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Abstract

Applying Large Language Models (LLM) to
solve math problems is one of the hottest re-
search topics at present. Traditional Chain-of-
Thought-based methods typically generate the
reasoning path in a chain structure, leading to
unnecessary interference caused by non-zero
self-attention among weakly related reasoning
steps. Such a setting also differs from humans’
typical graph-structured reasoning habit (with
an inter-step relationship graph in mind). To
solve the problem, this paper proposes a novel
decoding method for Transformer-based LLM,
named Self-attention-based Graph-of-Thought
(SaGoT). SaGoT constructs a thought graph
simultaneously as an LLLM inference (based
on a newly defined inter-step self-attention in-
dicator), and generates reasoning steps with
a novel graph-structured self-attention mecha-
nism. It is a significant contribution for SaGoT
to enable an LLM’s graph-like reasoning abil-
ity by modifying its inner working operations,
compared to SOTA prompting methods that
are ex-post, rely on huge LLMs and redun-
dant reasoning step generation to form a graph
(inefficient & non-human-like). In addition,
SaGoT is a training-free technique that can
be seamlessly incorporated into pre-trained
Transformer-based LLMs. Our experimental
results have shown that SaGoT could signifi-
cantly enhance mathematical reasoning accu-
racy without the reliance on huge computation-
ally over-expensive LLMs. It also avoids SOTA
methods’ performance degradation issues when
the LLM is too small to comprehend complex
prompts. Moreover, SaGoT integrates intrinsic
interpretability into the LLM’s reasoning pro-
cedure, intuitively assisting humans in under-
standing how an LLM views the relationships
among its reasoning steps, and why the LLM
succeeds or fails.

1 Introduction

A Large Language Model (LLM) is a deep learning
model capable of handling various natural language

tasks (such as text classification and question an-
swering) and has a large number of parameters. At
present, LLMs employed in academia and industry
are commonly based on the Transformer architec-
ture, whose core technology is the self-attention
mechanism (Vaswani et al., 2017). In addition to
improving model performance, an advantage of the
self-attention mechanism is that it can help people
interpret an LLM’s inner working procedure by
showing how the model distributes weights among
tokens (Vig, 2019; Wang et al., 2023b; Vig and
Belinkov, 2019).

Applying LLMs to solve math problems is one of
the hottest research areas at present, and the Chain-
of-Thought (CoT) technology has been widely ap-
plied to such a task (see Section 2.1). In a nutshell,
CoT requires the LLM to output texts describing
the reasoning steps before generating the final an-
swer (Wei et al., 2022).

However, traditional CoT-based methods usu-
ally generate reasoning steps in a chain structure
(see Figure 1(a)). This might prevent humans from
knowing whether the LLLM correctly understands
and utilizes the relationship among its reasoning
steps (as depicted in Figure 1(b), a human-like de-
duction trajectory is a graph instead of a chain).
In addition, some non-zero self-attention values
among weakly related reasoning steps might dis-
turb subsequent model outputs, resulting in lower
accuracy of the final answer (as verified by our
experiments in Section 5).

Recently, scholars have noticed that combining
CoT with the graph structure improves LLMs’ re-
sponses to complex questions (see Section 2.2).
However, there is still a lack of methods that ef-
ficiently mirror humans’ ability (without gener-
ating redundant reasoning steps/paths that might
be wrong) to directly come up with a new rea-
soning step based on a graph structure in mind,
which depicts the relationships among existing
reasoning steps (Zhang et al., 2023). Besides,
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Question: Carlos, Jim and Carrey were at the beach playing and they decided to gather some seashells. Jim collected 27 seashells,
which was 5 more than what Carlos collected. Carlos collected twice as many as Carrey. They gathered all their seashells and divided

them equally between themselves. How many did each person get?

Response by CoT: I Response by SaGoT:

Jim collected 27
seashells, which was 5
more than what Carlos
collected.

]

So Carlos collected 27-
5 = 22 seashells.

i
Carlos collected twice as
many as Carrey, so
Carrey collected 22/2 =
11 seashells.

Jim collected 27 seashells, I
which was 5 more than what I
Carlos collected. So Carlos |
collected 27-5 = 22 seashells. I
Carlos collected twice as many
as Carrey, so Carrey collected I
22/2 = 11 seashells. I
I
I
I
I
I
I

They divided all their seashells
equally between themselves, so
each person got (27+22+11)/3
= 16 seashells.

The answer is 16 X

TThe answer is 20

(b)

Figure 1: Comparison of CoT and SaGoT.

some techniques require additional model training
that’s resource-consuming (Cao, 2024; Ning et al.,
2024), and there is an ignorance of employing self-
attention rectification for graph construction. On
the other hand, possessing a graph-based reasoning
ability is essential for clearly teasing out the rela-
tionships among intermediate reasoning steps, and
self-attention is a valuable entry point for achieving
such a goal, as it involves the LLM’s inner work-
ing mechanism and potentially solves the problem
from a fundamental perspective of the decoding
technique.

To fill the research gap, this paper pro-
poses a novel training-free decoding method for
Transformer-based LLMs to solve math problems,
namely the Self-attention-based Graph of Thought
(SaGoT), which constructs a thought graph simul-
taneously as an LLM inference based on a newly
defined inter-step self-attention indicator, and gen-
erates reasoning steps with a novel thought graph-
based self-attention mechanism. The thought graph
could effectively reflect how LLM views the rela-
tionships among its reasoning steps, and thus could
better assist humans in interpreting an LLM’s in-
ner working mechanisms compared to traditional
CoT (see Figure 1). It is a great novelty and sig-
nificant contribution for SaGoT to enable an LLM
to follow a human-like graph-structured reasoning
trajectory by modifying the LLM’s inner working
operations (i.e. integrating intrinsic interpretabil-
ity), compared to solely prompting-based methods
that are ex-post (Cao 2024; Zhang et al. 2024a,b;
Yao et al. 2023b), rely on huge LLMs such as
GPT-4 (Achiam et al., 2023), and have to gen-

erate redundant reasoning paths/steps to form a
graph (which is inefficient and non-human-like, see
Section 2.2 for details). For instance, the Tree-of-
Thought (ToT) method integrates multiple reason-
ing paths to build a graph, while each path is still
generated via a chain-based reasoning structure by
the LLM (Yao et al., 2023b). However, a single
reasoning path is usually enough for a human be-
ing to establish a reasoning graph (Zhang et al.,
2023). To solve the problem, SaGoT is designed to
significantly differ from existing approaches, and
drive an LLM to be more human-like by enabling a
single-path-based graph-structured reasoning pro-
cedure. Our experimental results have shown that
SaGoT could consistently enhance the LLM’s accu-
racy in solving math problems compared to SOTA
methods, without additional model training or re-
liance on huge LLMs that are computationally over-
expensive. It avoids prompting-based reasoning
methods’ performance degradation issue when the
LLM is too small to comprehend/achieve the task
stated in the complex prompts used for graph con-
struction. Moreover, SaGoT successfully integrates
intrinsic interpretability into the LLM’s reasoning
procedure. The thought graph generated could intu-
itively assist human interpretation of how an LLM
views the relationships among its reasoning steps,
and trace why the LLM succeeds or fails in ques-
tion answering.

In the following paper, a literature review of
related work is presented in Section 2, Section 3
illustrates the SaGoT method systematically, and
Section 4 introduces our experimental setting. Re-
sults and thorough discussions of the experiments
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are provided in Section 5. We conclude our analy-
sis and point out the limitations in Sections 6 and
7.

2 Related Work

2.1 Chain-of-Thought

CoT assists the LLM to decompose and solve com-
plex math problems step by step, so as to enhance
the correctness of the final answer (Wei et al., 2022).
There is a series of LLM-based math problems
solving techniques derived from this idea. For ex-
ample, the Least-to-Most Prompting (Zhou et al.,
2023), Plan-and-Solve Prompting (Wang et al.,
2023c), and Dial CoT-S-PPO methods (Han et al.,
2023) all require LL.Ms to split the math problem
into sub-questions. Besides, the BRIDGE method
decomposes the math problem solution into sub-
steps, generates the corresponding equations, and
then calls the Python package sympy for equation-
solving (Wang et al., 2023a).

2.2 Combining Chain-of-Thought with Graph

A few SOTA techniques combine CoT with the
graph structure, whereas there are still demerits as-
sociated with those works. HoT (Yao et al., 2023a),
Graph-Guided Reasoning (Park et al., 2024), and
the GoT approach proposed by Yao et al. (2024)
treat words or phrases as nodes of a graph. How-
ever, these methods usually do not take a full rea-
soning step as a single node, and thus the graphs
they construct could hardly depict inter-step rela-
tionships. Some studies (e.g., Besta et al., 2024,
Lei et al., 2023 and Xiao and Liu, 2023) provide
theoretical frameworks for the LLM’s graphical rea-
soning process. However, when it comes to solving
various types of math problems in practice, they
haven’t offered sufficient detailed instructions sup-
porting the realization of some functional modules
described in the general frameworks. Technologies
like MindMap (Wen et al., 2024), ToG (Sun et al.,
2024), DGoT (Ning et al., 2024), and Rex-GoT
(Zheng et al., 2024) are designed specifically for
missions such as querying the information stored
in a knowledge graph, commonsense multi-choice
question answering, or abstract generation. Con-
sequently, obstacles exist when adapting them to
math problems solving. There are also prompting
methods employing huge LLMs such as GPT-4
(Achiam et al., 2023) to generate multiple reason-
ing paths and integrate them as a graph (Cao, 2024;
Yao et al., 2023b), or generate extra reasoning steps

and discard/revise possibly wrong ones based on
additional verification (Zhang et al., 2024a,b). Nev-
ertheless, such settings could be inefficient and
non-human-like, as a person could directly come
up with a relationship graph among reasoning steps
in a single trajectory. In addition, as the prompt-
ing techniques do not change the inner working
mechanism of LLM, within each reasoning path
they utilize, independent steps might still interfere
with each other due to the original self-attention
mechanism (Cao 2024; Zhang et al. 2024a,b; Yao
et al. 2023b). The limitations of existing work
give us a strong motivation to develop a new tech-
nique that enables an LLM to pursue a human-like
graph-based reasoning procedure by modifying the
LLM’s self-attention mechanism.

3 Methodology

Figure 2 presents an overview of the SaGoT
method, which consists of 5 procedures: Input
Prompt Construction, Initial Node Generation, Sub-
sequent Node Generation, Graph-structured Self-
attention Construction, and Process Circulation &
Termination. The following sections elaborate on
each procedure.

3.1 Input Prompt Construction

First, construct a prompt (denoted by P) with mul-
tiple sets of math problems and their step-by-step
answer exemplars, as well as the math problem to
be solved, and take it as the input to the LLM. The
exemplars could be identical to those employed
for the CoT technique (labeled by humans), and a
bedrock of SaGoT is that the CoT technique with
the same prompt could lead to an LLLM’s accuracy
enhancement, as it justifies the effectiveness of the
exemplars used. Figure A1 shows an example of
the prompt template. Under a greedy search al-
gorithm, the task of generating the ith reasoning
step s; by an LLLM given the input prompt and all
previously generated reasoning steps (s, ..., Si—1)
could be defined by Equation 1:

msaxp(si\P,sl,...,si_l) — 8 (1)

where p(s;|.) is the probability that s; is output
by the LLM.
3.2 Initial Node Generation

Second, conduct a real-time check while the LLM
is generating tokens one by one: When the checked
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Input Prompt Construction

Initial Node Generation

Subsequent Node Generation (SNG)

Math word problem nout o & Generate Node 1 & onerate Next node
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Process Circulation & Termination
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Thought Graph
[ 4] indicator

(e)
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@ self-attention

Graph-structured Self-attention Construction (GSC)

>=Threshold @ @ Unchanged

Rectify the self-
attention between
tokens of different
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1\5
<Threshold @

(d)

Figure 2: Method overview of SaGoT.

token contains the end-of-sentence symbols (in-
cluding line breaks, colons, periods, question
marks and semicolons), the generation gets paused,
and all tokens output so far would be spliced as the
first reasoning step (see Figure 2(b)). This first rea-
soning step s1 corresponds to the initial node v; in
the thought graph. The thought graph right after the
generation of s; is represented as G; = (V;, E;),
where V; and F; are the set of nodes and edges in
the graph, respectively. Hence, the Initial Node
Generation procedure could be formulated as fol-
lows:

max p(si|P) = s1 — G (2)
S1
where G1 = (V1, E1), Vi = {v1} and E; = 0.

3.3 Subsequent Node Generation

Then, allow the LLM to restart generating subse-
quent tokens, and continue checking whether the
token contains the end-of-sentence symbols. If yes,
pause and splice the generated tokens (except those
belonging to existing reasoning steps) as a new rea-
soning step. This reasoning step s; corresponds
to a new node v; connected to all previous nodes
v; (1 < j < i) by directed lines, resulting in an
updated version of the thought graph (denoted by
G;). Each directed line e;; points from a previous
node v; to the new node v;. Figure 2(c) depicts the
procedure, which could be formulated as:

msaxp(si|P, 8150y 8im1, Gh_1) = 8 — G (3)

where G,_, = (V/_,,E}_,) is equivalent to
G1 when i equals 2, otherwise, it refers to the

thought graph after the Graph-structured Self-
attention Construction procedure (see Section 3.4)
in the previous round of circulation (see Section
35); Gi = (Vi,E;), Vi = V!, U {v;} and
E; = E/_; U{ej|]l < j < i}. Please note
that p(s;|P, s1, ..., si—1, G_ ) is not equivalent to
p(si| P, s1, ..., Si—1), as the former one is calculated
based on our graph-structured self-attention mech-
anism demonstrated in Section 3.4.

The lines formed here only infer that, when this
procedure is executed, the inter-step self-attention
indicator (see Section 3.4) between corresponding
reasoning steps is non-zero. Those lines might
be removed later as the self-attention values get
rectified to zero.

3.4 Graph-structured Self-attention
Construction

In this procedure, we first calculate the inter-step
self-attention indicator «(j, 7) between the reason-
ing step s; and each of the previous reasoning steps
s; by the following function:

a(j,i) = max Ay (J,1) 4)

J L1k

where J and I are tokens in s; and s;, respec-
tively, and AL (J, I) refers to the self-attention cal-
culated by the hth self-attention head in Trans-
former layer /, between the Query of token I and
the Key of token J (see Appendix A for expla-
nations on the terminology and traditional self-
attention mechanism).

When (3, ¢) is smaller than a predefined thresh-
old # € [0,1] (could be determined by grid-
searching using a validation set), the self-attention
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Figure 3: Comparison between ToT and SaGoT (Each
node represents a reasoning step, the number in the node
represents the sequence of the step in their reasoning
path, the arrow in subfigure (a) indicates the step gen-
eration path in ToT, the arrow in subfigure (b) shows
the inter-step self-attention relationship preserved by
SaGoT).

between each token in s; and each token in s; (with-
out the self-attention between tokens of the same
node) would be rectified as zero (see Figure 2(d)):

l (o0 if a(j, i) <
A1) = { AL (J,1) otherwise ®)

Consequently, directed lines between corre-
sponding nodes ej; in the thought graph G; would
be pruned (as «(7j,7) would be corrected to zero
simultaneously), resulting in a rectified thought
graph G/, (see Figure 3(b) for an example):

Gi = G = (V] Ej) (6)

Denote the set of lines pruned as PE;, then V; =
Vi and E! = E; \ PE;. In practice, the thought
graph construction could be realized by an inter-
token self-attention mask, together with a list of
tuples recording the start and end token positions
of reasoning steps.

When generating each new reasoning step by
SaGoT, each token in the step could be sampled
following the LLM’s original sampling mode (e.g.
greedy search), while the token-wise probability
distribution used by the sampling procedure is gen-
erated based on the graph-structured self-attention
mechanism. Specifically, the thought graph could
be realized by an inter-token self-attention mask,
together with a list of tuples recording the start
and end token positions of reasoning steps. When
producing each new reasoning step, the step’s asso-
ciated inter-token self-attention values before rec-
tification could already diverge from those calcu-
lated following the traditional self-attention system.
This is because the graph-structured inter-step self-
attention among former steps would influence the

Value vectors of tokens in those steps, and fur-
ther affect the self-attention distribution of a latter
step. In other words, under SaGoT’s designation,
the initial inter-token self-attention intensities be-
fore rectification are already calculated based on a
graph-structured system, instead of the traditional
self-attention mechanism.

3.5 Process Circulation & Termination

Finally, as shown in Figure 2(e), circularly execute
the Subsequent Node Generation procedure and
the Graph-structured Self-attention Construction
procedure, until the LLM generates the end-of-text
token (i.e. the token marking the end of an LLM’s
intended output). Besides, in all procedures stated
above, whenever the end-of-text token is gener-
ated, the reasoning step and thought graph could
be formulated taking the end-of-text token as the
end-of-sentence symbol instead, and there is no
need to carry out other procedures anymore.

In general, the thought graph put forward in this
paper (see Figure 3(b)) could rectify the LLM rea-
soning procedure simultaneously as an LLM output
a single reasoning path. It is highly distinct from
the graph structure used in existing methods such as
ToT (see Figure 3(a)) that rely on generating extra
reasoning paths/steps and additional verification,
and better mirrors the human’s graph-structured
reasoning habit.

4 Experimental Setup

As SaGoT targets open-source small-sized LLMs,
the Qwen2-1.5B base model (a decoder-only
Transformer-based LLM) has been employed in our
experiments (QwenTeam, 2024). The base mod-
els of Qwen2-7B (QwenTeam, 2024), Llama3-8B
(Grattafiori et al., 2024) and Llama2-13B (Touvron
et al., 2023) have also been used to examine the
SaGoT’s performance when the model scales up.
More detailed model hyperparameter settings are il-
lustrated in Appendix B. We utilize the open frame-
work OpenCompass 2.0 (OpenCompass, 2023) for
performance evaluation, and datasets employed in-
clude GSM8K (Cobbe et al., 2021) and MathBench-
A (Liu et al., 2024). GSMS8K is a dataset of En-
glish grade school math problems and answers cre-
ated by humans, including over 1.3k test samples.
MathBench-A (annotated as MB) comprises 1.5k
math questions covering five stages (Arithmetic,
Primary, Middle, High, College) and two languages
(English and Chinese, denoted as E and C) (Liu
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Method GSM8K MB-Primary-E  MB-Primary-C MB-Middle-E MB-High-E MB-College-E
Vanilla 19.6 333 24.0 9.3 20.0 16.0
CoT 58.3 36.0 36.0 32.0 37.3 26.7
ToT 38.2 373 253 16.0 18.7 14.7
GraphReason 22.0 333 413 5.3 8.0 14.7
SGT-Avg 58.4 36.0 36.0 32.0 37.3 21.3

- without exemplars 19.6 32.0-33.3 21.3-24.0 9.3 20.0 12.0
SaGoT 59.9 36.0-37.3 40.0 36.0 41.3 26.7-29.3

- without exemplars 19.7 32.0-34.7 17.3 8.0 21.3 13.3-20.0

Table 1: Accuracy (%) comparison on test datasets (The bold values highlight the results of our method. Value
ranges exist since multiple self-attention thresholds might lead to the same validation accuracy, while their results

on the test dataset vary).

etal., 2024). As mentioned in Section 3.1, a prereq-
uisite of SaGoT is that the CoT technique with the
same prompt could lead to accuracy enhancement
on the target task. Due to the incompatibility be-
tween Qwen2-1.5B and the exemplars provided by
OpenCompass 2.0, CoT would lead to performance
degradation on partial datasets (see Appendix C for
corresponding results and explanations). Hence,
in Section 5, we focus on datasets whose corre-
sponding CoT exemplars function normally. To
determine the inter-step self-attention threshold by
grid-searching using a validation set, we randomly
split each of the original datasets into a new valida-
tion dataset and a new test dataset of approximately
the same size (referred to as the validation and test
datasets in the following paper).

5 Result and Discussion

5.1 Comparison with SOTA Methods

We compare the performance of SaGoT with
Vanilla, CoT (Wei et al., 2022) and SOTA graph-
related reasoning methods ToT (Yao et al., 2023b),
GraphReason (Cao, 2024) and SGT-Avg. Vanilla
refers to the naive approach without adding ex-
emplars to the input prompt template. ToT and
GraphReason are graph-based reasoning methods
that construct the graph by sampling the reasoning
step/path multiple times (Yao et al., 2023b; Cao,
2024). SGT-Avg is developed by us for testing
the effect of changing the maximum value-based
inter-step self-attention indicator used by SaGoT to
an average value-based indicator. For each dataset,
our experiments on CoT, ToT, GraphReason, SGT-
Avg and SaGoT use the same exemplars guiding
the model to generate step-wise answers, except
for slight format differences due to the algorithms’
default settings.

Table 1 presents the comparison results on test
datasets. It should be noted that GSM8K and

MB-Primary allow open-ended responses, while
queries of MB-Middle/High/College are single-
choice questions, so the task difficulty might not
solely depend on the grade level. The results mani-
fest that SaGoT could further improve the correct-
ness compared to SOTA methods. Specifically, ToT
requires the LLM to be capable of accurately eval-
uating the correctness of each reasoning step for its
tree-branch pruning procedure (Yao et al., 2023b).
This might lead to reliance on huge powerful LLMs
such as GPT-4 (Achiam et al., 2023) to ensure its
performance enhancement effect. On the other
hand, SaGoT could release this constraint, lead-
ing to a higher accuracy even with a lightweight
LLM, without the need for high computational bur-
dens. Although GraphReason and SaGoT achieve
comparable results on MB-Primary-C, GraphRea-
son requires the LLM to generate 30 reasoning
paths for each question, which could be inefficient
(Cao, 2024). SaGoT also outperforms SGT-Avg. A
possible reason is that compared to the maximum
value-based indicator (employed by SaGoT), there
are higher chances for uninformative tokens in long
reasoning steps to drag down and disturb the av-
erage inter-token self-attention value (employed
by SGT-Avg) from accurately reflecting inter-step
relationships.

Table 2 summarizes the disadvantages of more
SOTA graph-based methods compared to SaGoT,
including those not considered in the quantitative
comparison above (as their codes might not be
open-source, or not readily applicable to the tasks
of this study). In general, a significant novelty and
contribution of SaGoT, is that it enables an LLM
to achieve a human-like single-path-based graph-
of-thought by rectifying the LLM’s inner working
mechanism, compared to prompting methods that
are inefficient and fail to modify an LLM funda-
mentally (Cao 2024; Zhang et al. 2024a,b; Yao et al.
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Method

Disadvantages compared to SaGoT

Yao et al., 2023a; Park et al., 2024;
Yao et al., 2024

Besta et al., 2024; Lei et al., 2023;
Xiao and Liu, 2023; Wen et al., 2024,
Sun et al., 2024; Ning et al., 2024;
Zheng et al., 2024

Cao 2024; Zhang et al. 2024a,b; Yao
et al. 2023b

characterization.

Could not take each reasoning step as a graph node for inter-step relationship

Insufficient to support the specific task of math problems solving, for reasons such
as they haven’t offered sufficient detailed instructions supporting the realization of
some functional modules described in the general frameworks, or the technologies
are tailor-made for other tasks.

Inefficient graph construction based on extra reasoning trajectories/steps generation
and additional verifiers. Within each reasoning trajectory, unrelated steps might
disturb each other through self-attention.

Table 2: Disadvantages of SOTA graph-based methods compared to SaGoT.

2023b). Besides, the self-attention-based thought
graph (see Figure 3(b)) could efficiently rectify the
LLM reasoning procedure simultaneously as an
LLM outputs a single reasoning path, and assist
better human interpretation of the LLM’s inner rea-
soning rationales.

5.2 Ablation Study on CoT Exemplars

An ablation study has been conducted to examine
the effect of removing the CoT exemplars from
the prompt of SaGoT and SGT-Avg. As shown in
Table 1 (the self-attention thresholds used by each
pair of methods with and without exemplars are
consistent), such a prompt with exemplars could
also play a crucial role in elevating the performance.
This makes sense as the CoT exemplars guide the
LLM’s step-wise answers, which is the bedrock for
calculating the inter-step self-attention indicator.
It should be noted that the CoT exemplars used in
our experiments are not tailor-made for our method,
but the ones uniformly employed by OpenCompass
2.0. Hence, the requirement of SaGoT on the CoT
exemplar isn’t strict (as long as they enable CoT to
outperform Vanilla).

5.3 Influence of the Self-attention Threshold

Table 3 presents SaGoT’s performance when the
self-attention threshold varies from O to 1, based
on the overall dataset (for a higher statistical signif-
icance). SaGoT with the threshold 0 is equivalent
to CoT, as there would be no self-attention rec-
tified. In other words, CoT could be viewed as
a special case of SaGoT. Underlined values high-
light the thresholds when SaGoT outperforms CoT.
The results reveal that low and high thresholds are
sub-optimal, and the thresholds leading to the best
performance typically range from 0.3 to 0.8. In
addition, the higher smoothness of the accuracy
changing pattern on GSMS8K as the threshold varies
is consistent with our expectations. Specifically,

Accuracy (%) Average Step Number

60.5 ; 5.7
: , 5.6
60.0 i ’ 3.5
H / 5.4

H /
~ & 5.3

59.5 - - ~L -
- -\ . , 4 -’ 5.2
.- : 5.1
59.0 ; 5.0
: 4.9
585 : 48
0 01 02 03 04 05 06 07 08
Threshold

Accuracy (%) — — Average Step Number

Figure 4: SaGoT with different thresholds on GSM8K.

the number of samples in the original test dataset in
GSMSK is 1319, while each of the MathBench-A
sub-datasets shown in Table 3 contains 150 sam-
ples. Hence, our experimental results indicate that
a higher number of samples would contribute to
a higher statistical stability, and potentially con-
tribute to a better hyperparameter selection result.
On the other hand, the validation dataset employed
by SaGoT is still much smaller than the training
dataset typically employed in training-based meth-
ods, and thus saves researchers’ data collection
efforts. More analysis on the validation sample
size is presented in Appendix D.

To better visualize a typical case of the accuracy-
changing patterns, partial results on GSMS8K,
whose number of questions is the highest among
datasets (thus might be less influenced by random-
ness), are presented in Figure 4 and the vertical line
marks the peak. The average reasoning step num-
bers corresponding to different thresholds are also
calculated to support an in-depth analysis. As the
threshold increases from 0, more redundant inter-
step self-attention linkages get pruned by SaGoT,
and thus, there could be a correctness improve-
ment. When the threshold is too large, almost all
inter-step self-attention linkages get pruned, and
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Threshold 0 (CoT) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
GSMSK 59.3 59.4 59.5 59.9 59.9 59.8 60.3 59.4 59.1 56.1 35.8
MB-Primary-E 40.7 40.7 40.7 40.7 40.7 40.7 41.3 40.7 41.3 38.0 30.7
MB-Primary-C 353 353 353 36.0 36.0 36.0 353 36.7 38.7 38.0 28.0
MB-Middle-E 30.0 30.0 27.3 28.0 32.7 30.7 333 34.7 29.3 22.0 14.0
MB-High-E 34.0 36.7 36.0 32.7 333 39.3 34.0 36.7 26.7 233 20.7
MB-College-E 26.0 26.0 26.0 27.3 22.7 21.3 26.7 26.0 20.0 25.3 24.7

Table 3: Accuracy (%) comparison of SaGoT with different thresholds on overall datasets (The bold values signify
the highest accuracy. Underlined values highlight the thresholds when SaGoT outperforms CoT).

Accuracy (%)
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Figure 5: Accuracy and average step number of SaGoT
with different thresholds across datasets.

the ignorance of some informative inter-step rela-
tionships might result in a performance decrement.
Besides, we are surprised to find that the accuracy-
changing patterns could be opposite to the aver-
age reasoning step number. The negative corre-
lation can also be observed in most of the other
datasets, and the only positive correlation observed
on the MB-Colledge-E dataset is weak (see Figure
5). This indicates that, unlike some SOTA tech-
niques employed by reasoning-focused models that
are blamed for requiring LLMs to overthink and
generate an overlong reasoning path (Chen et al.,
2024), SaGoT might not have to rely on largely
extending the reasoning trajectory to enhance the
final accuracy. This could be a merit of SaGoT, as
producing a tremendous amount of steps would be
resource-consuming, and a concise answer might
be preferred by humans. A more in-depth com-
parison regarding the computational complexity
of SOTA prompting techniques and SaGoT is pre-
sented in Appendix E, which supports SaGoT’s
efficiency.

5.4 Effect of Model Scaling

Figure 6 presents the highest accuracy enhance-
ment achievable on the overall datasets by ad-
justing the self-attention threshold under different

model sizes (Qwen2-1.5B, Qwen2-7B, Llama3-
8B, Llama2-13B). The results indicate that SaGoT
could still manage to enhance the LLM perfor-
mance when the model scales up, which further
strengthens its effectiveness. In addition, MB-
Middle/High/College contains single-choice ques-
tions, while the other datasets consist of open-
answer questions. The experimental results sug-
gest that, compared to open-answer questions, it
might be easier for SaGoT to achieve a higher
maximum accuracy enhancement on single-choice
question tasks. Besides, the result achieved by
Qwen2-7B is comparable to SOTA methods such
as GraphReason (Cao, 2024) with GPT-3.5 (which
achieves 85.7% on GSMS8K when asking the LLM
to generate the reasoning path 30 times for a single
question).

5.5 Thought Graph for Better Interpretation

In Figure 1, we showcase how SaGoT could help
enhance the LLM’s reasoning accuracy while con-
tributing to better human interpretations of LLMs’
inner reasoning mechanisms. The left sub-figure
presents the results of traditional CoT, while the
right one visualizes the thought graph produced
by SaGoT (threshold = 0.6). As the final an-
swers could be extracted from the last sentence/step
shown in the figure, the rest of the texts are omitted.
Apparently, the thought graph of SaGoT could in-
tuitively depict how the LLM understands the rela-
tionships among its reasoning steps, while the CoT
output fails. Additionally, we could observe an
interesting phenomenon that, for the specific case
shown in Figure 1, after removing redundant self-
attention linkages among former reasoning steps
by SaGoT, the LLM seems to have a ’clearer mind’
to separate the latter reasoning procedure into sub-
steps (i.e. the green texts), instead of mixing mul-
tiple reasoning steps into a single one (i.e. the red
texts) that leads to calculation errors. We believe
that, with the assistance of SaGoT, there might be
other insightful findings on the reasoning mecha-
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Figure 6: Model scaling effect on overall datasets.
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Figure 7: Impacts on inter-step self-attention.

nisms of LLMs.

Figure 7 visualizes the possible impacts of
SaGoT on the inter-step self-attention distribution.
Left sub-figures show inter-step self-attention dis-
tributions and right sub-figures present correspond-
ing thought graphs. Within each left sub-figure,
left nodes correspond to Queries and right nodes
correspond to Keys, and a line with a deeper color
indicates a greater self-attention intensity. It should
be noted that, rectification of self-attention among
former reasoning steps by SaGoT could result in
changes in the specific content of the following rea-
soning steps, the subsequent self-attention strength
distribution, and also the total reasoning step num-
ber.

We also present a bad case analysis in Appendix
F for the condition when SaGoT fails in the ques-
tion answering. Typically, the reason is that when
the LLM is not capable of generating relatively fea-
sible reasoning steps with the CoT technique, fur-
ther rectifying self-attention by SaGoT among rea-
soning steps with overwhelmingly erroneous steps
might not help a lot. However, with the thought
graph generated by SaGoT, users could still more

clearly understand how an error in the early reason-
ing step influences subsequent steps, and trace why
an LLM fails from a more in-depth perspective.

6 Conclusion

This paper proposes a novel decoding method
named SaGoT enabling LLMs to perform human-
like graph-structured mathematical reasoning. Ex-
perimental results show that SaGoT could effec-
tively enhance an LLM’s mathematical reasoning
accuracy while exempting the reliance on huge
LLMs that are resource-consuming. It is a training-
free technique with a thought graph generated that
could assist humans in interpreting how an LLM
views the relationships among its reasoning steps.

In the future, a potential research direction is to
adapt SaGoT to LLM with the Mixture-of-Experts
structure by enabling different Experts to gener-
ate different thought graphs, which might focus
on different aspects of the inter-step relationships.
It could be meaningful for SaGoT to assist hu-
mans in interpreting how the Experts diverge in
their reasoning approaches. Moreover, although
SaGoT is designed to be a training-free technique
that enables the LLM to have a graph-structured
reasoning ability by its inherent working mecha-
nism, it could also shed light on the LLM train-
ing technique by integrating the graph-structured
self-attention mechanism into the model training
procedure. Specifically, graph-structured training
mechanisms might make use of human-annotated
inter-reasoning relationships to guide the inter-step
self-attention formulation. We would like to en-
courage further investigations into that.
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7 Limitation

SaGoT is designed for math problem solving, so it
might require modifications when applied to other
reasoning tasks such as code generation. However,
it is also a merit of SaGoT that it could potentially
be generalized to other reasoning tasks. Take the
Python code generation task as an example, as the
codes are typically wrapped as function blocks,
future work might develop a multi-level SaGoT
technique, which could include a low-level graph
depicting relationships among code lines within a
function, and a high-level graph describing inter-
actions among functions. This might be an inter-
esting research direction in the future. Besides, the
existing implementation of the KV cache is incom-
patible with SaGoT, and an engineering adjustment
is encouraged. In addition, in our experiments, we
define the symbol °.’ as the English period, whereas
it sometimes represents the decimal point or the
abbreviation. This might be solved by refining the
period recognition rules in the future.
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A Appendix A

In a typical Transformer layer, each input token
is mapped to a Query vector, a Key vector and a
Value vector (Vaswani et al., 2017). The output
corresponding to each input token would be calcu-
lated as the weighted sum of Value vectors in the
layer. The weight of each Value is called the self-
attention intensity, calculated based on the Query
and the Key. Specifically, in a decoder-only LLM,
the self-attention intensity A, which is the weight of
token y’s Value when calculating the output corre-
sponding to input token x, can be calculated using
the following formula (Vaswani et al., 2017):

xis beforey

0,
A= { softmaa:(Q—KT),

Nz otherwise

where softmax(.) represents the Softmax
function, () represents the Query corresponding
to x, K represents the Key corresponding to y, and
d represents the length of the Query or Key (both
are of equal length). Figure A2 shows an example
of the self-attention mechanism of a decoder-only
LLM.

Besides, many LLMs employ the multi-head
self-attention mechanism, enabling the existence
of multiple self-attention heads in a single Trans-
former layer (Vaswani et al., 2017). Each self-
attention head can result in a distinct set of Query,
Key and Value vectors.

B Appendix B

Compared to the default model hyperparameters,
max_new_tokens is reduced to 1024 to prevent
unnecessary token generation, do_sample and
use_cache are set as False to avoid the influence
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Question: math word problem exemplar 1
Let’s think step by step.

Answer:

step-by-step answer exemplar 1

multiple math word problem question and step-by-step answer
exemplars, following the format above

Question: math word problem to be answered
Let’s think step by step.
Answer:

Figure Al: An example of the prompt template (Open-
Compass, 2023). (Black words are fixed in the template,
and blue words would be substituted by corresponding
exemplars or the question to be answered by the LLM.)

Query: Mike || has || bikes

Key: Mike || has || bikes

Figure A2: Self-attention mechanism in a decoder-only
LLM. (Each square in the figure represents a token; the
upper squares stand for tokens from which the Query
is derived, and the lower squares correspond to the Key.
Only non-zero self-attention intensity would be repre-
sented by the directed line in this figure, whose arrow
points from the token that produces the Query to the
token that produces the Key.)

of randomness and incompatibility with SaGoT’s
design, respectively. Besides, when calculating
the inter-token self-attention used for generating
the customized self-attention mask required by
SaGoT, we find that in Qwen2-1.5B’s first Trans-
former layer and Qwen2-7B’s last Transformer
layer, directly multiplying the Query and Key
vectors sometimes results in an output exceeding
the maximum limit. Qwen2-1.5/7B employs the
scaled_dot_product_attention function to pre-
vent the problem, which has three different imple-
mentations to be automatically selected following
complex rules based on inputs, and is subjected to
change (Pytorch, 2023). To avoid such complexity,
the self-attention in the corresponding Transformer
layer is excluded from the inter-step self-attention
indicator calculation for those specific models.

C Appendix C

As mentioned in the paper, a pre-requisite of
SaGoT’s application, is that the CoT technique
with the same prompt could enhance the model per-
formance compared to Vanilla on the targeting task,
and this section presents and analyzes conditions
when such a pre-requisite is not fulfilled.

On the MB-Arithmetic-E, MB-Middle-C, MB-
High-C and MB-College-C sub-datasets under
MathBench-A, the Vanilla method performs even
better than CoT on Qwen2-1.5B (see Table C1).
Upon a closer look, it is found that OpenCom-
pass 2.0 employs the same exemplars for MB-
Arithmetic-E and MB-Primary-E, whose format
is similar to questions in MB-Primary-E, but quite
different from MB-Arithmetic-E. The difference
might misdirect an LLM’s stepwise answering
when it’s applied to the task of MB-Arithmetic-
E. MB-Middle-C, MB-High-C and MB-College-C
share the same set of exemplars (distinct from other
tasks) provided by OpenCompass 2.0, and we sus-
pect the anomaly might be caused by the inherent
Chinese capability of Qwen2-1.5B, which might
not fully comprehend those exemplars.

We can observe that even when CoT malfunc-
tions, SaGoT might still eliminate the accuracy
reduction effect. This could be an advancement
of SaGoT. Given the high reliance on CoT across
the academic and industrial fields, there are occa-
sions when improper CoT exemplars lead to LLM
performance degradation unexpectedly, while our
experimental results show that the integration of
SaGoT might alleviate this negative effect.
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Method MB-Arithmetic-E MB-Middle-C M-High-C M-College-C
Vanilla 44.7 49.3 32.0 29.3
CoT 41.3 29.3 253 12.0
ToT 22.0 20.0 133 12.0
GraphReason 34.0 4.0 13.3 12.0
SGT-Avg 42.7 293 28.0 133

- without exemplars 42.0 49.3 25.3 28.0
SaGoT 42.0 29.3 26.7 18.7

- without exemplars 42.0-42.7 48.0-49.3 29.3 29.3

Table C1: Accuracy (%) comparison on test datasets when CoT performs worse than Vanilla (The bold values
highlight the results of our method. Value ranges exist since multiple self-attention thresholds might lead to the
same validation accuracy, while their results on the test dataset vary).
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Figure D1: Impacts of validation sample size on the
peak threshold overlap rate for the GSM8K dataset.

D Appendix D

Figure D1 visualizes the impact of validation sam-
ple size on the rate of obtaining the best threshold
used by SaGoT on the GSMS8K dataset. Specif-
ically, for each sample size ranging from 100 to
1300, the validation dataset is randomly sampled
100 times. Then we calculate the rate that the
threshold selected based on the validation set is the
same as the actual threshold corresponding to the
peak value (which is 0.6 for the GSM8K dataset).
As shown in the figure, the peak threshold overlap-
ping rate could reach approximately 80% when the
sample size is around 500.

E Appendix E

To take into consideration various prompting meth-
ods that do not modify the LLM’s inherent self-
attention mechanism, we would like to examine
a general condition: Without loss of generality,
assume that a prompting method X and SaGoT re-
quire the LLM to generate N and M reasoning
steps separately to finish the reasoning procedure.
The average number of tokens in each step is n

and m for method X and SaGoT, separately. As
there would be no inter-token self-attention com-
putation pruned by method X, the computational
complexity caused by the self-attention module
would be O((N *n)?). Please note that method X
might require other models to validate the step cor-
rectness, so the actual computational complexity
might be higher than this value. As for SaGoT, as-
sume that there are K inter-step self-attention link-
ages that get pruned in the thought graph. Hence,
there would be K * m? inter-token self-attention
pruned, resulting in a final computational complex-
ity O((M +m)? — K *m?). In many cases, state-of-
the-art prompting-based reasoning methods would
rely on largely enhancing the number of tokens gen-
erated, while SaGoT does not, resulting in N xn >
M*m,s0 O((N*n)?) > O((M*m)?— K xm?),
the computational complexity of SaGoT would be
lower.

F Appendix F

Figure F1 presents an example when SaGoT could
not lead to a correct answer, and Figure F2 visual-
izes the inter-step self-attention distribution before
and after applying SaGoT on that case. It could
be seen that there are overwhelming errors in the
reasoning steps generated by CoT (see the red text
on the left sub-figure), and in that case, further rec-
tifying the relationships among them by SaGoT
might hardly lead to a correct answer. However,
SaGoT could still help researchers to more clearly
observe how the error in the initial steps is transmit-
ted across reasoning steps, and influence the final
answer.

For a normal LLM, the noises in self-attention re-
lationships among early reasoning steps might lead
to errors when generating the subsequent reasoning
steps, and this is exactly why we apply the SaGoT
algorithm to alleviate this issue. If there are still
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Question: Sadie slept 8 hours on Monday. For the next two days, she slept 2 hours less, each, because she had to complete some
assignments. If the rest of the week she slept 1 hour more than those two days, how many hours did she sleep in total throughout
the week?

(b)

Response by CoT: Response by SaGoT:

Sadie slept 8-2=10 hours on l | e l
Tuesday. | _T Sadie slept 8-2=10 She slept 8+1=9 hours N She slept 10+1=11
She slept 10-2=8 hours on I hours on Tuesday. on Thursday. |y hours on Saturday.
Wednesday.

She slept 8+1=9 hours on | ¢
Thursday. | eShe slept 10-2=8 hours 4 v
She slept 9+1=10 hours on on Wednesday. She slept 9+1=10 hours
Friday. | on Friday.
She slept 10+1=11 hours on |
Saturday. l /
She slept 11+1=12 hours on | In total, she slept
Sunday. | Y9 8410+8+9+10+11+12=70 hours
In total, Sadie slept | throughout the week.
8+10+8+9+10+11+12=74
hours throughout the week. | o T She slept 11+1=12 hours on
The answer is 74 x | The answer is 70 Sunday.
, X
I
1

Figure F1: Comparison of CoT and SaGoT in a bad case.
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Figure F2: Impacts on inter-step self-attention on a bad
case.

errors in the relationship among early steps after
the application of SaGoT, an approach to further
mitigate this, is to adjust the CoT exemplars to en-
sure that the CoT method with the same exemplars
is capable of better enhancing the LLM reason-
ing accuracy. The rationale behind this approach,
is that better CoT exemplars could lead to fewer
errors made in the LLM’s initial reasoning steps,
which is the bedrock for a correct recognition of
the inter-step relationship among earlier reasoning
steps.
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