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Abstract
Detecting rumors on social media has become
a crucial issue. Propagation structure-based
methods have recently attracted increasing at-
tention. When the propagation structure is rep-
resented by the dynamic graph, temporal in-
formation is considered. However, existing
rumor detection models using dynamic graph
typically focus only on coarse-grained tem-
poral information and ignore the fine-grained
temporal dynamics within individual snapshots
and across snapshots. In this paper, we pro-
pose a novel Fine-Grained Dynamic Graph
Neural Network (FGDGNN) model, which
can incorporate the fine-grained temporal in-
formation of dynamic propagation graph in the
intra-snapshot and dynamic embedding update
mechanism in the inter-snapshots into a unified
framework for rumor detection. Specifically,
we first construct the edge-weighted propaga-
tion graph and the edge-aware graph isomor-
phism network is proposed. To obtain fine-
grained temporal representations across snap-
shots, we propose an embedding transforma-
tion layer to update node embeddings. Finally,
we integrate the temporal information in the
inter-snapshots at the graph level to enhance the
effectiveness of the proposed model. Extensive
experiments conducted on three public real-
world datasets demonstrate that our FGDGNN
model achieves significant improvements com-
pared with the state-of-the-art baselines.

1 Introduction

Social media has become the major platform for
information sharing among the public. However,
the proliferation of social media also brings signifi-
cant challenges. One of the main challenges is the
rapid spread of rumors, which can pose severe risks
to public trust, people’s health, and social stability.
Therefore, it has become increasingly important
to develop effective methods for identifying and
combating rumors.

*Corresponding author.

𝑇1 𝑇2 𝑇𝑆…

20 37

35 59 78

69 43

20 37

35 59

20 37

…

(a) Static graph (b) Dynamic graph

Figure 1: An example of event propagation graph on
social media. (a) Static graph. Each node represents
a post and each edge represents the response relation-
ship without temporal information. (b) Dynamic graph.
Each node represents a post and each edge represents
the response relationship with an associated temporal
information. The dynamic propagation process in the
example is divided into S snapshots.

Previous research relies on manually designed
features and machine learning classifiers to iden-
tify rumors (Castillo et al., 2011; Yang et al.,
2012; Feng et al., 2012; Kwon et al., 2013). To
overcome the limitations of handcrafted features,
deep learning models such as Recurrent Neural
Networks (RNNs) and Convolutional Neural Net-
works (CNNs) have been used for rumor detection
to automatically extract high-level representations
from the content-based methods and propagation
structure-based methods (Ma et al., 2016, 2018;
Liu and Wu, 2018; Li et al., 2019).

The propagation structure-based methods, which
have achieved superior detection performance,
have attracted more and more attention in re-
cent years (Bian et al., 2020; Min et al., 2022;
Nguyen et al., 2020). However, existing propa-
gation structure-based methods usually consider
the static graph structure of the final state of ru-
mor propagation, and ignore the temporal dynam-
ics of rumor propagation. Figure 1(a) illustrates a
static graph structure of rumor propagation. The
temporal features of propagation refer to the order
and interval of replied or retweeted posts along
the timeline, as reflected in the timestamps of user
engagements. Therefore, some studies (Lao et al.,
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2021; Chang et al., 2024; Choi et al., 2021; Song
et al., 2021; Sun et al., 2022a; Xu et al., 2024) have
explored the temporal dynamics of news events and
proposed dynamic graphs to model the spread of
rumors on social media. A dynamic graph of event
propagation is shown in Figure 1(b). These meth-
ods, which are usually built using Graph Neural
Networks (GNNs), emphasize the transformation
and aggregation of graph features, but fail to cap-
ture detailed temporal features of propagation, such
as the speed, depth and breadth that characterize
the propagation of a rumor event.

To address this issue, dynamic propagation graph
composed of a series of snapshots have been con-
structed to model temporal dynamics (Choi et al.,
2021; Song et al., 2021; Sun et al., 2022a; Xu et al.,
2024). These works treat snapshots of dynamic
graphs as isolated from one another or only allow
for coarse-grained interactions between two con-
secutive snapshots (i.e. inter-snapshots). Coarse-
grained information often neglects edge-level vari-
ations, treating all connections equally. It fails to
capture key rumor-spreading patterns, such as sud-
den bursts of interactions or gradual spread over
time. Moreover, the coarse-grained information
used only in the overall graph representation often
ignores the impact of node-level variations and the
interactions among different snapshots within an
event. This leads to a weak structural represen-
tation. In contrast, fine-grained interactions aim
to capture detailed temporal variations at both the
edge and node levels, leveraging more comprehen-
sive information to enhance the model’s perfor-
mance. Therefore, fine-grained temporal features
are required to capture the details of propagation.
We divide the temporal granularity of propagation
into the edge-aware and node-level granularity. The
edge-weighted propagation graph, which can repre-
sent the speed, depth and breadth of propagation, is
used to describe edge-aware granularity in the intra-
snapshot. As shown in Figure 1(b), the weighted
graph is used to represent the propagation graph,
where the weight on each edge indicates the time
interval between the creation of a post and the cre-
ation of its response. The node-level granularity is
adopted to capture the temporal dynamics in the
inter-snapshots.

In this paper, we propose a novel Fine-Grained
Dynamic Graph Neural Network (FGDGNN)
model, which incorporates the edge-aware tempo-
ral information of dynamic propagation graph in
the intra-snapshot and the node-level dynamic up-

date in the inter-snapshots into a unified framework
for rumor detection. Specifically, we first construct
an edge-weighted propagation graph, in which time
intervals are used as edge weights. The propagation
process is represented as a sequence of graph snap-
shots. Then, we propose an Edge-Aware Graph
Isomorphism Network (EAGIN) to make full use
of edge weights to capture detailed temporal fea-
tures in the intra-snapshot. To obtain fine-grained
temporal representations in the inter-snapshots, we
propose an embedding transformation layer to up-
date node embeddings. Finally, we integrate the
temporal information in the inter-snapshots at the
graph level with the framework to enhance the ef-
fectiveness of the proposed FGDGNN model.

The main contributions of this paper can be sum-
marized as follows:

• We propose a novel Fine-Grained Dynamic
Graph Neural Network (FGDGNN) model
that integrates edge-aware temporal informa-
tion and node-level dynamic update mecha-
nism in the dynamic propagation graph.

• We propose a method for constructing an edge-
weighted graph capable of representing fine-
grained temporal features, and investigate a
novel problem of temporal granularity in dy-
namic propagation graph to explore temporal
information in the intra-snapshot and inter-
snapshots for rumor detection.

• We conduct extensive experiments on three
real-world datasets to demonstrate the effec-
tiveness of our proposed model on rumor de-
tection.

2 Related Work

2.1 Rumor Detection
Early rumor detection methods primarily rely on
hand-crafted feature engineering and statistical
machine learning techniques to extract features
(Castillo et al., 2011; Yang et al., 2012; Feng et al.,
2012; Kwon et al., 2013). Recently, deep learning
models have been proposed for rumor detection,
including content-based (Ma et al., 2019; Nguyen
et al., 2020; Dun et al., 2021; Xu et al., 2022; Min
et al., 2022) and propagation structure-based meth-
ods (He et al., 2021; Wei et al., 2021; Ma et al.,
2022). Propagation structure-based models aim
to capture structural characteristics to improve ru-
mor detection performance. With growing atten-
tion, a variety of models leveraging propagation
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structures have been extensively explored. Some
studies (Bian et al., 2020; Lin et al., 2023; Tao
et al., 2024) construct propagation graph from both
top-down and bottom-up perspectives to capture
the nature of rumor propagation. With the appli-
cation of augmentation techniques and contrastive
learning, some studies (Sun et al., 2022b; Zhang
et al., 2023; Liu et al., 2023; Cui and Jia, 2024;
Jiang et al., 2025) build rumor detection models to
improve the understanding of the propagation pro-
cess. In addition, the development of static graph
approaches for rumor detection has also provided
valuable insights for dynamic graphs. Works like
(Lao et al., 2021; Chang et al., 2024) integrate tem-
poral information into node features to model the
evolving nature of rumor propagation. Meanwhile,
methods such as (Choi et al., 2021; Song et al.,
2021; Sun et al., 2022a; Xu et al., 2024) model
the dynamic propagation process by dividing the
graph into temporal snapshots, simulating how ru-
mors spread over time. However, these dynamic
propagation methods focus only on coarse-grained
temporal information and fail to effectively cap-
ture fine-grained temporal details. Furthermore,
existing methods either treat snapshots of dynamic
graphs as isolated from one another or permit only
shallow interactions among them.

2.2 Dynamic Graph Neural Networks

In recent years, many Graph Neural Networks
(GNNs), such as GCN (Kipf and Welling, 2016),
GAT (Veličković et al., 2017), and GIN (Xu et al.,
2019), have been developed to model complex re-
lationships on graphs. These methods leverage
the nodes and edges in graphs to model various
real-world complex networks (Tian et al., 2022;
He et al., 2024, 2023; Tang et al., 2023). How-
ever, models based on static graphs often neglect
performance variations introduced by temporal evo-
lution. Therefore, dynamic graphs are more suit-
able for further exploring real-world applications.
Among the various methods for modeling dynamic
graphs, Discrete-Time Dynamic Graphs (DTDG)
have emerged as one of the most widely adopted
paradigms (Manessi et al., 2020; Zheng et al., 2023;
Li et al., 2024). In the DTDG framework, the dy-
namic graph is represented as a sequence of graph
snapshots, where each snapshot corresponds to the
state of the graph at a particular discrete time step.
At each time step, the graph can evolve in terms
of its structure. Among these methods, a substan-
tial amount of work focuses on snapshot updates

and fusion in dynamic graphs. Pareja et al. (2020)
update the weight matrices of GCNs between snap-
shots. You et al. (2022) update the node embed-
dings at different snapshots over time. Zhu et al.
(2023) introduce a sliding window module to en-
hance the model’s ability to capture dependencies
over long sequences of snapshots. Different from
the above works, we propose FGDGNN, a model
that captures fine-grained temporal information in
dynamic propagation graphs by fully leveraging
both intra-snapshot temporal patterns and inter-
snapshot node updates.

3 Methodology

3.1 Problem Definition

The rumor detection task can be defined as a clas-
sification problem. Formally, for a given rumor
detection dataset C = {C1, C2, . . . , Cm}, where Ci
is the i-th event and m is the number of events.
For each event Ci = {ri, pi1, pi2, . . . , pini−1, Gi},
ri is the source post, pij represents the j-th re-
sponsive post, and ni is the number of posts in
the event Ci. All posts in event Ci are ordered
chronologically and the set of timestamps for posts
is denoted as Ti = {ti0, ti1, ti2, . . . , tini−1}, where
ti0 = 0 represents the timestamp of the source
post and tij represents the timestamp of the j-th
responsive post. Gi = ⟨Vi, Ai, Xi⟩ is the prop-
agation graph with the root node ri, where Vi

refers to the set of nodes corresponding to posts.
Ai ∈ {0, 1}ni×ni represents the adjacency matrix,
where if there is a response relationship between
node piu and piv, Ai(u,v) = Ai(v,u) = 1, otherwise
Ai(u,v) = Ai(v,u) = 0. Xi ∈ Rni×d denotes the
node feature matrix , where d is the node embed-
ding dimension. For simplicity, the subscript i is
omitted in the following sections. Rumor detection
aims to learn a function f : C → Y that classifies
each event into one of the categories Y ∈ {F, T}
(i.e., Rumor or Non-Rumor).

3.2 Overview

In this section, we propose a novel Fine-Grained
Dynamic Graph Neural Network (FGDGNN)
model for rumor detection tasks. As illustrated
in Figure 2, we present a detailed explanation for
classifying rumors using FGDGNN, including Dy-
namic Graph Construction, Graph Representation
and Graph-Level Fusion.
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Figure 2: Overview of the proposed FGDGNN framework. The Embedding Transformation (ET) Layer represents
the transformation of the node embedding dimensions.

3.3 Dynamic Graph Construction
Formally, given a propagation event C, we divide
C into S graph snapshots based on the timestamps
of the source post and its responsive posts. Specifi-
cally, each graph snapshot corresponds to an equal
time span ∆t = tn−1−t0

S . After that, the prop-
agation event C can be modeled as a dynamic
propagation graph G, represented as a sequence
of graph snapshots Gs (s = 1, 2, . . . , S). The
later snapshots fully encompass the earlier ones,
effectively simulating the dynamic evolution of
the propagation events. For each snapshot, we
obtain the propagation graph Gs = ⟨Vs, As, Xs⟩.
Vs = {Cs | Ts ≤ s∆t} is the set of vertices,
where each node has a timestamp. The time in-
terval between the creation of a post and the cre-
ation of its response is used as the edge weight.
As ∈ {0, 1}ns×ns is the adjacency matrix. The
node feature matrix is denoted as Xs ∈ Rns×d,
where d is the dimension of each node’s embed-
ding vector.

3.4 Graph Representation
3.4.1 Temporal Information Encoding.
In the process of rumor propagation, the longer
the time interval before a responsive post appears,
the less attention it is likely to receive, leading
to a corresponding decrease in its influence and
importance. We utilize the time intervals between
posts to obtain temporal features and employ a
decay mechanism φ(t) to model the time intervals

in each snapshot.

φ(t) =
1

1 + α× (t− tp)
(1)

where t and tp denote the timestamps of the current
post and the post it responds to, respectively. α
represents the decay factor.

Inspired by (Xu et al., 2020), we use a cosine
function to encode decayed time information, aim-
ing to capture the periodic variations in time inter-
vals and identify the propagation patterns of both
rumors and non-rumors.

ω(t) = cos(Wtφ(t) + bt) (2)

where Wt and bt are learned parameters.

3.4.2 Edge-Aware Update.
We aim to learn the representations of the graph
snapshots in the dynamic propagation graph G =
{G1, G2, . . . , GS}. As an effective graph neural
network, the Graph Isomorphism Network (GIN)
(Xu et al., 2019) can capture the topological struc-
ture and node features of the graph and is suitable
for rumor detection tasks. Given a graph snapshot
Gs, the GIN encoder updates the hidden feature
vector h(l)v of the l-th layer for node v based on the
(l − 1)-th layer as follows:

h(l)v = MLP
(
(1 + ϵ(l)) · h(l−1)v +

∑

u∈N (v)

h(l−1)u

)

(3)
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GIN effectively constructs graph representations.
However, it does not incorporate temporal infor-
mation (i.e., timestamps). Inspired by (Hu et al.,
2019), we adapt GIN to an Edge-Aware GIN (EA-
GIN) defined in Equation (4) to better leverage time
intervals by introducing them into the temporal dy-
namic graph. Specifically, we incorporate time
intervals as edge weights into EAGIN to model the
influence of each neighbor on the node.

h(l)v = MLP
(
(1 + ϵ(l)) · h(l−1)v +

∑

u∈N (v)

ReLU(h(l−1)u ∗ ω(t))
) (4)

where ϵ is a learnable parameter, N (v) is the set
of neighboring nodes of node v, and h

(0)
v = xv is

the initial feature vector of node v. This process is
iterated for all nodes until the l-th layer.

3.4.3 Node-Level Update.
The propagation graph G evolves over time, and
consequently, the node embeddings across different
snapshots also change. To capture dynamic node
information in the evolving propagation graph, we
propose a node-level embedding update mecha-
nism. A two-layer EAGIN is employed, where
node embeddings are updated hierarchically in
each hidden layer across snapshots.

H(1)
s = EAGIN(As, H

(0)
s ) (5)

H(1)
s = βΦ1(H

(1)
s )+(1−β)Φ1(H

(1)
′

s−1)+γΦ2(Xs)
(6)

H(2)
s = EAGIN(As, H

(1)
s ) (7)

H(2)
s = βΦ1(H

(2)
s )+(1−β)Φ1(H

(2)
′

s−1)+γΦ2(Xs)
(8)

where

H
(1)

′

s−1 = ET Layer(H(1)
s−1) (9)

H
(2)

′

s−1 = ET Layer(H(2)
s−1) (10)

and H
(0)
s = Xs. β and γ are learnable parame-

ters. Φ1 and Φ2 represent Multi-Layer Perceptron
(MLP). Through the ET Layer, the hidden state
dimensions of the nodes generated by the previous
snapshot are made consistent with those of the cur-
rent snapshot. Note that for the first snapshot in the
dynamic propagation graph, Equations (6) and (8)
do not include H

(l)
s−1.

We apply a mean-pooling operator to obtain the
representation gs of graph snapshot Gs. Finally,
the dynamic propagation graph is represented as g.

gs = MEAN(H(2)
s ) (11)

g = {g1, g2, . . . , gS} (12)

3.5 Graph-Level Fusion

After obtaining the graph representation of the dy-
namic propagation graph, we use Bidirectional
Long Short-Term Memory (BiLSTM) (Hochreiter
and Schmidhuber, 1997) to model the dependen-
cies between snapshots. The forward and backward
sequences of graph representation are then used to
capture the associations between snapshots. This
process can be formally described as follows:

→
g =

−−−−→
LSTM(g)

←
g =

←−−−−
LSTM(g)

(13)

Then, we concatenate the forward state
→
g and

the backward state
←
g to obtain the representation g

encoded by BiLSTM, where CONCAT represents
the concatenation operation.

g = CONCAT(
→
g ,
←
g) (14)

3.6 Training Objective

To predict the labels of the rumors, we apply a fully
connected layer followed by a softmax layer.

ŷ = softmax(Wfg + bf ) (15)

where ŷ is the predicted probability distribution.
Wf and bf are the weight and bias parameters.

Our training objective aims to minimize the
cross-entropy loss L, defined as follows:

L = − 1

N

N∑

b=1

M∑

c=1

yb,clog(ŷb,c) (16)

where yb,c denotes the ground-truth label, and
ŷb,c denotes the predicted probability distribution
that instance b ∈ {1, . . . , N} belongs to class
c ∈ {1, . . . ,M}. In our binary classification task,
M = 2 indicates the number of classes.

Algorithm 1 illustrates the training process of
propagation events using the proposed FGDGNN
model.
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Algorithm 1 Rumor detection algorithm

Input: the propagation event C, the timestamps T .
Output: the predicted probability distribution ŷ.

1: model the propagation event as a dynamic
propagation graph G including a sequence of
graph snapshots Gs;

2: for each snapshot Gs do
3: obtain the temporal information ω(t) with

Eq. 1 and Eq. 2;
4: obtain the edge-ware and node-level repre-

sentation Hs with Eq. 6 and Eq. 8;
5: obtain the graph representation gs with

Eq. 11;
6: end for
7: obtain graph-level fusion g with Eq. 13;
8: producing predicted probability distribution ŷ

with Eq. 15;
9: update parameters in FGDGNN with Eq. 16;

Statistics RumorEval TWITTER Weibo
# Events 245 1077 4310
# Posts 4145 60207 816217
# Non-Rumors 112 564 2187
# Rumors 133 513 2123
# Avg. time length 12 Hours 416 Hours 843 Hours

Table 1: Statistics of the datasets.

4 Experiments

4.1 Datasets

We evaluate the proposed model on three real-
world rumor detection datasets: RumorEval (Der-
czynski et al., 2017), TWITTER (Lin et al., 2022),
and Weibo (Ma et al., 2016). RumorEval and
TWITTER are English datasets collected from the
social media platform Twitter. Weibo is a Chinese
dataset collected from Sina Weibo. These three
datasets are binary classification datasets, where
each event is labeled as either a Rumor (F) or a
Non-Rumor (T). In our experiments, the data used
for each event includes the source post, responsive
posts and the timestamp information of each post.
We retain events with more than three comments in
these datasets. Table 1 shows the statistics of the
datasets.

4.2 Comparison Models

We compare the proposed model with the following
baselines:

• Bi-GCN (Bian et al., 2020) is a rumor detec-
tion framework that models the top-down and

bottom-up bi-directional GCN propagation.

• EBGCN (Wei et al., 2021) is an edge-
enhanced rumor detection model that captures
structural features of propagation.

• GACL (Sun et al., 2022b) is a rumor detec-
tion model using adversarial and contrastive
learning.

• RDEA (He et al., 2021) is a rumor detection
framework that incorporates self-supervised
learning and contrastive learning.

• TrustRD (Liu et al., 2023) is a rumor detec-
tion model that utilizes self-supervised pre-
training and adversarial training.

• DynGCN (Choi et al., 2021) is a dynamic
rumor detection framework that models graph
snapshots and attention mechanisms.

• PSGT (Zhu et al., 2024) is a rumor detec-
tion framework that incorporates a graph trans-
former and models propagation graphs.

4.3 Experimental Setup
The proposed FGDGNN 1 model is implemented
using PyTorch (Ketkar et al., 2021). Adam algo-
rithm (Kingma and Ba, 2014) is used to optimize
the parameters. The hidden layer size is set to 128.
The decay factor α is set to 1, 10, and 10 for Ru-
morEval, TWITTER, and Weibo, respectively. The
number of graph snapshots S in the dynamic graph
generated for each event is set to 3. We follow the
evaluation method in (Bian et al., 2020) and con-
duct 10 runs of 5-fold cross-validation to report the
final results. Accuracy (Acc.), Precision (Prec.),
Recall (Rec.), and F1-score (F1) are adopted as
evaluation metrics.

For the RumorEval, TWITTER and Weibo
datasets, following (Sun et al., 2022b; Ma et al.,
2023), we concatenate each source post with its
corresponding comment post in a [CLS] Source
[SEP] Comment [SEP] format. BERT (Devlin
et al., 2018) is employed to encode the posts, and
the final hidden state of the [CLS] token is used as
the corresponding node representation.

4.4 Results
Table 2 shows the results of rumor detection on
three public real-world datasets. The experimental

1The code will be available at https://github.com/FND-
RD/FGDGNN
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Method Class RumorEval TWITTER Weibo
Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

Bi-GCN
F

0.7115
0.7314 0.7599 0.7454

0.7591
0.7595 0.7419 0.7506

0.9103
0.9099 0.9110 0.9104

T 0.7042 0.6562 0.6794 0.7771 0.7732 0.7751 0.9147 0.9109 0.9128

EBGCN
F

0.6952
0.7100 0.7652 0.7366

0.7539
0.7449 0.7428 0.7438

0.9166
0.9151 0.9157 0.9154

T 0.6812 0.6125 0.6450 0.7657 0.7640 0.7648 0.9176 0.9173 0.9175

GACL
F

0.7250
0.7974 0.7385 0.7668

0.7609
0.7987 0.6781 0.7335

0.9367
0.9352 0.9366 0.9359

T 0.7591 0.7091 0.7332 0.7454 0.8377 0.7889 0.9386 0.9369 0.9378

RDEA
F

0.7321
0.7513 0.7890 0.7697

0.7855
0.7942 0.7496 0.7713

0.9340
0.9294 0.9378 0.9336

T 0.7434 0.6648 0.7019 0.7857 0.8181 0.8016 0.9393 0.9303 0.9348

TrustRD
F

0.7267
0.7298 0.8175 0.7712

0.7695
0.7751 0.7359 0.7550

0.9312
0.9258 0.9355 0.9306

T 0.7617 0.6195 0.6833 0.7749 0.7974 0.7860 0.9375 0.9266 0.9320

DynGCN
F

0.7377
0.7471 0.7617 0.7543

0.7693
0.7647 0.7495 0.7570

0.9274
0.9120 0.9244 0.9182

T 0.7092 0.6823 0.6955 0.7759 0.7893 0.7825 0.9203 0.9075 0.9138

PSGT
F

0.8075
0.8209 0.8361 0.8285

0.8089
0.8148 0.7814 0.7977

0.9235
0.9171 0.9295 0.9233

T 0.8152 0.7736 0.7939 0.8141 0.8332 0.8235 0.9315 0.9175 0.9244

FGDGNN
F 0.8242 0.8653 0.8054 0.8343 0.8408 0.8454 0.8181 0.8315 0.9406 0.9351 0.9451 0.9401
T 0.7905 0.8463 0.8175 0.8419 0.8617 0.8517 0.9466 0.9361 0.9413

Table 2: Rumor detection results on three datasets. Abbrev.: Rumor (F), Non-Rumor (T).
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Figure 3: Results of early rumor detection on three datasets.

results demonstrate that the proposed FGDGNN
model outperforms other baselines, which validates
the effectiveness of modeling temporal information
in both intra- and inter-snapshots. BiGCN only cap-
tures the spatial information of rumor events, which
makes it susceptible to adversarial rumor attacks.
EBGCN uses edge weights to explore the poten-
tial relationships in a propagation graph. However,
our proposed model, FGDGNN, employs time in-
tervals as edge weights, enabling it to accurately
capture the importance of nodes at different time
points. Compared with standalone propagation
structures, the performance of GACL, RDEA, and
TrustRD in rumor detection tasks improves signifi-
cantly when incorporating methods such as graph
augmentation and contrastive learning. PSGT lever-
ages the graph transformer to capture propagation
structures and long-sequence dependencies. The
models mentioned above focus on static graphs,
whereas DynGCN models dynamic graphs. Dyn-
GCN uses various snapshot construction methods
to investigate the task of rumor detection. However,
the snapshots used by DynGCN are isolated and

lack interconnections across time steps. In contrast,
our model emphasizes the fine-grained temporal
information in the inter-snapshots by leveraging
embedding updates across snapshots. The time in-
tervals are used as edge weights, and EAGIN is
proposed to effectively capture the edge-aware tem-
poral features in the intra-snapshot. The embedding
updates across snapshots integrate the node-level
information and effectively capture the fine-grained
temporal dependencies of the propagation graph.

4.5 Ablation Study

In order to analyze the contribution of each module
of our proposed model FGDGNN, we compare it
with the variant models: (1) w/o Edge-Aware Up-
date: removing the temporal information (i.e., time
intervals) used as edge weights in each snapshot.
(2) w/o Node-Level Update: removing the embed-
ding update mechanism across snapshots. (3) w/o
Edge-Aware Update & Node-Level Update: remov-
ing both time intervals and embedding update in
the dynamic graph. (4) w/o Dynamic: using static
graph instead of dynamic graph. Specifically, we
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Model RumorEval TWITTER Weibo
Acc. F1 Acc. F1 Acc. F1

FGDGNN 0.8242 0.8343 0.8408 0.8315 0.9406 0.9401
w/o Edge-Aware Update 0.8121 0.8283 0.8334 0.8208 0.9347 0.9342
w/o Node-Level Update 0.8163 0.8311 0.8309 0.8216 0.9311 0.9307
w/o Edge-Aware Update & Node-Level Update 0.8042 0.8237 0.8218 0.8089 0.9303 0.9295
w/o Dynamic 0.7804 0.8125 0.8129 0.7851 0.9332 0.9322

Table 3: Results of ablation study on three datasets.

only use the last snapshot of the dynamic graph in
the entire framework.

Table 3 presents the experimental results of these
models on three datasets. Acc. refers to the over-
all results, while the F1-score specifically reflects
performance on the Rumor (F) category. The ex-
perimental results show that removing any of the
components leads to a decrease in the performance,
demonstrating that each module plays an essen-
tial role in rumor detection. Specifically, when the
time intervals are removed, the accuracy on Ru-
morEval, TWITTER, and Weibo drops by 1.21%,
0.74% and 0.59%, respectively. Time intervals
record the temporal sequence of the propagation
event. When used as edge weights in graph neu-
ral networks, they help the model understand the
importance of different responsive posts. Addi-
tionally, they capture the propagation patterns of
rumors and non-rumors across different time peri-
ods, further aiding in identifying the veracity of a
news event. If the embedding update mechanism is
removed, the accuracy on three datasets drops by
0.79%, 0.99% and 0.95%. As time progresses, the
propagation states of different snapshots evolve. By
employing an embedding update mechanism across
snapshots, the model can capture the dynamic evo-
lution patterns of the propagation process, enabling
information transfer across time steps and enhanc-
ing the model’s memory of historical data. When
the time intervals and embedding update mecha-
nism are removed at the same time, the accuracy on
three datasets drops by 2.00%, 1.90% and 1.03%.
The time intervals within each snapshot, along with
the dynamic embedding update mechanism across
snapshots, effectively capture the fine-grained tem-
poral dependencies between nodes. When dynamic
graphs are replaced with static graphs, the accu-
racy on three datasets drops by 4.38%, 2.79% and
0.74%. Modeling the propagation structure as a
dynamic graph enables more accurate capture of
temporal features and dynamic evolution of infor-

Model RumorEval TWITTER Weibo
Acc. Acc. Acc.

EAGIN 0.8242 0.8408 0.9406
GIN 0.8121 0.8334 0.9347
GAT 0.8017 0.8266 0.9339
GCN 0.7938 0.8215 0.9333

Table 4: Results of different GNN on three datasets.

mation spread, thereby improving detection accu-
racy. This approach offers a clear advantage over
static graphs.

4.6 Different GNNs Components

Table 4 shows the experimental results of using
different graph neural networks as graph encoders.
It can be observed that EAGIN in our proposed
FGDGNN model yields the best performance. EA-
GIN uses the temporal information in the inter-
snapshots, enabling it to better capture the graph
structure and more effectively distinguish between
rumor and non-rumor propagation than GIN. In
contrast, GAT focuses on neighboring nodes via
a self-attention mechanism that assigns weights
based on local neighborhood information. Its abil-
ity to process the global graph structure is limited
compared to that of GIN. GCN tends to aggregate
information from neighboring nodes in a way that
leads to excessive smoothing, which can reduce
its expressive power and hinder its ability to cap-
ture deeper or more complex propagation patterns.
The experimental results demonstrate that EAGIN
outperforms other models in enhancing the effec-
tiveness of the FGDGNN model.

4.7 Early Rumor Detection

This experiment aims to detect rumors on social
media at an early stage to facilitate timely detec-
tion. To construct the detection task, we follow
the methodology in (Sun et al., 2022b), setting a
series of detection deadlines. Figure 3 illustrates
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Model RumorEval TWITTER Weibo
Bi-GCN 290 1061 3477
EBGCN 551 1521 3977
GACL 1457 9648 49309
RDEA 1318 2172 11775
TrustRD 1517 3625 40701
DynGCN 891 2198 11161
PSGT 373 924 15594
FGDGNN 437 983 1306

Table 5: Results of efficiency analysis on three datasets.

the performance of FGDGNN in early rumor detec-
tion, comparing it with RDEA, TrustRD and Dyn-
GCN across various deadlines on three datasets. It
can be observed that at time 0, all models perform
poorly due to limited training data resulting from
a lack of responsive posts. Subsequently, as the
detection deadline increases, all models show im-
proved accuracy. Notably, FGDGNN consistently
achieves higher accuracy than the other models at
every deadline, demonstrating its superior perfor-
mance in early rumor detection.

4.8 Efficiency Analysis

To evaluate the efficiency of the proposed model,
we report the average running time (in seconds)
per iteration for each method across three datasets,
as shown in Table 5. As shown in the table, our
model achieves the lowest average running time,
demonstrating superior overall efficiency compared
to other baselines. Models such as GACL, RDEA,
and TrustRD, which incorporate strategies like
graph augmentation, contrastive learning, and pre-
training, incur the highest computational cost. Sim-
ilarly, DynGCN and PSGT exhibit relatively longer
runtimes due to their reliance on attention mech-
anisms and graph transformers, respectively. No-
tably, the Weibo dataset shows the most significant
differences. Therefore, compared to existing ap-
proaches, our method provides a more favorable
trade-off between efficiency and effectiveness.

5 Conclusion

In this paper, we propose a novel Fine-Grained Dy-
namic Graph Neural Network (FGDGNN) model
for rumor detection. We construct the edge-
weighted propagation graph in which the time in-
tervals are used as edge weights each snapshot.
Additionally, we propose an embedding transfor-
mation layer to update node embeddings across
snapshots. Experiments on three public datasets

demonstrate that the FGDGNN model outperforms
the state-of-the-art baselines.

Limitations

One limitation of our model is that the constructed
temporal information does not capture multi-scale
temporal patterns. If the dynamic evolution of an
event spans different time scales (such as minutes,
hours, or days), this may result in suboptimal per-
formance. In the future, we will further explore
advanced approaches to temporal modeling to en-
hance the performance of rumor detection.
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