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Abstract

Large language models (LLMs) have shown re-
markable performance in vision-language tasks,
but their application in the medical field re-
mains underexplored, particularly for integrat-
ing structured time series data with unstruc-
tured clinical notes. In clinical practice, dy-
namic time series data, such as lab test results,
capture critical temporal patterns, while clini-
cal notes provide rich semantic context. Merg-
ing these modalities is challenging due to the
inherent differences between continuous sig-
nals and discrete text. To bridge this gap, we
introduce ProMedTS, a novel self-supervised
multimodal framework that employs prompt-
guided learning to unify these heterogeneous
data types. Our approach leverages lightweight
anomaly detection to generate anomaly cap-
tions that serve as prompts, guiding the en-
coding of raw time series data into informa-
tive prompt embeddings. These prompt em-
beddings are aligned with textual representa-
tions in a shared latent space, preserving fine-
grained temporal nuances alongside semantic
insights. Furthermore, our framework incor-
porates tailored self-supervised objectives to
enhance both intra- and inter-modal alignment.
We evaluate ProMedTS on disease diagnosis
tasks using real-world datasets, and the results
demonstrate that our method consistently out-
performs state-of-the-art approaches.

1 Introduction

Recent advancements in natural language process-
ing (NLP) have revolutionized healthcare by en-
abling deeper insights into electronic health records
(EHRs). EHRs combine structured data, such as
time series laboratory (lab) test results, with un-
structured data, including clinical notes and medi-
cal images. While large language models (LLMs)
excel at processing unstructured text (Nori et al.,
2023; Singhal et al., 2023) and vision transform-
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Figure 1: (a) LLMs struggle to process continuous time
series data due to modality gaps with discrete textual
representations. (b) ProMedTS bridges this gap by lever-
aging anomaly descriptions and time series prompts,
aligning structured EHR data with clinical notes for im-
proved multimodal understanding.

ers have driven progress in medical image analysis
(Wang et al., 2022; Chen et al., 2021), integrating
time series data with text remains a challenge. Un-
like text, which is composed of discrete tokens,
time series data contains continuous signals with
temporal dependencies as illustrated in Figure 1(a).

Current multimodal learning approaches, espe-
cially contrastive learning methods (Radford et al.,
2021; Li et al., 2023), have been effective in align-
ing vision data and text data. However, they are less
suited to bridge the gap between time series data
and text data. Time series data require fine-grained
temporal representations in a high-dimensional
space and are often irregularly sampled, exhibit
diverse frequencies, and include missing values
(Harutyunyan et al., 2019a). In addition, the lack of
large-scale paired datasets that link raw time series
with textual descriptions further hampers LLMs
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from incorporating structured information into clin-
ical decision-making (Niu et al., 2024a). Without
an effective fusion mechanism, LLMs cannot fully
exploit the rich temporal patterns in structured EHR
data.

To address these challenges, we propose
ProMedTsS, a self-supervised and prompt-guided
framework designed to unify medical notes and
time series lab tests for natural comprehension
by LLMs. As illustrated in Figure 1(b), rather
than only feeding raw time series data directly
into LLMs, our framework introduces anomaly
descriptions as a modality bridge to facilitate
alignment between text and time series data and to
aid in generating time series prompt embeddings.
These descriptions are produced using anomaly
detection technology (Vinutha et al., 2018), which
converts continuous signals into human-readable
summaries that encompass coarse-grained time
series patterns. The process consists of two steps.
First, anomaly descriptions establish a direct
connection between time series lab tests and
medical notes. Second, the generated time series
prompt embeddings contain both coarse-grained
anomaly information and fine-grained time series
variation patterns. These embeddings are then
appended as prefix tokens to the input of the LLM.
This approach integrates structured time series
information into the language modeling process
without modifying the LLLM architecture, thereby
unifying both modalities within the same encoding
space and enhancing clinical decision-making.

We optimize ProMedTS with three self-supervised
learning objectives for learning the time series
prompt embeddings. A contrastive loss maps tex-
tual and time series modalities into a shared la-
tent space to learn the coarse-grained lab test in-
formation. An anomaly-time series matching loss
links numeric lab tests with their corresponding
anomaly descriptions to reinforce consistency and
learn the fine-grained lab test information. Finally,
an anomaly caption generation loss enhances the
representation of multi-granularity time series in-
formation within the time series prompt embed-
dings. Together, these objectives enable LLMs to
process both structured and unstructured EHR data
more effectively, addressing the gap between lan-
guage and time series representations in healthcare
applications.

* We propose ProMedTS, a self-supervised

framework that integrates structured time se-
ries and unstructured textual EHR data into
LLMs without changing their architectures.

* We introduce anomaly descriptions as a tex-
tual bridge to align time series data with clini-
cal notes, supported by three self-supervised
objectives.

* We demonstrate that ProMedTS significantly
improves disease diagnosis on MIMIC-III and
MIMIC-1V, setting a new benchmark for mul-
timodal EHR learning.

2 Related Work

2.1 Multimodal Learning in Healthcare

The increasing diversity of EHR data has led to
significant advancements in multimodal learning
for healthcare applications. MedCLIP (Wang et al.,
2022) employs semantic contrastive learning to
align medical images with textual reports, while
RAIM (Qiao et al., 2019) and GLoRIA (Huang
et al., 2021) integrate numerical or image data with
text using attention mechanisms. LDAM (Niu et al.,
2021) further extends these approaches by lever-
aging cross-attention with disease labels to fuse
features from lab tests and clinical notes. EHR-
KnowGen (Niu et al., 2024a) transforms structured
lab data into text and incorporates external knowl-
edge for improved modality fusion. Despite these
advancements, achieving a unified latent embed-
ding that effectively captures interactions across
diverse modalities remains a key challenge in mul-
timodal EHR processing.

2.2 Healthcare with LLMs

Beyond multimodal learning, recent research has
explored generative approaches to healthcare mod-
eling. Conventional methods have primarily relied
on discriminative models for disease risk assess-
ment and diagnosis (Choi et al., 2016; Niu et al.,
2024b; Qiao et al., 2019). However, generative
models are increasingly being adopted, as demon-
strated by Clinical CoT (Kwon et al., 2024), apply-
ing LLMs for disease diagnosis generation. Rein-
forcement learning from human feedback (RLHF)
(Ouyang et al., 2022) and Chain-of-Thought (CoT)
prompting (Wei et al., 2022) have further enhanced
medical reasoning capabilities in models such as
GatorTron (Yang et al., 2022), MedPalm (Singhal
et al., 2023), and GPT4-Med (Nori et al., 2023).
While these models excel in medical question-
answering, they remain limited in real-world direct
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disease diagnosis and multimodal EHR processing.
EHR-KnowGen (Niu et al., 2024a) reframes dis-
ease diagnosis as a text-to-text generation problem
but overlooks the crucial temporal details embed-
ded in time series lab tests, underscoring the need
for more effective and dedicated multimodal fusion
strategies.

3 Methodology

In this section, we present the ProMedTS frame-
work for unifying heterogeneous EHR data through
prompt-guided learning. We begin by defining the
problem and describing the model inputs, then pro-
vide a high-level overview of the architecture. In
subsequent sections, we detail each module and
discuss how these components are applied to down-
stream tasks such as disease diagnosis.

3.1 Problem Definition

We introduce ProMedTS, aiming to reduce discrep-
ancies between language and time series EHRs.
Specifically, it leverages anomaly captions and gen-
erates time series prompt embeddings to unify both
modalities in a shared latent space. The inputs to
ProMedTsS, denoted by { M, X }, include medical
notes M € RBE*Nm (where B is the batch size
and IV, is the number of tokens) and numeric lab
test data X € RE*XLXNe (where L is the sequence
length and N, is the number of lab test variants).
Additionally, a lightweight anomaly detection (Vin-
utha et al., 2018) is employed to generate textual
descriptions of anomalies C € RB*Ne (details
in Appendix A.2). ProMedTS also uses learnable
time series query embeddings P € RBXNpxD|
which are transformed into time series prompt em-
beddings T~ € RB*M» XD \where N, is the query
length and D is the hidden dimension.

3.2 Model Overview

Figure 2 illustrates the overview of ProMedTsS,
which comprises three main modules. Three mod-
ules share the same Clinical-BERT(Alsentzer et al.,
2019) structured model for clinical tokens embed-
ding and are extended to support cross-attention,
self-attention, and prompt generation. The Time
Series Prompt Embedding (TSPE) module applies
a cross-attention mechanism to convert raw lab
test data into prompt embeddings, preserving key
temporal features. The Multimodal Textual Infor-
mation Fusion (MTIF) module encodes and merges
medical notes with anomaly captions in a unified

latent space, facilitating the extraction of comple-
mentary semantic information. Finally, the Self-
supervised Learning (SSL) module employs tai-
lored loss functions to bridge the modality gap and
maintain multi-granularity temporal details in the
learned representations. These modules work in
tandem to achieve robust alignment and fusion of
heterogeneous EHRs, and the following sections
provide in-depth explanations of each component
and its applications.

3.3 Time Series Prompt Embedding

The objective of the TSPE module is to extract and
encapsulate the inherent fine-grained temporal in-
formation from time series lab tests into time series
prompt embeddings. Let {X, P} represent the
module inputs. The numeric lab test data X is first
processed by a time series encoder (TSE) using
PatchTST (Nie et al., 2022). In parallel, the learn-
able query embeddings P, initialized using vectors
slicing from the Clinical-BERT word embedding
layer, serve as query tokens in the cross-attention
mechanism, guiding the selection of relevant tem-
poral features by attending to time series lab tests
encoded by TSE. To generate the final prompt em-
bedding T, we extend the multi-head self-attention
encoder of Clinical-BERT to support a multi-head
cross-attention mechanism, following a strategy
similar to that adopted in (Li et al., 2023). We des-
ignate X as both key and value while P serves as
the query:

T = Clinical-BERT (P, TSE(X), TSE(X)).
ey
This design ensures that the rich temporal patterns
in X are captured within 7, enabling subsequent
modules to leverage these features effectively.

3.4 Multimodal Textual Information Fusion

The MTIF module is designed to fuse medical notes
and anomaly descriptions effectively. We use the
anomaly captioning method to generate anomaly
descriptions, as illustrated in Figure 2. The inputs
to the MTIF module are medical notes M and lab
test anomaly descriptions C, which are encoded
separately by Clinical-BERT via the multi-head
self-attention mechanism:

E,, = Clinical-BERT(M, M, M),

2
E. = Clinical-BERT(C, C, C), @

where E,, € RBXNmxD and E, € RBXNexD,
The repeated inputs indicate that the key, query, and
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Figure 2: The ProMedTS model comprises three modules: the Time Series Prompt Embedding (TSPE) module,
the Multimodal Textual Information Fusion (MTIF) module, and the Self-supervised Learning (SSL) module. The
MTIF module utilizes Clinical-BERT to encode medical notes M, lab test data X, and anomaly descriptions C' to

generate time series prompt embeddings 7.

value matrices are identical for the self-attention
mechanism. This structure enables the model to
encode each type of textual information indepen-
dently while capturing the inherent characteristics
and context of each input. The combined textual
representation is then derived from E,,, and E_:

3

where Ef € RBXD | with @ indicating concatena-
tion, and AV G representing average pooling.

Ef = AVG([En © E.]),

3.5 Self-Supervised Learning

This module addresses the modality gap between
textual and time series EHR data using three spe-
cialized loss functions. By simultaneously aligning
cross-modal representations and preserving coarse-
and fine-grained temporal details, the model learns
to capture both semantic and temporal nuances.

3.5.1 Cross-Modal Contrastive Alignment

To promote cross-modal alignment and preserve
coarse-grained temporal information into time se-
ries prompt embeddings, we design a contrastive
loss that brings multimodal textual embedding and
time series embeddings closer when they originate
from the same patient and pushes them apart oth-
erwise. We first compute similarity matrices by

multiplying the fused text representation E'y with
the time series prompt embeddings 7T :

9(E;X) = max([Ef T(l)T’ ..., Ey T(Np)T])7

9(X E;) = max(['T(l) E}F, T W) Eﬂ),

“)
where the max operator performs max-pooling
across N, dimensions, yielding gg . X) and
9(X.E;) € RE*B_ Note that 9(E, x) measures
text-to-time series similarity (by fixing E and iter-
ating over 7"), while g x g ;) captures time-series-
to-text similarity (by fixing 7~ and iterating over
E). This process is the same as that used in vision-
language contrastive learning (Radford et al., 2021;
Li et al., 2023). We then apply the SoftMax func-
tion to generate two distinct sets of logits:

A(];Qx = SoftMaX(g(EfVX)), 5)
Q?Zf = SoftMax (g(X,Ef))

Let v/ and y**/ denote the ground truth labels

indicating whether the pairs correspond to the same
patient in a training batch (1 if matched, O other-
wise). We use cross-entropy H (-) to define the
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contrastive loss:
Econtrust = % E |:H (ngxa QZQ:E)

(6)
- H(y2, g2

3.5.2 Intra-Modal Matching

To further capture intra-modality consistency and
enhance alignment with fine-grained temporal in-
formation, we align lab tests with their correspond-
ing anomaly descriptions and time series prompt
embeddings. This alignment is modeled as a binary
classification task, distinguishing matched from un-
matched pairs of lab tests and anomaly captions.
Following Li et al. (2021), we employ a negative
mining strategy to generate labels y,,, by selecting
the most similar pairs in a training batch as negative
samples, where the top 1-ranked pair is labeled as
1 and the others as 0, based on the similarity com-
puted in Equation 4. We employ Clinical-BERT’s
cross-attention, where the concatenation of C' and
P serves as the query (aiming to align the time
series prompt embedding more closely with the
textual encoding space during training), and the
encoded time series X is used as both key and
value. A Multilayer Perceptron (MLP) classifier
with softmax activation, denoted f,qzch, predicts
the probability ¢,,:

G = Frnateh (Clinical—BERT( w(C) @ P,
(7
TSE(X),TSE(X))),

where fyy is the word embedding layer in Clinical-
BERT. We define the matching loss as:

Loatech = E[H (ym7 :’)m)] ) €]
where vy, is the one-hot ground truth label.

3.5.3 Anomaly Description Reconstruction

To ensure the time series prompt embeddings en-
code both coarse anomaly descriptions and fine-
grained temporal details, we reconstruct anomaly
captions from the learned embeddings. This step
helps unify language tokens and time series repre-
sentations in a shared space. Specifically, we use
Clinical-BERT with a language model head freqd,
setting E. as the query and 7™ as key and value:

Lyen = IE[H (C, fhead (Clinical- BERT( E,., T, 7')))].

)
This objective is a standard language model gener-
ation loss, computed as cross-entropy between the
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Figure 3: ProMedTS for empowering LLMs to in dis-
ease diagnosis.

predicted token distribution and the ground truth
tokens, encouraging the model to generate accurate
textual descriptions, thereby reinforcing alignment
between time series prompts and language tokens.

Overall Loss: We combine these objectives into a
single training loss:

['total =« ['contrast + B ﬁmatch +v ['gerw (10)

where «, 3, and -y are hyperparameters balancing
the three losses (see Appendix A.6). Our train-
ing algorithm aims to minimize L;.,; across all
samples (details in Appendix A.1).

3.6 LLM-based Disease Diagnosis with
ProMedTS

To illustrate the practical effectiveness of
ProMedTS in unifying textual and time series
data, we employ a pre-trained, frozen LLM model
for disease diagnosis. As depicted in Figure 3,
during ProMedTS’s fine-tuning, it first transforms
numeric lab test results into time series prompt
embeddings, which are subsequently aligned with
the LLM’s input dimensions through a tunable
fully connected layer. These embeddings then
serve as prefix soft prompts, concatenated with
the medical notes so that the model can ingest
structured signals from time series alongside un-
structured clinical text. By bridging language and
time series modalities, the LLM can process both
inputs concurrently, leveraging complementary
information for enhanced diagnostic accuracy.

4 Experiments

4.1 Datasets and Preprocessing

The MIMIC-III dataset (Johnson et al., 2016) is
a publicly available EHR dataset containing de-
identified patients who were admitted to ICUs be-
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Models Size Type | Modality Micro Macro
CLS[GEN|Lab|Note| Precision  Recall F1 Precision  Recall F1
MIMIC-III

GRU TOM [ v 7 4641 (3 45) 21.88(3.50) 2943 (1.50)[3047(1.23) 13.00(1 14) 14591 15)
PatchTST 192M| v v 32.64(5.50) 42.72(5.01) 36.02(1.00)|26.86(3.51) 29.71(4.75) 19.25(5.50)
TimeLLM 78M v v 3743(117) 5493(656) 3659(117) 1018(230) 3521(647) 1516(217)
CAML 36.1M| v/ v [69.04(0.15) 55.87(2.72) 61.54(0.30)|65.08(2.56) 50.12(s.05) 5442(0.04)
DIPOLE 39M | v V| 64.380.50) 57.94(115) 60.98(0 27)|61.63(1.03) 53.02(1 18) 55.68(0.19)
Flan-T5 60M v v [58.12(1.11) 66.23(0.72) 62.03(0.54)|36.56(1.03) 6247(0.76) 58.87(0.71)
OPT 125M v V' 42.56(0.05) 69.22(0.57) 52.71(0.71)|47.58(0.97) 65.06(0 85) 52.56(0.6)
QWEN-2.5 500M v v [49.77(1.13) 58.24(0.05) 5321(0.00)|30.32(1.08) 54.03(0.80) 52.99(0.02)
PROMPTEHR |75.2M v V' 359.29(0.07) 65.53(0.69) 62.24(0 23)|57.44(0 07) 62.87(0.61) 59.10(0.24)
LLaMA-1 7B V| vV 6142 0.08) 65.98(1.53) 63.64(0.41)|61.08(154) 61.64(1 57) 60.55(0.4a)
LDAM 413M| v VoV |68.0001 53) 57.12(0 47) 62.18(0.40)|6738(0.35) 51.500.05) 57440 60)
FROZEN 265M Vo v v 6109051 64.07(155 62.51(054)59.96(155) 59.99(1.66) 59.15(0.50)
EHR-KnowGen |76.9M v v v 6001(029) 6551(018) 6262(006) 5834(038) 6181(028> 5944(006)
ProMedTS

w/ OPT 316M V | v v 5457014y 54.920.21) 54.74(0.09)|55.92(0.08) 52.15(0.13) 53.68(0.07)
w/ QWEN-2.5 | 685M V| v v 5537015 58.97(0.18) 57.82(0.13)|56.450.14) 56.72(0.16) 55.97(0.13)
w/ Flan-T5-small | 268M v v v 6132(054) 6665(051) 6367(008) 6035(061) 6162(071) 6042(018)
W/Flan—T5—large 1B v Ve ve 6062(022) 6783(018) 64.02(0_11) 5943(037) 6365(054) 60.78(0‘13)

MIMIC-1V

GRU TOM [ v 7 56.23(1.13) 25.77(1.55) 3521 (1.36)|38.37(1.00) 16.97(1.22) 20.65 (132,
PatchTST 192M| v v 27.26(0.03) 5742(0.41) 36.97(0.10)|20.59(2.76) 43.72(0.25) 21.78(2.53)
TimeLLM 78M | v v 30.30(1.7) 60.46(1.08) 40.31 (1 20)|24.61 (2.21) 47.26(2.57) 25.56(1.60)
CAML 36.1M| v V' |72.82(0.54) 59.48(0.52) 65.40(0 56)|67.25(0.99) 50.73(1.40) 54.71(1.42)
DIPOLE 39M | v v [72.39(0.51) 61.38(0.53) 66.43(0.33)|70.45(0.37) 55.65(0.70) 60.37(0.62)
Flan-T5 60M v V' 166.24(0.52) 69.53(0.18) 67.92(0.41)|64.28(0.58) 66.01(0.54) 64.790.36)
OPT 125M v v [57.0200.62) 46.53(0.51) 51.25(0.37)|36.87(0.55) 44.32(0.44) 47.89(0.33)
QWEN-2.5 500M v v |52.34(0.62) 5447(0.51) 53.38(0.46)|33.31(0.55) 50.91(0.45) 51.20(0.3s)
PROMPTEHR |75.2M v v 6524065 70.31(0.56) 68.02(0.17)|63.53(0.4m) 67.02(0.65) 65.01(0.25)
LLaMA-1 7B V|V V| 68541 15) 69.54(073) 69.29(032)67.53(0.01) 66241 13) 6621 (0 64)
LDAM 413M| v Vv |7201(085) 62.740.62) 66.91(0.20)|69.77(0.15) 56.72(0.60) 60.77(0.45)
FROZEN 265M V|V |6781(0.7s) 69.08(004) 68:42(0.08)66.27(1.00) 6521(0.97) 6530(0.05)
EHR-KnowGen |76.9M V| v v 65800064 70.85(0.45) 68.16(011)|63.82(0.53) 67.24(0.55) 65.11(0 13)
ProMedTS

w/ OPT 316M V| v v 549915 55.20(0.19) 55.10(0.11)|56.81(0.10) 52.36(0.17) 53.23(0.10)
w/ QWEN-2.5 | 685M v | v v |48650.25) 72320017 58.14(0.16)|5735(0.20) 66.23(0.13) 57.51(0.12)
w/ Flan-T5-small| 268M v v v 71.63(0_46) 67.81(0.85) 69.69(0'18) 70.12(0_47) 63.58(0.79) 6621(017)
w/Flan-T5-large 1B v v v 7112(031) 6933(042) 70.21(0'05) 7097(042) 6551(064) 67.56(0_09)

Table 1: The performance of comparative methods in the disease diagnosis tasks on MIMIC-III and MIMIC-IV.
Please note CLS - classification model, GEN -generative model, Lab - lab test result, and Note - medical notes.

tween 2001 and 2012. It includes medical dis-
charge summaries, lab test results, chest x-ray im-
ages and more. Our analysis focuses on EHR
data from approximately 27,000 patients, includ-
ing complete medical discharge summaries and lab
test results. The MIMIC-IV dataset (Johnson et al.,
2023) comprises EHR data from 2008 to 2019. We
utilize approximately 29,000 EHR records from
MIMIC-1V, which include complete medical dis-
charge summaries and lab test results. Our study
targets 25 disease phenotypes as defined in the
MIMIC-III benchmark (Harutyunyan et al., 2019a).

Data Pre-processing. For medical notes, we ex-
tract the brief course from discharge summaries, re-
moving numbers, noise, and stopwords. Numerical
lab tests are converted into time series data using
the benchmark tools (Harutyunyan et al., 2019b),

with missing values filled using the nearest avail-
able numbers. Time series anomaly descriptions
are used with the method defined in Appendix A.2.
Data splitting follows the guidelines (Harutyunyan
et al., 2019b) using a 4:1 ratio for training and
testing.

4.2 Baseline Methods

We benchmark our approach against a range of
methods: GRU (Cho et al., 2014), PatchTST (Nie
et al., 2022), TimeLLM (Jin et al., 2023), CAML
(Mullenbach et al., 2018), DIPOLE (Ma et al.,
2017), Flan-T5 (Chung et al., 2024), OPT (Zhang
et al., 2022), QWEN-2.5 (Qwen et al., 2025),
PROMPTEHR (Wang and Sun, 2022), LLaMA-
1-7B (Touvron et al., 2023) with anomalies in-
put, LDAM (Niu et al., 2021), FROZEN (Tsim-
poukelli et al., 2021), and EHR-KnowGen (Niu
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et al., 2024a). Detailed configurations of these
baselines are provided in Appendix A.3. For the
disease diagnosis task, we adopt two scales of Flan-
T5 (Chung et al., 2024), OPT-0.1B, and QWEN-
2.5-0.5B as the frozen LLM to validate our model’s
effectiveness. To ensure a fair comparison, all base-
lines also employ Flan-T5-small as their backbone.
Reported results are averaged over five runs with
different random seeds. The statistical significance
was determined at p < 0.05 by t-test. Implementa-
tion details for every model are described in Ap-
pendix A.4, and the example of training instruc-
tions appears in Appendix A.5. Our code is pub-
licly available at github'.

4.3 Disease Diagnosis Performance

Table 1 shows the evaluation performance of dis-
ease diagnosis for our model ProMedTS with all
baselines. First, for a single modality model,
TimeLLM performs strongly with lab tests, high-
lighting the value of time-series inputs for LLMs
in disease diagnosis. Text-based methods (e.g.,
Flan-T5) generally outperform time-series ap-
proaches, suggesting that medical notes cap-
ture richer disease-related information. Multi-
modal models (e.g., EHR-KnowGen, LLaMA) ex-
ceed single-modality baselines (e.g., TimeLLM,
PROMPTEHR), confirming the benefits of inte-
grating text and time series. Generative approaches
(e.g., TimeLLM, LLaMA, EHR-KnowGen) also
outperform classification-based methods.  Al-
though LLaMA performs well, its higher variance
and parameter requirements reduce practicality.

Notably, the performance of our ProMedTS model,
which employs Flan-T5-small as its backbone
LLM, exceeds that of all baseline methods (espe-
cially LLaMA-1-7B) across both micro and macro
F1 scores. This outcome emphasizes the efficiency
and effectiveness of our approach in enabling
LLMs to achieve multimodal understanding for
disease diagnosis tasks. Additionally, ProMedTS
consistently improves disease diagnosis perfor-
mance across various backbone LLMs (Flan-T5-
small&large, OPT, QWEN), achieving an average
F1 score improvement of around 3%. These find-
ings underscore our model’s scalability, robustness,
and the generalizability of our approach.

"https://github.com/Healthcare-Data-Mining-
Laboratory/PromptMedTS-V1

4.4 Ablation Studies

4.4.1 Effect of Modality Alignment in
ProMedTS

This section presents ablation studies to evalu-
ate each module in ProMedTS. ProMedTS w/o
LAB excludes lab test, removing modality align-
ment with anomaly descriptions and medical notes.
ProMedTS w/o ANOMALY removes alignment
with anomaly descriptions while keeping align-
ment between lab test and medical notes to as-
sess the impact of self-supervision. Table 2 sum-
marizes the results, showing that ProMedTS w/o
LAB suffers a significant drop in F1 scores, high-
lighting the importance of the lab test. ProMedTS
w/o ANOMALY also shows reduced performance,
highlighting the challenges of aligning modalities
from discrete and continuous encoding spaces and
the adverse effects of misalignment on multimodal
understanding. These findings emphasize the cru-
cial role of both lab tests and anomaly captions as
input for learning accurate time series embeddings,
which in turn assist LLMs in disease diagnosis.

4.4.2 Impact of Self-Supervised Loss
Functions

Table 3 summarizes an ablation study on the loss
functions in ProMedTS. Both ProMedTS w/o CON-
TRAST and ProMedTS w/o MATCH show slight
declines in F1 scores, emphasizing the importance
of Leontrast for aligning and unifying time series
and textual inputs within a shared latent space. The
results also underscore the role of L,,,4¢c, in intra-
modal alignment, ensuring the distinctiveness of
time series data by aligning lab tests with time se-
ries prompt embeddings. Notably, ProMedTS w/o
GEN exhibits a significant drop in F1 scores, high-
lighting the critical role of L, in refining prompt
embeddings and integrating temporal information
from time series data and anomaly descriptions.

4.5 Model Efficiency and Complexity

Figure 4 illustrates the parameter counts and com-
putation times of baseline models on the two
datasets. Our model, ProMedTS, matches the pa-
rameter counts and computation times of multi-
modal baselines such as LDAM and FROZEN,
while using 25x fewer parameters and requiring
one-third less training time than LLaMA, all while
achieving superior diagnostic performance, high-
lighting its efficiency and effectiveness in language-
time series multimodal alignment and fusion.
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Models Micro Macro
Precision Recall F1 Precision Recall F1

MIMIC-III

ProMedTS 61.32(0'54) 6665(051) 63.67(0'08) 60.35(0'61) 61‘62(0_71) 60.42(0.18)

wlo LAB 589T(0.83) 6659057 62340260 | 5732088 6236061  59.05(0.22)

w/o ANOMALY 6009(032) 6503(098) 6244(022) 5913(043) 6046(115) 5911(025)
MIMIC-1V

ProMedTS 71.63(0'45) 67.81 (0.85) 69.69(0'18) 7012(047) 6358(079) 66.21(0.17)

wlo LAB 67.16(055) 6942050 68220051, | 6574062 6469048 6433015

w/o ANOMALY 7094(037) 6644(137) 6847(012) 6895(079) 6245(096) 6513(012)

Table 2: Ablation studies on different modality input and alignment designs for disease diagnosis.

Models — Micro — Macro
Precision Recall F1 Precision Recall F1

MIMIC-III

ProMedTS 6132(054) 6665(051) 63.67(0_08) 6035(061) 61 .62(0‘71) 60'42(0.18)

wlo CONTRAST | 6024(025)  66.000050)  629900m | 3992060 614105  59.730.07)

w/o MATCH 6012(058> 6614(150) 6296(002) 5970(118) 6137(134) 5965(011)

w/o GEN 5995035 6615007 6289010 | 3957055 6132050 5961020
MIMIC-1V

ProMedTS 7163(046) 6781(085) 69.69(018) 7012(047) 6358(079) 66.21(017)

wlo CONTRAST | 70.19025  66220.39)  68.61(0.00) | 6905024y 6240055  6521(0.12)

w/o MATCH 7079(034) 6649(038) 6867(015) 6891(073) 6225(048) 6547(015)

w/o GEN 71.30(000) 6579057 6844013 | 6914045 620505  65.03(013)

Table 3: Ablation studies on the effectiveness of different loss functions of our model for disease diagnosis.
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Figure 4: The model parameters and computation time
of all baselines.

In addition, we conducted an efficiency evalua-
tion using EHR-KnowGen with different backbone
LLMs. As shown in Table 4, ProMedTS outper-
formed EHR-KnowGen by an average of 2% im-
provement in F1 scores while maintaining compara-
ble training times with backbone LLMs of OPT and
QWEN-2.5. This result supports the effectiveness
and efficiency of our model in disease diagnosis.

4.6 Sensitivity Analysis of Time Series
Prompt Length

We performed a sensitivity analysis to examine
the impact of the time series prompt embedding
length (/V,,) on the performance of ProMedTS in
disease diagnosis. Table 5 shows the F1 scores
for embedding lengths of 12, 24, and 36. Slight
fluctuations are observed in both micro and macro
F1 scores across datasets. The optimal embedding
length is 24 for both datasets, consistent with the
configuration used in our experiments.

4.7 Evaluating the Role of Anomaly
Descriptions

To highlight the advantages of using lab test
anomaly captions over raw numerical time series
values in LLMs, we evaluate Flan-T5-small with
both input types. Table 6 presents the evaluation
results on the MIMIC-III and MIMIC-1V datasets
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Training

Models . Micro F1 | Macro F1
Time (h)
MIMIC-III
EHR-KnowGen
w/ OPT 8h 53.11 52.85
w/ QWEN-2.5 12h 54.09 51.45
ProMedTS
w/ OPT 8h 54.74 53.68
w/ QWEN-2.5 14h 57.82 55.97
MIMIC-III
EHR-KnowGen
w/ OPT 8.5h 52.46 50.19
w/ QWEN-2.5 13h 54.19 52.77
ProMedTS
w/ OPT 9h 55.10 53.23
w/ QWEN-2.5 14.5h 58.14 57.51

Table 4: Performance and Efficiency Comparison on
Disease Diagnosis Tasks with Different LLMs.

N, \ Micro F1 \ Macro F1
MIMIC-III

2 63.090.00) 59.690.12)

24 63.67(0.08) 60.420.18)

36 63.32(0.00) 59.96(0.15)
MIMIC-1V

V) 68.980.15) 6543015

24 69.69(0.13) 66.21(0.17)

36 69.41(0.10) 65.910.20)

Table 5: Sensitivity analysis on different lengths of time
series prompt embedding.

for disease diagnosis. The results show that Flan-
TS5 achieves over a 2% improvement in Micro F1
score when using anomaly captions, demonstrat-
ing that LLMs interpret anomaly captions more
effectively than raw numerical values in time series
lab test data. Additionally, the inclusion of time
series prompts underscores the effectiveness of our
model, ProMedTS, in capturing both fine-grained
and coarse-grained temporal information from lab
test results for disease diagnosis.

5 Conclusion and Future Work

In this paper, we introduce ProMedTS, a
lightweight and effective modality fusion frame-
work that leverages self-supervised time series
prompt learning for multimodal EHR integration.
By bridging the modality gap between medical
notes and lab test results, ProMedTS enables LLMs
to process structured and unstructured medical data
more effectively. Its three key modules and loss
functions advance language—time series integra-
tion in healthcare, providing a scalable and adapt-
able approach for real-world clinical applications.
Evaluation on two real-world EHR datasets demon-

Lab Test Input | MicroF1 | MacroF1
MIMIC-III

Numerical Values 32.21(1.33) 23.53(1.21)

Anomaly captions 35.19(0.92) 24.750.76)

Time series prompts 36.11¢1.14 2547 1.02)
MIMIC-1V

Numerical Values 37.75(1.46) 26.10(1.09)

Anomaly captions 39.56(1.14) 27.220.77)

Time series prompts 40.14 1 .05) 28.43(0.91)

Table 6: Micro and Macro F1 Scores Across Various
Lab Test Input Types on the LLM for Disease Diagnosis

strates that ProMedTS significantly outperforms
existing models in disease diagnosis, underscoring
its potential to enhance LLMs’ clinical decision-
making and improve patient care. In future work,
we plan to extend our approach to apply to larger
and more diverse datasets, such as Time-MMD
(Liu et al., 2024), conduct experiments with differ-
ent clinical tasks, explore additional LLM archi-
tectures, and investigate further improvements in
modality alignment techniques.

Limitations

While this study focuses on modality alignments
and their application in downstream tasks, enhanc-
ing the explainability of disease diagnosis remains
an area for future work, where we plan to incor-
porate the Chain-of-Thought rationale (Wei et al.,
2022) via knowledge distillation (Hsieh et al., 2023;
Lin et al., 2023). Furthermore, our study primar-
ily targets higher-level disease phenotypes (Slee,
1978), which could be expanded to more down-
stream tasks.
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A Appendix

A.1 Algorithm

The training procedure to optimize ProMedTS by
minimizing the loss defined in Equation (10) is
shown in Algorithm 1.

A.2 Lab Test Anomaly Caption

Time series anomaly descriptions are generated us-
ing the IQR method (Vinutha et al., 2018) to iden-
tify anomalies, capturing their timing and polarity
(above or below standard values) and describing
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Algorithm 1 The ProMedTS Model

1: Input: Given lab test X and medical note M
denote the EHRs input. P consists of a set of
learnable prompt embeddings.

2: while not converge do

3:  for mini-batch B do

4: Obtain the time series anomaly caption
T using equation (1).

5: Obtain multimodal textual embedding E ¢
using equations (2) and (3).

6: Calculate the contrastive 108S Leontrast

between lab test, anomalies, and medical
notes using equations (4), (5), and (6).
7: Calculate the matching loss £,,q:ch be-
tween lab test and anomalies using equa-
tions (7) and (8).
8: Calculate the generation loss L., be-
tween lab test and anomalies using equa-
tion (9).
9:  end for
10:  Update parameters by minimizing the total
loss Liotq; defined in Equation (10) by us-
ing the AdamW optimizer (Loshchilov and
Hutter, 2018) for patients in each batch.
11: end while

them with handcrafted templates. To caption the
lab test anomaly in textual format, we design sev-
eral text templates to describe the lab test anoma-
lies. All templates are illustrated in Table 7.

A.3 Baseline Models

¢ GRU: The Gated Recurrent Unit (GRU) (Cho
et al., 2014), a variant of recurrent neural net-
works (RNNs), employs two gates to capture
both long-term and short-term temporal fea-
tures effectively.

e PatchTST: PatchTST (Nie et al., 2022) is
a transformer-based time series encoder de-
signed for long-term forecasting. It segments
time series into subseries-level patches, treat-
ing each as a token within the transformer
architecture.

e TimeLLM: TimeLLM (Jin et al., 2023) is an
LLM-based time series prediction model that
reprograms input time series into text proto-
types before processing them with a frozen
LLM. It achieves state-of-the-art performance
in mainstream forecasting tasks, particularly
in few-shot and zero-shot scenarios.
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* CAML: The Convolutional Attention for
Multi-Label classification (CAML) (Mullen-
bach et al., 2018) is a classical model for clas-
sifying medical notes, incorporating a cross-
attention mechanism and label embeddings to
enhance interpretability. For a fair compar-
ison with more recent language models, its
original embedding layer is replaced with one
from T5.

* DIPOLE: DIPOLE (Ma et al., 2017) is a clas-
sic disease prediction model that utilizes two
Bi-directional RNNs. It incorporates an at-
tention mechanism to integrate information
from both past and future hospital visits. For
a fair comparison with more recent language
models, its original embedding layer has been
replaced with one from T5.

* Flan-TS: showcased within the scaling
instruction-fine-tuning framework for lan-
guage models (Chung et al., 2024). It ben-
efits from training on a wide array of datasets
geared toward tasks like summarization and
question answering.

* OPT:OPT is a decoder-only model, designed
to match the performance of GPT-3 (Brown
et al., 2020) while requiring only 1/7 of its
computational resources. Trained primarily
on around 180 billion tokens, OPT excels in
tasks like poetry generation, dialogue, few-
shot translation, and programming (Zhang
et al., 2022).

* QWEN-2.5: QWEN-2.5 is a cutting-edge
language model, expanding its pre-training
dataset to 18 trillion tokens to enhance com-
mon sense, expert knowledge, and reason-
ing. It undergoes extensive supervised fine-
tuning and multi-stage reinforcement learning,
achieving top-tier performance in benchmarks
for language understanding, reasoning, math-
ematics, coding, and human preference align-
ment (Qwen et al., 2025).

* PROMPTEHR: PROMPTEHR (Wang and

Sun, 2022) introduces a novel approach in gen-
erative models for electronic health records
(EHRs), implementing conditional prompt
learning. In this study, the model is specif-
ically geared towards disease diagnosis.

e LLaMA: LLaMA-7B (Touvron et al., 2023),

one of the leading large language models, is



If 1ab test value is not an abnormal value:
{Lab features} is normal all the time.

If the lab test value is an abnormal value higher than the standard:
{Lab features} is higher than normal {number of times} times.

If the lab test value is an abnormal value lower than the standard:
{Lab features} is lower than normal {number of times} times.

If the lab test value is an abnormal that include both higher and lower than the standard value:
{Lab features} is higher than normal {number of times} times and lower than normal{number of
times) times.

Table 7: Lab test anomaly caption template.

Diagnose disease from the following medical notes and lab test:

Medical Notes:

Diagnose disease from the following medical notes: woman decompensated etoh cirrhosis

initially fatigue ascites hydrothorax uti patient complicated hospital transferred icu hypoxemic
respiratory failure developed hypotension setting bleeding esophageal varices underwent tips
banding episodes gi bleeding ... prevention outpatient electrolyte abnormalities refeeding syndrome. . .
contact narrow urine culture positive plan continue day add fosfomycin . ..

Lab test Anomaly Descriptions : < Only used during multimodal alignment

diastolic blood pressure is higher than normal one times, fraction inspired oxygen is higher than
normal forty-six times, glucose is higher than normal one times, heart rate is normal all the time,
mean blood pressure is normal all the time, oxygen saturation is normal all the time, respiratory rate
is higher than normal four times, systolic blood pressure is normal all the time, temperature is normal
all the time, weight is normal all the time, ph is normal all the time

Lab Test:

C[73. 1. 120. 87. 73. 94. 24. 105. 37. 81. 7.53 ],

L 79. 1. 120. 87. 94. 94. 30. 131. 37. 81. 7.53 1,

[73. 1. 217. 87. 73. 94. 24. 105. 37. 81. 7.53 1,

’

[73. 1. 120. 87. 73. 94. 22. 105. 37. 81. 7.53 1]

Diagnosis:

Diagnosed Results: Acute and unspecified renal failure, Fluid and electrolyte disorders,
Septicemia (except in labor), Shock, Chronic obstructive pulmonary disease and bronchiectasis,
Disorders of lipid metabolism, Cardiac dysrhythmias, Congestive heart failure; nonhypertensive,
Diabetes mellitus with complications, Other liver diseases.

Table 8: The Example of Training Instruction Template
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Figure 5: Sensitivity analysis of varying ratios in loss function components, showing Micro and Macro F1 scores

for downstream tasks.

enhanced by Reinforcement Learning with
Human Feedback (RLHF) and instructive tun-
ing. It is fine-tuned for disease diagnosis in
this study, demonstrating its versatility in var-
ious NLP tasks.

* LDAM: LDAM (Niu et al., 2021) leverages
multimodal inputs, combining laboratory test-
ing results and medical notes for disease risk
prediction. It utilizes label embedding to ef-
fectively integrate these two modalities.

* FROZEN: FROZEN (Tsimpoukelli et al.,
2021) represents the cutting-edge multimodal
vision-language models for few-shot learning.
In our study, it is adapted to the disease diag-
nosis task using inputs from lab test results
and medical notes.

¢ EHR-KnowGen: EHR-KnowGen (Niu et al.,
2024a), touted as the state-of-the-art in EHR
multimodal learning models, focuses on dis-
ease diagnosis generation. For this study, ex-
ternal domain knowledge is excluded to en-
sure a fair comparison.

A.4 Implementation Details

In experiments, we utilized the PyTorch framework
version 2.0.1, operating on a CUDA 11.7 environ-
ment. We employed the AdamW optimizer with
a starting learning rate of le™® and a weight de-
cay parameter of 0.05. Additionally, we imple-
mented a warm-up strategy covering 10% of the
training duration. Our experiments were conducted
on high-performance NVIDIA Tesla V100 GPUs.
Within the ProMedTS model, we used 24 time se-

ries prompt embeddings, each with a dimension-
ality of 768. The model’s hidden layer size was
maintained at 768 for modality alignment and ad-
justed to 512 for downstream tasks. To standardize
the time series data input, we padded all lab test
results to a uniform length of 1000 time steps, al-
lowing us to divide the data into 125 patches, with
each patch containing 8 time steps. All LLMs are
fine-tuned on two MIMIC datasets (Johnson et al.,
2016, 2023) and then frozen for downstream tasks.

A.5 Training Instruction Template

Table 8 illustrates the training instruction template
for our model ProMedTS for disease diagnosis on
MIMIC-III and MIMIC-IV datasets.

A.6 Sensitivity Analysis of Varying Ratios in
Loss Function Components

To examine the impact of different combinations
of the three loss functions, Leontrasts Lmateh, and
L gen, on the downstream performance, we perform
a sensitivity analysis using three sets of loss ra-
tios: 1:1:1, 1:2:2, and 1:2:1 on MIMIC-III and
MIMIC-1IV datasets. Since the value of Lcontrast
is typically larger than those of L,,scn, and Lgep,
we assign greater weights to Lyq¢cn, and Lye,,. Fig-
ure 5 presents the results, where lines indicate the
variation in the sum of the three loss functions on
the testing dataset and bars represent the Micro and
Macro F1 scores. The figure reveals that varying
the weight ratios of the three loss functions has
minimal impact on model convergence and the per-
formance of downstream disease diagnosis tasks.
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