preferable for di-
rectly obtaining answers (2019; 2020; 2023b; 2024)
and for reasoning with a shorter prompt. Therefore,
we resort to the Dijkstra algorithm to identify ef-
ficiently the shortest reasoning paths P from the
query entities Entq to entities V̂ within Ĝ.

Postprocessing. The retrieval process primar-
ily focuses on finding paths from the query enti-
ties to potential answer entities, disregarding the
semantics of intermediate entities and their rele-
vance to the query. This can lead to an unordered
and redundant collection of reasoning paths. Di-
rectly incorporating them into the prompt for rea-
soning lead to several potential issues. First, rea-
soning paths that contain irrelevant or rare inter-
mediate entities might mislead the reasoning of
LLMs. Second, these paths increase the prompt
length, which not only adds to the reasoning cost

but also risks exceeding the contextual length limit.
Last, the reasoning performance is influenced by
the placement of these paths within the prompt,
with paths positioned at the beginning having a
more significant impact (2023; 2024). To address
these issues, similar to the previous method, we
apply an path ranking model (PRM) (e.g., DPR
(2020); ColBERT (2020); BGE (2024)), to rank
the reasoning paths P , based on their similarity to
the query. Then, the top-u reasoning paths are
selected, denoted by P: T(p) = PRM(q,P);
P = {o | o ∈ top-u(T(p))}, where T(p) repre-
sents the similarity score of query q relative to the
reasoning paths P .

This approach effectively filters out a substantial
amount of redundant reasoning paths by leverag-
ing the semantic correlation between the query and
intermediate entities, thus shortening the prompt
length and ensuring that the most relevant and ben-
eficial reasoning paths are favorably positioned.

4.4 Reasoning Module

In the reasoning module, we design a prompt tem-
plate to augment the question q with the filtered
reasoning paths P, forming an enriched prompt
q′. This prompt q′ guides LLM to conduct reason-
ing and generate the answer: q′ ← prompt (q,P);
answer ← Generate(q′,LLM). The reasoning
prompt is detailed in Appendix A.5.

5 Experiment

5.1 Experimental Design

Datasets and Evaluation Metrics. Our ex-
periments utilize two widely recognized KGQA
datasets: WebQSP (2016) and CWQ (2018b), both
extensively used in the KGQA and KG-RAG re-
search communities (2023b; 2023b; 2024b; 2024;
2024a; 2024). Table 2 summarizes the distribution
of question hops across these datasets, showing that
both predominantly feature simple queries. Specif-
ically, WebQSP consists entirely of simple queries,
while CWQ includes a small fraction (20.75%) of
complex ones. Further dataset details are provided
in Appendix A.2. Following prior works (2023;
2023; 2024; 2023; 2024; 2024), we employ Hits@1
score as the evaluation metric, assessing the per-
centage of correct answers ranked first by LLM.

Reasoning LLMs. We evaluate the performance
of our approach using six LLMs, which are refer-
enced in this paper as follows: Llama-2-7b-chat-
hf (Llama2-7B), Llama-2-70b-chat-hf (Llama2-
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Table 1: Performance Comparison with Different Baselines on WebQSP and CWQ

Type Methods WebQSP CWQ Type Methods WebQSP CWQ

Traditional
KGQA

Without LLMs

Modular
KG-RAG

Llama-2-7b-chat-hf
KV-Mem (2016) 46.7 21.1 Vanilla LLM 63.4 31.1
GraftNet (2018) 66.4 36.8 ToG (2024) 10.8 5.2
PullNet (2019) 68.1 45.9 FRAG (Ours) 76.6 47.3
EmbedKGQA (2020) 66.6 45.9 FRAG-F (Ours) 76.7 48.9
QGG (2020) 73.0 44.1 Llama-2-70b-chat-hf
NSM (2021a) 68.7 47.6 Vanilla LLM 63.6 37.6
TransferNet (2021) 71.4 48.6 ToG (2024) 68.9 57.6
KGT5 (2022) 56.1 36.5 FRAG (Ours) 81.2 60.1
SR+NSM (2022) 68.9 50.2 FRAG-F (Ours) 81.3 62.2
SR+NSM+E2E (2022) 69.5 49.3 Llama-3-8B-Instruct
HGNet (2022) 70.6 65.3 Vanilla LLM 64.0 37.9
Program Transfer (2022) 74.6 58.1 ToG (2024) 59.8 37.0
UniKGQA (2022) 77.2 51.2 FRAG (Ours) 87.7 64.9

Coupled
KG-RAG

Llama-2-7b-chat-hf (Finetuned) FRAG-F (Ours) 87.8 66.1
GNN-RAG (2024) 80.6 61.7 Llama-3-70B-Instruct
RoG (2024b) 85.7 62.6 Vanilla LLM 73.1 46.1

Modular
KG-RAG

ChatGPT FRAG (Ours) 88.6 69.4
Vanilla LLM 66.8 39.9 FRAG-F (Ours) 88.6 70.8
KD-CoT (2023b) 73.7 50.5 GPT-4o-mini
ToG (2024) 76.2 57.1 Vanilla LLM 69.2 43.8
FRAG (Ours) 82.3 61.0 FRAG (Ours) 86.7 66.9
FRAG-F (Ours) 82.3 61.5 FRAG-F (Ours) 86.7 68.0

Table 2: Statistics of Question Hops of Datasets

Dataset 1 hop 2 hop ≥ 3 hop

WebQSP 65.49 % 34.51% 0.00%
CWQ 40.91 % 38.34% 20.75%

70B) (2023), Llama-3-8B-Instruct (Llama3-8B),
Llama-3-70B-Instruct (Llama3-70B) (2024), GPT-
3.5-turbo (ChatGPT) and GPT-4o-mini.

Baselines. Given that FRAG is a modular KG-
RAG approach, we primarily compare it with other
modular KG-RAG methods, as well as with cou-
pled KG-RAG and traditional KGQA techniques.
Among them, 1) Modular KG-RAG: Vanilla LLMs
(without RAG), KD-CoT (2023b) and ToG (2024).
KD-CoT enhances CoT prompting by integrating
KG knowledge. ToG leverages LLMs to iteratively
select the most pertinent relations and entities, rep-
resenting the current SOTA in modular KG-RAG
methods. 2) Coupled KG-RAG: GNN-RAG (2024)
and RoG (2024b). GNN-RAG leverages GNN to
extract useful reasoning paths. RoG utilizes a fine-
tuned LLM to generate relation paths for answering
questions, representing the SOTA in coupled KG-
RAG. 3) Traditional KGQA: 13 traditional KGQA
methods, as described in Appendix A.3.

Experiment Implementations. 1) For the
reasoning-aware module, we employ DeBER-
TaV3 (2021b) as the query encoder and decoder.
We construct training datasets for simple and
complex reasoning tasks using two large and

cross-domain KG databases, Freebase (2008) and
Wiki-Movies (2018), and ensuring complete iso-
lation between the training data and the two test
datasets. 2) For the flexible-retrieval module,
we utilize bge-reranker-v2-m3 (2024) as the ERM
and PRM during both preprocessing and postpro-
cessing stages. In the preprocessing stage, we use
PPR algorithm as GRM , and the hyperparameters
as follows: k = 2, n = 2000, m = 64 for sim-
ple queries, and k = 4, n = 2000, m = 64 for
complex queries. In the postprocessing stage, we
set u = 32 across all experiments. 3) For LLMs’
reasoning, we use zero-shot prompting to LLMs
generation. 4) Feedback adjustment is optional,
with the adjustment rate is set to 0.25, indicating
that 25% of the samples are selected for fast adap-
tation of the reasoning-aware module. Detailed
settings are provided in Appendix A.4.1.

5.2 Results

1 hop 2 hop 3 hop > 3 hop0.0

0.2

0.4

0.6

0.8

Hi
ts

@
1

Vanilla LLM
FRAG(Modular)

ToG(Modular)
RoG(Coupled)

Figure 4: Performance of Different Hops (Llama2-7B)

Table 1 presents a detailed performance compar-
ison of our method against various baselines, while
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Figure 4 further illustrate detailed evaluations of
sampled queries across different hops, both demon-
strating the effectiveness of FRAG. Additionally,
Table 3 compare the cost of FRAG with ToG and
RoG in terms of training and retrieval operations.
The following analysis will highlight our method’s
advantages in both effectiveness and efficiency.

FRAG Achieves New SOTA as a Modular
KG-RAG. As shown in Table 1, our method con-
sistently outperforms the previous SOTA, ToG,
across various settings, establishing itself as the
most advanced modular KG-RAG method. For ex-
ample, on the Llama-3-8B-Instruct model, FRAG
improves the scores from 59.8 and 37.0 to 87.7 and
64.9, respectively, achieving a 46.7% and 75.4%
improvement on two datasets compared to ToG.
Furthermore, incorporating feedback in FRAG-F
further elevates its performance to 81.3 and 62.2.
Notably, ToG exhibits performance degradation
on small scales (7B and 8B) LLM bases, such
as Llama-2-7b-chat-hf, where the scores on the
two datasets drop from 63.4 and 31.1 to 10.8 and
5.2, respectively, compared to the vanilla LLM.
In contrast, our method reliably enhances output
quality through KG RAG across all LLMs. Addi-
tionally, Figure 4 further demonstrates the robust
performance of FRAG, which delivers significant
improvements over both ToG and vanilla LLMs in
varied hop numbers.

Moreover, ToG iteratively selects the most rel-
evant relations and entities, resulting in a signifi-
cantly higher average number of LLM calls com-
pared to FRAG’s zero LLM calls. This underscores
the efficiency of our approach, which delivers su-
perior performance with minimal overhead.

FRAG Achieves Comparable Performance
with Lower Training Costs. Unlike traditional
KGQA methods that rely on specific models to
embed KG semantic information, FRAG lever-
ages pretrained LLMs with generalizable retrieval
and filtering modules, achieving superior perfor-
mance with minimal effort. Even with the small-
parameter Llama-3-8B-Instruct, our method outper-
forms all traditional KGQA methods. Compared
to the coupled KG-RAG approach, like advanced
RoG, FRAG delivers similar performance while
drastically reducing training and fine-tuning time.
As shown in Table 3, RoG requires 38 hours to
fine-tune a 7B LLM, whereas FRAG only con-
siders the structure knowledge of KG in just 306
seconds of training, but reaches approximately
89% of RoG’s performance on WebQSP. Moreover,

Table 3: Training and Retrieval Cost Comparison

Method
Training Cost (Time) Retrieval Cost

(Ave. LLM Calls)Reasoning-aware Fine-tuneTraining Feedback

ToG - - - 13.3
RoG - - 38h 3

FRAG 306s2 - - 0
FRAG-F - 7.58s - 0

Table 4: Ablation Study Results on Two Datasets

Method Llama2 Llama3 GPT

7B 70B 8B 70B 3.5-turbo 4o-mini

CWQ

FRAG-F 48.9 62.2 66.1 70.8 61.5 68.0
FRAG 47.3 60.1 64.9 69.4 61.0 66.9

FRAG-Simple 47.1 60.8 63.2 68.6 59.5 67.4
FRAG-Complex 47.0 59.5 62.5 66.6 59.7 64.9

Vanilla LLM 31.1 37.6 37.9 46.1 39.9 43.8

WebQSP

FRAG-F 76.7 81.3 87.8 88.6 82.3 86.7
FRAG 76.6 81.2 87.7 88.6 82.3 86.7

FRAG-Simple 76.8 81.3 87.7 88.6 82.3 86.7
FRAG-Complex 72.0 76.4 80.4 81.7 76.2 81.5

Vanilla LLM 63.4 63.6 64.0 73.1 66.8 69.2

FRAG’s plug-and-play nature allows seamless en-
hancement with larger-scale LLMs like Llama-3-
70B-Instruct, achieving scores of 88.6 and 69.4
on two datasets. This kind of enhancement would
be challenging for RoG due to the significantly
higher fine-tuning costs. Additionally, Figure 4
highlights FRAG’s superior performance in com-
plex reasoning scenarios involving more than two
hops, outperforming RoG in these tasks.

5.3 Ablation Study
We conduct ablation experiments to compare our
method with those using only the simple reason-
ing pipeline (FRAG-Simple) or only the complex
reasoning pipeline (FRAG-Complex). As shown in
Table 4, without the reasoning-aware module that
routes simple and complex queries through distinct
pipelines, performance slightly declines when a
single reasoning approach is applied to all ques-
tions. This is partly due to the limited presence of
complex queries in the CWQ dataset (20.75%) and
their absence in the WebQSP dataset. Notably, al-
though the WebQSP dataset does not contain com-
plex queries, FRAG did not lead to a significant
performance decline compared to FRAG-Simple.
This further substantiates that our method can intel-
ligently allocate the appropriate pipeline for each

2Only once for the Reasoning-aware module training
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type of question, ensuring optimal performance. To
further explore the impact of our proposed modules
under more balanced conditions, we conducts addi-
tional ablation experiments on datasets with a more
equal distribution of simple and complex queries.
These results are provided in the Appendix A.4.2.

6 Conclusion

In this paper, we propose FRAG, a modular KG-
RAG framework that addresses the challenge of en-
hancing reasoning accuracy in LLMs without com-
promising flexibility. By adapting the retrieval pro-
cess based on the complexity of the query context,
FRAG leverages structural information predictions
to optimize retrieval strategies. Thus, FRAG com-
prises two key modules: the reasoning-aware mod-
ule predicts the complexity of the reasoning tasks
(simple or complex) based solely on the query con-
text, while the flexible-retrieval module customizes
the retrieval process according to task complexity
to enhance retrieval efficiency and effectiveness.
Extensive experiments show that FRAG improves
retrieval quality while maintaining flexibility, out-
performing existing KG-RAG approaches. In the
future, we aim to further enhance FRAG’s adapt-
ability to more diverse knowledge graph structures
and complex reasoning scenarios.

Limitations

FRAG represents a highly flexible framework, yet
its potential and adaptability remain underexplored
in the current experiments, which primarily rely
on widely adopted algorithms and models. For
instance, the reasoning-aware module employs De-
BERTaV3, the generalized ranking mechanism uti-
lizes PPR, and both the edge and path ranking mod-
els adopt bge-reranker-v2-m3. In diverse scenarios,
these modules can be substituted with alternative
implementations, such as BM25 or large language
models (LLMs), to achieve more effective trade-
offs between performance and computational ef-
ficiency. This adaptability highlights FRAG’s ca-
pacity to be tailored to varying requirements across
different applications.
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A Appendix

A.1 Algorithm for FRAG

Algorithm 1: FRAG Framework
Data: Knowledge graph G = (V,E),

Dataset D, Feedback flag flag,
adjustment rate ratio;

Result: Reasoning result A;
1 N ← size of D;
2 i← 0;
3 Initialize list of answers A ← [ ];
4 E=extractEntities(q);
5 foreach query q in Dataset D do
6 Classifier(q);
7 Gk ← SubgraphExtract(G, q);
8 if q is simple query then
9 G̃← GRMs (Gk, E, ns, ks);

10 Ĝ← ERMs (G̃, q,ms);
11 P ← PathRetrieves (Ĝ);
12 P ← PRMs (P, us);

13 else if q is complex query then
14 G̃← GRMc (G,E, nc, kc);
15 Ĝ← ERMc (G̃, q,mc);
16 P ← PathRetrievec (Ĝ);
17 P ← PRMc(P, uc);
18 ans, yfb← Generate(LLM,

concat(P, q));
19 if flag is True and i < ratio ·N then
20 FastAdaptation(Classifier, q, yfb);

21 i← i+ 1;
22 Add ans to A;

23 return A;

A.2 Datasets

We adopt two benchmark KGQA datasets: We-
bQuestionSP (WebQSP) (Yih et al., 2016) and
Complex WebQuestions (CWQ) (Talmor and Be-
rant, 2018b). We follow previous works (Sun et al.,
2024; Luo et al., 2024b; Mavromatis and Karypis,
2024) to use the same train and test splits for fair
comparison. The statistics of the datasets are shown
in Table 5. The distribution of the answer numbers
is shown in Table 6.

To ensure a rigorous and balanced evaluation
of our proposed method, we construct additional
datasets with an equal distribution of simple and
complex queries. Specifically, we randomly sam-

Algorithm 2: Retrieval Algorithm (FRAG-
Simple)

Data: Knowledge Graph G, Start node s
Result: All paths P from s to every other

node in G
1 Initialize queue Q← {(s, [s])};
2 Initialize list of paths P ← [ ];
3 while Q is not empty do
4 Dequeue the first element (v, path)

from Q;
5 foreach neighbor u of v do
6 if u /∈ path then
7 Enqueue (u, path+ [u]) to Q;
8 Add path+ [u] to P;
9 end

10 end
11 end
12 return P;

ple 1,000 instances from the CWQ and WebQSP
datasets to form the KG-1000 subsets, where the
proportion of queries for each hop was meticu-
lously balanced. This carefully designed sampling
strategy allows us to evaluate the effectiveness of
the reasoning-aware module under more balanced
conditions, thus providing a more precise assess-
ment of its impact on performance across varying
query types.

A.3 Baselines
Below, we introduce 13 traditional KGQA methods
in order of publication, as they were not covered in
detail earlier.

• KV-Mem (Miller et al., 2016) is a key-value
structured memory network to retrieve an-
swers from KGs.

• GraftNet (Sun et al., 2018) is a graph
convolution-based neural network that reasons
over KGs.

• PullNet (Sun et al., 2019) extends GraftNet
by iteratively constructing a question-specific
subgraph to facilitate reasoning.

• EmbedKGQA (Saxena et al., 2020) models
the reasoning on KGs through the embeddings
of entities and relations.

• QGG (Lan and Jiang, 2020) proposes a seg-
mented query graph generation method that
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Algorithm 3: Retrieval Algorithm (FRAG-
Complex)
Data: Knowledge Graph G = (V,E), Start

node s (s ∈ V )
Result: Set of shortest paths P from s to all

other nodes in G
1 Initialize distances: d[v]←∞ for all

v ∈ V , d[s]← 0;
2 Initialize priority queue Q as a min-heap;
3 Insert s into Q with priority d[s];
4 Initialize predecessor array pred[v]← null

for all v ∈ V ;
5 while Q is not empty do
6 Extract node u from the top of Q;
7 foreach neighbor v of u do
8 if d[u] + 1 < d[v] then
9 d[v]← d[u] + 1;

10 pred[v]← u;
11 if v is not in Q then
12 Insert v into Q with priority

d[v];
13 end
14 else
15 Update priority of v in Q to

d[v];
16 end
17 end
18 end
19 end
20 Initialize shortest paths set P ← {};
21 foreach node t ∈ V \ {s} do
22 Initialize path list path← [ ];
23 u← t;
24 while u ̸= null do
25 Prepend u to path;
26 u← pred[u];
27 end
28 Add path to P;
29 end
30 return P;

Table 5: Statistics of datasets.

Datasets Train Test Max hop

WebQSP 2,826 1,628 2
CWQ 27,639 3,531 4

flexibly generates query graphs by simultane-
ously incorporating constraints and extending

relationship paths.

• NSM (He et al., 2021a) introduces a teacher-
student framework to simulate the multi-hop
reasoning process.

• TransferNet (Shi et al., 2021) implements a
graph neural network to effectively capture the
relationship between entities and questions,
enabling reasoning within a unified frame-
work that handles both label and text relations.

• KGT5 (Saxena et al., 2022) leverages a fine-
tuned sequence-to-sequence model on knowl-
edge graphs to generate answers directly from
the input question.

• SR+NSM(Zhang et al., 2022) introduces a
method for multi-hop reasoning that retrieves
relevant subgraphs through a relation-path re-
trieval mechanism.

• SR+NSM+E2E(Zhang et al., 2022) enhances
SR+NSM by employing an end-to-end ap-
proach that jointly optimizes both the retrieval
and reasoning components.

• HGNet (Chen et al., 2022) introduces a hierar-
chical approach for generating query graphs,
which includes an initial outlining stage to es-
tablish structural constraints, followed by a
filling stage focused on selecting appropriate
instances.

• Program Transfer (Cao et al., 2022) presents
a two-stage parsing framework for complex
KGQA, utilizing an ontology-guided pruning
strategy.

• UniKGQA (Jiang et al., 2022) unifies retrieval
and reasoning using a single retriever-reader
model.

Table 6: Statistics of the Number of Answers

Dataset #Ans = 1 2–4 5–9 ≥ 10

WebQSP 51.2% 27.4% 8.3% 12.1%
CWQ 70.6% 19.4% 6% 4%

Table 7: Statistics of Sample Size of KG-1000

Datasets 1-hop 2-hop 3-hop 4-hop

KG-1000 250 250 250 250
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A.4 Experiment Detail

A.4.1 Detailed Experimental Settings.

All experiments are running on Ubuntu
20.04.6 LTS (Intel(R) Xeon(R) Platinum
8358 CPU@2.60GHz Processor, 4 A100-80G,
400GB memory). The detailed experimental
settings are as follows: 1) Reasoning-aware
module. The reasoning-aware module underwent
training on the designated datasets for 10 epochs
with a batch size of 32. The learning rate is set to
1e-5, and the weight decay parameter is set to 0. 2)
Retrieval. The damping factor α of PPR algorithm
is set to 0.8, and the maximum iteration is set to
1000. 3) Reasoning. The temperature parameter
is set to 0.01, and the maximum token length
for generation is fixed at 256. We use zero-shot
reasoning prompt across all datasets, and the
prompt templates are presented in Appendix A.5.
4) Feedback Adjustment. After collecting the
feedback datasets, the reasoning-aware module is
trained for 3 epochs with the batch size of 16. The
learning rate is fixed at 1e-4, and the weight decay
parameter is set to 0.

A.4.2 Ablation Study on KG-1000.

Table 8: Ablation Study Results on KG-1000

Method Llama2-7B Llama3-8B

FRAG 50.6 63.2
FRAG-Simple 40.3 49.6

FRAG-Complex 46.9 59.8
Vanilla LLM 32.6 38.4

We conduct an ablation study on the KG-
1000 dataset to evaluate the effectiveness of the
reasoning-aware module with a more equal distri-
bution of simple and complex queries. The experi-
mental results presented in Table 8 clearly demon-
strate the critical role of the reasoning-aware mod-
ule in our proposed framework. Under balanced
conditions, FRAG significantly outperforms all
baseline variants across both the Llama2-7B and
Llama3-8B configurations. Specifically, FRAG
achieves performance gains of 10.3 percentage
points over the FRAG-Simple baseline for Llama2-
7B (50.6 vs. 40.3) and 13.6 percentage points for
Llama3-8B (63.2 vs. 49.6). These considerable
margins underscore the effectiveness of integrat-
ing the reasoning-aware module within the FRAG
framework.

A.5 Prompts
The zero-shot reasoning prompt for the reasoning-
aware module is as follows:

Prompt: You are an expert reasoner with a
deep understanding of logical connections and
relationships. Your task is to analyze the given
reasoning paths and provide accurate reason-
ing path to the questions based on these paths.
Based on the reasoning paths, please extract
the correct reasoning path. If NO correct rea-
soning path, please just reply NO.
Reasoning Paths: {paths}
Question: {question}
Correct reasoning path:

The zero-shot reasoning prompt for the reason-
ing module is as follows:

Prompt: You are an expert reasoner with a
deep understanding of logical connections and
relationships. Your task is to analyze the given
reasoning paths and provide clear and accurate
answers to the questions based on these paths.
Based on the reasoning paths, please answer
the given question.
Reasoning Paths: {paths}
Question: {question}
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