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Abstract

Training language models with rationales aug-
mentation has been shown to be beneficial in
many existing works. In this paper, we iden-
tify that such a prevailing view does not hold
consistently. We conduct comprehensive in-
vestigations to thoroughly inspect the impact
of rationales on model performance as well as
a novel perspective of model reliability. The
results lead to several key findings that add
new insights upon existing understandings: 1)
Rationales can, at times, deteriorate model per-
formance; 2) Rationales can, at times, improve
model reliability, even outperforming their un-
trained counterparts; 3) A linear correspon-
dence exists in between the performance and
reliability improvements, while both are driven
by the intrinsic difficulty of the task. These
findings provide informative regulations on the
broad utilization of rationales and raise criti-
cal implications on the procedure of explicitly
aligning language models with implicit human
thoughts. Codes can be found at https://
github.com/Ignoramus@817/rationales.

1 Introduction

It is widely acknowledged that the capabilities
of large language models can be significantly en-
hanced when they are given time to think, a pro-
cess where a rationale is generated first to mimic
human inner thought before arriving at the final
answer (Wei et al., 2023; Kojima et al., 2023). Al-
though this concept was initially identified and es-
tablished in the context of prompting large lan-
guage models (LLMs), it has also been extensively
explored in training language models (LMs) as well.
In general, rationales have profoundly influenced
our understanding and utilization of LMs.
Benefiting from the powerful capabilities of
LLMs (OpenAl et al., 2023), it is now much more
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Figure 1: Illustration of training LMs with rationale
augmentation.

approachable to obtain high-quality, large-scale
synthetic reasoning traces as rationales. As a re-
sult, Rationale-Augmented finetuning (RAFT)
has been receiving increasing attention in many
recent works, where a rationale is concatenated
between the original question and answer to aug-
ment the learning process of a weaker or smaller
language model (Figure 1). RAFT has brought con-
sistent benefits for diversified tasks including math-
ematical reasoning (Shridhar et al., 2023; Magis-
ter et al., 2023), question answering (Wang et al.,
2023a; Li et al., 2022), symbolic reasoning (Mag-
ister et al., 2023) as well as general-purpose chat-
bots (Li et al., 2023; Mitra et al., 2023). As a result,
adding rationales is becoming a default measure
when finetuning smaller models recently.

In this paper, we identify some dissonance in the
broad beneficial effect of RAFT, where introduc-
ing rationales can have a negative impact on model
performance on certain tasks. Through far more
comprehensive and extensive investigations, we
present results that diverge from previous expecta-
tions. Aside from model performance, we include
Calibration as an essential supplemental perspec-
tive of our analysis. Calibration refers to whether a
model can assign its predictions with proper proba-
bilities that reflect the actual likelihood of its results
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being correct (Guo et al., 2017). It indicates the re-
liability of a deep model and can be affected when
the prediction process is augmented with rationales.
Collectively, we measure the impact of RAFT on
model performance and reliability on a total of 18
tasks. Figure 2 provides an overview of all results,
and key findings can be summarized as follows.

On Performance: Rationales indeed bring
variable benefits for many difficult tasks, but
this does not invariably hold across all tasks
(corresponding to area x < 0).

In 11 out of 18 tasks, performance has dropped
when augmented with rationales, which is beyond
expectation: one would expect RAFT to at least
do no harm if it does not bring much improve-
ments. It might be noticed that recent gpt-4-o1
model employs rationales for better performance,
seemingly challenging this work. Actually, it helps
strengthen our conclusions. On the one hand, ca-
pabilities of gpt-4-01 mainly exhibits in math and
code reasoning fields, which is consistent with our
observations. On the other hand, it demonstrates
that more sophisticated effort should be made to
make better use of rationales.

On Reliability: Model calibration error can
benefit from rationales, and even outperforms
its untrained base model in certain tasks (y >
0).

Studies have pointed out that pretrained lan-
guage models are well calibrated enough and fine-
tuning process would degrade the calibration of
language models (Guo et al., 2017; Kadavath et al.,
2022; He et al., 2023; Zhu et al., 2023). However,
when such a finetuning process is augmented with
rationales, this degradation can be alleviated (12
out of 18 tasks). There are 3 tasks where calibra-
tion error under RAFT is even slightly better than
its untrained base model.

Performance-Reliability Correlation:
There exists a significant linear corre-
spondence between the improvement in
model performance and reliability under
rationale-augmented training (y = «- x + 3).
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Figure 2: Improvement in Accuracy (z-axis) and Ex-
pected Calibration Error (ECE) (y-axis) under RAFT
for different datasets.

We empirically find that rationale’s impacts on
performance and reliability are synchronized. We
attribute this linear correlation to the intrinsic diffi-
culty of specific tasks. We further propose several
difficulty metrics to validate this assumption and es-
tablish, for the first time, a quantitative relationship
between correlation and task difficulty.

We also design extensive ablations to verify the
robustness of our findings across varied conditions.
Finally, we locate the reason of the impacts of ra-
tionales and provide explanations with qualitative
study. In appendices we also present exploratory
analysis and discussions, delving deeper into the
underlying mechanism of rationales and their im-
pacts. In general, this paper depicts a systematic
view of the impacts of rationale-augmented fine-
tuning, revealing a deeper understanding as well as
new insights into its utilization and mechanisms.

2 Preliminaries

2.1 Rationale-Augmented finetuning

Rationales. Rationales are free-text reasoning
steps produced by either human beings or language
models when solving problems. Specifically, for
language models, rationales can be defined as rea-
soning steps produced ahead of answers in Chain-
of-Thought inference (see Fig. 1).

Rationale-Augmented Finetuning. RAFT is in-
troducing rationales in the finetuning process. We
conduct RAFT in the following steps: Given a su-
pervised dataset D = {x;, y;}I" ; where z; and y;
are the 44, input and label, rationales r; are first gen-
erated for each sample, resulting in the augmented
dataset D" = {z;, (;,y;)}. Then we finetune a lan-
guage model on the augmented dataset maximiz-
ing the probability of generating (7;; y; ), where “;"
means concatenating. For comparison, we train the
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model using the same hyper-parameters but with
solely answer labels, i.e. maximizing the proba-
bility of generating y;. Then we compare the per-
formance and calibration of the two models. To
measure model performance and calibration quan-
titatively, we use Accuracy (Acc) and Expected
Calibration Error (ECE) as metrics following
previous works (Guo et al., 2017; Li et al., 2023).

2.2 Calibration

Confidence Calibration. Given a classification
problem where we have the input X € X, label
Y € Y = {1,2...K}, which are random variables
following ground truth joint distribution. Also we
have model prediction Y/ € ) and assigned confi-
dence P’ € [0, 1]. A model is perfectly calibrated
if it satisfies the following equation:

PY'=Y|P =p)=p, Vpe[0,1] (1)

However, the probability in Equation 1 is not cal-
culable. To measure model calibration statistical
approximations are often used, including Expected
Calibration Error (Naeini et al., 2015).

Expected Calibration Error. Expected Calibra-
tion Error (ECE) is a quantitative measurement of
calibration using finite data samples. Given a set of
N predictions and their confidence, we divide the
confidence interval [0, 1] into M bins with equal
length 1/M and group these predictions accord-
ing to their confidence. Then we can calculate the
average accuracy and confidence of each bin:

1
Ace(Bp,) = B Z 1w =), (@)

Conf(Bp) = —— > b 3)
| B i€Bm

where B,, is the set of indices of samples in the
myp, bin. g; and y; are prediction and ground truth
for the 7;;, sample. 1 is an indicator function gener-
ating 1 if the prediction is correct and O otherwise.
p; is the confidence that the model assigns to the
1¢p, prediction. Then ECE is calculated as:

= | Bl
ECE= Tm’ACC(Bm) — Con f(Bpn)|
m=1
“4)

ECE measures the gap between average confidence
and accuracy among all bins. Lower ECE means
better calibration. We use M = 10 in all experi-
ments, following previous works (Guo et al., 2017
Desai and Durrett, 2020; He et al., 2023).

2.3 Datasets and Implement Details

Datasets We conduct our research over 18
datasets in 7 categories, including Math Reason-
ing, Common Sense Reasoning, Sentiment and
Topic Analysis, Paraphrasing, Natural Language
Inference, Word Sense Disambiguation and Co-
reference Resolution. Dataset details for each cate-
gory can be found in Appendix B.1.

Rationale Generation For each dataset, we
construct a training set of 20k samples aug-
mented with rationales. As obtaining large-
scale human annotations is costly, we utilize
gpt-3.5-turbo-0613 to generate rationales fol-
lowing (Fu et al., 2023). For each data point, we
formulate the input with manually written prompts
and query gpt-3.5-turbo-0613 to generate ratio-
nales, from which we only keep rationales that lead
to correct answers®. We recursively traverse the
dataset until we get enough data. Prompts for ratio-
nale generation are in Appendix D. Though keep-
ing only rationales leading to correct answers has
already guaranteed the data quality to some extent,
we further conduct a brief quality examination to
make sure the generated rationales, which confirm
the quality of the data(details in Appendix C).

Training and Inference. We selected LLaMA-2-
7B (Touvron et al., 2023) as our base model. Full
hyper-parameters for training are in Appendix E.
During inference, we apply a self-consistency vot-
ing (Wang et al., 2023b). For every input question,
we sample 10 reasoning paths with a temperature
of 0.8, each generating an answer, from which the
one that appears most frequently is kept as the final
answer. If the answer appears n times in the sam-
pled results, we consider the confidence as n/10.

3 Impacts of Rationales on Performance
and Reliability

We record the accuracy and ECE difference of
models finetuned with and without rationales as
follows:

AAcc = Accrapr — Accpr, ®))

AFECE = —(ECEgpapr — ECER7), (6)
Note that we use a negative increase of ECE as
lower ECE means better calibration.

“For each sample we repeatedly generate until getting the
correct answer or reaching the retry limit 10.
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Figure 3: Improvements in accuracy and ECE under RAFT. Datasets are re-ordered according to the improvements
in accuracy. Wino refers to Winogrande and M-A refers to MultiArith. Note that y-axes are folded for better display.

Settings GSMBSK | MultiArith | ASDiv | SVAMP | ARC-Challenge | Average

@ w/o Rationale | 0.180 0215 | 0.077 | 0.082 0.057 0.122

Untrained (ICL) | @ w/ Rationale | 0.082 0.251 | 0.054 | 0.039 0.100 0.105
@-0 -0.098 | +0.036 |-0.023| -0.043 +0.043 -0.017

® w/o Rationale | 0.581 | 0.612 | 0.501 | 0.525 0.313 0.506

Finetuned @ w/ Rationale | 0.037 0.057 | 0.063 | 0.041 0.096 0.059
@-06 -0.544 | -0.555 |-0.438| -0.484 -0.224 -0.447

A ®-0 +0.401 | +0.397 |+0.424| +0.443 +0.256 +0.384
base @-Q -0.045 | -0.194 |+0.009| +0.002 -0.004 -0.046

Figure 4: ECE of finetuned and base models. A pr_ g,s. means difference of finetuned and pretrained models.

3.1 Impacts on Model Performance

As is seen in Fig. 3, the most significant improve-
ment in accuracy happens in the math reasoning
task, where accuracies of all four datasets improve
by more than 40%. Rationales also raise model
performance on the two ARC datasets. Surpris-
ingly, rationales do not always bring performance
gain. Instead, they distract models from getting the
correct answers for most of the tasks.

3.2 Impacts on Model Reliability

As can be seen in Fig. 3, in most tasks models under
RAFT are better calibrated than their counterparts
finetuned with answer labels. Fig. 4 shows the re-
sults of tasks where model calibration improves the
most. Firstly, from the table we can see that fine-
tuning with labels does much harm to model cali-
bration (® - ®@). Then it is noticeable that for both
untrained and finetuned models, incorporating ra-
tionales brings benefit to model calibration (® - @,
@ - ). Lastly, in 3 tasks, models with RAFT can
achieve even better ECE than the untrained models

(@ - @). Our results verify the established conclu-
sion that finetuning will damage model calibration,
while also showing that introducing rationales can
alleviate such harmful effects.

3.3 Linear Correlation Between Impacts on
Performance and Reliability

As can be seen in Fig. 2, the improvement in ac-
curacy and ECE across different datasets show a
significant linear correlation, depicted as follows:

AECE = aAAcc+ 3, @)

where a = 0.7479, 8 = 0.0456. Line fitted with
Ordinary Least Squares algorithm (Galton, 1886)
can be seen in Fig. 2. The Pearson Coefficient and
p-value from the significance test are 0.9681 and
2.462e 710 respectively, portraying a very distinct
linear correlation. Such correspondence may also
explain why models become worse-calibrated for
tasks where accuracy drops the most.

5811



(@) * () + (e) *
081 pearson=0.001 0.81 | Pearson=0.7059 0.8 Pearson=0.9295
p-value=4.984e-01 p-value=5.305e-04 p-value=1.228e-08
0.6 0.6 0.6 p—
: -
e +*
)
o 04 0.4 0.4
1)
3 *
x
0.2 0.2 02 ~
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, g
+
+ g
0.0 0.0 0.0{ o *
¢ F X ¥ :{- * +
] +
-0.2 -0.2 ~0.2
0 200 400 600 800 1000 150 200 250 300 350 1.0 0.8 0.6 0.4 0.2 0.0
(b) (d) (f)
0-81 |pearson=0.1161 0.81 | pearson=0.7802 0.8 Pearson=0.9718
p-value=3.232e-01 p-value=6.690e-05 p-value=9.266e-12
0.6 0.6 0.6
* + * +
L
+* 4 A
w044 0.4 0.4 -
o ®
w
< 3
0.21 r 0.2 0.2 +
0.0 0.0 - 00| wr it P
- # 4 # - nt X :* +
-0.2 -0.2 -0.2

0 200 400 600 800 1000 150 200
Average Length of Rationales (GPT-3.5)

Average Length of Rationales (LLaMA2)

250 300 350 1.0 0.8 0.6 0.4 0.2 0.0
Absolute Accuracy

Figure 5: Correspondence between model improvement and task difficulty across different metrics: (a), (b): Average
length of rationales from gpt-3.5-turbo-0613. (c), (d): Average length of rationales from LLaMA-2-7B-base.
(e), (f): Absolute Accuracy of LLaMA-2 model finetuned with answer labels (x-ticks is reversed). The color of the

points shifts from blue to red as Y-values increase.

4 Analyze Impacts of Rationales with
Difficulty

It is notable that improvements are more significant
for intuitively harder tasks, e.g. ARC-Challenge
compared to ARC-Easy. Thus we assume the im-
pacts of rationales on performance and calibration
are both related to the inherent difficulty of tasks,
which can explain the linear correspondence. How-
ever, correctly defining the intrinsic difficulty of
a task is non-trivial. In this section, we explore
three alternative metrics to approach a reasonable
characterization of task difficulty as follows.

4.1 Definition of Task Difficulty

Metric 1: Lengths of Rationales Generated by
GPT-3.5. Itis well-acknowledged that the dura-
tion of human thought is positively correlated with
problem difficulty (Kotovsky et al., 1985; Kahne-
man, 2011). We propose that a similar relationship
exists for pretrained language models, as they pos-
sess extensive general world knowledge. This par-
allel between rationale length and computational
effort is frequently drawn in contemporary research
on inference-time scaling (Snell et al., 2024). As
a further justification, we demonstrate on a sub-
set that it shows distinct linear correlation with an

established dataset difficulty metric, V-usable In-
formation (Ethayarajh et al., 2025), with a Pearson
coefficient of 0.895 (Details in Appendix F. Note
that this method requires training a separate model
for each dataset to measure, so we only use it for a
preliminary study to demonstrate the effectiveness
of our metrics).

So we use the average length of rationales gen-
erated by gpt-3.5-turbo-0613 as a measurement
for task difficulty. Specifically, for each test set,
we sample 100 data points, apply a zero-shot
Chain-of-Thought inference to each of them using
gpt-3.5-turbo-0613, and collect the rationales.
For each piece of data, we repeatedly generate 10
times, resulting in 1,000 rationales for the dataset,
which we call reference rationales in the follow-
ing parts. Then average length is calculated to
measure the difficulty of this dataset.

Metric 2: Lengths of Rationales Generated
by LLaMAZ2-base. As GPT-3.5 is trained with
closed-source SFT data, the generated rationales
might potentially suffer from certain biases. For
instance, its SFT data may contain math ques-
tions similar to those in GSM8Kk, thus impacting
the length of generated rationale as well as its
neutrality as a difficulty metric. In order to pur-
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Figure 6: Impacts of varied rationales.

sue unbiased rationales that naturally arises from
pre-trained LLMs, we design a Mix-of-Task In-
Context Prompting strategy. We first employ
LLaMA?2 as the generator, since it is not explic-
itly aligned to human instructions, we prepend 3
demonstrations to regulate its behavior to gener-
ate rationales for each given instance. The crucial
aspect here is to make sure all three demonstra-
tion tasks are different from the target task so that
the generated rationale is neither biased toward the
alignment procedure nor biased towards any of the
demonstrations. The prompts are constructed as:

P = {(w’bria yi)tl; (ﬂijTj:yj)tQ;

('xka Tk, yk)t3 ; xtn} (8)

where (x;,7;, ;)" are input, rationale and answer
sampled from task t1. ' is the input from target
task t¢,,. Demonstration tasks ¢y, ty, and t3 are
randomly sampled from the task pool excluding ¢,,.

Metric 3: Absolute Accuracy. Another alterna-
tive metric is the absolute accuracy of models. We
assume that lower accuracy corresponds to higher
task difficulty as models are less capable of these
tasks. We consider the accuracy under vanilla label-
only finetuning for consistency.

4.2 Attributing Impacts of Rationales with
Difficulty

Fig. 5 shows how the improvement in accuracy and
ECE evolves with the increase in task difficulty.
Clear rising trends are evident in Fig. 5 (c), (d),
(e), and (f), in which reference rationales generated
by LLaMA-2 and absolute accuracy are used to
measure difficulty. Meanwhile, we find the correla-
tion between accuracy improvement and task diffi-
culty bears a resemblance to that between ECE and

task difficulty. Such a trend may indicate that the
improvements in accuracy and ECE are similarly
driven by task difficulty, thus resulting in a linear
correlation with each other. Note that when using
GPT-3.5 generated rationales as references, there
is no significant positive relation, which might be
caused by the bias we mentioned before.

4.3 Actionable Insight: Estimating Gain of
RAFT with Task Difficulty

The above findings in this paper directly points out
an actionable insight: we can estimate the effects
of RAFT based on various difficulty-related factors.
Although strictly calculate the specific impacts is
challenging, we manage to measure the difficulty of
tasks with lengths of LLaMA?2 generated rationales
and absolute accuracy of models, which provides a
preliminary solution and may serve as actionable
guidance. To be specific, the linear correspondence
in Fig. 5 can be formulated as follows:

AAcc = 0.0029 x Len(Rprqn42) —0.5567 (9)

AAcc = 0.8031 x Accpr + 0.6730 (10)

Based on the equations above, it is predictable with
meaningful confidence whether and to what ex-
tent the performance and reliability improves when
RAFT is applied for a given task. We verify the
above relationship with two other datasets, SUBJ
and CoinFlip (details in Appendix B.1), which
are green crosses in Figure 5(c-f). We believe our
findings serve as a good initiation in the field of
generating and using rationales more predictably.
Additionally, though this work mainly focuses on
task-specific training, our conclusions may gener-
alize to a broader topic, the alignment of large lan-
guage models, which we discuss in Appendix A.2.

5 Robustness of the Impacts Brought by
Rationales

As model performance and calibration can be af-
fected by several factors, we conduct ablations to
verify the robustness of our conclusions.

Model selection. Extra experiments are con-
ducted on Qwen-7B, LLaMA2-7B-Chat, and
LLaMAZ2-13B. Additionally, we adopt another two
stronger models as rationale generators, LLaMA-
3.1-70B-Instruct and GPT-40-mini (results in Ap-
pendix G). We perform RAFT on 6 datasets where
performance varies in our previous experiments.
As is shown in Fig. 8 and Fig. 9, rationales still
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harm certain tasks across all models. And again,
significant linear correspondence can be identified
between the improvement in ECE and accuracy,
despite that the slopes and intercepts are different.

Hyper-parameters. We conduct a search on
learning rate (from 5e¢~7 to 5e¢~%) and training
epochs (from 2 to 6 epochs). Accuracy and ECE
from the best models are reported (results in Ap-
pendix G). We select 3 datasets which are represen-
tative of the typical effect of RAFT: harm, improve-
ment, or unchanging. In Table 6 we can see that it
remains unchanged whether RAFT brings improve-
ment or harm to model performance and calibra-
tion on all datasets. Consequently, our conclusions
about the impact of RAFT are robust against differ-
ent models and hyper-parameters.

Different Prompts. Rationales are generated
with prompts from another two annotators (see
Appendix D.3) and are used for RAFT. Results
are displayed in Fig. 6. For all tasks we investi-
gate, newly trained models behave the same way
as the original ones, where RAFT uniformly im-
proves or damages models’ performance, which
demonstrates the robustness of our key finding 1.
Key finding II is similarly verified consistent across
different annotators in Appendix H.

Multi-task Training. We conduct multi-task
training to verify our findings in a out-of-
distribution scene. We utilize two methods of con-
structing training data for multi-task training:

 Polarity Mixture: Separately mix data from
datasets where RAFT brings gain (or harm).

¢ Full Mixture: Mix data from all datasets.

We train models with mixed data and report test
performance on QQP, CR, and GSMS8K. Details
and results can be found in Appendix K. As shown
in Fig. 15, none of the multi-task models behaves
differently from singlet-task models. As a re-
sult, multi-task instruction tuning does not change
whether RAFT would cause improvement or harm.

Rationale-Augmented Prompting. We inves-
tigate whether these conclusions still hold un-
der the frequently used inference paradigm,
Rationale-Augmented Prompting. We query
gpt-3.5-turbo-0613 to generate answers for the
test sets with and without rationales. Still not all
tasks benefit from rationales. However, the previ-
ous findings remain valid: incorporating rationales

continues to improve ECE, with accuracy and ECE
improvements showing a linear relationship. Fi-
nally, although there is a positive correlation be-
tween improvements and task difficulty, it is less
pronounced than that observed in the RAFT set-
tings (see Table 10), which may indicate that the ef-
fect of rationales is less influenced by task difficulty
in the RAP setting. Full results are in Appendix J.

6 Explanatory Analysis

In this section we try to explain the impacts ob-
served above. We first exclude the formality
of RAFT and the extra computation as potential
causes through a blank rationale experiment and
then conduct a qualitative analysis to identify sit-
uations where rationales cause performance drop.
Furthermore, despite the difficulty of fully explain-
ing our conclusions from the perspective of inner
mechanisms of RAFT, we provide some hypothe-
ses and a discussion in the Appendix A.1.

6.1 Locating the Cause of Impacts

Given that rationales are additionally inserted be-
tween the question and answer, an intuitive argu-
ment would be that these reasoning traces should
at least not deteriorate model performance if they
do not provide obvious benefits. We thus design an
ablation experiment where rationales are replaced
with equal-length blank sequence {<Think_i>}*
(See Appendix I for sequence example). This ab-
lation can effectively disentangle the meaning and
extra computation brought by rationales.

Results are shown in Appendix I, where Fig. 11
shows that blank rationales indeed neutralize the
negative impacts of rationales, bringing perfor-
mance in line with label-only finetuning as ex-
pected. We can thus exclude either the formality of
RAFT or the extra computation as potential causes,
and the real cause for performance deterioration
should be the inherent meaning of the rationales.

6.2 Qualitative Analysis

To further investigate the performance drop, we
collect 100 samples where models under RAFT
generate wrong answers while models trained with
labels do well. We conclude 3 types of errors as
shown in Table 1. Incorrect Rationales refers
to the rationales that directly lead to wrong an-
swers. Specifically, Unreasonable means the gen-
erated rationales are logically wrong. As shown
by the example, the rationale is opposite to the
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Table 1: Typical cases of different errors. Blue marks correct reasoning traces or golden answers and red marks

oppositely.

Error Attribution Datasets

Samples

Unreasonable

(57%) Winogrande

Question: At night, Jeffrey always stays up later than Hunter to
watch TV because _ wakes up late.

Answer: ..Jeffrey stays up later to watch TV because the other
person wakes up late. Therefore, the most likely option is Hunter.
(Correct: Jeffrey)

Incorrect
Reasoning

(75%) Off-Topic

(18%) AGNews

News: Sun Microsystems Inc. has decided to postpone its Septem-
ber SunNetwork 2004 San Francisco user conference, and ...
Answer: ... The overarching topic of the news is related to busi-
ness, specifically the decisions and contemplations made by Sun
Microsystems Inc. regarding their conferences. The news is about
Business. (Correct: Science/Technology)

Trivial Reasoning (23%) TREC

Text: What position did Willie Davis play in baseball ?
Answer: This question is about the position played by Willie
Davis in baseball. So it is about an Entity. (Correct: Human
Beings)

Incorrect Conclusions (2%) | Winogrande

Question: Adam was law-abiding and not a crook like Joseph, so
it was surprising that _ was the one with a restraining order against
him.

Answer: It implies that the person who was law-abiding and not a
crook like Joseph is the one who had a restraining order against

them. So the answer is Joseph. (Correct: Adam)

meaning of the question. In such cases, models
only mimic the form of reasoning steps but are not
indeed reasoning. Off-topic is a different situa-
tion, where the rationales make sense, but miss the
key point to solve the problem. In the example,
the rationale focuses on certain words, ignoring
the topic itself. These cases are naturally difficult
for models, where introducing rationales may not
produce better results. Trivial Rationales are
those rationales that just repeat the problem. This
usually happens for tasks with simple forms like
sentiment/topic classification, where conclusions
can be jumped to without much reasoning content.
Finally, Incorrect Conclusions are rare cases
where generated answers are not consistent with
the reasoning steps, which might be occasional and
we do not further look into.

7 Related Work

Rationales are free-text reasoning steps produced
by human or language models. Much attention has
been paid to leveraging rationales to enhance model
performance (Zaidan et al., 2007; Druck et al.,
2009; Zhang et al., 2016; Camburu et al., 2018).
Recently LLMs have been capable of generating
reasoning steps through Chain-of-Thought (Wei
et al., 2023; Kojima et al., 2023), which inspires
a bunch of works studying rationale-augmented
finetuning (RAFT) using LLMs (Nye et al., 2021;

Chung et al., 2022; Fu et al., 2023; Shridhar et al.,
2023; Mukherjee et al., 2023; Mitra et al., 2023).
These works focus more on proposing new meth-
ods of extracting and utilizing rationales on certain
target tasks. There are also works studying the ef-
fectiveness of rationales (Carton et al., 2022; Hase
and Bansal, 2022; Yao et al., 2023; Kabra et al.,
2023). Yet none of the above has studied the effect
of rationales widely on different tasks nor do they
study the effect of rationales on calibration (While
(Sprague et al., 2024) introduces similar idea to
ours, they mainly focuses on zero-shot setting, and
do not study the behavior of calibration). Our study
works in this untraveled direction.

Confidence calibration is first proposed for
determining how a weather forecaster is reli-
able (Miller, 1962; Murphy, 1973). Research
on confidence calibration of statistical machine
learning methods has a long history (DeGroot and
Fienberg, 1983; Palmer et al., 2008), and later
calibration of neural networks is also researched
on (Nguyen and O’Connor, 2015; Hendrycks and
Gimpel, 2016; Nixon et al., 2019). (Guo et al.,
2017) points out that finetuned neural networks
are over-confident, which is potentially caused by
over-minimizing the loss. Recently, calibration of
language models also received attention. (Desai
and Durrett, 2020; Kadavath et al., 2022) study
the calibration of pretrained language models and
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point out that they are well calibrated. Similarly,
finetuning has been found to harm the calibration
of LMs (He et al., 2023; OpenAl et al., 2023; Zhu
et al., 2023). While previous works have studied
the calibration of pretrained and finetuned language
models, we expand the calibration measurement to
the rationale-augmented finetuning setting.

8 Conclusion

In this work, we systematically examine the im-
pact of rationale-augmented finetuning (RAFT)
on model performance and reliability, and bring
out several key findings that add new insights to
current understandings. It sometimes deteriorates
model performance, while alleviating calibration
error caused by finetuning over-fitting. We also
identify a significant linear correlation between the
impacts on performance and reliability, both are
driven by the intrinsic difficulty of the task. With
exploratory analysis and discussions, this paper
implies future directions to continually delve into
the underlying mechanism of rationales, pursuing
better alignment between the explicit reasoning
process of auto-regressive language models and
implicit human thought structure.
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Limitation

Our work reveals several new findings about
rationale-augmented finetuning through extensive
experiments. Although this work presents explana-
tions and discussions about the intrinsic mechanism
of rationales, theoretical proof is still pending. We
hope this work would inspire new attempts on more
rigorous formulation for rationale and its inherent
mechanism on language models.

Potential Risks

Our work focuses on the mechanism and effects of
rationales, which provide guidance on the prevail-
ing solution of rationale-augmented finetuning, and
might also inspire improved methods to produce
better synthetic rationales when training language
models. Negative impact may include the abuse
of LLMs to generate rationales for malicious tasks

or using improved language models for harmful
content generation.
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A Further Discussion

A.1 Intrinsic Mechanism of Impacts of Rationales

In this section, we provide analysis and discussions that take a step further to explain our findings as well
as unveil the intrinsic mechanism of rationales.

Why RAFT Causes Performance Drop? We measure the information gain of a rationale as follows.
Given a question z, rationale r and answer y, in time step ¢ we construct an input (x; ;< ), where ;<
are first ¢ tokens from the rationale. Then we query the model to generate 100 answers using this input. If
y appears n times, we record n/100 as the probability of the model generating answer y. We repeat such
step until the whole rationale is included.

Fig. 7 shows how the probability of the final answer changes with the reasoning process. It fluctuates
most time with only one sharp turn that leads to the final answer. This contradicts our expectation that
rationales should decompose the task step-by-step, gradually bringing information gain and reducing
uncertainty. This observation might be attributed to the inherent differences between human thoughts and
LM architecture, it’s difficult for LMs to fully mimic human thoughts when their capability is limited in
an auto-regressive structure. As a result, it remains to be explored what is the golden rationale for an LM
and how to construct it.

Why RAFT Benefit Model Calibration? Previous study attributes the harmful effect of finetuning on
calibration to the optimization process. In the optimization process, even when model predictions have
already been correct, the loss can be further minimized by increasing the confidence of predictions (Guo
et al., 2017), which causes models to be over-confident and less calibrated. We suppose introducing
rationales extends the labels from single numbers or letters to a longer text sequence space, which hinders
the training process from minimizing loss by raising the confidence in final answers improperly. Besides, a
widely used approach in RAFT is to include multiple rationales for one sample, which further strengthens
such constraints.

Rationale: ... Based on the information given in the premise,
we can determine that KnowledgeWare is located in Atlanta,
Georgia. Atlanta is located in the southern hemisphere...
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Figure 7: Probability of generating the final answer given different lengths of rationale tokens. Tokens corresponds
to the sharp increase are highlighted in red.

A.2 Possible Impacts on General LM Alignment

Though this work mainly studies task-specific finetuning, such conclusion might be generalized to a
broader scenario, the alignment of large language models. The most applied technique for alignment
for large language models is supervised finetuning (SFT), where human or model responses for a large
amount of prompts are collected and used for finetuning models. In typical practice of SFT, each piece
of data contains rationales, regardless of the task to which it pertains. At present it is rather unexplored
whether we need rationale for all these prompts or how detailed rationales are proper for each prompt.
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According to our findings, rationales bring considerable income for some difficult tasks while helping less
or distracting models for relatively simpler ones. Re-arranging the rationales in SFT data might enhance
the instruction following ability of supervised finetuned models. An intuitive attempt is enhancing,
impairing, or even removing the rationales for different prompts according to the task difficulty, which
may serve as a refinement and denoising for SFT data. As it is not the main focus of this paper, we leave
such exploration for future work.

B Details of Datasets and Licences.

B.1 Introduction of Datasets

Here we introduce details about the datasets we used in the experiments. Note that for test sets whose
gold answers are unavailable, we use the validation set instead.

Math Reasoning. MultiArith (Roy and Roth, 2015) is a collection of complicated arithmetic problems
designed to test machine learning models. ASDiv (Miao et al., 2020) is an elementary-school-level math
word problem corpus that focuses on diversity when constructed. SVAMP (Patel et al., 2021) pays more
attention to harder variations of basic problems as most benchmarks focus on difficult problems while
models still lack the capabilities to deal with simpler ones. Lastly, GSM8K (Cobbe et al., 2021) is a
collection of grade school math problems aimed at challenging the most advanced problem solvers.

Common Sense Reasoning. ARC (AI2Reasoning Challenge) (Clark et al., 2018) and Common-
SenseQA (Talmor et al., 2019) are two common sense question answering datasets consisting of science
exam questions and human written questions based on concepts in a common sense knowledge-base,
CONCEPTNET (Speer et al., 2018). CREAK (Onoe et al., 2021) is a dataset combining common sense
and entity knowledge, which includes inference and fact-checking questions for real-world or fictional
entities (e.g. Harry Potter).

Sentiment/Topic Analysis. CR (Ding et al., 2008) are SST-2 (Socher et al., 2013) are the two datasets
used for sentiment analysis, where each sample is labeled positive or negative. TREC (Li and Roth,
2002) and AGNews (Zhang et al., 2015) are topic classification datasets consisting of questions and news
snippets respectively.

Paraphrase. PAWS (Zhang et al., 2019) and QQP" consists of sentence pairs from Wikipedia and
Quora, which one should determine whether the sentences in the pair have the same semantic meaning.

Natural Language Inference (NLI). CommitmentBank is a natural inference dataset from the Super-
GLUE benchmark (Wang et al., 2020) and AdversarialNLI (Nie et al., 2020) is an NLI dataset made up of
adversarially constructed questions.

Word Sense Disambiguation. WiC (Pilehvar and Camacho-Collados, 2019) is another sub-task of
SuperGLUE, where one should determine whether a given word shows the same meaning in two sentences.

Coreference Resolution. We choose Winogrande (Sakaguchi et al., 2019) in this task, where the task is
to identify the specific entity a pronoun points to.

Additional Datasets for Validation SUBJ (Pang and Lee, 2004) is a review analysis dataset, which
mainly focuses on deciding the objectivity and subjectivity of reviews for films. CoinFlips (DrewWham
and Nascimento, 2020) is a reasoning task where one should decide whether a coin is head or tail after a
series of possible flips.

B.2 Licenses of Data and Models

We list all licenses of used data and models here except those whose licenses are not specified. We also
cite all original papers for these assets.

Tht’cps ://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
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https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

B.2.1 MIT
SVAMP, GSM8K, CommonsenseQA, CREAK, CR, CoinFlips.

B.2.2 CC
ASDiv (CC BY-NC 4.0), ARC (CC BY-SA), ANLI (CC BY-NC 4.0), WiC (CC BY-NC 4.0).

B.2.3 Apache-2.0
Winogrande, Qwen models

B.2.4 Custom Licenses

AGNews (non-commercial use*)

PAWS (free use for any purpose®)

QQP (Quora ToS, non-commercial use')
CommitmentBank (SuperGlue, research-only")
LLaMAZ2 (Llama 2 Community License Agreement**)

B.2.5 Unknown
MultiArith, SST2, TREC, SUBJ

i:ht’cp ://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
Shttps://github.com/google-research-datasets/paws/blob/master/LICENSE
Thttps://www.quora.com/about/tos

"https://super.gluebenchmark.com/faq
"https://huggingface.co/meta-1lama/Llama-2-7b-chat-hf/blob/main/LICENSE. txt
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C Brief Quality Assessment for Generated Rationales

We sample 20 data points for each of the 18 datasets, resulting in a total 360 data points. We prompt
GPT-40 with the following instruction to assess the helpfulness of each rationale.

Prompt Templates for Rationales Quality Assessment

Following you will see a question and the corresponding answers along with rationales generated
by a language model. You should assess whether the reasoning steps in the rationales are helpful
for getting the correct answer. Give your analysis first and conclude in the end with "Helpful" or
"Unhelpful".

In the evaluation result, only 1 of the rationales are labeled as "Unhelpful”, which is then examined by
human and turns out to be incorrectly classified by GPT-40. Such results also demonstrate the quality of
the rationales. Details of the "Unhelpful" sample are shown below:

The False Negative Sample

Question:
Decide whether the sentiment of the given statement is positive or negative: with mediasource
being so easy , i found no use for the bundled nomad explorer software

Answer:

Let’s think step by step.

(1) Mediasource being easy to use suggests it is a positive aspect, making managing media files
simple and efficient.

(2) The statement mentions finding no use for the bundled Nomad Explorer software. This implies
that the software was not needed as the mediasource is already easy enough, indicating a negative
experience.

Though there are positive parts in the sentence, The sentiment of the statement leans towards being
negative."""

GPT-Evaluation:

1. The rationale correctly identifies that the statement describes Mediasource as easy to use, which
implies a positive experience with this tool.

2. The statement mentions that the user found fio use for the bundled Nomad Explorer
software.This does not necessarily indicate a negative experience with Nomad Explorer itself.
It could simply mean that Mediasource was sufficient for the user’s needs, rendering Nomad
Explorer redundant. The rationale incorrectly interprets this as a negative sentiment.

...Unhelpful

Human-Evaluation:
Helpful
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D Prompts Used in Rationales Generation.

D.1 Prompt Templates for Rationale Generation

Here are the prompt templates for rationale generation, where red texts are fields from datasets and blue
texts are content generated by LLM.

Prompt Templates for Rationales Generation (Annotator A)

[System Prompt]
You are a helpful assistant.

[Math Reasoning]
Solve the following math problems. Add a line "The answer is n"” at the end
where n is the answer value.

Question: {question}

Answer: Let’s think step by step. {LLM output}

[Natural Language Inference]

Following is a premise and a hypothesis, determine whether the hypothesis
is entailed by the premise, contradictory with the premise, or can not be
determined. Add a line "The answer is x" in the end where x is your choice.

Premise: {premise}
Hypothesis: {hypothesis}
Options: (A) Entailment (B) Contradiction (C) Neutral

Answer: Let’s think step by step. {LLM output}
[Sentiment Analysis]
Follwing is a statement, determine whether the sentiment is negative or

positive. Add a line "The answer is x" in the end where x is your choice.

Statement: {statement}
Options: (A) positive (B) negative

Answer: Let’s think step by step. {LLM output}

[Topic Classification (TREC)]

Following is a question, determine which topic it is about. Add a line "The
answer is x" in the end where x is your choice.

Question: {question}

Options: (A) Description and abstract concept (B) Entity (C) Abbreviation (D)

Human being (E) Location (F) Numeric value

Answer: Let’s think step by step. {LLM output}
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[Topic Classification (AGNews)]
Following is a piece of news and its brief description, determine which topic
it is about. Add a line "The answer is x"” in the end where x is your choice.

News: {news}
Options: (A) World (B) Sports (C) Business (D) Science and Technology

Answer: Let’s think step by step. {LLM output}

[Common Sense (ARC&CSQA)]
Following is a selective question and its answer options. Select the most
possible one. Add a line "The answer is x" in the end where x is your choice.

Question: {question}
Options: {options}

Answer: Let’s think step by step. {LLM output}

[Common Sense (CREAK)]
Following is a statement, determine whether is is true or false based on common
sense and fact. Add a line "The answer is x" in the end where x is your choice.

Statement: {statement}
Options: (A) False (B) True

Answer: Let’s think step by step. {LLM output}

[Paraphrase]

Following are two similar sentences. Determine whether they are asking the
same question or describing the same situation. Add a line "The answer is x"
in the end where x is your choice.

Sentencel: {sentencel}
Sentence2: {sentence2}
Options: (A) Different (B) Same

Answer: Let’s think step by step. {LLM output}

[Coreference Resolution]

Following is a sentence where a word is replaced with a blank symbol
You will be given two options and you should choose the most possible one to
fill in the blank. Add a line "The answer is x" in the end where x is your choice.

n n

Sentence: {sentence}
Options: {options}
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Answer: Let’s think step by step. {LLM output}

[Word Sense Disambiguation]

Following is a target word and two sentences. Determine whether the words in
the two sentences have the same semantic meaning. Add a line "The answer is x"
in the end where x is your choice.

Target word: {target word}
Sentencel: {sentencel}
Sentence2: {sentence2}

Options: (A) Different (B) Same

Answer: Let’s think step by step. {LLM output}

\

D.2 Prompt Templates for Different Lengths

Prompt Templates for Different Lengths

[1]...Give a thorough analysis of the problem and explain your solution.
[2]...Analyze the problems and explain your solution as detailed as possible.
[3]...Let’s think step by step.

[4].. .Explain your solution with a few words.

[5]...Explain the solution as short as you can.

\.

D.3 Prompt Templates from Annotator B

Prompt Templates for Rationales Generation (Annotator B)

[Natural Language Inference]

You are now required to perform a natural language inference task. I will
provide you with a premise and a hypothesis, and you need to determine whether
the hypothesis can be inferred from the premise.

[Sentiment Analysis]
You are now required to perform a sentiment analysis task. I will give you a
text passage, and you need to determine whether it is positive or negative.

[Topic Classification]

You are now required to perform a topic classification task. I will give you
a sentence, and you need to determine which of the six possible topics it
belongs to.

[Common Sense (ARC)]

You are now required to perform a coreference resolution task. I will give you
a text passage in which I intentionally omit a word, and then provide you with
two options. You need to determine which option is more fitting in the context.

[Coreference Resolution]
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You are now required to perform a coreference resolution task. I will give you
a text passage in which I intentionally omit a word, and then provide you with
two options. You need to determine which option is more fitting in the context.

D.4 Prompt Templates from Annotator C

Prompt Templates for Rationales Generation (Annotator C)

[Natural Language Inference]
Review a given premise, determine whether the relevant hypothesis can be
logically inferred from the premise.

[Sentiment Analysis]
You will see a passage of text, please determine the sentiment of the text.

[Topic Classification]
Given a sentence, please determine which of the six categories it belongs to.

[Common Sense (ARC)]
You will be shown a question and four answers, from which you need to choose
one based on your common sense.

[Coreference Resolution]

Given a passage of text where a word is left blank, and you will see two
options, each corresponding to a word. Please infer, based on the context,
which word is more suitable to fill in the blank.
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E Training Settings.

Table 2 is the hyper-parameters used in finetuning models. All models are trained for 3 epochs using
Huggingface Transformers Library'™ on 4 NVIDIA A-100 GPU and Fully Sharded Data Parallel (FSDP).

Table 2: Hyper-parameters of finetuning.

PARAMETERS VALUES
EPOCH 3
LEARNING RATE 5¢~6
BATCH SIZE PER DEVICE 4
GRADIENT ACCUMULATION 4
GRADIENT CHECKPOINTING TRUE
PRECISION BF16
MAX LENGTH 2048
WARMUP RATIO 0.03
WEIGHT DECAY 0

LEARNING RATE SCHEDULER COSINE

Below are an overview of training and inference time.

Table 3: Training/Inference time overview.

MODEL TRAINING TIME (MINS)
SCALE  W/O RATIONALES W/ RATIONALES
7B ~25 ~40
13B ~60 ~90

INFERENCE TIME (SECONDS PER SAMPLE)

7B ~0.12 ~40
13B ~3.5 ~60

F Correlation between V-usable Information and Lengths of Rationales

Table 4 is the V-usable Information and average length of rationales for a dataset in each task category,
where a distinct linear correlation comes up.

Table 4: The V-usable Information and average length of rationales for a dataset in each task category. We denote
V-usable Information as V-INFO and average length of rationales as LENGTHS. The Pearson Coefficient is 0.895.

METRICS SST2 ANLI PAWS WiC WINOGRANDE ARC CHALLENGE GSMS8K

V-INFO -0.222  -0.0013 0.0011 0.0023 0.0044 0.0014 0.178
LENGTHS 176.1 202.7 232.2 231.3 233.3 254.8 339.7

" https://huggingface.co/docs/transformers/index
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G Results of Different Models and Hyper-parameters

G.1 Different Models

Fig. 8 and Table 5 are experimental results of different models and hyper-parameters. We can still observe
significant linear correspondence between the improvement in accuracy and ECE in other models with
high Pearson Coefficient and near-zero P-value. Besides, when models are trained with different hyper-
parameters, our main conclusions still hold. Fig. 9 shows results of LLaMA-2 fine-tuned on rationales
generated with LLaMA-3.1-70B-Instruct and GPT-40-mini. The conclusions are the same.
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Figure 8: Improvement in Accuracy and ECE of different models. Significant linear correspondence can still be

observed.
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Figure 9: Improvement in Accuracy and ECE of models trained on rationales generated with LLaMA-3.1-70B-
Instruct and GPT-4o0-mini. Significant linear correspondence can still be observed.

Table 5: Significance test of linear correspondance in different models.

Models Pearson P-value

Qwen-7B 0.9883 1.024 x 10~*
LLaMA2-7B-Chat  0.9902  7.248 x 107°
LLaMA2-13B 0.9943  2.469 x 107°
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G.2 Hyper-parameters

Table. 6 shows the results from the best models in the parameter search. For comparison, we also list
results of our main experiments. As can be seen in the table, it remains unchanged whether RAFT brings
improvement or harm to model performance and calibration.

Table 6: Results from best models in the parameter search.

Metric AAcc (paper)  AAcc (w/ parameter search) AFECE (paper) AFECE (w/ parameter search)

QQP -0.092 -0.047 -0.032 -0.004
CR -0.002 -0.006 0.003 0.01
GSMBK 0.509 0.509 0.544 0.394

H ECE Results Produced with Different Prompts

Following are ECE results of models trained with rationales produced with different prompts. We can
see that difference of ECE is minor among models trained with different rationales and our conclusion
consistently holds.
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Figure 10: ECE of models trained with rationales produced by annotator B and C.
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I Details of Blank Rationales

Here are experimental details of Section 6.1. We conduct experiments on three datasets, WiC, QQP and
Winogrande. For each sample, we substitute the rationale with a blank sequence composed of <Think_n>
to ensure that it does not provide any additional information, as is shown in Table 8. The number of blank
think tokens is set as the average length of rationales in the dataset, specific numbers are listed in Table 7.

Table 7: Length of blank rationales for each dataset.

Datasets Number of Inserted <Think_n>
WiC 55
QQP 38
Winogrande 32

Table 8: Illustration of blank rationales.

The premise provides information about KnowledgeWare, its
Rationale founders, its headquarters in Atlanta, Georgia, and its product
... The answer is B

<Think_0> <Think_1> <Think_2> <Think_3> <Think_4>
<Think_5> <Think_6> ... <Think_n> The answer is B

Blank Rationale

Experimental results are shown in Figure 11

1.0
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o ©
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§
.
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0.6
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Figure 11: Experimental results of blank rationales.

J Results of Rationale-Augmented Prompting Setting.

Here are the diagrams that supports the conclusions in RAP setting.

Fig. 12 shows the improvement in accuracy and ECE respectively, where the conclusions remain that
rationales deteriorate model performance in some tasks, while in most cases benefit model calibration.
Fig. 13 and Table 9 shows the relation between improvement in accuracy and ECE. In Fig. 9 we zoom the
dense area and omit point labels for clearance. There are still linear correlation between improvements in
model accuracy and ECE, while such correlation may be less visually significant as most points are near
the origin. Fig. 14 shows the relation between Acc/ECE improvement and different difficulty metrics,
in which the positive relation is less pronounced than that in RAFT experiments, which indicates that in
RAP setting, model performance and calibration are less affected by task difficulty.
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Figure 12: Improvements in accuracy and ECE under rationale-augmented prompting setting. Datasets are re-
ordered according to the improvements in accuracy. Wino refers to Winogrande and M-A refers to MultiArith.

Table 9: Numeric value of the linear fit between Accuracy and ECE Improvment.

RESULTS VALUES
SLOPE 0.413597
INTERCEPT 0.030452
PEARSON 0.955723

P-VALUE 3.230854¢ 10
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Figure 13: Improvement in Accuracy and ECE of gpt-3.5-turbo-0613 under rationale-augmented prompting

setting. Each point is a datasets, and its x/y-coordinate represents the improvement in model accuracy/ECE
respectively. Point labels are omitted as points are close to each other.
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Figure 14: Improvement in accuracy and ECE under rationale-augmented prompting setting when task difficulty is
measured with different metrics. Subplot (a), (b): Average length of rationales generated by gpt-3.5-turbo-0613.
Subplot (c), (d): Average length of rationales generated by LLaMA-2-7B-base. Subplot (e), (f): Original Accuracy
of LLaMA-2 model finetuned with answer labels (x-ticks is reversed).

Table 10: Pearson and p-Value of the one-tailed hypothesis test for linear relation. Bold entries are p-values lower
than 0.05.

Settings  Metrics Accuracy ECE
& Pearson p-Value Pearson p-Value
GPT-3.5 0.0010 0.4984 0.1161  0.3232
RAFT LLaMA2 0.7059 5.3e * 07802 6.7¢”°
Accuracy 0.9295 1.2e7% 09718 9.3e 12
GPT-3.5 0.1861 0.2298 0.3078  0.1070
RAP LLaMA2 0.5633 0.0075  0.649 0.0018
Accuracy 0.5953  0.0046 0.6240  0.0028
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K Results of Multi-task Training

Fig. 15 shows the improvement in accuracy and ECE of models trained in multi-task settings. In polarity
mixture setting, for data where RAFT brings gain, we mix QQP, Winogrande, and CR. For the other one,
we mix GSM8K, ARC, and CREAK. All results under multi-task learning setting are on the same side of
y-axis with baselines, which indicates that multi-task instruction tuning does not change whether RAFT
acts positively or negatively.
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Figure 15: Improvement in Accuracy and ECE of models trained in multi-task settings. (a) Baseline: single task
finetuning. (b) Polarity mixture: mix data from datasets where RAFT cause performance increase (or drop). (c) Full
mixture: mix data from all datasets.
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