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Abstract
Large language models (LLMs) have demon-
strated remarkable capabilities, especially the
recent advancements in reasoning, such as o1
and o3, pushing the boundaries of AI. Despite
these impressive achievements in mathematics
and coding, the reasoning abilities of LLMs
in domains requiring cryptographic expertise
remain underexplored. In this paper, we in-
troduce CipherBank, a comprehensive bench-
mark designed to evaluate the reasoning capa-
bilities of LLMs in cryptographic decryption
tasks. CipherBank comprises 2,358 meticu-
lously crafted problems, covering 262 unique
plaintexts across 5 domains and 14 subdo-
mains, with a focus on privacy-sensitive and
real-world scenarios that necessitate encryption.
From a cryptographic perspective, CipherBank
incorporates 3 major categories of encryp-
tion methods, spanning 9 distinct algorithms,
ranging from classical ciphers to custom cryp-
tographic techniques. We evaluate state-of-
the-art LLMs on CipherBank, e.g., GPT-4o,
DeepSeek-V3, and cutting-edge reasoning-
focused models such as o1 and DeepSeek-R1.
Our results reveal significant gaps in reasoning
abilities not only between general-purpose chat
LLMs and reasoning-focused LLMs but also in
the performance of current reasoning-focused
models when applied to classical cryptographic
decryption tasks, highlighting the challenges
these models face in understanding and ma-
nipulating encrypted data. Through detailed
analysis and error investigations, we provide
several key observations that shed light on the
limitations and potential improvement areas
for LLMs in cryptographic reasoning. These
findings underscore the need for continuous
advancements in LLM reasoning capabilities.

1 Introduction

Large Language Models (LLMs) have revolution-
ized artificial intelligence by achieving state-of-
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Figure 1: Comprehensive Performance of SOTA Chat
and Reasoning Models on CipherBank.

the-art (SOTA) performance across diverse do-
mains, from Natural Language Understanding
(NLP) (Dong et al., 2019; Karanikolas et al.,
2023; Sasaki et al., 2024) to complex problem-
solving (Yao et al., 2024; Ge et al., 2023). Re-
cent models, such as GPT-4o (Hurst et al., 2024)
and Claude 3.5 (Anthropic, 2024), have demon-
strated unprecedented versatility, excelling in tasks
ranging from creative writing to technical analy-
sis. A particularly notable advancement lies in the
reasoning-enhanced LLMs, which have emerged
as a critical benchmark for evaluating LLMs’ in-
telligence and now can solve mathematical prob-
lems (Wu et al., 2024; Ahn et al., 2024; Liu et al.,
2024c), debug intricate code (Lee et al., 2024;
Zhong et al., 2024), and even engage in multi-step
logical deduction (Sun et al., 2024; Wang et al.,
2023) with human-like proficiency. For instance,
specialized architectures like o1 (Jaech et al.,
2024) and DeepSeek-R1 (Guo et al., 2025) have
pushed the boundaries of AI reasoning, achiev-
ing breakthroughs in domains such as theorem
proving (Yang et al., 2024b) and algorithmic opti-
mization (Liu et al., 2024b). These achievements
underscore the transformative potential of LLMs
as general-purpose reasoning engines, capable of
adapting to both broad and specialized challenges.
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To quantify progress, the community has pro-
posed numerous benchmarks targeting mathemat-
ical reasoning (e.g., MATH (Hendrycks et al.,
2021a), AIME1, coding proficiency (e.g., Hu-
manEval (Chen et al., 2021a), MBPP (Austin et al.,
2021)), and general logical deduction (e.g., FO-
LIO (Han et al., 2024), MMBench (Yuan Liu,
2023), CaLM (Chen et al., 2024). These testbeds
have become indispensable tools for assessing
model capabilities.

Despite extensive evaluations in mathematics
and coding, one critical domain remains underex-
plored: cryptographic decryption. Cryptographic
reasoning (Shree et al., 2017) demands unique capa-
bilities, including pattern recognition, algorithmic
Reverse-engineering, and contextual understand-
ing of security constraints (Schneier, 2002)—skills
distinct from those tested in conventional bench-
marks. This gap is particularly consequential, as
cryptography lies at the heart of modern digital se-
curity (Konheim, 2007), with applications spanning
privacy-preserving communication (Soomro et al.,
2019), secure authentication (Rani et al., 2022), and
data integrity (Sarkar et al., 2021). The absence of
a rigorous benchmark for cryptographic reasoning
not only limits the true understanding of LLM’s rea-
soning ability but also hinders progress toward AI
systems capable of contributing to security-critical
contexts (e.g., jailbreaking (Wei et al., 2024)). Ope-
nAI has scratched the surface of this challenge and
put a demo2 when releasing their strong reasoning
model o1, but no serious efforts have been made to
reveal this challenge in the committee.

To address this gap, we introduce CipherBank,
the first comprehensive benchmark specially de-
signed to evaluate LLMs’ reasoning capabilities
in cryptographic decryption tasks. CipherBank
is meticulously constructed to reflect real-world
scenarios requiring encryption, instead of gen-
eral texts that may serve as a toy testbed, with
2,358 problems derived from 262 unique plain-
texts across 5 domains (e.g., Personal Privacy,
Financial Information) and 14 subdomains (e.g.,
Identity Information, Personal Income). As
for cipher algorithms, it spans 3 major cryp-
tographic categories—Substitution Ciphers (e.g.,
Rot13, Vigenère), Transposition Ciphers (e.g.,
Reverse, SwapPairs), and custom hybrid algo-

1https://huggingface.co/datasets/AI-MO/
aimo-validation-aime

2https://openai.com/index/
learning-to-reason-with-llms/

rithms—encompassing 9 distinct encryption meth-
ods, covering 5 difficulty levels (from Basic to Ex-
pert) to ensure a diverse range of challenges. By
integrating privacy-sensitive contexts and multi-
layered cryptographic challenges, CipherBank pro-
vides a nuanced evaluation framework that captures
both the complexity and practicality of real-world
decryption tasks.

We evaluate CipherBank on SOTA LLMs, in-
cluding general-purpose models (GPT-4o (Hurst
et al., 2024), DeepSeek-V3 (Liu et al., 2024a))
and reasoning-optimized models (o1 (Jaech et al.,
2024), DeepSeek-R1 (Guo et al., 2025)). Results
reveal striking limitations: even advanced mod-
els struggle with classical ciphers, achieving only
45.14 score on tasks solvable by human cryptan-
alysts. Notably, we observe a significant perfor-
mance gap between general chat LLMs and special-
ized reasoning models, suggesting that current rea-
soning optimizations inadequately address crypto-
graphic challenges. Besides, we also provide stud-
ies on different aspects for deep understandings,
such as evaluate on noised plaintexts and different
length of plaintexts. Observations show the limi-
tations of current models in decryption reasoning,
with chat and reasoning models each exhibiting
distinct strengths and weaknesses in cryptographic
tasks. These findings highlight the need for targeted
improvements in LLMs’ cryptographic reasoning,
with implications for both AI safety (e.g., adversar-
ial robustness) and applications in cybersecurity.

2 CipherBank Construction

CipherBank is a purpose-built benchmark designed
to rigorously evaluate the reasoning capabilities of
LLMs in cryptographic decryption tasks. It inte-
grates three core components to ensure comprehen-
sive coverage of real-world scenarios and crypto-
graphic complexity: (1) diverse plaintexts metic-
ulously constructed from multiple dimensions of
real-world privacy-sensitive data, ensuring the de-
cryption process aligns with practical requirements;
(2) a comprehensive suite of encryption algo-
rithms, including both traditional cryptographic
methods and custom-designed algorithms, to thor-
oughly assess the model’s reasoning, inductive, and
computational capabilities from multiple perspec-
tives; and (3) a structured problem set with rich
metadata, enabling granular performance analy-
sis and detailed error analysis based on the diverse
properties of the plaintexts.
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Figure 2: Overview of CipherBank. CipherBank consists of simulated privacy data encrypted using various
algorithms. The left side of the figure shows five domains, 14 subdomains, and selected tags. The right side displays
three encryption categories, nine specific algorithms, and their corresponding difficulty levels.

2.1 Plaintext Data: Design, Sources, and
Real-World Alignment

To construct CipherBank, we meticulously ana-
lyze real-world encryption scenarios and catego-
rize the corresponding data types into five primary
domains: Personal Privacy Data, Enterprise Sen-
sitive Data, Public Safety Data, Financial Asset
Data and Internet Records. These domains are
further refined into 14 subdomains (e.g., Health
Information, Policy Data) to ensure comprehensive
coverage of encryption needs. Inspired by Ultra-
Chat (Ding et al., 2023), we adopt a tag-based
approach to systematically structure encryption-
relevant data, ensuring semantic consistency and
domain relevance. Below, we detail the 3-step pro-
cess for generating high-quality plaintext data.

Step 1: Tag Definition and Curation. We lever-
age GPT-4o to generate candidate tags for each
subdomain, capturing diverse real-world encryp-
tion scenarios. Human experts then curate these
tags, eliminating redundancies, irrelevancies, and
ambiguous entries, resulting in 89 distinct tags (see
Appendix A.1). This structured approach ensures
that the generated plaintext data remains realistic,
contextually meaningful, and representative of ac-
tual encryption use cases. The tags are designed to
align with the Variable Length property, enabling

the generation of inputs of varying sizes to assess
model robustness.
Step 2: Controlled Text Generation. Our plain-
text generation process employs tag combinations
to control text granularity: entries with more tags
contain richer contextual details and greater length,
while those with fewer tags remain concise and
specific. To ensure semantic validity, all generated
data are filtered to eliminate generic or redundant
descriptions, creating a dataset that reflects diverse
encryption scenarios with varying complexity. Ad-
ditionally, we introduce the Noise Perturbation
property through controlled noise injection, which
serves two key objectives: (1) testing the model’s
anti-interference capabilities and (2) reducing its
reliance on contextual semantics to enhance ro-
bustness. Furthermore, we incorporate Sensitive
Numerical Data by designing scenarios with com-
plex alphanumeric combinations, including critical
identifiers such as ID card and passport number.
This multifaceted approach enables a comprehen-
sive evaluation of the model’s ability to address
sophisticated decryption challenges.
Step 3: Expert Validation and Refinement. Af-
ter generation, we conduct expert validation to en-
sure data quality, correctness, and relevance. Non-
informative content, excessively long or short sam-
ples, and entries lacking clear privacy attributes are
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filtered out. Through this rigorous refinement pro-
cess, we retain 262 high-quality plaintext samples.
This approach enables a practical and application-
driven benchmark for evaluating LLMs’ decryption
capabilities in cryptographic reasoning tasks.

2.2 Encryption Algorithms
CipherBank incorporates 3 major categories of en-
cryption methods: Substitution Ciphers, Trans-
position Ciphers, and Custom Ciphers. (1)
Substitution-based techniques, including Rot13,
Atbash, Polybius and Vigenère, test a model’s
ability to decode character-level transformations.
These ciphers involve monoalphabetic or polyal-
phabetic substitutions, where each character is re-
placed by another based on a fixed rule or key.
These methods evaluate the model’s capacity to
decode symbolic mappings and generalize across
substitution rules. (2) Transposition-based tech-
niques, such as Reverse and SwapPair, focus on
positional rearrangements rather than symbol sub-
stitutions. These ciphers challenge the model to
recognize structural patterns, such as reversed se-
quences or pairwise swaps. Unlike substitution
ciphers, which alter character identities but pre-
serve their order, transposition ciphers preserve
characters but disrupt their sequence. This tests the
model’s ability to analyze sequential dependencies
and reconstruct the original symbol order.

To further assess LLMs’ ability to decrypt un-
common encryption methods, we introduce (3)
Custom-designed ciphers that deviate from stan-
dard cryptographic schemes. (a) DualAvgCode is
inspired by OpenAI’s o1 model showcase3, where
iterative transformations require models to infer
multi-step encryption patterns. (b) ParityShift
draws from LSB steganography (Mielikainen,
2006), a common technique in information hid-
ing, incorporating bitwise manipulations based on
character parity. (c) WordShift Cipher is designed
to evaluate LLMs’ ability to decrypt ciphers that
combine substitution and transposition encryption,
performing Caesar-style letter shifts within each
word individually, blending character-level substi-
tution with structural reordering.

Meanwhile, We categorize the nine algorithms
into five difficulty tiers based on key necessity and
computational complexity. T1 (Basic) includes
simple ciphers like ROT13 and Reverse. T2 (In-
termediate) introduces Atbash and WordShift with

3https://openai.com/index/
learning-to-reason-with-llms/

slightly more complex rules. T3 (Moderate) covers
DualAvgCode and Polybius, requiring structured
encoding. T4 (Advanced) involves ParityShift and
SwapPairs with intricate data manipulation. T5
(Expert) features the Vigenère cipher, a polyalpha-
betic substitution cipher known for its keyword-
based complexity. This framework organizes en-
cryption techniques from basic to expert.

2.3 CipherBank Statistics
As shown in Figure 2, we provides an overview of
CipherBank structure. The encryption algorithm
in Section 2.2 applies to the expert-curated dataset
from Section 2.1, yielding 2,358 test data points.

Table 1: Statistics of CipherBank.

Domains #Tag #Plaintext #Test Avg(len)

Personal Privacy Data 23 50 450 107.88
Enterprise Sensitive Data 16 52 468 103.10
Public Safety Data 17 63 567 110.89
Financial Asset Data 13 44 396 163.68
Internet Records 20 53 477 191.92

Summary 89 262 2358 134.03

Table 1 summarizes the distribution of plain-
texts across 5 domains, each with varying numbers
of tags, samples, and test cases. Notably, Inter-
net Records has the longest plaintexts (191.92),
while Enterprise Sensitive Data has shorter samples
(103.10). This diversity ensures a comprehensive
evaluation of model performance across different
encryption contexts.

3 Evaluations

3.1 Evaluation Setup
Evaluation Protocols. In terms of testing method-
ology, CipherBank’s evaluation follows the Known-
Plaintext Attack framework (Zulkifli and Mohd,
2008), employing a 3-shot testing approach. We
prompt the model with three plaintext-ciphertext
pairs as demonstrations to infer encryption rules,
identify potential keys, and apply the learned pat-
terns to decrypt a new ciphertext. The detailed
prompt can be found in Appendix B.1.

For evaluation metrics, we primarily employ
accuracy to measure overall decryption success,
which is the ratio of correctly decrypted cases to
total test cases, where correctness requires an exact
character match with the plaintext. Additionally,
to capture finer-grained differences between the
decrypted output and the original plaintext, we in-
corporate Levenshtein similarity (Yujian and Bo,
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Example 2.1: Plain-Ciphertext Pair

# Domain: Personal Privacy Data

## Subdomain: Identity Information

### Tag Combination: ["Name", "Date of Birth", "Passport Number"]

Plaintext:
Peter was born on April 23, 1985, and carries a passport with the number X123456789.

Encryption results:
(1) Rot13: Crgre jnf obea ba Ncevy 23, 1985, naq pneevrf n cnffcbeg jvgu gur ahzore K123456789.

(2) SwapPairs: ePet raw sobnro npAir l32 ,9158 ,na dacrrei s aapssoptrw ti hht eunbmreX 21436587.9

(3) WordShift : erPet was nbor no ilApr 23, 5,198 and riescar a sportpas hwit the bernum 3456789.X12

(4) ...

More results can be found in the appendix.

2007). We compute the Levenshtein distance for
each sentence individually and report the average
Levenshtein similarity across all test cases, provid-
ing a more nuanced assessment of model perfor-
mance beyond binary correctness.

LLM Candidates. For a comprehensive evalua-
tion, we carefully selected 18 SOTA LLMs for eval-
uation, ensuring a diverse representation of open-
source, closed-source, and reasoning-specialized
models. Below, we outline the tested models:

⋆ Open-Source Chat Models: We evaluate
leading open-source LLMs, including Mistral
AI’s Mixtral-8x22B (Jiang et al., 2024a), Al-
ibaba’s Qwen2.5-72B-Instruct (Yang et al., 2024a),
Meta’s Llama-3.1-70B-Instruct and Llama-3.3-
70B-Instruct (Dubey et al., 2024), as well as the
rising star - DeepSeek-V3 (Liu et al., 2024a).

⋆ Closed-Source Models: For proprietary models,
evaluation is conducted via API access. The tested
models include OpenAI’s 4o-mini and GPT-4o se-
ries (0806, 1120) (Hurst et al., 2024), DeepMind’s
Gemini-1.5-Pro (Team, 2024a) and Gemini-2.0-
Flash-Exp4, along with Anthropic’s Claude-Sonnet-
3.5 (1022)5.

⋆ Reasoning Models: We further investigate mod-
els optimized for reasoning tasks, including QwQ-
32B-Preview (Team, 2024b), DeepSeek-R1 (Guo
et al., 2025), Gemini-2.0-Flash-Thinking (1219)6,
o1-mini (0912) and o1 (1217) (Jaech et al., 2024).

4https://deepmind.google/technologies/gemini/
flash/

5https://www.anthropic.com/news/
claude-3-5-sonnet

6https://deepmind.google/technologies/gemini/
flash-thinking/

3.2 Benchmark Results

Table 2 presents the evaluation results of all can-
didate LLMs (Levenshtein similarity results are in
Appendix C.1). Below, we distill the experimental
findings into several observations:
Limitations of Current Models in Crypto-
graphic Reasoning. Despite advancements in
LLMs, Table 2 highlights their limitations in struc-
tured cryptographic reasoning. The overall perfor-
mance remains low, with most SOTA models strug-
gling to achieve meaningful accuracy. In Cipher
Score, common models like Qwen and LLaMA per-
form particularly poorly, with some scoring in the
single digits or near zero. Even the best-performing
models, Claude-3.5 and o1, achieve less than 50
in accuracy, underscoring the significant difficulty
of CipherBank and the challenges LLMs face in
systematic decryption.
Reasoning Models Generally Outperform Chat
Models. When comparing reasoning models to
chat models, generally we can find that the reason-
ing models do outperform chat models on all cipher
algorithms and achieve better overall performance.
The only expectation is the superior performance of
Claude-3.5 (45.14) even better than o1, and also the
bad performance of QwQ-32B-Preview (only 0.76
accuracy). This clearly demonstrate the advantages
of the reasoning-specialized models.
Closed-Source Models Retain an Edge Over
Open-Source Models. Overall, closed-source
models outperform open-source models in cryp-
tographic decryption. Claude-3.5 (45.14) and o1
(40.59) achieve the highest performance across all
cipher categories. However, DeepSeek-V3 (9.86)
and DeepSeek-R1 (25.91) surpass most models in
the GPT and Gemini families, indicating that ad-
vanced open-source models are closing the gap.
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Table 2: 3-shot scores (%) of LLMs across three major encryption paradigms and nine specific encryption algorithms
on CipherBank. The highest scores in each category are highlighted with a blue background , while the second-
best results are underlined for emphasis.

Model Substitution Ciphers Transposition Ciphers Custom Ciphers Cipher Score

Rot Atbash Polybius Vigenère Reverse SwapPairs DualAvgCode ParityShift WordShift Accuracyavg

Open-source Chat Models

Mixtral-8x22B-v0.1 0.38 0 0 0 0.76 0 0.38 0 1.15 0.30
Qwen2.5-72B-Instruct 1.15 0 0 0 0 0.38 1.15 0 2.29 0.55
Llama-3.1-70B-Instruct 1.15 0.38 0 0.38 0 0 0.38 0.38 0.76 0.38
Llama-3.3-70B-Instruct 2.67 0.38 0 0 0 0 0 0.76 0 0.42
DeepSeek-V3 32.44 14.88 2.29 0.76 28.47 0.38 0.38 1.14 8.02 9.86

Closed-source Models

GPT-4o-mini-2024-07-18 3.69 2.03 0 0.51 2.16 0 0.38 0 0.25 1.00
GPT-4o-2024-08-06 38.17 3.05 0.38 0.76 25.19 2.29 0 1.14 8.40 8.82
GPT-4o-2024-11-20 26.46 6.99 0.13 0.76 15.27 0.76 0.25 0.89 6.11 6.40
gemini-1.5-pro 55.34 0.76 0.38 0.76 10.31 0.76 0.38 0.76 16.41 9.54
gemini-2.0-flash-exp 35.88 3.05 1.53 0.38 29.39 1.53 0 0.76 5.34 8.65
Claude-Sonnet-3.5-1022 83.21 75.19 72.90 1.91 63.93 6.87 4.96 58.21 39.12 45.14

Reasoning Models

QwQ-32B-Preview 1.53 0.38 1.91 0 0 0 0.38 0.38 2.29 0.76
DeepSeek-R1 73.28 58.78 44.27 0.38 10.69 0.38 24.05 12.98 8.40 25.91
gemini-2.0-flash-thinking 40.46 17.18 21.76 1.15 22.90 1.15 0 7.63 9.16 13.49
o1-mini-2024-09-12 46.18 68.32 46.95 1.53 5.15 0.38 2.93 7.63 1.53 20.07
o1-2024-12-17 59.92 79.01 79.39 7.25 14.89 32.14 50.38 12.39 29.90 40.59

Nevertheless, both still lag behind Claude-3.5 and
o1, suggesting that while open-source models are
improving, there is significant potential for open-
source models to achieve even better performance
in the future.
The performance variance among models of
the same category is remarkably significant.
Within the Open-source Chat Models category, the
top-performing model, deepseek-v3 (9.86), outper-
forms the weakest model, Mixtral-8x22B (0.30), by
a factor of 33. Similarly, in the Closed-source Mod-
els category, Claude-Sonnet-3.5 (45.14) demon-
strates a performance 45 times greater than that of
GPT-4o-mini (1.00). The disparity is even more
pronounced in the Reasoning Models category,
where o1 (40.59) surpasses QwQ-32B-Preview
(0.76) by a factor of 53. Such substantial per-
formance variations are rarely observed in other
benchmarks, highlighting the challenging nature
of CipherBank. This benchmark effectively dis-
tinguishes the reasoning capabilities of different
models through its decryption dimension, provid-
ing a robust framework for evaluating model per-
formance.

4 Detailed Analysis

In this section, we conduct a detailed analysis from
the perspectives of plaintext characteristics, noise
levels, testing methodologies, finer-grained eval-
uation metrics, and error analysis to gain deeper

insights into the strengths and limitations of differ-
ent LLMs in cryptographic decryption.

Table 3: Model Performance on Short and Long Plain-
text Setting (Lower Difference and Decrease Ratio Are
Better). We highlight the most stable and sensitive re-
sults in blue and green respectively.

Model Short Long Diff Decrease Ratio(%)

GPT-4o-2024-11-20 9.47 4.46 5.01 52.60
gemini-2.0-flash-exp 11.50 6.42 5.08 44.35
DeepSeek-V3 13.24 5.22 8.02 60.60
gemini-2.0-flash-thinking 19.90 8.47 11.43 42.61
DeepSeek-R1 32.27 20.94 11.33 33.16
o1-mini-2024-09-12 33.77 17.35 16.42 48.57
o1-2024-12-17 47.61 34.38 13.23 27.78
Claude-Sonnet-3.5 48.70 47.85 0.85 1.74

4.1 Impact of Plaintext Length

To test models’ sensitivity to text length, we cate-
gorize plaintexts into short (fewer than three tags)
and long groups, averaging 70.29 and 181.61 char-
acters, respectively. As shown in Table 3 (full re-
sults and plaintext examples can be found in Ap-
pendix C.2), longer plaintexts lead to a significant
performance decline in most models. Most mod-
els exhibit a significant decline in decryption per-
formance as text length increases. Among them,
Claude-3.5 (-0.85) shows the most stable perfor-
mance, while o1-mini (-16.42) is the most sensitive.
This contrasts with human performance, highlight-
ing LLMs’ length bias in decryption reasoning.
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4.2 Effect of Noise on Model Robustness

We observe that models frequently substituted syn-
onyms instead of strictly applying decryption rules
to each character (examples in Appendix C.2), indi-
cating the presence of shortcut reasoning, where
models partially decrypt the text and infer the re-
mainder based on semantic context rather than ad-
hering to the encryption pattern.

To evaluate robustness and mitigate reliance on
semantic inference, we select the 40 plaintexts with
the lowest perplexity (PPL) scores, computed us-
ing Llama-3.1-8B-Instruct, for noise injection. Fig-
ure 3a shows a substantial performance drop across
all models, including Claude-3.5 (from 59.17 to
25.08) and o1-mini (from 24.25 to 5.83), highlight-
ing their vulnerability to structural perturbations
and further exposing the limitations of current mod-
els in systematic reasoning and precise decryption.

4.3 Effect of Encryption Scope

In previous evaluations, only letters are encrypted.
To better reflect real-world scenarios, here we se-
lect plaintexts with sensitive numerical data and
apply encryption to both letters and numbers, fo-
cusing on algorithms that directly affect numbers
(test prompt in Appendix C.2). As shown in Table
3b, model performance drops significantly in this
more complex setting. This suggests difficulty in
adapting decryption strategies to numerical trans-
formations. Even under the same encryption prin-
ciples, encrypting both letters and numbers greatly
increases task complexity, posing a significant chal-
lenge for current reasoning models. This highlights
a critical limitation in LLMs’ ability to generalize
across diverse data types, particularly when nu-
merical transformations are involved. Future work
should focus on enhancing models’ capacity to han-
dle mixed data encryption.

4.4 Effect of Explicit Algorithm Hints on
Decryption Performance

Previous evaluations highlight the significant chal-
lenges posed by CipherBank. To evaluate the mod-
els’ decryption capabilities when provided with
algorithm details, we enhance the 3-shot setting
by explicitly informing the models of the specific
algorithm during testing. Under the revised set-
ting, models are no longer required to indepen-
dently deduce encryption logic but instead focus
on identifying the necessary key and applying the
specified decryption rules. The enhanced prompt
is provided in Appendix C.2. Table 3c reveals
distinct performance patterns. Most chat models
show minimal improvement even with algorithm
details, struggling with key inference and decryp-
tion—highlighting persistent limitations, especially
in models like Claude (+5.30) and Gemini (+1.97).

In contrast, reasoning models show marked per-
formance gains, with R1 (+31.81) and o1-mini
(+14.49) achieving significant improvements. The
observed contrast underscores a fundamental dis-
tinction: chat models primarily rely on surface-
level pattern recognition, while reasoning models
excel in structured inference when provided with
appropriate guidance.

4.5 Error Analysis

We conduct a comprehensive error analysis based
on the test results in Table 2, identifying six distinct
error types. To gain deeper insights, we examine
the three best-performing chat models and three
best-performing reasoning models, summarizing
their error distributions. Detailed error definitions
and examples are provided in Appendix D.1 and
D.2.

As shown in Figure 4, the distribution of error
types reveals key differences between reasoning
and chat models. Surprisingly, (1) reasoning mod-
els exhibit a higher rate of reasoning failures than

5935



17.4%

26.4%

3.8%13.6%

37.8%

1.1%
11.1%

28.7%

4.2%
4.5%

50.6%

0.9%

Omission/Insertion Name Decryption Error Semantic Inference
Reorganization Reasoning Failure Other

Figure 4: Decryption Error Distribution. The left rep-
resents chat models, while the right corresponds to rea-
soning models.

chat models. A deeper examination of Appendix
D.3 reveals that many of these failures occur on
simpler tasks, suggesting that reasoning models
may overanalyze problems, leading to incorrect
conclusions. This indicates that their complex infer-
ence processes can sometimes hinder performance
on straightforward decryption cases. Conversely,
(2) chat models show a higher frequency of omis-
sion/insertion and reorganization errors, indicating
that while they are stronger in semantic understand-
ing, this often results in excessive auto-completion
and sentence restructuring rather than strict rule ad-
herence. This tendency suggests that chat models
prioritize fluency over exact decryption, leading to
unintended modifications. Additionally, (3) both
model types frequently make errors in name decryp-
tion, highlighting a broader challenge in handling
structured entity transformations. This suggests
that current LLMs struggle to consistently apply
encryption rules to proper nouns, potentially due
to memorization biases or difficulties in preserving
entity-level consistency during decryption.

5 Related Work

Benchmarks for Reasoning Evaluating reason-
ing abilities in LLMs has been a key focus in
AI research, with various benchmarks assessing
models across mathematical, logical, and infer-
ential tasks. MATH (Hendrycks et al., 2021b),
MathBench (Liu et al., 2024c), and LiveMath-
Bench (Liu et al., 2024d) test arithmetic and al-
gebraic reasoning, while HumanEval (Chen et al.,
2021b), DebugBench (Tian et al., 2024) and Big-
CodeBench (Zhuo et al., 2024) evaluates code
generation that require programming logic. Ad-
ditionally, BIG-Bench (Srivastava et al., 2022),
BBH (Suzgun et al., 2022), and LiveBench (White
et al., 2024) measure broader cognitive abilities,
such as abstract reasoning and analogical problem-

solving. KOR-Bench (Ma et al., 2024) is new
benchmark that examines strong reasoning by intro-
ducing Knowledge-Orthogonal Reasoning (KOR)
tasks, assessing models’ ability to apply newly in-
troduced rules independent of pretrained knowl-
edge. Specially, it also contains a cipher reason-
ing task, which provides explicit encryption rules
and keys, guiding models through step-by-step de-
cryption rather than requiring pattern inference. In
contrast, CipherBank presents a more realistic chal-
lenge, requiring models to identify encryption pat-
terns from examples without prior knowledge, bet-
ter reflecting real-world scenarios where encryption
schemes are unknown.

Jailbreaking via Cipher Characters Recent
work demonstrates that encoding adversarial
prompts via encryption (Yuan et al., 2023; Wei
et al., 2024) or obfuscation (Yong et al., 2023;
Jiang et al., 2024b; Kang et al., 2024) can by-
pass LLM safety filters by exploiting models’
ability to process encoded inputs. While Ci-
pherBench (Handa et al., 2024) evaluates cipher-
based jailbreaking, its reliance on 40 curated plain-
texts and explicit algorithm hints limits practi-
cal relevance. Our CipherBank removes prior
guidance, requiring autonomous pattern inference
from plaintext-ciphertext pairs to simulate privacy-
sensitive decryption scenarios, establishing a robust
benchmark for LLM security evaluation.

6 Conclusion

In this work, we introduce CipherBank, a com-
prehensive benchmark for evaluating reasoning ca-
pabilities through cryptographic decryption. Ci-
pherBank includes 5 domains, 14 subdomains
of plaintext data, 9 encryption algorithms, and
2,358 decryption tasks. By testing SOTA LLMs
on CipherBank, we uncover significant limita-
tions in their decryption abilities, revealing dis-
tinct strengths and weaknesses between reason-
ing and chat models. Our analysis identifies key
deficiencies in current reasoning approaches and
suggests directions for improvement, positioning
CipherBank as a novel benchmark for advancing
structured inference and cryptographic reasoning
in developing future LLMs.

Limitations

Our evaluation is constrained by the reliance on
closed-source models, which are accessible only
via API calls. This introduces potential variability
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due to API updates and version changes, though we
mitigate this by documenting the specific versions
and dates used. Additionally, access restrictions
prevent us from evaluating more advanced models
such as o1 Pro and o3 series, limiting the scope
of our benchmark. From a design perspective, Ci-
pherBank primarily focuses on classical encryp-
tion algorithms, as modern cryptographic schemes
introduce complexities beyond current model ca-
pabilities. While this choice ensures feasibility in
evaluation, it also restricts the benchmark’s appli-
cability to real-world cryptographic challenges. As
models improve, expanding CipherBank to modern
encryption techniques will provide a more compre-
hensive assessment of reasoning in cryptographic
tasks.
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A Detailed Benchmark Description

In this chapter, we provide additional details on
CipherBank that were not extensively covered in
the main text. This includes a detailed breakdown
of plaintext tags and their distribution across subdo-
mains, as well as a more comprehensive description
of the encryption algorithms used. These details
offer deeper insights into the dataset construction
and the encryption schemes evaluated in this bench-
mark.

A.1 Tags and Plaintext Distribution Across
Subdomains

Table 4 provides an overview of the specific tags as-
sociated with each subdomain within CipherBank.
The dataset spans five primary domains and 14
subdomains, ensuring diverse and realistic plain-
text scenarios for cryptographic evaluation.

A.2 Detailed Descriptions of Encryption
Algorithms

This section provides detailed descriptions of the
nine encryption algorithms used in CipherBank.
These algorithms span substitution, transposition,
and custom-designed ciphers, covering a range of
complexity levels. Notably, Rot13, Atbash, Poly-
bius, DualAvgCode, and ParityShift also support
numeric encryption, further enhancing the diversity
of decryption challenges. Table 5 outlines each al-
gorithm and its transformation rules.Some detailed
encryption examples are provided below, illustrat-
ing how different ciphers transform plaintext into
ciphertext.

For each encryption algorithm, we have imple-
mented a corresponding decryption algorithm to
ensure that ciphertext can be fully restored to its
original plaintext. This guarantees the reversibil-
ity and integrity of the encryption schemes used
in CipherBank, allowing for a rigorous evaluation
of model decryption capabilities. The decryption
process follows the exact inverse of the encryption
transformations, ensuring consistency across all
test cases.

B Experimental Setup Details

In our evaluation, we adopt a 3-shot approach. A
more natural Ciphertext-Only Attack (zero-shot)
setting was not adopted, as it would reduce the task
to brute-force decryption, where the model blindly
applies all known encryption algorithms in search
of a coherent output. This contradicts the goal

of reasoning-based inference, where the model is
expected to deduce encryption rules from provided
examples rather than rely on exhaustive trial and
error.

To ensure a balanced evaluation of decryption
difficulty, substitution ciphers exclude numbers
to prevent inconsistencies arising from differing
cyclic structures. In contrast, ciphers that do not
involve direct substitution, such as Reverse, Word-
Shift, and similar methods, process numbers nor-
mally, preserving structural integrity within the en-
crypted text.

For all open-source models, we conduct evalu-
ations using the OpenCompass7 framework with
default temperature to ensure consistent outputs.
For models evaluated via API, we perform 5 inde-
pendent test runs per model and report the average
result to enhance stability and reliability.

B.1 Prompts Used for Querying

This section outlines the prompts used to query
models during evaluation. To ensure consistency,
all models were tested under a 3-shot setting, where
they were provided with three plaintext-ciphertext
pairs before attempting to decrypt a new ciphertext.
The prompts were designed to encourage logical
inference rather than relying on prior knowledge,
guiding models to extract encryption patterns and
apply the learned rules systematically. Below, Fig-
ure 5 provides the system prompt (some reasoning
models may not support system prompts), while
Figure 6 present the detailed user prompts.

B.2 Post-processing Methods

During querying, we instruct the model to think
step by step and enclose the final decrypted out-
put within <result>...</result> tags. To extract
the decoded plaintext, we apply the regular ex-
pression ’<result>(.*?)</result>’, capturing the
content between these tags. The matching pro-
cess is case-insensitive, aligning with algorithms
like Polybius, which inherently do not differenti-
ate between uppercase and lowercase letters when
restoring plaintext. This ensures consistency across
different decryption schemes.

7https://github.com/open-compass/opencompass
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Table 4: Tag Distribution Across Subdomains in CipherBank

Domain Subdomain Tags

Personal Privacy Data

Identity Information Name, ID Card Number, Passport Number, Date of Birth, Gender, Nationality,
Marital Status, Mobile Number, Family Member Information (e.g., immediate
family names, contact information), Residential Address

Health Information Medical Record Number (Patient ID), Diagnosis Records, Surgery Records,
Examination Reports (e.g., X-ray, CT scan results, heart rate, blood pressure,
blood sugar level, blood type), Disease History, Allergy History, Vaccination
Records, Family Medical History

Educational Data Student ID (Student Number), School Records (Enrollment Date, Graduation
Date), Academic Records (Subjects, Grades, GPA, Ranking), Degree Informa-
tion (Bachelor, Master, Doctorate), Awards and Penalties Records (Disciplinary
Records)

Enterprise Sensitive Data

Business Information Business Plans (e.g., Annual Plan, Five-Year Plan), Marketing Strategy (e.g.,
Marketing Promotion Plan, Advertising Budget), Customer Lists (e.g., Cus-
tomer Contacts, Preferences), Supplier Information (Supplier List, Cooperation
Agreements), Internal Financial Budgets (Cost Structure, Profit Forecasts)

Intellectual Property Product Design Plans (e.g., Prototype Drawings, Design Documents), Internal
Technical Documents (e.g., Technical Manuals, Specifications), Test Data (e.g.,
Product Performance Test Results, Quality Control Records), Copyright Data,
Patent Data

Employee Information Contact Information (e.g., Phone Numbers, Email Addresses), Work Experi-
ence, Position and Department Information, Salary and Benefits Information
(e.g., Salary Amount, Bonuses, Allowances), Performance Evaluation (e.g., Per-
formance Scores, Promotion Records), Contract Information (e.g., Employment
Contract, Non-Disclosure Agreement)

Public Safety Data

Police Data Case Information (Case Number, Case Type, Filing Date), Criminal Records
(Suspect Information, Crime Time, Crime Location), Alarm Records (Informer
Information, Alarm Time, Alarm Content), Investigation Reports (Investiga-
tion Results, Investigation Progress), Arrest Records (Arrest Time, Location,
Action Description), Traffic Enforcement Data (Violation Records, Penalty
Information), Police Officer Information (Officer Number, Name, Position,
Department), Police Resource Allocation (Vehicle, Equipment, Weapon Usage
Records)

National Security Data Border Crossing Records (Entry and Exit Personnel Information, Vehicle Regis-
tration), Customs Inspection Data (Cargo List, Contraband Records), Territorial
Patrol Data (Patrol Reports, Anomalies Records), Cyber Security Monitoring
Data (Cyber Attack Records, Threat Intelligence)

Military Data Operation Plans, Target Location, Troop Deployment, Military Base Distribu-
tion, Defense Works Location

Financial Confidential
Data

Banking Information Account Number, Bank Card Number, Payment Method, Payment Platform ID,
Transaction Details, Loan Amount, Interest Rate, Repayment Plan, Investment
Records (Stocks, Funds, Bonds)

Personal Income Salary Amount, Pay Date, Tax Number, Tax Return Records

Internet Records

Browsing Records Page Interaction, Search Behavior, Click Activity, Device Information, Geolo-
cation, Checkout Process, Multimedia Interaction, Download Records

Cookie Data Session Management, User Identification, Ad Targeting, Behavior Tracking,
Authentication Tokens, Login Status

User Preferences Preferred Genres, Device Usage Habits, Notification Preferences, Shopping
Preferences, Video Preferences, Reading Habits
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Example A.1: Plain-Ciphertext Pair (Identity Information) - Only Letter

# Domain: Personal Privacy Data

## Subdomain: Identity Information

### Tag Combination: ["Name", "Date of Birth", "Passport Number"]

Plaintext:
Peter was born on April 23, 1985, and carries a passport with the number X123456789.

Encryption results:
(1) Rot13: Crgre jnf obea ba Ncevy 23, 1985, naq pneevrf n cnffcbeg jvgu gur ahzore K123456789.

(2) Atbash: Kvgvi dzh ylim lm Zkiro 23, 1985, zmw xziirvh z kzhhklig drgs gsv mfnyvi C123456789.

(3) Polybius: 34 15 42 15 36 45 11 41 12 33 36 32 33 32 11 34 36 23 26 2 3 , 1 9 8 5 , 11 32 14 13 11 36 36 23 15 41 11 34

11 41 41 34 33 36 42 45 23 42 22 42 22 15 32 43 31 12 15 36 46 1 2 3 4 5 6 7 8 9.

(4) Vigenère: Pgeet wcd dzrp op Arcin 23, 1985, cyd natcigd c pcdsrzrv wkeh ehg nwxbgc Z123456789.

(5) Reverse: .987654321X rebmun eht htiw tropssap a seirrac dna ,5891 ,32 lirpA no nrob saw reteP

(6) SwapPairs: ePet raw sobnro npAir l32 ,9158 ,na dacrrei s aapssoptrw ti hht eunbmreX 21436587.9

(7) DualAvgCode: OQdfsudfqs vxaart acnpqsmo npmo AAoqqshjkm 23, 1985, aamoce bdaaqsqshjdfrt aa oqaartrtoqnpqssu

vxhjsugi sugidf motvlnacdfqs WY123456789.

(8) ParityShift: Qduds vzr cnso no Zqshm 23, 1985, zoe bzsshdr z qzrrqnsu vhui uid otlcds Y123456789.

(9) WordShift: erPet was nbor no ilApr 23, 5,198 and riescar a sportpas hwit the bernum 3456789.X12

Example A.2: Plain-Ciphertext Pair (Police Data) - Only Letter

# Domain: Public Safety Data

## Subdomain: Police Data

### Tag Combination: ["Suspect Information", "Crime Time", "Crime Location", "Police Officer Information"]

Plaintext:
Suspect: Jonathan, Crime: Burglary, Time: 2022-03-12 14:30, Location: 123 Elm Street, Officer Smith observed suspicious

activity near 5th Ave on 2022-03-13.

Encryption results:
(1) Rot13: Fhfcrpg: Wbanguna, Pevzr: Ohetynel, Gvzr: 2022-03-12 14:30, Ybpngvba: 123 Ryz Fgerrg, Bssvpre Fzvgu

bofreirq fhfcvpvbhf npgvivgl arne 5gu Nir ba 2022-03-13.

(2) Atbash: Hfhkvxg: Qlmzgszm, Xirnv: Yfitozib, Grnv: 2022-03-12 14:30, Olxzgrlm: 123 Von Hgivvg, Luurxvi Hnrgs

lyhvievw hfhkrxrlfh zxgrergb mvzi 5gs Zev lm 2022-03-13.

(3) Polybius: 41 43 41 34 15 13 42 : 24 33 32 11 42 22 11 32 , 13 36 23 31 15 : 12 43 36 21 26 11 36 51 , 42 23 31 15 : 2 0

2 2 - 0 3 - 1 2 1 4 : 3 0 , 26 33 13 11 42 23 33 32 : 1 2 3 15 26 31 41 42 36 15 15 42 , 33 16 16 23 13 15 36 41 31 23 42 22

33 12 41 15 36 44 15 14 41 43 41 34 23 13 23 33 43 41 11 13 42 23 44 23 42 51 32 15 11 36 5 42 22 11 44 15 33 32 2 0 2 2 -

0 3 - 1 3.

(4) Vigenère: Swdpgnt: Jqyavsap, Eciop: Mutrlccy, Tkxe: 2022-03-12 14:30, Lqnavtop: 123 Plo Svcege, Zfhtcgc Uxivs

qmsgcvgo ufsrtckzuu aeeixtta nglr 5tj Axp qy 2022-03-13.

(5) Reverse: 31-30-2202 no evA ht5 raen ytivitca suoicipsus devresbo htimS reciffO ,teertS mlE 321 :noitacoL ,03:41

21-30-2202 :emiT ,yralgruB :emirC ,nahtanoJ :tcepsuS.

(6) SwapPairs: uSpsce:tJ notaah,nC irem :uBgralyr ,iTem :02220–3211 :403 ,oLacitno :21 3lE mtSerte ,fOifec rmSti

hboesvrdes suipicuo scaitivytn ae rt5 hvA eno2 20-2301-3.

(7) DualAvgCode: RTtvrtoqdfbdsu: IKnpmoaasugiaamo, BDqshjlndf: ACtvqsfhkmaaqsxz, SUhjlndf: 2022-03-12 14:30,

KMnpbdaasuhjnpmo: 123 DFkmln RTsuqsdfdfsu, NPegeghjbddfqs RTlnhjsugi npacrtdfqsuwdfce rttvrtoqhjbdhjnptvrt aabd-

suhjuwhjsuxz modfaaqs 5sugi AAuwdf npmo 2022-03-13.

(8) ParityShift: Rtrqdbu: Knozuizo, Bshld: Ctsfmzsx, Uhld: 2022-03-12 14:30, Mnbzuhno: 123 Dml Rusddu, Ngghbds Rlhui

ncrdswde rtrqhbhntr zbuhwhux odzs 5ui Zwd no 2022-03-13.

(9) WordShift: pect:Sus athan,Jon me:Cri glary,Bur e:Tim 2-03-12202 30,14: ation:Loc 123 Elm eet,Str icerOff thSmi

ervedobs picioussus ivityact rnea 5th Ave no 2-03-13202.
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Example A.3: Plain-Ciphertext Pair (Health Information) - Letter&Number

# Domain: Personal Privacy Data

## Subdomain: Health Information

### Tag Combination: ["Patient ID", "Diagnosis Records"]

Plaintext:
Patient ID: R094713; Name: Jamie Lee; Age: 45; Gender: Female; EMR: EHR-234987.

Encryption results:
(1) Rot13: Cngvrag VQ: E327046; Anzr: Wnzvr Yrr; Ntr: 78; Traqre: Srznyr; RZE: RUE-567210.

(2) Atbash: Kzgrvmg RW: I905286; Mznv: Qznrv Ovv; Ztv: 54; Tvmwvi: Uvnzov; VNI: VSI-765012.

(3) Polybius: 34 11 42 23 15 32 42 23 14 : 36 66 65 56 63 53 55 ; 32 11 31 15 : 24 11 31 23 15 26 15 15 ; 11 21 15 : 56 61 ;

21 15 32 14 15 36 : 16 15 31 11 26 15 ; 15 31 36 : 15 22 36 - 54 55 56 65 64 63.

(4) Reverse: .789432-R HRE ;elameF :redneG ;54 :egA ;eeL eimaJ :emaN ;317490 R :DI tneitaP

(5) SwapPairs: aPtetni DI: 0R94713; aNme: aJmei eLe; gAe: 45; eGndre: eFmale; MRE: HRE-239487.

(6) WordShift: atientP ID: R94713; ameN: Jamie eLe; geA: 45; enderG: emaleF; REM: EHR-234987.

(7) DualAvgCode: OQaasuhjdfmosu HJCE: QS009935680224; MOaalndf: IKaalnhjdf KMdfdf; AAfhdf: 3546; FHdfmoced-

fqs: EGdflnaakmdf; DFLNQS: DFGIQS-132435997968.

(8) ParityShift: Qzuhdou HE: S185602; Ozld: Kzlhd Mdd; Zfd: 54; Fdoeds: Gdlzmd; DLS: DIS-325896.

Example A.4: Plain-Ciphertext Pair (Banking Information) - Letter&Number

# Domain: Financial Confidential Data

## Subdomain: Banking Information

### Tag Combination: ["Account Number", "Bank Card Number","Payment Platform ID"]

Plaintext:
Account Number: 123456789, Bank: LA Bank, Card Number: 9876-5432-1098-7654, Payment Method: Virtual Credit Card,

Payment Platform ID: ABC123XYZ, Timestamp: 2023-09-15 14:35, Amount: $250.00.

Encryption results:
(1) Rot13: Nppbhag Ahzore: 456789012, Onax: YN Onax, Pneq Ahzore: 2109-8765-4321-0987, Cnlzrag Zrgubq: Iveghny

Perqvg Pneq, Cnlzrag Cyngsbez VQ: NOP456KLM, Gvzrfgnzc: 5356-32-48 47:68, Nzbhag: $583.33.

(2) Atbash: Zxxlfmg Mfnyvi: 876543210, Yzmp: OZ Yzmp, Xziw Mfnyvi: 0123-4567-8901-2345, Kzbnvmg Nvgslw: Erigfzo

Xivwrg Xziw, Kzbnvmg Kozgulin RW: ZYX876CBA, Grnvhgznk: 7976-90-84 85:64, Znlfmg: $749.99.

(3) Polybius: 11 13 13 33 43 32 42 32 43 31 12 15 36 : 53 54 55 56 61 62 63 64 65 , 12 11 32 25 : 26 11 12 11 32 25 , 13 11

36 14 32 43 31 12 15 36 : 65 64 63 62 - 61 56 55 54 - 53 66 65 64 - 63 62 61 56 , 34 11 51 31 15 32 42 31 15 42 22 33 14 :

44 23 36 42 43 11 26 13 36 15 14 23 42 13 11 36 14 , 34 11 51 31 15 32 42 34 26 11 42 16 33 36 31 23 14 : 11 12 13 53 54

55 46 51 52 , 42 23 31 15 41 42 11 31 34 : 54 66 54 55 - 66 65 - 53 61 53 56 : 55 61 , 11 31 33 43 32 42 : $ 54 61 66 . 66 66 .

(4) Vigenère: Swdpgnt: Jqyavsap, Eciop: Mutrlccy, Tkxe: 2022-03-12 14:30, Lqnavtop: 123 Plo Svcege, Zfhtcgc Uxivs

qmsgcvgo ufsrtckzuu aeeixtta nglr 5tj Axp qy 2022-03-13.

(5) Reverse: .00.052$ :tnuomA ,53:41 51-90-3202 :pmatsemit ,ZYX321CBA :DI mroftalP tnemyap ,draC tiderC lautriV

:dohtem tnemyap ,4567-8901-2345-6789 :rebmuN draC ,knaB AL :knaB ,987654321 :rebmuN tnuoccA

(6) SwapPairs: cAotcnu mNuber: 214365879, aBnk: A Lank, aCrd Nmu:bre 8967-5423-1980-7564, aPymnet Mtohed:

Vritaul Cerdti aCdr, aPymnet Ptaforml DI: BAC321YXZ, iTmsetamp: 3202-90-51 53:41, aAmount: $250.00.

(7) DualAvgCode: AAbdbdnptvmosu MOtvlnacdfqs: 021324354657687999, ACaamojl: KMAA ACaamojl, BDaaqsce

MOtvlnacdfqs: 99796857-46352413-02009979-68574635, OQaaxzlndfmosu LNdfsuginpce: UWhjqssutvaakm BDqsdfcehjsu

BDaaqsce, OQaaxzlndfmosu OQkmaasuegnpqsln HJCE: AAACBD021324WYXZZZ, SUhjlndfrtsuaalnoq: 13001324-0099-

0246 0235:2446, AAlnnptvmosu: $134600.0000.

(8) ParityShift: Zbbntou Otlcds: 032547698, Czoj: MZ Czoj, Bzse Otlcds: 8967-4523-0189-6745, Qzxldou Lduine: Whsutzm

Bsdehu Bzse, Qzxldou Qmzugnsl HE: ZCB032YXA, Uhldruzlq: 3132-18-04 05:24, Zlntou: $341.11.
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Table 5: Descriptions of Encryption Algorithms in CipherBank

Algorithm Description

Rot13 A simple substitution cipher that shifts each letter 13 places forward in the alphabet. Encryption
and decryption are identical, as applying the transformation twice restores the original text. Non-
alphabetic characters remain unchanged.
Additionally, Rot13 in CipherBank supports number encryption by shifting digits cyclically within
the range 0-9.

Atbash A monoalphabetic substitution cipher where each letter is replaced with its counterpart from the
reversed alphabet (e.g., A→Z, B→Y). Since the transformation is symmetric, encryption and
decryption follow the same process.
CipherBank’s Atbash implementation extends this to digits, where each number is replaced with its
complement relative to 9 (e.g., 0→9, 1→8, ..., 9→0).

Polybius A fractionating substitution cipher that replaces each letter with a two-digit coordinate from a 6×6
grid, mapping characters to numerical positions. Traditional Polybius squares typically use a 5×5
grid, supporting only letter encryption while merging I and J into the same cell, leading to ambiguity
during decryption. To address this limitation and enable number encryption, CipherBank extends
the Polybius square to a 6×6 grid, allowing both letters and numbers to be uniquely represented as
coordinate pairs, increasing the cipher’s complexity.

Vigenère A polyalphabetic substitution cipher that employs multiple shifting alphabets determined by a
repeating key. Unlike monoalphabetic ciphers that use a single mapping, Vigenère utilizes multiple
substitution tables, where each plaintext letter is shifted based on the corresponding key character’s
position in the alphabet. By default, the key is set to "ACL".
This multi-table approach enhances security by distributing letter frequencies across different shifts,
making it more resistant to frequency analysis. Decryption reverses this process by applying the
inverse shifts dictated by the key. Unlike Rot13, it requires a key for both encryption and decryption.

Reverse A transposition cipher that reverses the order of all characters in the plaintext. Since it does not
substitute characters, it preserves all information but alters the sequence, making it effective against
naive attacks.

SwapPairs A transposition cipher that swaps adjacent characters in the plaintext. If the text length is odd, the
final character remains unchanged. Decryption follows the same swapping process.

DualAvgCode A custom transformation where each letter expands into two adjacent characters, shifting one
position forward and one position backward in the ASCII table. Special cases (e.g., ’a’, ’z’, ’A’,
’Z’) are duplicated instead.
CipherBank extends this method to digits, where each number expands into two adjacent values
(e.g., 2 → "13", 5 → "46"), increasing redundancy in the encrypted text.

ParityShift A custom encryption method that shifts each letter one position forward or backward based on its
ASCII parity. Even-ASCII characters shift forward, while odd-ASCII characters shift backward.
For digits, ParityShift follows a similar rule, shifting numbers based on their parity (e.g., even
numbers shift up, odd numbers shift down within 0-9).

WordShift A transformation applied at the word level rather than the character level. Each word undergoes a
left shift by a fixed number of positions, cycling characters within the word while preserving word
spacing. Decryption reverses this shift, ensuring character order is restored within each word. By
default, the shift is set to 3 positions.
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Example B.1

## Role:
Cryptography Analysis Expert.

## Goals:
Utilize the provided ciphertext and plaintext examples to analyze encryption patterns and decrypt new ciphertext.

## Workflow:
1. Analyze the provided ciphertext and plaintext examples to identify possible encryption patterns and rules.

2. Apply the decryption algorithm to the new ciphertext, attempt to decrypt, and verify the results.

Figure 5: System Prompt

Example B.2

## Background:
Decrypt the provided Ciphertext and return the corresponding Plaintext following the given examples.

Think step by step.

Provide the Plaintext result in the format <result>text</result>, where text is the decrypted text.

## Examples:
* Example 1:

- Ciphertext:

Anzr: Rzvyl Wbuafba; Qngr bs Ovegu: Whyl 15, 1990; Cnffcbeg Ahzore: L987654321

- Plaintext:

Name: Emily Johnson; Date of Birth: July 15, 1990; Passport Number: Y987654321

* Example 2:

- Ciphertext:

Pnfr Ahzore: 2024-CF-001234; Pnfr Glcr: Gursg/Oernx-Va; Svyvat Qngr: Bpgbore 19, 2024

- Plaintext:

Case Number: 2024-PS-001234; Case Type: Theft/Break-In; Filing Date: October 19, 2024

* Example 3:

- Ciphertext:

gnk_vqragvsvre: GKA-2023-NOP456, gnk_erpbeqf: lrne: 2023, fgnghf: Cebprffrq, ershaq_vffhrq: 620.00

- Plaintext:

tax_identifier: TXN-2023-ABC456, tax_records: year: 2023, status: Processed, refund_issued: 620.00

## Input:
- Ciphertext:

Yrqvn, na Nzrevpna, erfvqrf va Ybf Natryrf.

- Plaintext:

Figure 6: User Prompt (Rot13 - 3shot - Only Letter)

5945



C Extended Experimental Results

C.1 Levenshtein Distance Evaluation from
Main Results

In the main text, most reported results are based on
accuracy, which provides a binary assessment of
decryption success. However, accuracy does not
account for cases where decrypted outputs closely
resemble the ground truth but contain minor errors.
To provide a more fine-grained evaluation, we also
compute Levenshtein similarity, which measures
the edit distance between the model output and the
correct plaintext.

We define the Levenshtein similarity score as
follows:

Slev = 1− dlev(Ppred, Pref)

max(|Ppred|, |Pref|)
(1)

where:

• dlev(Ppred, Pref) is the Levenshtein distance be-
tween the predicted and reference plaintexts.

• |Ppred| and |Pref| denote the lengths of the pre-
dicted and reference plaintexts, respectively.

This metric normalizes the edit distance by the
length of the longer string, ensuring that similarity
is measured on a scale from 0 to 1, where 1 rep-
resents an exact match and lower values indicate
increasing deviations from the ground truth.

The corresponding Levenshtein-based evalua-
tion results for Table 2 are presented in Table 6
and Figure 7, offering deeper insights into mod-
els’ decryption performance beyond strict accuracy
metrics.

One key observation is that most models achieve
significantly higher Levenshtein similarity scores
than their accuracy scores, indicating that even
when decryption is incorrect, outputs often re-
tain structural similarities to the original plaintext.
This suggests that models capture some encryp-
tion patterns but struggle with full decryption, fail-
ing to consistently apply correct transformations.
Notably, Claude-Sonnet-3.5 achieves near-perfect
scores (>0.99 for most ciphers), demonstrating its
ability to minimize decryption errors while main-
taining structural accuracy, making it the most reli-
able model overall.

Interestingly, reasoning models such as
DeepSeek-R1 and o1 exhibit a large gap between
accuracy and Levenshtein similarity. Despite
their moderate accuracy, their similarity scores

often exceed 0.80, indicating that they frequently
produce outputs that preserve much of the original
structure but contain systematic errors. This
suggests that reasoning models are better at
capturing encryption logic but may struggle with
precise execution, sometimes overcomplicating
simpler tasks.

Conversely, chat models such as DeepSeek-V3
and Llama-based models exhibit high variability,
showing relatively low accuracy but moderate Lev-
enshtein similarity (0.40 - 0.70). This indicates
a tendency toward semantic approximation rather
than strict decryption, where models generate lin-
guistically plausible outputs that fail to adhere to
precise encryption rules.

Another notable trend is that transposition ci-
phers (e.g., Reverse, SwapPairs) yield lower Leven-
shtein similarity scores across all models, confirm-
ing that character reordering remains a major chal-
lenge. Unlike substitution ciphers, where models
can rely on token-level mappings, transposition ci-
phers require strict positional tracking, which even
the strongest models struggle to handle effectively.

Overall, Levenshtein similarity results highlight
fundamental differences in how chat and reason-
ing models approach decryption. Chat models rely
more on semantic fluency, leading to structurally
incorrect but coherent outputs, whereas reasoning
models exhibit stronger pattern retention but oc-
casionally fail due to overgeneralization or over-
thinking. These findings suggest that while LLMs
can approximate decryption rules, achieving pre-
cise symbolic transformations remains a significant
challenge, especially for positional-based ciphers.

C.2 Additional Analysis and Insights
In this section, we present more detailed experimen-
tal results that complement the findings in the main
text. These additional analyses provide further in-
sights into model performance across different en-
cryption schemes, highlighting trends, challenges,
and specific cases where models excel or struggle.

In the analysis of length sensitivity, plaintexts
of different lengths can be seen in Figure 8. The
impact of plaintext length on decryption perfor-
mance is shown in Table 7 and Table 8, where we
compare model accuracy on short vs. long texts.
These results illustrate how increasing text length
affects model performance, revealing notable dif-
ferences in decryption robustness across various
architectures

The dataset used for the noise interference exper-
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Table 6: Results on CipherBank(3-shot) Levenshtein similarity

Model Substitution Ciphers Transposition Ciphers Custom Ciphers Cipher Score

Rot13 At ba sh Polybius Vigenère Reverse SwapPairs DualAvgCode ParityShift WordShift Levenshtein Similarity

Open-source Chat Models

Mixtral-8x22B-v0.1 0.4542 0.3744 0.2694 0.4032 0.3810 0.4745 0.3330 0.3871 0.6401 0.4130
Qwen2.5-72B-Instruct 0.5556 0.4288 0.3042 0.4016 0.4022 0.5308 0.3718 0.4786 0.8427 0.4796
Llama-3.1-70B-Instruct 0.5776 0.4378 0.3132 0.4431 0.3775 0.5542 0.3990 0.4505 0.7288 0.4758
Llama-3.3-70B-Instruct 0.5754 0.4054 0.1317 0.4397 0.2482 0.5375 0.3833 0.4096 0.4580 0.3988
DeepSeek-V3 0.9195 0.7594 0.4562 0.4844 0.9088 0.6975 0.4205 0.5731 0.8887 0.6787

Closed-source Models

GPT-4o-mini-2024-07-18 0.6459 0.4935 0.2463 0.4499 0.5664 0.6005 0.3418 0.4188 0.7258 0.4988
GPT-4o-2024-08-06 0.9603 0.5876 0.3445 0.5346 0.8170 0.7968 0.4304 0.5850 0.8940 0.6612
GPT-4o-2024-11-20 0.9340 0.6054 0.3511 0.5338 0.7277 0.6780 0.4235 0.5530 0.8715 0.6309
gemini-1.5-pro 0.9309 0.5043 0.4969 0.5201 0.7536 0.7317 0.4784 0.5720 0.8819 0.6522
gemini-2.0-flash-exp 0.9616 0.6567 0.4813 0.5064 0.8901 0.7569 0.4476 0.5308 0.8605 0.6769
Claude-Sonnet-3.5-1022 0.9984 0.9961 0.9955 0.7143 0.9893 0.9262 0.7874 0.9883 0.9712 0.9296

Reasoning Models

QwQ-32B-Preview 0.2477 0.1591 0.1231 0.1660 0.1444 0.1666 0.1564 0.1645 0.3057 0.1815
DeepSeek-R1 0.9920 0.9761 0.9344 0.5227 0.7368 0.7213 0.8316 0.6928 0.8491 0.8063
gemini-2.0-flash-thinking 0.9664 0.8571 0.9074 0.5511 0.8508 0.7788 0.4261 0.7353 0.8777 0.7723
o1-mini-2024-09-12 0.9757 0.9860 0.9563 0.5412 0.5959 0.5267 0.3954 0.6935 0.7236 0.7105
o1-2024-12-17 0.8320 0.9928 0.9640 0.5642 0.7725 0.9208 0.8653 0.6562 0.9335 0.8335
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Figure 7: Model Performance - Accuracy vs. Levenshtein Similarity.

Table 7: Decryption Performance on Short Texts

Model Substitution Ciphers Transposition Ciphers Custom Ciphers Cipher Score

Rot13 Atbash Polybius Vigenère Reverse SwapPairs DualAvgCode ParityShift WordShift Accuracyavg

DeepSeek-V3 40.00 27.83 4.35 1.74 29.57 0.87 0.87 2.61 11.3 13.24
DeepSeek-R1 80.00 71.30 53.04 0.87 18.26 0.87 35.65 18.26 12.17 32.27
GPT-4o-2024-11-20 34.78 13.04 0.87 0 21.74 1.74 0.87 1.74 10.43 9.47
gemini-2.0-flash-exp 42.61 4.35 1.74 0.87 40.87 2.61 0 1.74 8.70 11.50
Claude-Sonnet-3.5-1022 86.09 77.39 69.57 3.48 77.39 8.70 9.57 63.48 42.61 48.70
gemini-2.0-flash-thinking 52.17 26.96 33.91 2.61 33.91 0.87 0 13.91 14.78 19.90
o1-mini-2024-09-12 64.35 82.61 65.22 0 15.65 0 6.67 13.91 2.61 33.77
o1-2024-12-17 61.74 89.57 84.55 0.87 23.48 46.67 61.74 17.17 35.80 47.61
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Table 8: Decryption Performance on Long Texts

Model Substitution Ciphers Transposition Ciphers Custom Ciphers Cipher Score

Rot13 Atbash Polybius Vigenère Reverse SwapPairs DualAvgCode ParityShift WordShift Accuracyavg

DeepSeek-V3 26.53 4.76 0.68 0 9.52 0 0 0 5.44 5.22
DeepSeek-R1 68.03 48.98 37.41 0 4.76 0 14.97 8.84 5.44 20.94
GPT-4o-2024-11-20 20.41 4.08 0 0 12.24 0 0 0 3.40 4.46
gemini-2.0-flash-exp 30.61 2.04 1.36 0 20.41 0.68 0 0 2.72 6.42
Claude-Sonnet-3.5-1022 92.52 78.91 82.31 1.36 63.95 5.44 2.72 63.27 40.14 47.85
gemini-2.0-flash-thinking 31.29 9.52 12.24 0 14.29 1.36 0 2.72 4.76 8.47
o1-mini-2024-09-12 31.97 57.14 32.65 0 0 0 0 2.72 0 17.35
o1-2024-12-17 58.50 70.75 61.11 0.68 8.16 15.38 41.5 8.66 25.66 34.38

Example C.1: Plaintext Examples

Short: James, American, is married to Susan.

Long: John Smith, born on January 15, 1990, holds American nationality and resides at 123 Elm Street, Springfield, Illinois.

His mobile number is +1-312-555-6789, and his ID card number is IDURITY1234567. He is married to Jane Smith, who can

be reached at +1-312-555-6789. They have two children: Emily (16, high school) and Michael (12, middle school). Their

address and contact information are the same.

Short: Jimmy, GPA: 3.71.

Long: David Wilson, Masters in Data Science, GPA: 3.95, Expected Graduation: 2023, Courses: Big Data Analytics,

Machine Learning, Data Visualization.

Short: Medical Record Number: 987-654-321; Patient Name: James.

Long: David Wilson, Masters in Data Science, GPA: 3.95, Expected Graduation: 2023, Courses: Big Data Analytics,

Machine Learning, Data Visualization.

Short: Lucas, lucas@ucc.company.com

Long: Hank, Senior Developer, IT Department, Salary: $95,000, Bonuses: $5,000, Allowances: $2,000 (Remote Work),

Performance Rating: A, Full-time, Start Date: 2020-03-15, Last Promotion: 2021-08-10, Benefits: Health Insurance,

Retirement 5%, Training: $1,500/year, Projects: Nexus, Zeta, Feedback: 4.5/5

Figure 8: Samples used for length sensitivity analysis
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Example C.2: Noise Example

Example 1:
Origin: Card Number: 9876 5432 1098 7654

Noise: Card Numbr: 9876 54-32 1O98 765four

Example 2:
Origin: Pay Date: 2023-05-15, Income: $75,000, Currency: USD, Bonus: $5,000

Noise: Pay Date (scheduled): 2023-05-15! Income approx: $75,000. Currency spec: USD, and Bonus = $5,000.

Example 3:
Predictions: Officer ID: P12345, Name: John, Position: Sergeant, Department: Homicide

References: Officer Identification-No.: P12345, Full-Name: John (J.), Job-Title: Sergeant, Dept.: Homicide Squad.

Figure 9: The samples used for the noise comparison experiments.

Table 9: Decryption Performance without Noise

Model Rot13 Atbash Reverse SwapPairs ParityShift WordShift Accuracyavg

Open-source Models

DeepSeek-V3 50.00 31.50 18.50 6.50 9.00 17.00 22.08
DeepSeek-R1 83.50 77.50 42.00 2.50 20.00 5.50 38.50

Closed-source Models

GPT-4o-2024-11-20 49.50 10.50 13.50 0 3.50 5.50 13.75
Gemini-2.0-flash-exp 45.00 7.50 42.50 2.50 5.00 15.50 19.67
Claude-Sonnet-3.5-1022 92.50 85.00 62.50 10.00 70.00 35.00 59.17
Gemini-2.0-flash-thinking 62.50 33.50 22.50 0 17.50 1.50 22.92
o1-mini-2024-09-12 55.50 67.50 5.00 0 17.50 0 24.25

Table 10: Decryption Performance with Noise

Model Rot13 Atbash Reverse SwapPairs ParityShift WordShift Accuracyavg

Open-source Models

DeepSeek-V3 8.50 10.50 7.50 0 0.50 1.50 4.75
DeepSeek-R1 33.50 23.00 4.50 0 1.50 0 10.42

Closed-source Models

GPT-4o-2024-11-20 5.50 0 4.50 0 0 0 1.67
Gemini-2.0-flash-exp 2.50 0 0 2.50 0 0 0.83
Claude-Sonnet-3.5-1022 50.50 40.00 20.00 2.50 30.00 7.50 25.08
Gemini-2.0-flash-thinking 30.50 19.00 3.50 0 2.50 0 9.25
o1-mini-2024-09-12 15.00 20.0 0 0 0 0 5.83

iments can be found in Figure 9. Detailed results
on the impact of noise on decryption performance
are presented in Table 9 and Table 10, comparing
model performance on short and long plaintexts un-
der noisy conditions. These findings highlight the
varying degrees of resilience across models, with
some maintaining reasonable performance under
noise while others degrade significantly.

In the analysis of the impact of encryption scope

on decryption performance, the test prompts used
are shown in Figure 10. Detailed results are
presented in Table 11. This analysis compares
model performance when encrypting only letters
versus encrypting both letters and numbers. The
results highlight how different models handle the
increased complexity introduced by number en-
cryption, showing varying degrees of adaptability.
While some models maintain relatively stable per-
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Example C.3

## Background:
Decrypt the provided Ciphertext and return the corresponding Plaintext following the given examples.

Think step by step.

Provide the Plaintext result in the format <result>text</result>, where text is the decrypted text.

## Examples:
* Example 1:

- Ciphertext:

Mznv: Vnrob Qlsmhlm; Wzgv lu Yrigs: Qfob 84, 8009; Kzhhklig Mfnyvi: B012345678

- Plaintext:

Name: Emily Johnson; Date of Birth: July 15, 1990; Passport Number: Y987654321

* Example 2:

- Ciphertext:

Xzhv Mfnyvi: 7975-KH-998765; Xzhv Gbkv: Gsvug/Yivzp-Rm; Urormt Wzgv: Lxglyvi 80, 7975

- Plaintext:

Case Number: 2024-PS-001234; Case Type: Theft/Break-In; Filing Date: October 19, 2024

* Example 3:

- Ciphertext:

gzc_rwvmgrurvi: GCM-7976-ZYX543, gzc_ivxliwh: bvzi: 7976, hgzgfh: Kilxvhhvw, ivufmw_rhhfvw:

379.99

- Plaintext:

tax_identifier: TXN-2023-ABC456, tax_records: year: 2023, status: Processed, refund_issued: 620.00

## Input:
- Ciphertext:

Wvzm slowh gsv kzhhklig mfnyvi Z87654321.

- Plaintext:

Figure 10: User Prompt (Atbash - 3shot - Letter & Number)

Table 11: Impact of Encryption Scope on Decryption Performance

Model Rot13 Atbash Polybius DualAvgCode ParityShift Accuracyavg

Open-source Models

DeepSeek-V3 68.94/23.32 24.02/14.64 19.35/6.01 3.51/0 11.31/0 25.23 / 8.79
DeepSeek-R1 59.10/43.05 63.19/23.02 39.21/43.23 37.36/0 13.05/0.76 42.38 / 22.01

Closed-source Models

GPT-4o-2024-11-20 27.53/0 10.08/0 0/0 2.54/0 2.67/0 8.56 / 0
gemini-2.0-flash-exp 47.54/0 7.50/2.50 7.50/5.05 0/0 2.67/0 13.04 / 1.51
Claude-Sonnet-3.5-1022 92.50/50.00 87.56/27.53 65.00/32.25 15.00/0 62.54/17.35 64.52 / 25.43
gemini-2.0-flash-thinking 35.00/2.65 0/2.54 0/10.00 0/0 2.50/0 7.50 / 3.04
o1-mini-2024-09-12 50.00/32.59 72.57/35.00 40.00/42.53 0/0 7.50/0.76 34.01 / 22.18

Note: Values before the ‘/‘ indicate performance when encrypting letters only, while values after the ‘/‘ represent performance
when encrypting both letters and numbers.

formance, others exhibit significant drops when re-
quired to decrypt mixed alphanumeric ciphertexts.

For the enhanced prompt template, please refer
to Figures 11-19, while more detailed experimental
results can be found in Table 12.

C.3 Impact of Plaintext Source on Decryption
Performance

To assess how plaintext characteristics influence
decryption performance, we compare results on
synthetically generated privacy-sensitive data ver-
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Example C.4

## Background:
Decrypt the provided Ciphertext and return the corresponding Plaintext following the given algorithm flow and examples.

Think step by step.

Provide the Plaintext result in the format <result>text</result>, where text is the decrypted text.

## Algorithm Flow:
Uses the Caesar cipher with a fixed shift of 13 positions. For each letter in the Plaintext, shift it forward by 13 positions

in the alphabet to produce the Ciphertext.

## Examples:
* Example 1:

- Ciphertext:

Anzr: Rzvyl Wbuafba; Qngr bs Ovegu: Whyl 15, 1990; Cnffcbeg Ahzore: L987654321

- Plaintext:

Name: Emily Johnson; Date of Birth: July 15, 1990; Passport Number: Y987654321

* Example 2:

- Ciphertext:

Pnfr Ahzore: 2024-CF-001234; Pnfr Glcr: Gursg/Oernx-Va; Svyvat Qngr: Bpgbore 19, 2024

- Plaintext:

Case Number: 2024-PS-001234; Case Type: Theft/Break-In; Filing Date: October 19, 2024

* Example 3:

- Ciphertext:

gnk_vqragvsvre: GKA-2023-NOP456, gnk_erpbeqf: lrne: 2023, fgnghf: Cebprffrq, ershaq_vffhrq: 620.00

- Plaintext:

tax_identifier: TXN-2023-ABC456, tax_records: year: 2023, status: Processed, refund_issued: 620.00

## Input:
- Ciphertext:

Yrqvn, na Nzrevpna, erfvqrf va Ybf Natryrf.

- Plaintext:

Figure 11: Enhenced Prompt (ROT13 - 3shot - Letter)
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Example C.5

## Background:
Decrypt the provided Ciphertext and return the corresponding Plaintext following the given algorithm flow and examples.

Think step by step.

Provide the Plaintext result in the format <result>text</result>, where text is the decrypted text.

## Algorithm Flow:
Uses the Atbash cipher. Each letter in the **Plaintext** is replaced with its reverse counterpart in the alphabet.

## Examples:
* Example 1:

- Ciphertext:

Mznv: Vnrob Qlsmhlm; Wzgv lu Yrigs: Qfob 15, 1990; Kzhhklig Mfnyvi: B987654321

- Plaintext:

Name: Emily Johnson; Date of Birth: July 15, 1990; Passport Number: Y987654321

* Example 2:

- Ciphertext:

Xzhv Mfnyvi: 2024-KH-001234; Xzhv Gbkv: Gsvug/Yivzp-Rm; Urormt Wzgv: Lxglyvi 19, 2024

- Plaintext:

Case Number: 2024-PS-001234; Case Type: Theft/Break-In; Filing Date: October 19, 2024

* Example 3:

- Ciphertext:

gzc_rwvmgrurvi: GCM-2023-ZYX456, gzc_ivxliwh: bvzi: 2023, hgzgfh: Kilxvhhvw, ivufmw_rhhfvw:

620.00

- Plaintext:

tax_identifier: TXN-2023-ABC456, tax_records: year: 2023, status: Processed, refund_issued: 620.00

## Input:
- Ciphertext:

Ovwrz, zm Znvirxzm, ivhrwvh rm Olh Zmtvovh.

- Plaintext:

Figure 12: Enhenced Prompt (Atbash - 3shot - Letter)
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Example C.6

## Background:
Decrypt the provided Ciphertext and return the corresponding Plaintext following the given algorithm flow and examples.

Think step by step.

Provide the Plaintext result in the format <result>text</result>, where text is the decrypted text.

## Algorithm Flow:
Uses the Polybius cipher. Each letter in the **Plaintext** is mapped to a pair of coordinates in the Polybius square,

forming the **Ciphertext**.

## Examples:
* Example 1:

- Ciphertext:

32 11 31 15 : 15 31 23 26 51 24 33 22 32 41 33 32 ; 14 11 42 15 33 16 12 23 36 42 22 : 24 43 26 51 1 5 , 1 9

9 0 ; 34 11 41 41 34 33 36 42 32 43 31 12 15 36 : 51 9 8 7 6 5 4 3 2 1

- Plaintext:

Name: Emily Johnson; Date of Birth: July 15, 1990; Passport Number: Y987654321

* Example 2:

- Ciphertext:

13 11 41 15 32 43 31 12 15 36 : 2 0 2 4 - 34 41 - 0 0 1 2 3 4 ; 13 11 41 15 42 51 34 15 : 42 22 15 16 42 / 12

36 15 11 25 - 23 32 ; 16 23 26 23 32 21 14 11 42 15 : 33 13 42 33 12 15 36 1 9 , 2 0 2 4

- Plaintext:

Case Number: 2024-PS-001234; Case Type: Theft/Break-In; Filing Date: October 19, 2024

* Example 3:

- Ciphertext:

42 11 46 _ 23 14 15 32 42 23 16 23 15 36 : 42 46 32 _ 2 0 2 3 - 11 12 13 4 5 6 , 42 11 46 _ 36 15 13 33 36 14

41 : 51 15 11 36 : 2 0 2 3 , 41 42 11 42 43 41 : 34 36 33 13 15 41 41 15 14 , 36 15 16 43 32 14 _ 23 41 41 43 15 14 : 6 2 0 .

0 0

- Plaintext:

tax_identifier: TXN-2023-ABC456, tax_records: year: 2023, status: Processed, refund_issued: 620.00

## Input:
- Ciphertext:

26 15 14 23 11 , 11 32 11 31 15 36 23 13 11 32 , 36 15 41 23 14 15 41 23 32 26 33 41 11 32 21 15 26 15 41 .

- Plaintext:

Figure 13: Enhanced Prompt (Polybius - 3shot - Letter)
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Example C.7

## Background:
Decrypt the provided Ciphertext and return the corresponding Plaintext following the given algorithm flow and examples.

Think step by step.

Provide the Plaintext result in the format <result>text</result>, where text is the decrypted text.

## Algorithm Flow:
Uses the Vigenère cipher. Each letter in the **Plaintext** is shifted by the corresponding letter in the **Key** to

produce the **Ciphertext**.

## Examples:
* Example 1:

- Ciphertext:

Ncxe: Eotla Jqsnuzn; Dcee zf Miteh: Jwwy 15, 1990; Pcdsrzrv Nwxbgc: J987654321

- Plaintext:

Name: Emily Johnson; Date of Birth: July 15, 1990; Passport Number: Y987654321

* Example 2:

- Ciphertext:

Ccde Yuomet: 2024-PU-001234; Naup Vjpg: Vsehe/Dcecv-Ky; Qintni Dcee: Oeeodpr 19, 2024

- Plaintext:

Case Number: 2024-PS-001234; Case Type: Theft/Break-In; Filing Date: October 19, 2024

* Example 3:

- Ciphertext:

tci_koepeihtet: VIN-2023-CMC456, tci_tpcqcdu: jecc: 2023, dtceuu: Rcoepsupd, rgqupo_kdswpd: 620.00

- Plaintext:

tax_identifier: TXN-2023-ABC456, tax_records: year: 2023, status: Processed, refund_issued: 620.00

## Input:
- Ciphertext:

Lgoic, cy Cxettccy, ceutdgd ky Nzs Lniplgd.

- Plaintext:

Figure 14: Enhanced Prompt (Vigenère - 3shot - Letter)
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Example C.8

## Background:
Decrypt the provided Ciphertext and return the corresponding Plaintext following the given algorithm flow and examples.

Think step by step.

Provide the Plaintext result in the format <result>text</result>, where text is the decrypted text.

## Algorithm Flow:
Reverses the **Plaintext** to create the **Ciphertext**.

## Examples:
* Example 1:

- Ciphertext:

123456789Y :rebmuN tropssaP ;0991 ,51 yluJ :htriB fo etaD ;nosnhoJ ylimE :emaN

- Plaintext:

Name: Emily Johnson; Date of Birth: July 15, 1990; Passport Number: Y987654321

* Example 2:

- Ciphertext:

4202 ,91 rebotcO :etaD gniliF ;nI-kaerB/tfehT :epyT esaC ;432100-SP-4202 :rebmuN esaC

- Plaintext:

Case Number: 2024-PS-001234; Case Type: Theft/Break-In; Filing Date: October 19, 2024

* Example 3:

- Ciphertext:

}00.026 :deussi_dnufer ,dessecorP :sutats ,3202 :raey{ :sdrocer_xat ,654CBA-3202-NXT :reifitnedi_xat

- Plaintext:

tax_identifier: TXN-2023-ABC456, tax_records: year: 2023, status: Processed, refund_issued: 620.00

## Input:
- Ciphertext:

.selegnA soL ni sediser ,naciremA na ,aideL

- Plaintext:

Figure 15: Enhenced Prompt (Reverse - 3shot - Letter)
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Example C.9

## Background:
Decrypt the provided Ciphertext and return the corresponding Plaintext following the given algorithm flow and examples.

Think step by step.

Provide the Plaintext result in the format <result>text</result>, where text is the decrypted text.

## Algorithm Flow:
For each pair of letters in the **Plaintext**, their positions are swapped to produce the **Ciphertext**. If the number

of letters is odd, the last letter remains in its original position.

## Examples:
* Example 1:

- Ciphertext:

aNem :mEli yoJnhos;nD ta efoB riht :uJyl1 ,51 99;0P sapsro tuNbmre :9Y78563412

- Plaintext:

Name: Emily Johnson; Date of Birth: July 15, 1990; Passport Number: Y987654321

* Example 2:

- Ciphertext:

aCesN mueb:r2 20-4SP0-1032;4C sa eyTep :hTfe/trBae-knI ;iFilgnD ta:eO tcbore1 ,92 204

- Plaintext:

Case Number: 2024-PS-001234; Case Type: Theft/Break-In; Filing Date: October 19, 2024

* Example 3:

- Ciphertext:

at_xdineitifre :XT-N0232A-CB54,6t xar_cerosd :yae:r2 20,3s atut:sP orecssde ,erufdni_sseu:d6 020.0

- Plaintext:

tax_identifier: TXN-2023-ABC456, tax_records: year: 2023, status: Processed, refund_issued: 620.00

## Input:
- Ciphertext:

eLid,aa nmArecina ,erised sniL soA gnlese.

- Plaintext:

Figure 16: Enhenced Prompt (SwapPairs - 3shot - Letter)
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Example C.10

## Background:
Decrypt the provided Ciphertext and return the corresponding Plaintext following the given algorithm flow and examples.

Think step by step.

Provide the Plaintext result in the format <result>text</result>, where text is the decrypted text.

## Algorithm Flow:
This encryption method converts each letter of the **Plaintext** into two letters in the **Ciphertext**, such that the

average of their ASCII values equals the ASCII value of the original letter.

## Examples:
* Example 1:

- Ciphertext:

MOaalndf: DFlnhjkmxz IKnpgimortnpmo; CEaasudf npeg AChjqssugi: IKtvkmxz 15, 1990; OQaartrtoqn-

pqssu MOtvlnacdfqs: XZ987654321

- Plaintext:

Name: Emily Johnson; Date of Birth: July 15, 1990; Passport Number: Y987654321

* Example 2:

- Ciphertext:

BDaartdf MOtvlnacdfqs: 2024-OQRT-001234; BDaartdf SUxzoqdf: SUgidfegsu/ACqsdfaajl-HJmo;

EGhjkmhjmofh CEaasudf: NPbdsunpacdfqs 19, 2024

- Plaintext:

Case Number: 2024-PS-001234; Case Type: Theft/Break-In; Filing Date: October 19, 2024

* Example 3:

- Ciphertext:

suaawy_hjcedfmosuhjeghjdfqs: SUWYMO-2023-AAACBD456, suaawy_qsdfbdnpqscert: xzdfaaqs: 2023,

rtsuaasutvrt: OQqsnpbddfrtrtdfce, qsdfegtvmoce_hjrtrttvdfce: 620.00

- Plaintext:

tax_identifier: TXN-2023-ABC456, tax_records: year: 2023, status: Processed, refund_issued: 620.00

## Input:
- Ciphertext:

KMdfcehjaa, aamo AAlndfqshjbdaamo, qsdfrthjcedfrt hjmo KMnprt AAmofhdfkmdfrt.

- Plaintext:

Figure 17: Enhenced Prompt (DualAvgCode - 3shot - Letter)
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Example C.11

## Background:
Decrypt the provided Ciphertext and return the corresponding Plaintext following the given algorithm flow and examples.

Think step by step.

Provide the Plaintext result in the format <result>text</result>, where text is the decrypted text.

## Algorithm Flow:
For each letter in the **Plaintext**: - If the ASCII value is even, add 1 to it to get the corresponding character in

the **Ciphertext**. - If the ASCII value is odd, subtract 1 to get the new character in the **Ciphertext**.

## Examples:
* Example 1:

- Ciphertext:

Ozld: Dlhmx Kniorno; Ezud ng Chsui: Ktmx 15, 1990; Qzrrqnsu Otlcds: X987654321

- Plaintext:

Name: Emily Johnson; Date of Birth: July 15, 1990; Passport Number: Y987654321

* Example 2:

- Ciphertext:

Bzrd Otlcds: 2024-QR-001234; Bzrd Uxqd: Uidgu/Csdzj-Ho; Ghmhof Ezud: Nbuncds 19, 2024

- Plaintext:

Case Number: 2024-PS-001234; Case Type: Theft/Break-In; Filing Date: October 19, 2024

* Example 3:

- Ciphertext:

uzy_hedouhghds: UYO-2023-ZCB456, uzy_sdbnser: xdzs: 2023, ruzutr: Qsnbdrrde, sdgtoe_hrrtde: 620.00

- Plaintext:

tax_identifier: TXN-2023-ABC456, tax_records: year: 2023, status: Processed, refund_issued: 620.00

## Input:
- Ciphertext:

Mdehz, zo Zldshbzo, sdrhedr ho Mnr Zofdmdr.

- Plaintext:

Figure 18: Enhenced Prompt (ParityShift - 3shot - Letter)
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Example C.12

## Background:
Decrypt the provided Ciphertext and return the corresponding Plaintext following the given algorithm flow and examples.

Think step by step.

Provide the Plaintext result in the format <result>text</result>, where text is the decrypted text.

## Algorithm Flow:
The algorithm splits the **Plaintext** into words based on spaces. Each word is then individually encrypted using the

Caesar cipher, resulting in the **Ciphertext**.

## Examples:
* Example 1:

- Ciphertext:

e:Nam lyEmi nson;Joh eDat fo th:Bir yJul 15, 0;199 sportPas ber:Num 7654321Y98

- Plaintext:

Name: Emily Johnson; Date of Birth: July 15, 1990; Passport Number: Y987654321

* Example 2:

- Ciphertext:

eCas ber:Num 4-PS-001234;202 eCas e:Typ ft/Break-In;The ingFil e:Dat oberOct 19, 4202

- Plaintext:

Case Number: 2024-PS-001234; Case Type: Theft/Break-In; Filing Date: October 19, 2024

* Example 3:

- Ciphertext:

_identifier:tax -2023-ABC456,TXN _records:tax ar:ye 3,202 tus:sta cessed,Pro und_issued:ref .00620

- Plaintext:

tax_identifier: TXN-2023-ABC456, tax_records: year: 2023, status: Processed, refund_issued: 620.00

## Input:
- Ciphertext:

ia,Led na rican,Ame idesres ni Los eles.Ang

- Plaintext:

Figure 19: Enhenced Prompt (WordShift - 3shot - Letter)
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Table 12: Results on CipherBank(Enhanced Prompt)

Model Substitution Ciphers Transposition Ciphers Custom Ciphers Cipher Score

Rot13 Atbash Polybius Vigenère Reverse SwapPairs DualAvgCode ParityShift WordShift Accuracyavg

Open-source Chat Models

Mixtral-8x22B-v0.1 0.76 0 0 0 0.38 0 2.67 0.38 0.38 0.51
Qwen2.5-72B-Instruct 12.60 9.16 0 0 0 0 2.29 0.38 1.53 2.88
Llama-3.1-70B-Instruct 2.67 1.15 0 0 1.53 0.38 1.15 0 0 0.76
Llama-3.3-70B-Instruct 4.58 1.53 0 0.38 1.15 0 1.15 0 0 0.98
DeepSeek-V3 41.60 27.86 0.38 0.38 65.95 5.34 12.66 0.76 5.17 17.79

Closed-source Models

GPT-4o-mini-2024-07-18 21.76 19.08 0 0.38 4.39 0 0 0 0 5.07
GPT-4o-2024-08-06 45.42 24.05 0 0.76 51.53 8.40 1.91 1.15 10.31 15.95
GPT-4o-2024-11-20 45.42 41.98 0 0 53.63 8.02 3.82 1.15 9.54 18.17
gemini-1.5-pro 63.69 5.73 0.76 0.38 14.12 2.67 0.38 1.91 10.69 11.15
gemini-2.0-flash-exp 45.04 22.90 2.29 0.38 46.56 4.58 3.82 0 1.15 14.08
Claude-Sonnet-3.5-1022 92.75 82.06 78.24 2.48 79.39 9.73 2.48 62.02 44.85 50.44

Reasoning Models

QwQ-32B-Preview 1.91 3.05 2.67 0 0 0 2.67 0.38 0.38 1.23
DeepSeek-R1 88.37 86.54 72.73 0.76 46.96 75.01 73.17 74.42 1.51 57.72
gemini-2.0-flash-thinking 37.98 19.09 10.50 0 55.34 4.96 4.77 0.38 6.11 15.46
o1-mini-2024-09-12 54.20 72.14 50.0 0.76 11.07 18.70 47.33 49.62 7.25 34.56

sus externally sourced structured text (e.g., quotes
from Shakespeare’s works). The structured text
exhibits greater linguistic familiarity, while the
privacy-sensitive data represents real-world encryp-
tion needs, lacking inherent semantic patterns.

As shown in Table 13 and Table 14, models
generally perform better on structured text, sug-
gesting that they leverage linguistic priors rather
than strictly following decryption rules. When en-
countering encrypted text with recognizable pat-
terns, models tend to shortcut reasoning, aligning
decoded fragments with plausible linguistic struc-
tures instead of strictly adhering to learned trans-
formation rules. Conversely, for less structured,
domain-specific text, models struggle to infer de-
cryption patterns, reinforcing the advantage of Ci-
pherBank’s privacy-sensitive dataset, which forces
models to engage in independent reasoning rather
than rely on pretraining biases.

D Error Analysis

D.1 Error Classification
This section defines the error categories observed
in model decryption outputs. These classifications
help identify systematic failure patterns and pro-
vide insights into how models approach crypto-
graphic reasoning.

• (A) Omission/Insertion: The model output
contains missing or extra characters, words, or
punctuation compared to the reference plain-
text. These errors indicate incomplete decryp-
tion or unintended modifications, leading to

partial but inaccurate results.

• (B) Name Decryption Error: The decryption
result is correct except for the name part,
which remains incorrect or partially distorted.
This suggests challenges in handling named
entities, possibly due to memorization effects
or entity-based biases.

• (C) Semantic Inference: The model makes er-
rors based on semantic reasoning rather than
strictly following decryption rules. Instead of
decoding symbols precisely, the model hal-
lucinates plausible but incorrect outputs that
fit the general meaning of the sentence. This
indicates a tendency to prioritize linguistic
coherence over strict decryption fidelity.

• (D) Reorganization: The output preserves the
exact meaning of the reference plaintext but
rearranges the sentence structure. This sug-
gests that the model prioritizes fluency over
strict character-level fidelity, leading to errors
in cryptographic tasks where precision is es-
sential.

• (E) Reasoning Failure: The model output is
significantly different from the reference, and
decryption is essentially unsuccessful. This
suggests a fundamental failure in identifying
encryption patterns, leading to outputs that
bear little resemblance to the expected plain-
text. This category includes cases where the
model fails to infer transformation rules or
apply correct decryption strategies.
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Table 13: Decryption Performance on Privacy-Sensitive Data

Model Rot13 Atbash Polybius Vigenère Reverse Swap DualAvgCode ParityShift WordShift Accuracyavg

Open-source Models

DeepSeek-V3 24.34 15.64 15.70 0 33.72 3.51 0 4.35 15.64 12.54
DeepSeek-R1 57.88 71.02 71.55 4.35 33.57 4.35 0 12.71 8.70 29.35

Closed-source Models

GPT-4o-2024-11-20 21.74 21.74 0 0 30.43 8.70 0 0 13.04 10.63
Gemini-2.0-Flash-Exp 47.83 4.35 4.35 0 52.17 0 4.35 4.35 13.04 14.49
Claude-Sonnet-3.5-1022 86.96 78.26 65.22 4.35 91.30 13.04 4.35 52.17 47.83 49.28
Gemini-2.0-Flash-Thinking 39.13 4.35 0 0 60.87 0 0 4.35 30.43 15.46
o1-Mini-2024-09-12 60.87 86.96 69.57 0 8.70 0 13.04 17.39 4.35 28.99

Table 14: Decryption Performance on Structured Text

Model Rot13 Atbash Polybius Vigenère Reverse SwapPair DualAvgCode ParityShift WordShift Accuracyavg

Open-source Models

DeepSeek-V3 76.12 24.03 15.70 0 52.17 29.40 0 12.71 55.13 29.47
DeepSeek-R1 84.51 85.04 100 7.59 79.10 8.70 8.70 15.64 30.43 46.63

Closed-source Models

GPT-4o-2024-11-20 78.26 39.13 4.35 0 86.96 21.74 0 4.35 43.48 30.92
Gemini-2.0-Flash-Exp 86.96 13.04 4.35 0 86.96 8.70 0 17.39 43.48 28.99
Claude-Sonnet-3.5-1022 91.30 95.65 95.65 4.35 100 52.17 8.70 78.26 95.65 69.08
Gemini-2.0-Flash-Thinking 86.96 13.04 8.70 0 69.57 17.39 0 0 52.17 27.54
o1-Mini-2024-09-12 82.61 95.65 78.26 0 60.87 4.35 13.04 17.39 43.48 43.96

• (F) Other: Miscellaneous errors that do not fit
into the defined categories.

This classification framework provides a struc-
tured approach to analyzing decryption errors, help-
ing to pinpoint systematic weaknesses and guide
future improvements in cryptographic reasoning
models.

D.2 Examples of Different Error Types

To further illustrate the types of decryption errors
encountered in our evaluation, we provide con-
crete examples corresponding to each error cat-
egory. These cases demonstrate how models fail
in various aspects of decryption, including omis-
sion/insertion, name decryption errors, semantic
inference, reorganization, reasoning failures, and
other anomalies. Example D.1 - D6 showcase rep-
resentative examples of each error type.

D.3 Detailed Error Distribution Tables

Tables 15–20 present a detailed breakdown of error
distributions across different encryption algorithms
for the six selected models. From these results, we
identify several common trends and model-specific
differences.
Challenges in Name Decryption and Symbolic
Reasoning. Across all models, name decryption
errors remain prevalent, particularly in Atbash and

Polybius, indicating persistent difficulties in han-
dling entity-based transformations. Additionally,
models struggle with key-based and transposition
ciphers such as Vigenère and SwapPairs, suggest-
ing limitations in tracking multi-step transforma-
tions and generalizing decryption strategies.
Semantic Overreliance vs. Overthinking in De-
cryption. Chat models often exhibit semantic in-
ference errors, where decrypted outputs align with
linguistic patterns rather than encryption rules. In
contrast, reasoning models tend to overthink sim-
ple tasks, leading to unnecessary self-correction
loops that degrade performance in straightforward
ciphers like Reverse.
Structural Alignment and Insertion Errors. Fre-
quent omission and insertion errors in WordShift
and Reverse ciphers highlight difficulties in pre-
serving character order. This suggests that models
rely on semantic priors rather than strict symbolic
reasoning, leading to misaligned outputs.

Key Takeaways:

• Chat models (Claude, Gemini) perform well
in substitution ciphers but struggle with com-
plex rule-based encryption.

• Reasoning models (DeepSeek-R1, o1) main-
tain better structural accuracy but under-
perform in transposition-based and key-
dependent ciphers.
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Example D.1: Error Type: Omission/Insertion

Example 1:
Predictions: Card Number: ID 1245-6789-0123

References: Clark holds the ID Card Number 1245-6789-0123.

Example 2:
Predictions: Card Number: ID 1245-6789-0123

References: Clark holds the ID Card Number 1245-6789-0123.

Example 3:
Predictions: Salary Amount: $67,000; Pay Date: 2023-10-25

References: Salary Amount: $67,000, Pay Date: 2023-10-25.

Example D.2: Error Type: Name Decryption Error

Example 1:
Predictions: Learn, an American, inside on Los Angeles.

References: Ledia, an American, resides in Los Angeles.

Example 2:
Predictions: Individual ID: A1234567; Name: John Doe; Age: 34; Gender Identity: Cisgender 16k11.2 Location, Country

State Citizenship.

References: Individual ID: A1234567; Name: Jane Doe; Age: 34; Genetic Testing: Chromosome 16p11.2 Deletion, Celiac

Disease Predisposition.

Example 3:
Predictions: Handed lost the passport Number A12345678.

References: Dean holds the passport number A12345678.

Example D.3: Error Type: Semantic Inference

Example 1:
Predictions: Jessica Brown, Bachelor of Biology, GPA: 3.9, Graduated 2023, Skills: Genetics, Microbiology, Ecology,

Bioinformatics.

References: Jessica Brown, Bachelors in Biology, GPA: 3.9, Graduated 2023, Courses: Genetics, Microbiology, Ecology,

Biochemistry.

Example 2:
Predictions: Patent-pending design specification PR2023_KURITY, Company Z, including batch production requirements.

References: Patent-pending design specification PR2023_KURITY, Company Z, including batch performance analysis.

Example 3:
Predictions: Office ID: P12345, Name: John, Position: Manager, Department: Finance.

References: Officer ID: P12345, Name: John, Position: Sergeant, Department: Homicide.
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Example D.4: Error Type: Reorganization

Example 1:
Predictions: Name: Ledia; Nationality: American; Address: Los Angeles

References: Ledia, an American, resides in Los Angeles.

Example 2:
Predictions: Passport Number: A12345678; Holder Name: Dean

References: Dean holds the passport number A12345678.

Example 3:
Predictions: Name: Peter; Date of Birth: April 23, 1985; Passport Number: X123456789

References: Peter was born on April 23, 1985, and carries a passport with the number X123456789.

Example D.5: Error Type: Reasoning Failure

Example 1:
Predictions: Address: 123 Main St, Apt 4B, New York, NY, Zip Code: 10001, Phone: 555-1234, Unit: 101, Floor: 2.

References: Officer: Lisa Grant, Sergeant, Downtown Precinct, Patrol Car: VG2301, Equipment: Radar Gun, Model:

RGX501, Weapon: Taser X2.

Example 2:
Predictions: Welcome, once more, securely within.

References: Ledia, an American, resides in Los Angeles.

Example 3:
Predictions: Passport ID: 123456789; Expiry Date: Emily, 38, Issued By Authority, Renewal By Agency. Valid Until 2025,

Expiry Passport.

References: Patient ID: MRN456789; Medical History: Emily, 38, diagnosed with asthma, treated with inhalers. Allergic to

dust mites, pollen.

Example D.6: Error Type: Other

Example 1:
Predictions: CookieID12345 maintain login status for UserID98765 on www.example.com, facilitating seamless access.

Analyzing records UserID98765’s engagement, deducting 500 page views and a click-through rate of 4.5% across the session.

References: CookieID12345 maintains login status for UserID98765 on www.example.com, facilitating seamless access.

Analytics tracks UserID98765’s engagement, documenting 500 page views and a click-through rate of 4.5% across the

session.

Example 2:
Predictions: Code: Coordinates: Latitude Longitude: 38.251° N, -85.754° W, Latitude Longitude: 34.091° N, -118.493° W.

References: Base Distribution: North Plains Base: 38.251° N, -85.754° W, East Valley Site: 34.091° N, -118.493° W.

Example 3:
Predictions: Name: Alex Smith; Salary: $87,500; Pay Frequency: Biweekly; Position: Software Developer; Employee ID:

EID-257846; Department: IT.

References: Name: Alex Smith, Salary: $87,500, Pay Frequency: Biweekly, Position: Software Developer, Employee ID:

EID-257846, Department: IT.
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Table 15: Error Type Percentages for Different Algorithms in Claude-Sonnet-3.5-1022 Model

Algorithm
Error Types

Omission/Insertion Name Decryption Error Semantic Inference Reorganization Reasoning Failure Other

Rot13 33.33 51.85 0.00 11.11 3.70 0.00
Atbash 15.79 78.95 0.00 3.51 0.00 1.75

Polybius 42.62 45.90 0.00 11.48 0.00 0.00
Vigenère 2.73 32.42 5.08 3.52 56.25 0.00
Reverse 39.24 48.10 0.00 5.06 6.33 1.27

SwapPairs 15.98 38.52 2.05 2.87 38.11 2.46
DualAvgCode 6.88 39.68 8.50 2.43 41.30 1.21

ParityShift 19.79 70.83 4.17 3.12 2.08 0.00
WordShift 51.95 22.08 2.60 8.44 12.34 2.60

Table 16: Error Type Percentages for Different Algorithms in DeepSeek-R1 Model

Algorithm
Error Types

Omission/Insertion Name Decryption Error Semantic Inference Reorganization Reasoning Failure Other

Rot13 40.00 30.00 4.29 21.43 1.43 2.86
Atbash 42.59 24.07 0.93 29.63 0.00 2.78

Polybius 48.63 17.12 0.68 21.92 8.90 2.74
Vigenère 4.60 18.01 2.68 2.30 71.65 0.77
Reverse 25.64 19.66 1.71 45.30 6.41 1.28

SwapPairs 9.20 25.29 3.07 2.30 58.62 1.53
DualAvgCode 25.63 22.61 3.52 28.64 19.10 0.50

ParityShift 7.02 29.39 6.58 3.95 52.19 0.88
WordShift 29.17 22.92 2.08 25.42 20.00 0.42

Table 17: Error Type Percentages for Different Algorithms in DeepSeek-V3 Model

Algorithm
Error Types

Omission/Insertion Name Decryption Error Semantic Inference Reorganization Reasoning Failure Other

Rot13 10.73 55.93 15.82 5.08 11.86 0.56
Atbash 8.07 38.12 7.17 3.59 41.26 1.79

Polybius 5.47 12.11 2.34 2.73 76.95 0.39
Vigenère 0.38 20.77 2.69 0.77 74.23 1.15
Reverse 21.50 40.19 5.61 13.55 18.22 0.93

SwapPairs 1.92 18.39 2.68 0.38 76.25 0.38
DualAvgCode 3.07 12.64 3.45 2.68 77.78 0.38

ParityShift 1.93 28.57 3.86 0.77 64.48 0.39
WordShift 27.80 29.46 4.56 17.01 20.33 0.83

Table 18: Error Type Percentages for Different Algorithms in gemini-1.5-pro Model

Algorithm
Error Types

Omission/Insertion Name Decryption Error Semantic Inference Reorganization Reasoning Failure Other

Rot13 12.98 58.02 0.76 5.34 22.14 0.76
Atbash 1.15 15.00 3.08 0.77 78.85 1.15

Polybius 4.21 17.24 3.07 1.92 71.65 1.92
Vigenère 2.29 14.89 3.44 0.76 78.63 0.00
Reverse 20.85 33.19 8.94 10.21 26.38 0.43

SwapPairs 6.49 25.57 1.91 1.53 63.36 1.15
DualAvgCode 2.68 13.03 4.60 1.92 77.39 0.38

ParityShift 3.08 28.46 3.08 0.38 64.23 0.77
WordShift 34.25 24.20 2.74 18.72 19.63 0.46

• All models show high name decryption errors
and reasoning failures in Vigenère and Swap-
Pairs, highlighting gaps in symbolic reasoning
and long-term dependency tracking.

These observations reveal that no single model
excels across all ciphers, emphasizing the need
for advancements in structured reasoning and sym-
bolic manipulation for decryption tasks. Future
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Table 19: Error Type Percentages for Different Algorithms in o1-mini Model

Algorithm
Error Types

Omission/Insertion Name Decryption Error Semantic Inference Reorganization Reasoning Failure Other

Rot13 26.95 38.30 13.48 17.02 1.42 2.84
Atbash 37.35 31.33 7.23 16.87 6.02 1.20

Polybius 30.94 32.37 1.44 25.18 8.63 1.44
Vigenère 0.00 21.43 10.71 3.57 64.29 0.00
Reverse 12.70 29.10 8.20 32.38 17.21 0.41

SwapPairs 1.91 9.54 1.53 0.00 86.64 0.38
DualAvgCode 0.00 18.52 0.00 3.70 77.78 0.00

ParityShift 4.55 34.30 3.31 4.96 52.48 0.41
WordShift 11.58 28.57 4.63 5.79 49.03 0.39

Table 20: Error Type Percentages for Different Algorithms in o1 Model

Algorithm
Error Types

Omission/Insertion Name Decryption Error Semantic Inference Reorganization Reasoning Failure Other

Rot13 16.19 28.57 4.76 5.71 43.81 0.95
Atbash 29.09 49.09 5.45 10.91 3.64 1.82

Polybius 40.91 28.79 6.06 10.61 12.12 1.52
Vigenère 4.62 36.15 1.54 1.15 56.15 0.38
Reverse 16.14 25.56 3.59 14.35 38.57 1.79

SwapPairs 5.26 31.58 5.26 5.26 52.63 0.00
DualAvgCode 24.62 33.85 3.08 2.31 35.38 0.77

ParityShift 4.04 26.77 4.55 2.02 62.12 0.51
WordShift 30.88 24.26 2.94 18.38 21.32 2.21

improvements could focus on:

• Minimizing the Impact of Semantic Bias in
Logical Inference: Cryptographic reasoning
tasks often necessitate abstract rule extraction
rather than reliance on semantic interpretation.
An excessive dependence on linguistic priors
can impede the model’s ability to identify un-
derlying structural transformations, resulting
in systematic errors. Future advancements
should focus on reducing semantic interfer-
ence to improve the extraction of abstract log-
ical patterns.

• Enhancing Comparative Reasoning for Pat-
tern Recognition: While many decryption
tasks in CipherBank are straightforward for
humans, models frequently fail to derive cor-
rect transformation rules from provided ex-
emplars. Strengthening contrastive reasoning
mechanisms can enable models to better dif-
ferentiate encryption structures, facilitating
more effective pattern recognition and decryp-
tion.

• Addressing Overthinking in Model Reason-
ing: Experimental results indicate that rea-
soning models exhibit superior performance
on complex tasks but underperform on sim-

pler problems. Analysis of inference trajecto-
ries reveals a tendency toward recursive self-
evaluation, where models continuously revise
their approach, even when a straightforward
solution is available. For example, in the Re-
verse cipher, models occasionally attempt un-
necessarily complex reasoning paths instead
of applying direct positional transformations.
Mitigating such overthinking behaviors could
enhance efficiency and robustness in logical
reasoning.

Addressing these limitations will bridge the gap
between linguistic fluency and structured crypto-
graphic reasoning, making LLMs more robust in
real-world encryption scenarios.
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