Which Retain Set Matters for LLM Unlearning?
A Case Study on Entity Unlearning

Hwan Chang and Hwanhee Lee*
Department of Artificial Intelligence, Chung-Ang University, Seoul, Korea
{hwanchang, hwanheelee}@cau.ac.kr

Abstract

Large language models (LLMs) risk retain-
ing unauthorized or sensitive information from
their training data, which raises privacy con-
cerns. LLM unlearning seeks to mitigate these
risks by selectively removing specified data
while maintaining overall model performance.
However, most existing work focuses on meth-
ods to achieve effective forgetting and does not
provide a detailed analysis of the retain set, the
portion of training data that is not targeted for
removal. In this paper, we investigate the ef-
fects of unlearning on various subsets of the
retain set through a case study on entity un-
learning. We introduce the Syntactically Simi-
lar Neighbor Set, a group of queries that share
similar syntactic structures with the data tar-
geted for removal, and show that this subset
suffers the greatest performance drop during
unlearning. Moreover, when used for regular-
ization, this set not only preserves performance
on syntactically similar queries but also deliv-
ers comparable or improved results across other
data subsets. Our results highlight that syn-
tactic similarity is a critical factor, potentially
more so than domain or entity relationships, in
achieving effective and practical LLM unlearn-
ing.

1 Introduction

Large language models (LLMs), trained on
vast text corpora, exhibit remarkable capabili-
ties (Dubey et al., 2024). However, their deploy-
ment raises concerns about retaining unauthorized
content, posing risks in copyright (Karamolegkou
et al., 2023), privacy (Neel and Chang, 2023).
These issues are critical under regulations like
GDPR (Voigt and Von dem Bussche, 2017), which
mandates post-training data removal and the right
to erasure.

To address these challenges, language model un-
learning (Yao et al., 2023) has emerged as a promis-

*Corresponding author.

J. K. Rowling Stephen King

Q: When was J. K. Rowling born?
A: July 31, 1965

Q: When was Stephen King born?
A: September 21, 1947

After Unlearning

Q: When was Nelson Mandela
When was X born? born?

(Frequent Syntactic Forms)

Syntactically
Similar

Neighbor A:June 10, 1930 x
Q: What was Emma
Entity Emma Watson Watson'’s first lead role?
Neighbor (Rowling's lead actress) p. Harry Potter o
Q: On which river did Mark
Domain Mark Twain Twain work as a steamboat
Neighbor (Same domaln, author) pilot?

A: Mississippi River v

Figure 1: Impact of unlearning across different neighbor
sets. Syntactically similar neighbors are most affected
(in red). In contrast, entity and domain neighbors retain
correct knowledge (in blue).

ing approach. It aims to achieve two primary ob-
jectives. First, the model should effectively forget
the information in the forget set, such as private
data. Second, the unlearning process should pre-
serve the model’s ability to perform well on tasks
unrelated to the forget set, which is represented by
the retain set - the remaining subset of the training
data that excludes the forget set. Many studies have
primarily focused on the first objective, proposing
methods to effectively remove the forget set (Sinha
et al., 2024; Eldan and Russinovich, 2023), or de-
veloping metrics to verify whether forgetting has
been successful (Lynch et al., 2024; Hu et al., 2024).
However, unlearning is still rarely used in practice
because it is difficult to maintain performance on
the retain set.

In this paper, we take a closer look at which ar-
eas of the retain set are significantly affected by
unlearning through a case study on entity unlearn-
ing. Entity unlearning (Maini et al., 2024; Jin et al.,

5966

Findings of the Association for Computational Linguistics: ACL 2025, pages 59665982
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics



Entity Question

Answer

J.K. Rowling | When was J. K. Rowling born?

July 31, 1965

‘Which book concludes the Harry Potter series written by J. K. Rowling?

Harry Potter and the Deathly Hallows

Stephen King | When was Stephen King born?

September 21, 1947

Which Stephen King novel features a killer clown named Pennywise? It

(a) Examples of Forget Set.

Neighbor Set Type Entity example Example Question Example Answer
]_Domaln . Mark Twain . On which river did Mark Twain work | Mississippi River
Neighbor Set (a writer, of the same profession) .
as a steamboat pilot?
Entity Emma Watson R

Neighbor Set (the lead actress in Rowling’s works) f(\)]ll; 2}: was Emma Watson’s first lead | Harry Potter
Syntactically Similar When was X born? ] ) . . N

Neighbor Set (similar syntactic structure as in the forget set) When was Nelson Mandela born? July 18, 1918

(b) Examples of Types of Neighbor Sets.

Figure 2: (a) An example forget set consisting of two entities with two QA pairs each; (b) Examples for the three
types of neighbor sets: Domain, Entity, and Syntactically Similar.

2024) aims to remove knowledge about particu-
lar entities, typically expressed through QA pairs.
Since it is not practical to test the whole retain
set, previous work has used smaller groups called
neighbor sets (Choi et al., 2024; Yuan et al., 2025).
These neighbor sets have similar properties to the
data being removed, but they do not include the
target data. They are particularly important as they
are expected to experience significant performance
degradation during the unlearning process. Build-
ing on previous work, we conduct an in-depth anal-
ysis of these neighbor sets and address two key
research questions:

RQ1. How does performance degradation vary
across different neighbor sets? (§5)

RQ2. What is the optimal neighbor set for effec-
tive regularization? (§6)

To answer the research questions, we first chal-
lenge the conventional approach to neighbor set
construction. While previous work (Choi et al.,
2024; Yuan et al., 2025) primarily focused on Do-
main Neighbor Sets containing instances from the
same professional domain and Entity Neighbor
Sets (Jin et al., 2024; Choi et al., 2024) compris-
ing closely associated entities, our research reveals
that one key factor has been overlooked: Syntac-
tic Similarity. To address this, we introduce the
Syntactically Similar Neighbor Set, which contains
questions sharing similar syntactic structures with
the forget set. Our experiments show that this set
suffers a much larger drop in performance com-
pared to the traditional neighbor sets. (§5). This
finding challenges the previous belief (Yuan et al.,
2025) that entity or domain similarity is the main

driver of forgetting patterns. Moreover, the per-
formance degradation is even more pronounced
when syntactic similarity overlaps with entity or
domain similarity, suggesting a compounding ef-
fect. Our paraphrasing experiments and gradient
analysis confirm this result by revealing stronger
interdependencies within syntactically similar in-
formation.

Building on this insight, we evaluate different
retain set configurations for regularization during
unlearning. Despite conventional wisdom (Choi
et al., 2024) suggesting that domain or entity-based
retain sets would be most effective, our results
demonstrate that training with Syntactically Similar
Neighbor Set not only best preserves performance
on syntactically similar cases but also but also per-
forms as well or better on other parts of the retain
set. (§6). This indicates that syntactic similarity,
rather than domain or entity relationships, provides
a more reliable foundation for maintaining model
utility while ensuring effective unlearning.

2 Preliminaries

2.1 Language Model Unlearning

Let a LLM be parameterized by 0 and trained on a
dataset D, which consists of a forget set Dy and a
retain set D, = D \ Dy. The goal of unlearning is
to obtain a new set of parameters 6’ that removes
knowledge from D while preserving performance
on D,.

2.2 Entity Unlearning

Entity unlearning (Maini et al., 2024; Jin et al.,
2024) aims to remove knowledge associated

5967



with specific entities from the LLM. Let £ =
{e1,...,en} represent the set of entities to be
forgotten, where each entity e; is represented
by a collection of question-answer pairs: e; =
{(gin,ain), .-, (Gim, @im)}. Thus, the forget set
can be expressed as Dy = ;L UjL; (41,5, @i 5)-

2.3 Evaluating Retain Set Preservation

Since D, comprises the entire training set except
for Dy, evaluating all of D, is impractical. Prior
work (Maini et al., 2024; Jin et al., 2024) addresses
this challenge through two main approaches. First,
they assess performance on general knowledge
benchmarks such as MMLU (Hendrycks et al.,
2021) to ensure broad knowledge retention. Sec-
ond, they evaluate on neighbor sets, which are sub-
sets of D, that are expected to be most affected by
the unlearning process. These sets are constructed
based on the assumption that data points similar to
the forget set are more likely to be impacted dur-
ing unlearning. Previous work has identified two
primary types of neighbor sets:

Domain Neighbor Set (NVgomain): Instances re-
lated to the same professional domain as the forget
set (Yuan et al., 2025; Maini et al., 2024). For
example, if Dy consists of data about J.K. Rowl-
ing, Mgomain may include information about other
authors such as Ilan McEwan.

Entity Neighbor Set (j\/emity): Instances involving
entities closely associated with those in Dy (Jin
et al., 2024; Choi et al., 2024). For example, if
J.K. Rowling is in Dy, then Nepiry may include
information about Daniel Radcliffe, the lead actor
in the Harry Potter films.

Expanding on the concept of neighbor sets, we
propose a new type of neighbor set based on syn-
tactic similarity. While existing neighbor sets rely
mainly on topical or entity relationships, we ob-
serve that performance degradation can also af-
fect instances that share similar syntactic structures.
We define the Syntactically Similar Neighbor Set
(./\/;ymacticauy) as a subset of D, containing ques-
tions with syntactic structures similar to those of
D;. For example, if D contains multiple instances
of the form “When was X born?”, /\/'symacﬁcany con-
sists of similarly structured questions.

To construct Nyyniactically, We USe a two-step pro-
cess that quantifies syntactic similarity between
sentences. First, we perform entity masking us-
ing GPT-40 (Hurst et al., 2024) to replace named
entities such as person names, dates, and organiza-
tion names. This allows us to focus on the struc-

tural aspects of the sentences while minimizing
the influence of specific entities. Let s} and s,
represent the masked versions of sentences s; and
s2, respectively. Next, we define the Levenshtein
similarity based on the Levenshtein distance be-
tween the masked sentences. The Levenshtein dis-
tance (Zhang et al., 2017) measures the minimum
number of edit operations (insertions, deletions, or
substitutions) needed to transform one string into
another. We normalize this distance into a similar-
ity score using:

LevenshteinDistance(s] ,s5 ) (1)

LevenshteinSimilarity(s, so) = 1 — malen(s) (L)

Algorithm 1 Syntactically Similar Neighbor Set Construc-
tion

Require: Set of questions in forget set Dy, D,
similarity threshold 0:gp

Ensure: -/\/’syntactically
: Initialize empty set Nsyn + 0
. Initialize empty clusters C' +
: for each question ¢;, q; € Dy do

Compute Levenshtein similarity sim(g;, ¢;)

if sim(qi, q;) > Onign then

Group g;, g; into same cluster in C'

end if
end for
: for each valid cluster ¢ € C' with size > 3 do
Select entities E' from retain set not in other neighbor
sets
11: Generate QA pairs for E/ with similar syntactic

structure

12: Verify generated pairs via model probing
13: Add verified pairs to Ny
14: end for
15: return Ny,

SR IDNERD 2

—_

3 Dataset Construction

We consider two scenarios for entity unlearning:
the fictitious author scenario (TOFU) and a real-
world scenario involving actual individuals. This
section details the construction of the forget set and
the various neighbor sets for each scenario.

3.1 Target Entity Selection

For the real-world scenario, we first select 10
prominent figures across professions: actors,
singers, politicians, and business leaders, etc.
These individuals are chosen based on their public
visibility and the availability of information about
them (Jin et al., 2024; Choi et al., 2024). In the
TOFU scenario, we follow the method outlined
in Maini et al. (2024), employing a 1% forget ratio
to determine the number of fictitious authors to be
included in the forget set.

5968



3.2 Neighboring Entity Selection

The selection process for each type of neighbor set
varies depending on the specific criteria for each.

Domain Neighbor Set. For the real-world sce-
nario, domain neighbor entities are constructed
by selecting individuals within the same profes-
sional domain as the target entities following Yuan
et al. (2025); Liu et al. (2024a). In the TOFU sce-
nario, the domain neighbors provided in Maini et al.
(2024) are used.

Entity Neighbor Set. For the real-world sce-
nario, entity neighbor entities are selected based
on the following criteria adapted from Choi et al.
(2024); Jin et al. (2024): 1) a bidirectional relation-
ship exists between the target entity and the poten-
tial neighbor, meaning both entities link to each
other via hyperlinks on their respective Wikipedia
pages and are mentioned at least once on those
pages; and 2) the neighboring pages all repre-
sent people. These criteria aim to identify entities
closely associated with the target entities, reflect-
ing real-world relationships and connections. For
the TOFU scenario, given its fictitious nature, and
the absence of a defined entity neighbor concept
in Maini et al. (2024), entity neighbors are not ap-
plicable.

Syntactically Similar Neighbor Set. Unlike the
other neighbor sets, which are based on entities, the
syntactically similar neighbor set is constructed us-
ing questions in Dy. This set consists of questions
in the retain set that share a similar syntactic struc-
ture with those in the Dy. To construct this set, we
first compute the pairwise Levenshtein similarity,
as defined in equation 1, between all questions in
Dy. Then, we group questions ensuring that each
question within a cluster is syntactically similar to
the others in that cluster.

3.3 Generating QA Pairs

Based on the selected entities, we generate QA
pairs that capture key information about each entity.

Real-world Scenario. We utilize Wikipedia as a
knowledge source following Jin et al. (2024).

For the forget set, domain neighbor set, and en-
tity neighbor set, we employ GPT-40 to generate
QA pairs for each entity. We first gather relevant
passages from Wikipedia pages corresponding to
each target entity. These passages serve as the con-
text for prompting GPT-40 to generate QA pairs

related to the targets. Second, we further filter the
QA pairs by prompting GPT-40 with the questions
alone—without any passages—and retaining only
those for which it produces the correct answer.

To validate the model’s knowledge and the qual-
ity of the generated pairs, we use these QA pairs
to probe the evaluated model. We retain only those
QA pairs for which the model successfully recalls
the correct answer. This validation ensures both
the consistency of the QA pairs and confirms the
model’s existing knowledge.

For constructing the syntactically similar neigh-
bor set, we first identify entities from the retain set
that are not included in any of the other neighbor
sets (forget, domain, or entity). Using the syntac-
tic clusters identified in Section 3.2, we generate
QA pairs that align with the syntactic structures of
these clusters.

Specifically, we adopt the masking approach
used in Section 2.3 when computing Levenshtein
similarity. We first mask entity within the clustered
questions and then generate new QA pairs by fill-
ing these masked structures with entities from the
identified retain set. This ensures that the generated
questions maintain syntactic similarity to the exist-
ing clusters while introducing new entities. We fol-
low the same verification process (model probing
and manual verification) as for the other neighbor
sets to ensure the dataset’s validity. The detailed
procedure for constructing the syntactically similar
neighbor set is outlined in Algorithm 1.

TOFU. For the TOFU, the forget set and domain
neighbor entities are defined by the benchmark it-
self (Maini et al., 2024). To identify the syntacti-
cally similar neighbor set, we compare the provided
neighbor sets against the forget set using the same
syntactic similarity clustering method described
above. Critically, we ensure that there is no over-
lap with the domain neighbor set. This approach
ensures that the syntactically similar neighbor set
reflects the structural patterns present in the for-
get set while maintaining distinctness from other
neighbor sets.

Further details and dataset statistics are provided
in the appendix D.

4 Experimental Setup

4.1 Evaluation Metrics

We evaluate the unlearned model using several met-
rics to assess its performance from various perspec-
tives (Yuan et al., 2025; Maini et al., 2024). Specif-

5969



ically, we employ ROUGE to measure word-level
similarity, BERT Cosine Similarity to assess seman-
tic consistency between outputs before and after
unlearning, Probability to evaluate the model’s con-
fidence to predict the ground truth answer, and En-
tailment Score to assess factual correctness relative
to the ground truth.
Since all metrics range from zero to one, we ag-
gregate them using the arithmetic mean. Applying
this to the retain set defines Model Utility (MU),
while applying it to the forget set defines Forget
Efficacy (FE).
To quantify the impact of unlearning on neighbor
sets, we define the Relative Utility Drop (RUD)
as:

RUD = MYater MUetore 5 70, ()

before
Since unlearning typically reduces MU, RUD is
usually negative, indicating the degree of perfor-
mance drop. This metric shows which neighbor
set suffers the most performance decline after un-
learning. Further details on metric computation are
provided in Appendix A.

4.2 Unlearning Methods

We explore various unlearning strategies, each of
which aims to erase knowledge of target entities
in distinct ways. A comprehensive explanation of
these methods is provided in Appendix B.

* GA (Jang et al., 2023): Utilizes gradient ascent
on the forget set to counteract learned knowledge.

* DPO (Rafailov et al., 2023): Treats unlearning
as a preference optimization problem by applying
the standard DPO loss. It uses answers in the
forget set as negative samples and rejection tem-
plates (e.g., “I don’t know”) as positive samples
to guide the model’s response.

* NPO (Zhang et al., 2024): A variant of DPO that
removes positive samples from the optimization
process. It retains only negative examples from
the forget set, encouraging the model to suppress
forgotten information without explicit reinforce-
ment of alternative responses.

¢ IDK (Maini et al., 2024): Fine-tunes the model to
default to “I don’t know” responses when queried
about the forget set.

4.3 Implementation Details

For the TOFU benchmark (Maini et al., 2024), we
utilize fine-tuned Llama-2-7b-chat (Touvron et al.,

GA NPO IDK DPO
Real-world 0.734 0.745 0.657 0.721
TOFU 0.676 0.710 0.685 0.686

Table 1: Forget efficacy of each method across different
scenarios.

2023), which has been trained on the constructed
dataset to ensure it precisely answers questions in
TOFU. For the real-world scenario benchmark, we
employ Llama-3-8B-Instruct (Dubey et al., 2024).
To enable a fair comparison of different unlearning
methods at similar levels of forgetting, we adjust
the hyperparameters to keep Forget Efficacy be-
tween 0.65 and 0.75. Further details are provided
in Appendix F.

S How does Performance Degradation
Vary across Different Neighbor Sets?

This section investigates how performance degrada-
tion after unlearning varies across different neigh-
bor sets. First, we examine which neighbor sets
experience the most significant performance degra-
dation. (Section 5.1) If similar syntactic struc-
tures sets are the most vulnerable to forgetting,
we further examine whether domain differences
within these structures lead to varying effects. (Sec-
tion 5.2) We then examine the robustness of these
forgetting patterns when questions are paraphrased.
(Section 5.3) Finally, we analyze gradient updates
during unlearning to understand the underlying
mechanisms driving the observed patterns. (Sec-
tion 5.4)

5.1 Analyzing Performance Drops Across
Neighbor Sets

Syntactically Similar Neighbor Set Experiences
Higher Forgetting. Across both real-world sce-
nario and TOFU evaluations (Figure 3a and Fig-
ure 3b), .A/;yntactically consistently demonstrates a
higher utility drop compared to both Ngomain and
Neniity- The greater utility drop suggests that syn-
tactic similarity plays a crucial role in the forget-
ting phenomenon. When the model is unlearning
specific data, it appears to struggle more with re-
taining information that shares similar sentence
structures, regardless of the specific domain or en-
tities involved.

No Significant Difference among Existing Neigh-
bor Sets. In the real-world scenario, a notable
observation is the lack of significant performance

5970



Relative Utility Drop (%)
&
3

—~30
—404
—504
—~704

Domain Neighbor

| mmm Entity Neighbor
mm Syntactically Similar
EEm Syn Sim & Domain
=== Syn Sim & Entity

ML

(a) Real-world Scenario

-90

Relative Utility Drop (%)
&
&

25
35—!
-454

== Domain Neighbor
mmm Syntactically Similar

GA NPO IDK DPO

(b) TOFU

Figure 3: Relative Utility Drop (%) for different neighbor sets across real-world scenario (left) and TOFU (right).
Each method (GA, NPO, IDK, DPO) is evaluated based on its model utility before and after unlearning, with lower
bars indicating greater utility loss. Model utility values before and after unlearning are provided in Appendix F

differences between Ngomain and Nengry. As de-
picted in Figure 3a, both sets exhibit similar RUD
across all methods. Our results show that, despite
different ways of defining neighbor sets in previous
studies (Choi et al., 2024; Yuan et al., 2025), the
impact caused by unlearning is similar across them.
Overlapping Sets Lead to Even Greater For-
getting. In the real-world scenario, subsets that
overlap syntactic similarity with domain or entity
similarity (Syn Sim & Domain, Syn Sim & Entity)
experience the most severe utility drop (Figure 3a).
This highlights that overlapping neighbor character-
istics intensify forgetting effects during unlearning.

5.2 Exploring Domain Effects on Forgetting
in Syntactically Similar Cases

To examine the domain-specific effects of unlearn-
ing in syntactically similar cases, we conduct exper-
iments in real-world scenario across five distinct
categories. This analysis builds on our previous
findings that syntactically similar neighbor sets ex-
hibit more pronounced forgetting than those based
on domain or entity similarity.

While overlapping characteristics intensify for-
getting, this raises the question of which similarity
type is the primary driver. Prior studies (Jin et al.,
2024; Maini et al., 2024) have operated on the as-
sumption that entity or domain similarity is the
most critical factor, meaning sets with high internal
similarity would be most vulnerable. Following
this logic, the Human category, containing closely
related entities, should exhibit the highest degree
of forgetting.

»*no00z
§zg8z
9233

288

.n
X
28

Relative Utility Drop (%)

GA NPO IDK DPO

Figure 4: Relative Utility Drop across different entity
categories (Human, Company, Creative Works, Fic-
tional Character, and Product) for various unlearning
methods.

However, as shown in Figure 4, the results trend
in the opposite direction—non-human categories
consistently exhibit substantially higher forgetting
rates across most methods. This directly challenges
the conventional assumption that entity or domain
similarity is the most reliable predictor of perfor-
mance degradation. Instead, it suggests that these
factors are secondary to a more influential driver,
reinforcing our central claim about the overriding
importance of syntactic structure.

5.3 Robustness of Forgetting Patterns in
Paraphrased Scenarios

Our previous experiments reveal that syntactically
similar neighbor sets experience higher levels of

5971



a

Relative Utility Drop (%)

—754

—354
454
—55 4

B Syntactically Different
Bmm Syntactically Similar

GA NPO

Figure 5: Relative Utility Drop for syntactically similar
and different neighbor sets across different unlearning
methods, measured over three paraphrases per question.
A larger drop indicates higher semantic forgetting.

forgetting compared to other neighbor sets. To val-
idate the robustness of this finding, we investigate
whether this performance gap persists even when
questions are paraphrased.

Specifically, we generate paraphrased versions
for each question for syntactically similar and dif-
ferent neighbor sets using GPT-4o0 Then, we filter
out cases where the pre-unlearning model fails to
provide correct answers, ensuring that each ques-
tion has three valid paraphrases. We then measure
the RUD for these paraphrased questions using the
post-unlearning model and compare the forgetting
rates across the two groups.

Figure 5 shows that even after paraphrasing, syn-
tactically similar neighbors exhibit greater utility
drops than dissimilar neighbors. This suggests that
the model’s increased forgetting isn’t solely due
to shared syntax, but also reflects a sensitivity to
underlying semantic relationships. The consistent
performance gap after paraphrasing reinforces the
role of syntactic similarity in forgetting, highlight-
ing its influence beyond surface-level wording.

5.4 Gradient Analysis

To further investigate the underlying mechanisms
behind the forgetting patterns observed in syntac-
tically similar and dissimilar neighbor sets, we an-
alyze the gradient updates during the unlearning
process. Our primary goal is to understand how the
model’s gradient norms evolve when encountering
different types of neighbors, particularly whether
syntactically similar instances influence each other
more strongly than dissimilar ones.

In our experimental setup, we perform gradient

¢ Syntactically Similar
—e— Syntactically Different

1600

1400

£ 1200

Gradient Norm

£ 1000

800

600

Unlearning Steps

Figure 6: Frobenius norm of model weight gradients
across unlearning steps. The gradient norms for syntac-
tically similar instances (red) increase more steeply than
those for syntactically different instances (blue).

ascent on a syntactically similar set and track the
changes in gradient norms as the model encounters
other syntactically similar or syntactically different
instances. Specifically, we measure the Frobenius
norm of the model’s weight gradients at each un-
learning step, comparing how the gradients behave
when interacting with different types of data points.

As shown in Figure 6, the gradient norms of
syntactically similar instances exhibit a steeper in-
crease over unlearning steps compared to syntac-
tically different instances. Notably, the initial gap
between their gradient norms at the first check-
point widens progressively as unlearning proceeds.
This suggests that forgetting syntactically similar
knowledge amplifies gradient updates in a way that
reinforces the distinction between similar and dis-
similar instances.

6 What is the Optimal Neighbor Set for
Effective Regularization?

To preserve model utility during unlearning, reg-
ularization losses on a subset of the retain set are
commonly employed during the unlearning pro-
cess (Yuan et al., 2025; Maini et al., 2024). Based
on the findings of the previous section, we aim to
identify the optimal configuration of the retain set
used for regularization, to optimize model utility
while ensuring successful forgetting, specifically
from a data perspective.

Regularization loss. It encourages the unlearned
model parameters 0 to preserves model utility. A
typical unlearning objective function, computed on
a subset of Dy, is formulated as follows:

minf(6) = min — L(0) + Lr(6;Dr). (3

5972



GD Regularization

Domain Neighbors

Test Retain Set
Entity Neighbors

Syntactically Similar
\

]
Entity Neighbors
Train Retain Set

J
Domain Neighbors

Syntactically Similar

]
Domain Neighbors

KL Regularization
—45

-62.1 -59.6
=50
g
-55 g
s
-59.4 -62.0 g
pu}
2
-60 E
g
- —65
-63.9 -67.4 -58.3

' i -=70
Entity Neighbors Syntactically Similar

Train Retain Set

Figure 7: Relative utility drop (%) averaged across all unlearning methods (GA, DPO, NPO, and IDK) under
different retain set configurations using GD (left) and KL (right) regularization. The x-axis represents the type
of train retain set, while the y-axis represents the type of test retain set. A higher value (darker color) indicates
better utility retention. Detailed relative utility drop results for each individual unlearning method can be found in

Appendix F.

Our analysis considers two primary regularization
approaches: Gradient Descent (GD) and Kullback-
Leibler Divergence (KL). A comprehensive expla-
nation of these methods is provided in Appendix B.

Setup. To determine the optimal train retain set
configuration, we conduct comprehensive exper-
iments examining nine different combinations of
train and test retain sets, using NMaomain, Nentity, and
./\fsymacticany for both training and evaluation. For
each train retain set, we apply different unlearning
methods (GA, DPO, NPO, and IDK) with regular-
ization loss and report the average RUD across test
retain sets.

Results. We visualize the results separately for
GD and KL regularization in Figure 7. The results
reveal two key findings:

1) Training with Ngnecticany effectively pre-
serves performance on /\/'symacﬁcauy. In both GD
and KL regularization heatmaps, the bottom row
(Test Retain Set: Syntactically Similar) shows
that training with ./\fsymacticany preserves utility best,
with average differences of 14.7% point and 7.35%
point compared to other training sets, respectively.
2) Training with Ngyneacticanly contributes to ro-
bust performance across various neighbor sets.
Beyond preserving performance on syntactically
similar data, training with Nyyneciically also yields
competitive results when evaluated on /\/’entity and
Ndiomain- In many cases, it surpasses or closely

matches the performance achieved by training with
other neighbor sets. These findings emphasize the
role of syntactically similar examples in reducing
utility loss while unlearning.

7 Related Work

LLM unlearning (Jang et al., 2023; Yao et al., 2023;
Lynch et al., 2024) has gained significant atten-
tion as a method to enhance privacy. Various ap-
proaches (Sinha et al., 2024; Zhang et al., 2024)
have been proposed to ensure that models effec-
tively erase specific information while maintaining
overall performance. A key challenge in unlearn-
ing is assessing whether knowledge unrelated to
the forget set is inadvertently affected. To evalu-
ate this, researchers commonly examine general
knowledge (Hendrycks et al., 2021; Cobbe et al.,
2021) as well as a designated subset of the retain
set that shares a similar distribution with the forget
set but excludes the targeted information. These
subsets, often referred to as neighbor sets (Yuan
et al., 2025), help determine the extent of unin-
tended degradation in model performance.

In hazardous knowledge unlearning, prior work
has leveraged domain-relevant general knowledge
as a benchmark. For instance, Li et al. (2024) em-
ploys general biology knowledge to assess the im-
pact of bioweapon-related unlearning and general
computer security knowledge to evaluate the re-
moval of information related to Attacking Critical

5973



Infrastructure. For entity unlearning (Maini et al.,
2024; Jin et al., 2024), previous studies have used
entities from similar professions or those closely
linked to the target entity as neighbor sets. While
these approaches provide an initial framework, they
lack a systematic investigation of which aspects of
the retain set suffer the most from unlearning. Our
study addresses this gap by systematically investi-
gating the impact of unlearning on different types
of neighbor sets more clearly and identifying which
knowledge components experience the highest de-
gree of forgetting.

8 Conclusion

In this paper, we examine unlearning’s impact on
retain sets and highlight the Syntactically Similar
Neighbor Set as key to forgetting patterns. Our re-
sults show syntactic similarity, not domain or entity
ties, drives retained knowledge degradation. Ex-
periments confirm that syntactically similar neigh-
bors face the highest utility drop, challenging prior
assumptions. We also find that using such data
for regularization improves performance retention.
These findings refine unlearning strategies and em-
phasize the role of syntactic structure in minimizing
unintended knowledge loss.

Limitations

Our study focuses on entity unlearning, leaving
hazardous knowledge and copyrighted content un-
learning unexplored. These cases may require dif-
ferent evaluation strategies.

Additionally, our experiments use mid-sized
models (LLaMA-2-7B-Chat, LLaMA-3-8B-
Instruct). Larger models, with their computational
demands and structural differences, may respond
differently. Future research should assess their
applicability to such models.

Ethics Statement

This work uses publicly available data to study
unlearning in LLMs, focusing on entity-related
knowledge. All QA pairs are derived from public
sources like Wikipedia, and no private or sensitive
data is used. Our research aims to support privacy-
preserving Al and aligns with principles such as
the GDPR’s right to erasure.

Acknowledgement

This work was supported by the Institute of Infor-
mation & Communications Technology Planning

& Evaluation (IITP) grant funded by the Korea
government (MSIT) [RS-2021-11211341, Artificial
Intelligent Graduate School Program (Chung-Ang
University)].

References

Daniel Cer, Mona Diab, Eneko Agirre, Ifiigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings of
the 11th International Workshop on Semantic Evalu-
ation (SemEval-2017).

Minseok Choi, Daniel Rim, Dohyun Lee, and Jaegul
Choo. 2024. Snap: Unlearning selective knowledge
in large language models with negative instructions.
arXiv preprint arXiv:2406.12329.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Ronen Eldan and Mark Russinovich. 2023. Who’s
harry potter? approximate unlearning in llms. arXiv
preprint arXiv:2310.02238.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

Shengyuan Hu, Yiwei Fu, Steven Wu, and Virginia
Smith. 2024. Jogging the memory of unlearned
LLMs through targeted relearning attacks. In
Neurips Safe Generative AI Workshop 2024.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha,
Moontae Lee, Lajanugen Logeswaran, and Minjoon
Seo. 2023. Knowledge unlearning for mitigating
privacy risks in language models. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 14389-14408, Toronto, Canada. Association
for Computational Linguistics.

Zhuoran Jin, Pengfei Cao, Chenhao Wang, Zhitao He,
Hongbang Yuan, Jiachun Li, Yubo Chen, Kang Liu,

5974


https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=YulEbrG99x
https://openreview.net/forum?id=YulEbrG99x
https://doi.org/10.18653/v1/2023.acl-long.805
https://doi.org/10.18653/v1/2023.acl-long.805

and Jun Zhao. 2024. Rwku: Benchmarking real-
world knowledge unlearning for large language mod-
els. In Advances in Neural Information Processing
Systems, volume 37, pages 98213-98263. Curran As-
sociates, Inc.

Antonia Karamolegkou, Jiaang Li, Li Zhou, and An-
ders Sggaard. 2023. Copyright violations and large
language models. arXiv preprint arXiv:2310.13771.

Nathaniel Li, Alexander Pan, Anjali Gopal, Summer
Yue, Daniel Berrios, Alice Gatti, Justin D Li, Ann-
Kathrin Dombrowski, Shashwat Goel, Long Phan,
et al. 2024. The wmdp benchmark: Measuring and re-
ducing malicious use with unlearning. arXiv preprint
arXiv:2403.03218.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74-81.

Yujian Liu, Yang Zhang, Tommi Jaakkola, and Shiyu
Chang. 2024a. Revisiting who’s harry potter: To-
wards targeted unlearning from a causal intervention
perspective. arXiv preprint arXiv:2407.16997.

Zhenhua Liu, Tong Zhu, Chuanyuan Tan, and Wen-
liang Chen. 2024b. Learning to refuse: Towards
mitigating privacy risks in llms. arXiv preprint
arXiv:2407.10058.

Aengus Lynch, Phillip Guo, Aidan Ewart, Stephen
Casper, and Dylan Hadfield-Menell. 2024. Eight
methods to evaluate robust unlearning in llms. arXiv
preprint arXiv:2402.16835.

Pratyush Maini, Zhili Feng, Avi Schwarzschild,
Zachary Chase Lipton, and J Zico Kolter. 2024.
TOFU: A task of fictitious unlearning for LLMs. In
First Conference on Language Modeling.

Seth Neel and Peter Chang. 2023. Privacy issues in
large language models: A survey. arXiv preprint
arXiv:2312.06717.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing.

Damien Sileo. 2023. tasksource: Structured dataset
preprocessing annotations for frictionless extreme
multi-task learning and evaluation. arXiv preprint
arXiv:2301.05948.

Yash Sinha, Murari Mandal, and Mohan Kankan-
halli. 2024. Unstar: Unlearning with self-taught
anti-sample reasoning for llms. arXiv preprint
arXiv:2410.17050.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Paul Voigt and Axel Von dem Bussche. 2017. The eu
general data protection regulation (gdpr). A Prac-
tical Guide, 1st Ed., Cham: Springer International
Publishing, 10(3152676):10-5555.

Yuanshun Yao, Xiaojun Xu, and Yang Liu. 2023.
Large language model unlearning. arXiv preprint
arXiv:2310.10683.

Xiaojian Yuan, Tianyu Pang, Chao Du, Kejiang Chen,
Weiming Zhang, and Min Lin. 2025. A closer look
at machine unlearning for large language models. In
The Thirteenth International Conference on Learning
Representations.

Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. 2024.
Negative preference optimization: From catastrophic
collapse to effective unlearning. In First Conference
on Language Modeling.

Shengnan Zhang, Yan Hu, and Guangrong Bian. 2017.
Research on string similarity algorithm based on lev-
enshtein distance. In 2017 IEEE 2nd Advanced Infor-
mation Technology, Electronic and Automation Con-
trol Conference (IAEAC), pages 2247-2251. IEEE.

5975


https://proceedings.neurips.cc/paper_files/paper/2024/file/b1f78dfc9ca0156498241012aec4efa0-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/b1f78dfc9ca0156498241012aec4efa0-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/b1f78dfc9ca0156498241012aec4efa0-Paper-Datasets_and_Benchmarks_Track.pdf
https://openreview.net/forum?id=B41hNBoWLo
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=Q1MHvGmhyT
https://openreview.net/forum?id=Q1MHvGmhyT
https://openreview.net/forum?id=MXLBXjQkmb
https://openreview.net/forum?id=MXLBXjQkmb

A Evaluation Metrics Details

This section provides details on the metrics used to
assess the effectiveness of unlearning. These met-
rics capture different aspects of model performance,
including lexical similarity, semantic consistency,
confidence in predictions, and factual correctness.

ROUGE measures how closely the model’s out-
put aligns with the ground truth at the word level.
Specifically, we use ROUGE-L recall (Lin, 2004),
which considers the longest common subsequence
between the model’s generated output g(z; 6,,) and
the correct answer y. This metric is useful for eval-
uating whether the model retains relevant content
after unlearning.

Probability quantifies the likelihood that the model
correctly predicts the ground truth answer. Follow-
ing Maini et al. (2024), we compute the normal-
ized conditional probability of the ground truth,
defined as P(y|z) = + ST p(yelz 0 yei; ).
A lower probability after unlearning indicates re-
duced model confidence in generating the forgotten
content.

Cosine Similarity assesses the semantic con-
sistency of model outputs before and after un-
learning. Inspired by semantic textual similar-
ity tasks (Cer et al., 2017), we embed the out-
puts using Sentence-BERT (Reimers and Gurevych,
2019) and compute their cosine similarity. We
set a lower bound of 0, defining the metric as
max(Cos(g(z; ), g(x;60,)),0). Lower similarity
scores indicate greater divergence in output, often
due to additional or altered information introduced
post-unlearning.

Entailment Score evaluates the factual correctness
of generated responses relative to the ground truth.
This metric is based on Natural Language Infer-
ence (NLI), where a pre-trained NLI model (Sileo,
2023) determines whether the model’s output logi-
cally follows from the reference answer (Liu et al.,
2024b). The final score represents the proportion
of outputs classified as “entailment.” Higher val-
ues indicate better factual alignment, particularly
for retained knowledge, while lower scores suggest
effective forgetting of targeted information.

These metrics collectively provide a comprehen-
sive evaluation of the unlearning process by mea-
suring its impact on both forgotten and retained
knowledge.

B Overview of Unlearning Methods

This section provides a detailed explanation of the
unlearning methods discussed in the main text, de-
scribing their underlying principles and mathemati-
cal formulations.

B.1 Gradient Ascent (GA)

Gradient Ascent (GA) directly modifies the
model’s behavior by applying optimization in the
reverse direction of standard training. The objec-
tive function for GA is defined as:

L6a(Dr;0) = —E(yy)~pe [ logp(ylz; 0)] . (4)

B.2 Negative Preference Optimization (NPO)

Negative Preference Optimization (NPO) treats
unlearning as a preference optimization problem
by discouraging responses associated with the for-
get set. It adapts Direct Preference Optimization
(DPO) by treating answers in the forget set as unde-
sirable and excluding positive terms from the DPO
loss. The loss function for NPO is given by:

Lxpo(Dri0) = 3By, [log o (~Blog Z4=2)] - (5)

where  is a hyperparameter, and f,.¢ represents
the reference model, typically the initial model be-
fore unlearning. NPO dynamically adjusts gradient
weights, making it an adaptive form of GA.

B.3 Direct Preference Optimization (DPO)

Direct Preference Optimization (DPO) formalizes
unlearning as a preference ranking problem by con-
trasting the probabilities of retaining and forgetting
knowledge. In this approach, responses from the
forget set are treated as negative examples, while
predefined rejection responses are treated as posi-
tive.

B.4 IDK Fine-tuning (IDK)

IDK Fine-tuning reframes unlearning as an
instruction-tuning task by relabeling forget set
queries with predefined rejection templates. This
ensures that the model responds with a standard-
ized “I don’t know” response instead of recalling
forgotten information. The objective function is:

ﬁlDK(DF7 Dipk; 9) = EINDF-,.UNDIDK [7 Ing(?/LT? 9)} . (6)

where Dipk contains multiple rejection templates.
By fine-tuning on these templates, the model sys-
tematically replaces knowledge recall with a con-
trolled rejection response.

5976



B.5 Regularization Loss

While the aforementioned losses focus solely on
unlearning, a robust method must also preserve the
model’s utility. To achieve this, a regularization
loss is applied to the retain set, ensuring that useful
knowledge remains intact.

Gradient Descent (GD) directly applies the
standard prediction loss to the retain set, reinforc-
ing learned knowledge:

Lep(Dr; 0) = E(p ) [~ logp(ylz; 0)] . (7)

Kullback-Leibler Divergence (KL) maintains
consistency between the unlearned and reference
model predictions by minimizing KL divergence
on the retain set:

LxL(Dr; 0) = E 4~y [KL(p(ylz; 0)[p(y|2; 0rer))] - (8)

By combining different unlearning objectives
with regularization losses, we obtain seven baseline
methods: GA+GD, GA+KL, NPO+GD, NPO+KL,
DPO+GD, DPO+KL, IDK+GD, and IDK+KL.

C Further Implementation Details

All experiments are conducted on two NVIDIA
RTX 6000 Ada GPUs. We utilize DeepSpeed with
ZeRO3 to reduce memory costs. The AdamW opti-
mizer is employed with a weight decay of 0.01, and
all experiments use an effective batch size of 32. To
ensure a fair comparison across different unlearn-
ing methods, we adjust training epochs and the
learning rate to maintain a Forget Efficacy within
the range of 0.65 to 0.75. This range is selected
to establish a common baseline for model utility
across methods, ensuring that comparisons are not
skewed by differences in the extent of forgetting.

Ir epochs
GA  5.00E-06 3
NPO 3.00E-05 3
IDK  3.00E-06 2
DPO 8.00E-06 4

Table 2: Hyperparameters of real world scenarios exper-
iments

D Detailed Explanation of Syntactically
Similar Neighbor Set Construction

Definition of Syntactic Similarity. We define
syntactic similarity based on the Levenshtein sim-
ilarity score. Specifically, we consider two ques-
tions to be syntactically similar if their Levenshtein

Ir epochs
GA  2.00E-05 4

NPO 4.00E-05 5
IDK  2.00E-05 2
DPO 4.00E-05 2

Table 3: Hyperparameters of TOFU experiments

similarity is at least 0.75. Conversely, if the sim-
ilarity is 0.4 or lower, they are deemed syntacti-
cally different. These thresholds ensure a clear
distinction between syntactically similar and differ-
ent questions while allowing for slight variations
in wording.

Ensuring Syntactic Distinctness in Other Neigh-
bor Sets. The syntactically similar neighbor set
is the only set where elements share syntactic struc-
tures with the forget set. To ensure differentiation,
all other neighbor sets (i.e., domain neighbor and
entity neighbor sets) consist of questions classified
as syntactically different (Levenshtein similarity
< 0.4) from those in the forget set. This ensures
that these sets are semantically related but do not
overlap structurally with the forget set.

Clustering Criteria. Each syntactic cluster is
formed such that all elements within it are syntacti-
cally similar (Levenshtein similarity > 0.75). To
ensure meaningful groupings, we define a cluster
as valid only if it contains at least three elements.
This criteria ensure that syntactically similar neigh-
bor sets are well-defined and systematically con-
structed across both scenarios while maintaining
clear distinctions from other neighbor sets.

TOFU real-world scenario
Forget 40 150

Table 4: Data statistics for different forget sets.

TOFU real-world scenario
Entity 0 182
Domain 34 150

SynSimilar 34 212

Table 5: Data statistics for different neighbor sets.

E Detailed Prompts

5977



Instruction:

Replace specific parts of the text with {X} to anonymize information. The specific parts include:

- Person’s name - Date - Organization name - Title of a work - Award name

The output should be in JSON format.

Example Format Explanation:

Each entry in the JSON array consists of two fields:

1. question: The original input question. 2. masked_question: The question with sensitive or specific
details replaced by {X3.

If the input question is empty, the masked_question should also be empty.

Example:

Input:

[{'question': 'Who were the lead vocalists Eddie Van Halen provided
backing vocals for in Van Halen?'},

{'question': 'How did The Times rank Ted Hughes among British writers
since 19457'},

{'question': ''},

{'question': 'What year did Michael Crichton graduate from

Harvard Medical School?'},

{'question': 'In which film did Ben Affleck portray George Reeves
and win the Volpi Cup for Best Actor?'}]

Output:

[{'question': 'Who were the lead vocalists Eddie Van Halen provided

backing vocals for in Van Halen?',
'masked_question': 'Who were the lead vocalists {X} provided
backing vocals for in {X}?'},

{'question': 'How did The Times rank Ted Hughes among British
writers since 19457?',
'masked_question': 'How did {X} rank {X} among British writers
since {X}?'},

{'question': '', 'masked_question': ''},

{'question': 'What year did Michael Crichton graduate from

Harvard Medical School?',
'masked_question': 'What year did {X} graduate from {X}?'},
{'question': 'In which film did Ben Affleck portray George Reeves
and win the Volpi Cup for Best Actor?',
'masked_question': 'In which film did {X} portray {X} and win
the {X} for {X}?'}]
Your Input:
{Input}

Figure 8: Prompt template for masking.

5978




<output_examples>
{

"entity”: "Guy Ritchie”,
"questions”: [

{

"question”: "Who played the lead role in Guy Ritchie's Sherlock Holmes films?”,
"answers": [

"Robert Downey Jr.",

"Downey Jr."

1

}?

{

"question”: "Which critically acclaimed film did Guy Ritchie release in 2000?",
"answers": [

"Snatch”

1

}
]

}

</output_examples>

Create short answer questions about the entity provided, using the passage below
as a reference.

The questions must be based on the given passage.

- The questions should be short answer questions.

- Include answer aliases in the answers field to account for variations in correct
responses.

- Provide the output in JSON format as shown in output_examples.

- Generate 40 questions.

Entity Name:
{name}

Entity Passage:
{passage}

Figure 9: Prompt template for generating QA pairs for target and neighboring entities.

5979




Fill in the 'x' part in the given question format to create a question. Satisfy
the following conditions.

1. It should be a question that everyone can answer.

2. If the question format is given, provide the question in JSON format.

3. The 'name' field contains information about who the question is about, 'question'
contains the question.

<output_example>

### Input:

what was the character of xs music until x

### Output:

{"name": "Michael Tippett”,

"question”: "What was the character of Michael Tippett's music

until the mid-to-late 1950s?"}
</output_example>

<entity_names_you_can_use>
{list of entity names}
</entity_names_you_can_use>

### Input:
{Input}

Figure 10: Prompt template for generating QA pairs for syntactically similar clusters.

5980




F Detailed Forget Quality and Model
Utility for Each Method in Each

Experiment Model Utility
Method  Forget Quality Entity Domain SynSimilar
- - Original 0.300 0.712 0.727 0.770
Forget Quality Model Quality GA+KL 0721 0315 0313  0.280

Entity Domain SynSimilar

GA+GD 0.667 0.432  0.459 0.287
Original 0.300 0.712 0.727 0.770 *

NPO+KL 0.679 0.426 0.453 0.432

GA 0.734 0411 0415 0375 NPO+GD 0728 0413 0422 0371
NPO 0.745 0.407 0416  0.370 IDK+KL 0687 0170 0.169  0.153
IDK 0.657 0.199 0.190  0.174 IDK+GD 0.662 0201 0204  0.136
DPO 0721 0171 0218  0.I35 DPO+KL  0.687 0239 0169  0.140

DPO+GD 0.665 0.373 0.367 0.407

Table 6: Forget quality and model utility for each un-

learning method in a real-world scenario. Table 9: Forget quality and model utility for each un-
learning method with regularization using a entity neigh-
bor set in a real-world scenario.

Forget Quality = Model Quality
Domain SynSimilar

Original 0.196 0.973 0.997
GA 0.676 0.565 0.646
NPO 0.710 0.381 0.390
IDK 0.685 0.287 0.357 Model Utility
DPO 0.686 0.439 0.580 Method  Forget Quality Entity Domain SynSimilar
) . Original 0.300 0.712 0.727 0.770
Table. 7: Forget quahty and model utility for each un- A kL 0.718 0481 0.484 0.463
learning method in TOFU. GA+GD 0.657 0362 0395  0.535
NPO+KL 0.653 0.443 0.492 0.491
NPO+GD 0.729 0.413 0.424 0.374
Model Utility IDK+KL 0.685 0.178 0.175  0.161
Method Forget Quality Entity Domain SynSimilar IDK+GD 0.655 0.198 0.225 0.257
Original 0.300 0.712 0.727 0.770 DPO+KL 0.714 0.215 0.194 0.168
GA+KL 0.728 0.408 0.287 0.384 DPO+GD 0.658 0.347 0.405 0.474
GA+GD 0.714 0.317 0.356 0.239
NPO+KL 0.689 0.382 0.423 0.419 Table 10: Forget quality and model utility for each un-
NPO+GD 0.672 0.345 0.386 0.409 learning method with regularization using a syntacti-
IDK+KL 0.653 0.202 0.194 0.136 cally similar neighbor set in a real-world scenario.

IDK+GD 0.697 0.166 0.170  0.152
DPO+KL 0.717 0.165 0.198 0.173
DPO+GD 0.694 0.389 0.394  0.373

Table 8: Forget quality and model utility for each un-

learning method with regularization using a domain Forget Quality Model Quality

neighbor set in a real-world scenario. SynDifferent SynSimilar

Original 0.300 0.617 0.702
GA 0.734 0.313 0.310
NPO 0.745 0.315 0.297
IDK 0.657 0.150 0.155
DPO 0.721 0.127 0.122

Table 11: Forget quality and model utility for each un-
learning method in a real-world scenario in paraphrasing
experiments.

5981



Forget Quality Model Quality
Human Company Creative Works Fictional Character Products

Original 0.300 0.770  0.623 0.655 0.575 0.637
GA 0.734 0.375  0.099 0.108 0.119 0.110
NPO 0.745 0.370  0.099 0.108 0.119 0.110
IDK 0.657 0.174  0.085 0.080 0.080 0.060
DPO 0.721 0.721  0.155 0.106 0.098 0.115

Table 12: Forget quality and model utility for each unlearning method in a real-world scenario in domain effect
experiments.

Method Ir epochs Forget Efficacy EntityNeigh DomainNeigh SynNeigh

GA S5e-06 3 0.734 42.28 42.92 51.30
GA 6e-06 3 0.731 41.15 40.72 48.44
NPO  4e-05 5 0.751 47.33 43.05 52.73
NPO 3e-05 4 0.749 43.40 42.64 51.43
IDK 2e-06 4 0.650 71.63 73.45 77.14
IDK 4e-06 4 0.722 77.39 77.99 81.43
DPO  6e-06 4 0.600 48.60 47.73 57.79
DPO  7e-06 4 0.622 55.34 52.27 70.26

Table 13: Effect of hyperparameters in the real-world scenario.

5982



