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Abstract

Information retrieval has evolved from tra-
ditional sparse and dense retrieval methods
to approaches driven by large language mod-
els (LLMs). Recent techniques, such as
Generation-Augmented Retrieval (GAR) and
Generative Document Retrieval (GDR), lever-
age LLMs to enhance retrieval but face key
challenges: GAR’s generated content may not
always align with the target document cor-
pus, while GDR limits the generative capac-
ity of LLMs by constraining outputs to prede-
fined document identifiers. To address these
issues, we propose Context-Aware Generation-
Augmented Retrieval (CA-GAR), which en-
hances LLMs by integrating corpus informa-
tion into their generation process. CA-GAR
optimizes token selection by incorporating rele-
vant document information and leverages a Dis-
tribution Alignment Strategy to extract corpus
information using a lexicon-based approach.
Experimental evaluations on seven tasks from
the BEIR benchmark and four non-English lan-
guages from Mr.TyDi demonstrate that CA-
GAR outperforms existing methods.

1 Introduction

Information retrieval (IR) has become a critical
component of natural language processing (NLP).
The field has evolved from traditional sparse re-
trieval methods based on lexicon, such as TF-IDF
and BM25 (Robertson and Zaragoza, 2009), to
dense retrieval (Lee et al., 2019; Karpukhin et al.,
2020) approaches powered by deep learning and
pre-trained models like BERT (Devlin et al., 2019).

The advent of Large Language Models (LLMs)
has significantly enhanced information retrieval by
leveraging their advanced natural language under-
standing and generalization capabilities (Brown
et al., 2020; Gao et al., 2023b; Zhu et al., 2023).
Current research in this domain primarily revolves
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Patricia Cornwell's 
latest book is part of 
the Kay Scarpetta 
series, called Chaos, 
published in 2016. It 
is the 24th book in the 
Kay Scarpetta series. 

Question:
what is patricia corn-
well's most recent 
novel?

Prompt:
write a passage to 
answer the question: 

Patricia Cornwell's most 
recent novel in the Kay 
Scarpetta series is 
"Chaos," released in 
2016. It is the 24th 
installment in the series.

RetrievalGeneration

Patricia Cornwell's latest 
book is part of the Kay 
Scarpetta series ,called 
Chaos, published in 2016. 
It is the 24th installment in 
the Kay Scarpetta series. 

Passage 1:

Passage 2:

Figure 1: A figure illustrating how GAR’s generated
text may mismatch with the target document corpus.

around two paradigms: (1) Generation-Augmented
Retrieval (GAR), which enhances retrieval per-
formance by utilizing LLMs’ generative abilities
to refine queries (Mao et al., 2021; Gao et al.,
2023a; Wang et al., 2023; Jagerman et al., 2023);
and (2) Generative Document Retrieval (GDR),
which employs LLMs to generate document identi-
fiers directly through constrained decoding, thereby
encoding corpus-specific information into the re-
trieval process (Cao et al., 2021; Tay et al., 2022).
However, both approaches present challenges. In
GAR, a common strategy involves generating aux-
iliary text (e.g., query rewriting (Wang et al., 2023;
Jagerman et al., 2023; Shen et al., 2024) or hypo-
thetical document embeddings such as HyDE (Gao
et al., 2023a)) to assist retrieval. However, the
generated content may not always align well with
the characteristics of the target document corpus,
leading to suboptimal retrieval performance. As
illustrated in Figure 1, while the language model
can generate both Passage 1 and Passage 2 as plau-
sible outputs, Passage 2 is better suited for retrieval
within the given document corpus. Although GDR
ensures that the generated content exists within the
document corpus through constrained decoding,
effectively avoiding the retrieval mismatches ob-
served in GAR, this approach inherently limits the
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capacity of language models. (Li et al., 2024b).
Based on the observations above, our research

question is: How can we ensure that content
generated by LLMs is well-suited for retrieval
within a target document corpus while fully
leveraging the generative capabilities of LLMs?
In retrieval tasks, the number of documents in the
corpus is typically vast, far exceeding the context
window that LLMs can process. Consequently,
directly providing the entire document corpus as
input to the model is infeasible. This presents a
key challenge: How can we effectively integrate
corpus information into LLMs to enhance their
retrieval performance?

To address this challenge, we introduce a
novel approach called Context-Aware Generation-
Augmented Retrieval (CA-GAR), which incorpo-
rates corpus information into the generation pro-
cess of LLMs. Specifically, at the core of our ap-
proach is the optimization of the model’s autore-
gressive generation process by leveraging relevant
document information from the corpus to influence
token selection. To achieve this, we propose a Dis-
tribution Alignment Strategy, which utilizes a
lexicon-based method to extract corpus informa-
tion. This strategy approximates the optimization
of the model’s autoregressive generation process,
ensuring that the generated content is better aligned
with the target document corpus.

In summary, our contributions are as follows:

• We introduce a new approach called CA-GAR,
which effectively combines the generative ca-
pabilities of LLMs with contextual informa-
tion from the target document corpus.

• We propose a Distribution Alignment Strat-
egy that utilizes a lexicon-based method to
extract information from the corpus, optimiz-
ing autoregressive generation for improved
alignment with the target document corpus.

• Our method outperforms existing approaches
in retrieval tasks, as shown by experiments on
seven BEIR benchmark tasks and four non-
English languages from Mr. TyDi.

2 Related Work

Docuemnt Retrieval Information retrieval en-
compasses multiple domains and tasks (Liu et al.,
2021; Zhuang et al., 2022; Sun et al., 2024). Our
work primarily focuses on document retrieval.
Early approaches were dominated by traditional

lexicon-based methods, such as TF-IDF and BM25.
These methods were later extended by sparse re-
trieval techniques that integrate neural networks
with BM25, such as DeepCT (Dai and Callan,
2020) and docT5query (Nogueira et al., 2019). Re-
cently, with the rise of pre-trained language models,
dense retrieval (Lee et al., 2019; Karpukhin et al.,
2020) has emerged as a promising alternative. By
capturing semantic representations of text, dense re-
trieval effectively addresses the semantic mismatch
problem inherent in sparse retrieval methods. Re-
searchers have made significant advancements in
this area through various techniques, including neg-
ative sample mining (Xiong et al., 2021; Qu et al.,
2021), knowledge distillation (Qu et al., 2021; Lin
et al., 2021; Ren et al., 2021; Liao et al., 2024), loss
function optimization (Liao et al., 2024), and multi-
vector representations (Zhang et al., 2022; Kang
et al., 2025). However, dense retrieval still faces a
critical challenge: achieving optimal performance
often requires large-scale supervised training on
domain-specific datasets, which limits its ability to
generalize performance advantages across datasets
from different domains (Thakur et al., 2021).

Large Language Models Large Language Mod-
els (LLMs) have demonstrated remarkable gener-
alization capabilities, bringing significant transfor-
mations to the field of natural language process-
ing (Brown et al., 2020; Ouyang et al., 2022; Hoff-
mann et al., 2022; Yuan et al., 2024). In the area of
information retrieval, researchers have leveraged
the instruction-following and in-context learning
abilities of LLMs (Min et al., 2022; Sanh et al.,
2022; Wei et al., 2022) to effectively address re-
trieval tasks by simply providing task definitions
and a few retrieval examples (Li et al., 2024a).
Building on this foundation, further studies have ex-
plored the use of LLMs for query enhancement, in-
cluding query rewriting (Shen et al., 2024) and the
expansion of relevant document information (Gao
et al., 2023a). Notably, these approaches do not
require additional training. Moreover, researchers
have proposed parameter-efficient fine-tuning tech-
niques to adapt portions of an LLM’s parameters,
enabling the model to function directly as an em-
bedding model for retrieval tasks (Wang et al.,
2024; BehnamGhader et al., 2024; Lee et al., 2024).
This approach significantly reduces the computa-
tional and training resources required while pre-
serving the LLMs’ powerful natural language un-
derstanding capabilities.
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what is patricia corn-
well's most recent novel?

Query

Patricia Cornwell‘s latest book 
is part of the Kay Scarpetta
series, called Chaos, published 
in 2016. 

BM25
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Figure 2: A figure illustrating our CA-GAR method.

Generative Retrieval Generative retrieval lever-
ages the generative capabilities of models to di-
rectly facilitate document retrieval. Early ap-
proaches focused on enabling generative models to
produce document identifiers through constrained
decoding, which were then mapped to relevant doc-
uments (Cao et al., 2021; Tay et al., 2022). Subse-
quent research expanded on this paradigm by ex-
ploring techniques such as query augmentation and
the design of more effective identifiers (Yang et al.,
2023; Sun et al., 2023). A key limitation of these
methods is their reliance on task-specific training
over designated datasets. With the advent of LLMs,
researchers have begun investigating their use as
generative models for document retrieval. Some
studies propose directly employing LLMs to gener-
ate pseudo-documents (Gao et al., 2023a; Mackie
et al., 2023; Wang et al., 2023), which are treated as
queries in dense retrieval frameworks to locate the
final relevant documents. This approach bypasses
the need for additional training, instead relying on
the generalization capabilities of LLMs. However,
LLMs often exhibit content bias, leading to pseudo-
documents that poorly align with the target corpus
and hinder retrieval performance. To address these
challenges, our method focuses on improving the
alignment of LLM-generated pseudo-documents
with the target document collection. This approach
aims to facilitate more accurate and effective down-

stream document retrieval, improving the overall
performance of information retrieval systems.

3 Methodology

In this section, we first introduce the task definition
of GAR. Then, we explain how our proposed CA-
GAR method is designed.

3.1 Preliminaries
The GAR task consists of two primary steps. First,
a large language model (LLM) is prompted with a
specific instruction INSTRUCT to generate a text x
based on a given query q:

x = LLM(INSTRUCT, q). (1)

Second, the generated text x is utilized as input
for a similarity function Sim, which measures the
similarity between x and each document d. The
most similar document d∗ from the target corpus
D is then identified as:

d∗ = argmax
d∈D

Sim(x, d). (2)

A key limitation of this approach lies in the po-
tential misalignment between the generated text
x and the distribution of the target corpus. This
misalignment is often caused by the content bias
and stochasticity inherent in large language mod-
els, which can result in x being poorly aligned with
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the characteristics of the target corpus. As a re-
sult, the retrieval performance may be negatively
affected. Therefore, a critical challenge is to ensure
that the generated text x is more closely aligned
with the underlying distribution of the target corpus
to enhance retrieval effectiveness.

3.2 Context-Aware GAR

Optimization Objective To fully leverage the
generative capabilities of LLMs and ensure that the
generated text x based on a given query q aligns
more closely with the target document, thereby
improving its effectiveness in retrieval tasks, we
introduce the following optimization objective:

maxP(x) =

n∑

i=1

log pLM (xi) + β · Sim(x, d∗),

(3)
where

∑n
i=1 log pLM (xi) represents the likelihood

of the token xi generated by the LLM, expressed
as the sum of the logarithmic probabilities of each
individual token, β serves as a tuning factor, con-
trolling the balance between different components
of the objective function and Sim(x, d∗) quantifies
the degree of similarity or alignment between x
and d∗, providing a measure of their relationship.

By integrating these components, the optimiza-
tion objective encourages the generation of text that
is not only coherent and likely under the LLM but
also contextually aligned with the target document,
thereby improving its effectiveness in downstream
retrieval tasks.

Distribution Alignment Strategy However, the
document with the highest similarity score is not
necessarily the actual ground truth. Therefore, we
take multiple candidate documents into consider-
ation. In document retrieval, after measuring the
similarity between a query q and a document d us-
ing a similarity function Sim, we typically obtain
the top-k ranked documents, denoted as Dk. This
set consists of the k documents with the highest
similarity scores relative to q. We define Fk as
follows:

Fk(x,D) =
1

k

k∑

d′∈Dk

Sim(x, d′), (4)

where Fk is no longer a document set but a real-
valued function. It represents the average similarity
score between a generated text x and the top-k
most relevant documents in D.

To more effectively align Fk with information
at the x-level and ensure its consistency with the
target document collection, we adopt the BM25
method, which demonstrates exceptional general-
ization ability in zero-shot scenarios. As a lexicon-
based retrieval method, BM25 exhibits strong an-
alytical interpretability in similarity computation,
with its scoring mechanism explicitly decompos-
able into the product of inverse document fre-
quency (IDF) and term frequency (TF). Further-
more, BM25 offers significant advantages in inter-
pretability, enabling more precise capture of the
characteristics of the target document collection,
thereby enhancing retrieval effectiveness and re-
liability. Therefore, we define the Sim as BM25,
allowing Equation 3 to be reformulated as follows:

maxP(x) =

n∑

i=1

log pLM (xi)+

β · 1
k

k∑

d′∈Dk

IDF(x) · TFd′(x), (5)

where IDF represents the Inverse Document Fre-
quency, which measures the importance of a term
by evaluating how unique or rare it is across the
document collection. TF represents the Term Fre-
quency, which quantifies how often a term appears
in a specific document.

Referring to the autoregressive decoding method
of LLMs, we approximate Equation 5 using Equa-
tion 6 as follows:

maxP(xi|x<i) = log pLM (xi|x<i)+

β · 1
k

k∑

d′∈Dk,i

i∑

j=1

IDF(xj) · TFd′(xj), (6)

where Dk,i represents the top-k documents in D
that are most relevant to x0,1,...,i. This dynamic
selection mechanism allows for an adaptive adjust-
ment of the generation process, ensuring that the
most pertinent information is incorporated at each
step.

Document Retrieval Based on the generated
content x′ and the original query q, we construct a
new query q′ by concatenation:

q′ = q + x′. (7)

We then employ either sparse or dense retrieval
methods to retrieve relevant documents.
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For sparse retrieval, we utilize the BM25 algo-
rithm, which ranks documents D based on their
relevance to the query q′ by incorporating TF and
IDF. Alternatively, for dense retrieval, we encode
both the query q′ and document d into vector repre-
sentations vq′ and vd using neural encoders. The
similarity score between a query and a document is
then computed as the inner product of their respec-
tive vectors:

⟨Eq(q
′), Ed(d)⟩ = ⟨vq′ ,vd⟩. (8)

Regardless of whether sparse or dense retrieval
is used, the final retrieval results consist of the top-
k documents with the highest similarity scores to
the query q′.

4 Experiments

In this section, we provide a detailed explanation
of the implementation of CA-GAR and present
the experimental results on datasets. Furthermore,
we demonstrate the performance improvements
achieved by our approach over both BM25 and
dense retrieval models.

4.1 Experimental Setup
Datasets and metrics In our main experiments,
following previous works (Gao et al., 2023a; Feng
et al., 2024), we selected seven low-resource
datasets from the BEIR (Thakur et al., 2021)
benchmark, covering a diverse range of domains,
including biomedical, finance, and scientific re-
search. Additionally, these datasets span various
retrieval tasks, such as argument retrieval, cita-
tion prediction, and fact-checking. Specifically,
the selected datasets include Arguana (Wachsmuth
et al., 2018), Scifact (Wadden et al., 2020), NF-
Corpus (Boteva et al., 2016), Scidocs (Cohan
et al., 2020), FiQA (Maia et al., 2018), Trec-
Covid (Voorhees et al., 2020), and Touché (Bon-
darenko et al., 2020). We use nDCG@10 as the
evaluation metric.

To evaluate the effectiveness of our approach
in a multilingual setting, we conduct experiments
on non-English datasets by selecting four low-
resource languages from the Mr.TyDi (Zhang et al.,
2021) benchmark: Bengali, Swahili, Telugu, and
Thai. For performance assessment, we employ
nDCG@10 as the evaluation metric.

For different datasets, we employed tailored
prompt instructions to generate more appropriate
content. In subsequent comparative experiments,

we consistently used the same prompt to ensure
fairness and reliability. Detailed instructions can
be found in the appendix A.

Implementation details In this study, we utilize
LLaMA3-8B-Instruct (Dubey et al., 2024) as the
large language model for content generation. For
retrieval, we employ BM25 as the sparse retrieval
model, implemented using the BM25S (Lù, 2024)
library, which is both highly efficient and simple.
For English datasets, we apply the corresponding
English stemmer to enhance retrieval performance.
However, for multilingual datasets, we adopt a uni-
fied approach by not applying stemming to ensure
consistency across different languages. The dense
retrieval models include Contriever (Izacard et al.,
2021), Contriever-ft (fine-tuned on MS MARCO),
and BGE (Xiao et al., 2024). For non-English
datasets, we similarly adopt BM25 as the sparse
retrieval model without applying a stemmer. The
dense retrieval models for these datasets include
mContriever and mContriever-ft (fine-tuned on MS
MARCO). In our experiment, we configure the
LLaMA3-8B-Instruct model with a temperature of
1.0, a top-p of 1.0, and a top-k of 50. The parameter
k in Fk is set to 10 and the β parameter is selected
from {0.25,0.5,0.75,1.0} based on the best perfor-
mance, and it is set to 0.75. The BM25 parameters
k1 and b are configured as 1.5 and 0.75, respec-
tively. All the experiments are conducted with the
single A800 GPU with 80GB VRAM.

Baselines First, we consider the traditional term
frequency-based sparse retrieval method, BM25,
which has been widely recognized for its effec-
tiveness in zero-shot scenarios, learned sparse re-
trieval method DeepCT (Dai and Callan, 2020) and
docT5query (Nogueira et al., 2019). Next, we ex-
amine Contriever for English and mContriever for
non-English languages, along with their fine-tuned
versions on the MS MARCO dataset, referred to
as Contriever-ft and mContriever-ft, respectively.
Additionally, we incorporate several dense retrieval
models, including DPR (Karpukhin et al., 2020),
ANCE (Xiong et al., 2021), latent interaction-based
ColBERT (Khattab and Zaharia, 2020) and Col-
BERTv2 (Santhanam et al., 2022). Furthermore,
we include BGE, which has demonstrated strong
performance on English datasets.

Furthermore, we compare our approach with
HyDE. To ensure a fair comparison in terms of
LLM selection, we use LLaMA3-8B-Instruct to
generate hypothetical documents. Following the
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Model Avg Arguana Scifact NFCorpus Scidocs FiQA Trec-Covid Touché

Baselines (Prior Work)

DeepCT 30.2 30.9 63.0 30.1 12.4 19.1 40.6 15.6
docT5query 40.9 34.9 67.5 32.8 16.2 29.1 71.3 34.7
DPR 19.1 17.5 31.8 18.9 7.7 11.2 33.2 13.1
ANCE 35.3 41.5 50.7 23.7 12.2 29.5 65.4 24.0
ColBERT 36.4 23.3 67.1 30.5 14.5 31.7 67.7 20.2
ColBERTv2 42.9 46.3 69.3 33.8 15.4 35.6 73.8 26.3

BM25 40.1 39.7 66.5 32.5 15.8 23.6 65.6 36.7
Contriever 32.8 37.9 64.9 31.7 13.7 24.5 36.3 20.8
Contriever-ft 40.3 44.6 67.7 32.8 16.5 32.9 59.6 27.8
BGE 48.6 63.5 74.6 38.1 22.6 44.3 72.3 24.8

HyDEllama3-8b

w/ Contriever 34.6 34.1 63.9 31.4 13.8 26.5 46.3 26.4
w/ BGE 48.7 66.0 74.4 36.9 20.1 41.0 75.6 26.8

CA-GARllama3-8b (Our Work)

w/ BM25 42.2↑2.1 40.5 67.7 33.1 15.4 23.7 66.4 48.3
w/ Contriever 34.9↑2.1 38.1 64.5 30.8 14.1 24.9 45.8 26.5
w/ Contriever-ft 41.8↑1.5 45.2 67.8 33.2 17.2 33.2 60.3 35.9
w/ BGE 50.0↑1.4 69.3 75.5 35.4 22.8 44.4 72.1 30.2

Table 1: Low-resource retrieval performance on a selection BEIR tasks (measured by nDCG@10).

Model Avg bn sw te th

Baselines (Prior Work)

BM25 30.3 19.1 48.8 14.9 38.4
mContriever 19.5 21.3 23.9 10.7 21.9
HyDEllama3-8b 24.1 32.4 24.8 14.2 25.1
mContriever-ft 48.2 46.8 57.6 44.2 44.0

CA-GARllama3-8b (Our Work)

w/ BM25 34.9↑4.6 25.3 50.8 20.7 42.9
w/ mContriever 24.7↑5.2 32.9 25.4 14.8 25.6
w/ mContriever-ft 59.2↑11.0 55.5 62.1 64.9 54.2

Table 2: Multi-lingual retrieval performance on a se-
lection Mr.TyDi languages (measured by nDCG@10).

HyDE methodology, we employ Contriever and
mContriever as the retrieval model, enabling a com-
parison between the approaches.

4.2 Low-Resource Retrieval

In Table 1, we present the performance of CA-GAR
across seven tasks selected from the BEIR dataset.
The results indicate that, on average, CA-GAR
achieves a noticeable improvement in nDCG@10

compared to each baseline. In particular, the im-
provement over BM25 is especially pronounced.
This can likely be attributed to our approach of
leveraging BM25 to retrieve relevant documents
during the decoding process of the large language
model (LLM). Furthermore, compared to HyDE,
CA-GAR achieves a certain degree of improvement
when using Contriever as the retriever.

Our method achieves notable improvements on
the Touché dataset, likely due to BM25’s supe-
rior performance compared to other retrievers, in-
cluding Contriever, Contriever-ft, and BGE. Since
BM25 significantly influences LLM-generated re-
sponses, its strong baseline on Touché contributes
to the observed performance gains. In contrast,
improvements on FiQA and Scidocs are modest,
primarily because BM25 performs poorly on these
datasets, limiting its impact on LLM’s autoregres-
sive decoding. Additionally, these datasets involve
complex domains (e.g., finance and scientific cita-
tion prediction), where LLM-generated responses
tend to be of lower quality. A similar trend is ob-
served for NFCorpus, which focuses on biomedical
information retrieval. In such cases, more advanced
prompting strategies or LLM architectures may be
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Model Avg Arguana Scifact NFCorpus Scidocs FiQA Trec-Covid Touché

BM25

CA-GARllama3-8b 42.2 40.5 67.7 33.1 15.4 23.7 66.4 48.3
w/o CA 41.6↓0.6 39.8 66.9 32.1 14.8 23.5 66.9 47.3

Contriever

CA-GARllama3-8b 34.9 38.1 64.5 30.8 14.1 24.9 45.8 26.5
w/o CA 34.2↓0.7 37.6 64.3 29.7 13.1 23.9 45.5 25.3

Contriever-ft

CA-GARllama3-8b 41.8 45.2 67.8 33.2 17.2 33.2 60.3 35.9
w/o CA 40.9↓0.9 44.5 64.8 32.9 16.3 31.9 59.8 35.8

BGE

CA-GARllama3-8b 50.0 69.3 75.5 35.4 22.8 44.4 72.1 30.2
w/o CA 49.0↓1.0 68.7 73.8 35.3 21.7 43.9 70.5 29.3

Table 3: Ablation study on a selection BEIR tasks (measured by nDCG@10).

Model Avg bn sw te th

BM25

CA-GARllama3-8b 34.9 25.3 50.8 20.7 42.9
w/o CA 34.2↓0.7 24.9 50.1 19.8 42.1

mContriever

CA-GARllama3-8b 24.7 32.9 25.4 14.8 25.6
w/o CA 23.9↓0.8 32.2 24.5 14.0 24.7

mContriever-ft

CA-GARllama3-8b 59.2 55.5 62.1 64.9 54.2
w/o CA 58.2↓1.0 54.9 61.2 64.1 52.7

Table 4: Ablation study on a selection Mr.TyDi lan-
guages (measured by nDCG@10).

required for further improvements.

4.3 Multi-Lingual Retrieval

In Table 2, we present the performance results
on four low-resource languages selected from the
Mr.TyDi dataset. Our findings indicate that CA-
GAR consistently outperforms the baseline across
four languages. The performance improvement
can be attributed not only to the robust multilin-
gual retrieval capabilities of BM25, which enhance
the final content generated by the LLM, but also
to the inherently strong multilingual proficiency
of LLaMA 3, which further contributes to the ob-
served performance gains.

Additionally, for the stronger retrieval model,
mContriever-ft, the generated content tends to be
richer in information. As a result, more powerful
models are likely to achieve greater performance

improvements, as they are less affected by biases
introduced by extraneous information. Compared
to HyDE, CA-GAR with Contriever also demon-
strates a noticeable improvement, suggesting that
BM25 plays an effective role in influencing the
LLM’s autoregressive decoding process.

4.4 Ablation Study

To further validate the effectiveness of our CA-
GAR approach, we conducted an ablation study
on selected datasets from BEIR and Mr.TyDi. The
detailed experimental results are presented in Table
3 and 4. Specifically, we compared CA-GAR with
a variant that does not employ the context-aware
mechanism, denoted as w/o CA. In this baseline,
the LLM generates content in a straightforward
manner, without incorporating context-aware strate-
gies to guide the autoregressive decoding process.
This comparison allows us to assess the impact of
context-aware strategies on the model’s overall per-
formance and the quality of the generated outputs.

Our findings indicate that, compared to CA-
GAR, w/o CA exhibits a noticeable decline in over-
all performance. This performance degradation
is particularly pronounced for relatively stronger
models such as Contriever-ft, mContriever-ft and
BGE. The results suggest that when the generated
content exhibits certain biases or misalignments,
the adverse effects are more pronounced in these
high-performing models. This observation further
highlights the critical role of CA-GAR in guiding
and refining the generated content.
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Figure 3: A figure presenting the retrieval performance
of different models using BM25 across seven tasks
from the BEIR(7) dataset and four languages from the
Mr.TyDi(4) dataset.

5 Analysis

5.1 LLM Base Model Comparsion

To investigate the impact of model size, we com-
pare three LLaMA3-Instruct variants with 1B, 3B,
and 8B parameters. Figure 3 shows their perfor-
mance when integrated with BM25.

Our results demonstrate that larger models gen-
erally achieve superior performance due to their en-
hanced generative capabilities. In contrast, smaller
models, the 1B variant, often introduce substantial
deviations in generated content, adversely affecting
retrieval effectiveness. The 3B model performs on
par with the baseline, exhibiting a slight improve-
ment. These findings highlight the critical role of
generative model quality in retrieval performance,
as lower-quality models may introduce biases or
hallucinated content that degrade results.

Additionally, we selected other LLMs of com-
parable scale, Qwen-2.5-7B (Yang et al., 2024)
and Mistral-7B (Jiang et al., 2023), and conducted
experiments on the dataset. It can be observed
that among the seven datasets selected from BEIR,
LLaMA3-8B-Instruct achieves the highest aver-
age performance, while LLaMA3-8B-Instruct and
Mistral-7B perform similarly, with LLaMA3-8B-
Instruct being slightly better. In contrast, Qwen-
2.5-7B performs relatively poorly.

Furthermore, in multilingual settings, LLaMA3-
8B-Instruct’s superior capabilities enhance retrieval
performance, while Mistral-7B’s weaker multilin-
gual abilities lead to greater deviations, resulting in
lower performance than BM25.

Question：
Should students have to wear school uniforms?

Prompt：
Please write a detailed and persuasive argument that 
answer the given question.

Yes, …, while others 
believe that uniforms 
promote a sense of 
unity and equality
among students. …

Yes, …, while others 
believe that uniforms 
promote discipline, 
equality, and a focus 
on academics. …

…#2- it provides a positive 
impact on peer pressure 
#3- improves students 
achievement by 64%...

Yes …uniforms show 
intruders they show 
pride and discipline
in the school…

Teens and kids should have to wear the same thing 
in school school might be for making friends but its 
supposed to be for learning discipline …

w/o CALLMs

Relevant documents

CA-GAR

Figure 4: Case Study: An example query from Touché
– A comparison of content generated by CA-GAR and
w/o CA.

5.2 Case Study

To further demonstrate the effectiveness of our ap-
proach, we selected a specific question from the
Touché dataset as a case study. As illustrated in
Figure 4, when responding to the same prompt for
the question "Should students have to wear school
uniforms?", both our method, CA-GAR, and w/o
CA generate relevant responses that address the
question and included the keyword "equal". How-
ever, there are notable differences in the choice of
other words. CA-GAR incorporated "discipline"
and "academics", whereas w/o CA used "unity" .

From a generative standpoint, both outputs are
acceptable. However, for subsequent retrieval pro-
cesses, the content generated by CA-GAR proves
to be superior. This is because it includes se-
mantically related terms such as "academics" and
"achievement", as well as the identical term "dis-
cipline", which are more aligned with the relevant
documents in the corpus. This indicates that our
context-aware approach successfully influences the
autoregressive decoding process of large language
models, resulting in generated content that is more
aligned with the target retrieval corpus.
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β Arguana Scifact NFCorpus Scidocs FiQA Trec-Covid Touché Avg

0.25 39.88 67.43 33.10 15.39 23.72 66.54 47.69 41.96
0.5 40.02 67.45 33.14 15.38 23.62 66.28 48.29 42.03

0.75 40.50 67.70 33.14 15.38 23.69 66.43 48.29 42.16
1.0 39.70 67.64 33.14 15.38 23.62 66.43 48.19 42.01

Table 5: Performance results for different values of β on a selection BEIR tasks.

5.3 Hyperparameter Analysis

In our study, we address the integration of log prob-
abilities and BM25 scores by introducing a scalar
weighting factor, denoted as β. This factor is piv-
otal in modulating the influence of BM25-derived
guidance relative to the model’s intrinsic genera-
tion probabilities. To identify the optimal value
of β, we conducted a series of experiments across
multiple datasets, systematically varying β to as-
sess its impact on model performance.

The results are summarized in Table 5. From
the results, it is evident that the value of β = 0.75
yields the highest average performance across all
datasets. This suggests that a balanced approach,
where the influence of BM25 scores is moderately
weighted, enhances the model’s effectiveness in
generating relevant outputs.

6 Conclusion

This paper introduces CA-GAR, a novel genera-
tive augmentation retrieval method that optimizes
LLMs generation using a distribution alignment
strategy. By leveraging a lexicon-based approach
with BM25, CA-GAR ensures better alignment
between generated content and target documents.
Experiments on low-resource and multilingual
datasets validate its effectiveness, with advanced
LLMs further enhancing performance. A case
study illustrates CA-GAR’s impact on content gen-
eration, highlighting its ability to maximize LLMs’
generative potential.

Limitations

Our approach relies on LLMs to generate content
while incorporating context-awareness to influence
the autoregressive decoding process during gen-
eration. However, this method may not be well-
suited for scenarios requiring low latency. Nev-
ertheless, advancements in hardware and the de-
velopment of optimization algorithms for model
inference are expected to significantly reduce the

computational cost and latency of content gener-
ation. Moreover, future research could explore
alternative approaches to influencing the autore-
gressive decoding process of LLMs, beyond the
use of BM25. This opens the possibility for more
generalized and adaptable methods to enhance gen-
eration quality and relevance.
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A Instructions

Prompts for Arguana

Please write a counter argument for the pas-
sage.
Passage: {PASSAGE}
Counter Argument:

Prompts for Scifact

Please write a scientific paper passage to
support or refute the claim.
Claim: {CLAIM}
Passage:

Prompts for NFCorpus

Please write a medically accurate passage
to answer the question.
Question: {QUESTION}
Passage:

Prompts for Scidocs

Please write a scientific paper abstract that
is cited by the given scientific paper title.
Paper title: {PAPER TITLE}
Paper abstract:

Prompts for FiQA

Please write a financial article passage to
answer the question.
Question: {QUESTION}
Passage:

Prompts for Trec-Covid

Please write a passage that answer the ques-
tion on COVID-19.
Question: {QUESTION}
Passage:
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Prompts for Touché

Please write a detailed and persuasive argu-
ment that answer the given question.
Question: {QUESTION}
Argument:

Prompts for Mr.TyDi

Please write a passage in {LANGUAGE} to
answer the question in detail.
Question: {QUESTION}
Passage:

B Analysis for efficiency

Our method introduces a slight increase in latency
due to the relevance-guided generation process. In
our experiments on the Scifact dataset, which con-
sists of a corpus of 5k documents and 300 queries,
we utilized a single NVIDIA A800 GPU and em-
ployed the LLaMA-3-8B model for document gen-
eration. The latency per query for each method is
summarized in Table 6.

Method Latency
HyDE 2.059s

CA-GAR 2.933s

Table 6: Latency per query on Scifact

The observed latency overhead primarily arises
from the incorporation of document-level signals
during the generation process. When the corpus
size increases, applying CA-GAR over the entire
corpus can lead to substantial latency. However, in
practical applications, it is feasible to first retrieve
a small subset of documents relevant to each query,
which can effectively guide the generation process.

To evaluate this strategy, we conducted exper-
iments on the large-scale Touché dataset, which
contains 382k documents. The results, summarized
in Table 7:

Method Latency nDCG@10
HyDE 2.498s 26.8

CA-GAR
w/ 1k subset 2.635s 29.5
w/ 3k subset 3.134s 29.8
w/ 5k subset 3.621s 29.9

w/ full corpus 79.923s 30.2

Table 7: Latency and nDCG@10 on Touché

The results indicate that utilizing a pre-filtered
subset of documents (e.g., the top 1k or 3k docu-
ments ranked by BM25) significantly reduces la-
tency while maintaining competitive performance
metrics. This approach enhances the practicality
and scalability of CA-GAR in real-world retrieval
systems. In conclusion, while there is a noted ef-
ficiency overhead associated with CA-GAR, this
does not detract from its core contributions.

5849


