Language Repository for Long Video Understanding

Kumara Kahatapitiya, Kanchana Ranasinghe, Jongwoo Park, Michael S. Ryoo
Stony Brook University

Abstract

Language has become a prominent modality in
computer vision with the rise of LLMs. Despite
supporting long context-lengths, their effective-
ness in handling long-term information gradu-
ally declines with input length. This becomes
critical, especially in applications such as long-
form video understanding. In this paper, we
introduce a Language Repository (LangRepo)
for LLMs, that maintains concise and struc-
tured information as an interpretable (i.e., all-
textual) representation. Our repository is up-
dated iteratively based on multi-scale video
chunks. We introduce write and read opera-
tions that focus on pruning redundancies in
text, and extracting information at various tem-
poral scales. The proposed framework is eval-
uated on zero-shot visual question-answering
benchmarks, showing state-of-the-art perfor-
mance at its scale. Our code is available at
github.com/kkahatapitiya/LangRepo.

1 Introduction

Video data is central to learning systems that can
interact and reason about the world. Yet, they also
associate with significant challenges such as in-
creased compute requirements and redundant infor-
mation, to name a few. This is especially critical
in long-form videos. Even so, recent literature on
video understanding have progressed so far, en-
abling reasoning capabilities in hours-long video
streams (Team et al., 2023; Islam et al., 2024),
in contrast to very-limited temporal spans (e.g.
seconds or minutes) just a few years ago. Work
on efficient spatio-temporal attention mechanisms
(Arnab et al., 2021; Bertasius et al., 2021), memory
management (Wu et al., 2022; Ryoo et al., 2023),
and large-language-models (LLMs) (Wang et al.,
2022a; Yu et al., 2024; Team et al., 2023) have been
key ingredients for such improvements.

LLMs, or more-specifically, vision-large-
language-models (VLLMs) have been outper-
forming pure vision models in recent years in

all facets, including image-based reasoning (Liu
et al., 2024; Zheng et al., 2024a; Li et al., 2023b),
grounding (Lai et al., 2023; Rasheed et al., 2023),
video understanding (Wang et al., 2022a; Ye et al.,
2023; Yu et al., 2024), and even robotics (Zeng
et al., 2022; Ahn et al., 2022; Liang et al., 2023; Li
et al., 2024b). The sheer model scale and the vast
pretraining data have enabled such frameworks to
capture world knowledge and semantics, beyond
what is possible with visual data only. Besides,
the ability to process long context-lengths is also
key, as it helps modeling long-term dependencies
that are crucial for more-complex reasoning and
interactions. However, recent studies show that
despite the availability of such context-lengths,
the effectiveness of models declines with longer
input sequences (Levy et al., 2024). This promotes
the search for alternate representations that can
compress input language data without losing
meaningful information, essentially managing the
context utilization of LLMs.

Moreover, the use of text (i.e., language) in mod-
eling has shown numerous benefits such as rich se-
mantics (Wang et al., 2022b; Menon and Vondrick,
2022; Kahatapitiya et al., 2023), ease of informa-
tion sharing between different specialized-models
(Zeng et al., 2022) or modalities (Liu et al., 2024;
Girdhar et al., 2023), and interpretability (Zhao
et al., 2023a; Singh et al., 2024). Among such,
interpretability has a huge societal impact in the
age of LLMs, to manage adversities such as bias
(Liang et al., 2021; Ferrara, 2023) and hallucina-
tions (Zhang et al., 2023b; Dhuliawala et al., 2023).
Simply put, it enables human observers to under-
stand and monitor what really happens within mod-
els. Hence, interpretable representations have also
been of interest to the community, in place of latent
representations (Wu et al., 2022; Ryoo et al., 2023).

Motivated by the above, we introduce Language
Repository (LangRepo), an all-textual (hence, in-
terpretable) representation for LLMs that updates
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Figure 1: Comparison with prior-art on EgoSchema
(Mangalam et al., 2024) subset: LangRepo (ours) out-
performs finetuned and zero-shot pipelines of similar
scale, while being competitive with much-larger propri-
etary models. Note the log-scale in x-axis.

iteratively. It consumes input captions corre-
sponding to video chunks and relies on text-
based operations to write and read information.
The write operation (write-to-repo) prunes re-
dundant text, creating concise descriptions that
keep the context-utilization of LLMs in-check.
Its iterative application with increasingly-longer
chunks enables it to learn high-level semantics (e.g.
long temporal dependencies). The read operation
(read-from-repo) extracts such stored language
information at various temporal scales, together
with other optional metadata within the repository.
Altogether, our proposed framework is applied to
long-term video reasoning tasks such as visual
question-answering (VQA) on EgoSchema (Man-
galam et al., 2024), NExT-QA (Xiao et al., 2021)
and IntentQA (Li et al., 2023a), showing strong
performance at its scale (see Fig. 1).

2 Related work

Long-video understanding: Video models have
progressed over the years, going from primitive
recognition tasks (Kuehne et al., 2011; Soomro
et al., 2012) to complex and fine-grained reason-
ing tasks (Sigurdsson et al., 2016; Grauman et al.,
2022) over long horizons. Both convolutional base-
lines (Carreira and Zisserman, 2017; Feichtenhofer
et al., 2019) and transformer architectures (Arnab
et al., 2021; Bertasius et al., 2021) have explored
research directions such as multi-scale representa-
tions (Fan et al., 2021; Liu et al., 2022), efficiency
concerns associated with heavy spatio-temporal
computations (Li et al., 2019; Duke et al., 2021),
and handling redundant information within video
inputs (Chen et al., 2018; Kahatapitiya and Ryoo,
2021). More recently, long-video understanding
has made a leap forward thanks to benchmark

datasets (Xiao et al., 2021; Mangalam et al., 2024)
and model improvements (Zhang et al., 2023a; Yu
et al., 2024), validating the importance of modeling
complex interactions that happen over long periods
of time. Still, the sub-par performance of SOTA
models on such benchmarks suggests the potential
for further improvements.

Long-context models: Even before the age of
LLMs, models based on convolutions (Wang et al.,
2018; Piergiovanni and Ryoo, 2018, 2019), recur-
rent blocks (Chung et al., 2014; Greff et al., 2016;
Hutchins et al., 2022) or transformers (Wu et al.,
2022; Ryoo et al., 2023) have exploited long-term
dependencies, especially in the context of video
understanding (Wang et al., 2018; Wu et al., 2022)
and robotics (Chen et al., 2021; Shang et al., 2022).
With the rise of LLMs, scaling laws have revealed
the importance of longer contexts even more (Team
et al., 2023; Reid et al., 2024), and, thanks to the
breakthroughs such as sparse processing (Shazeer
et al., 2017; Fedus et al., 2022), caching (Khandel-
wal et al., 2018; Ge et al., 2023), model-sharding
(Lepikhin et al., 2020; Zhao et al., 2023b), and effi-
cient attention (Dao et al., 2022; Lefaudeux et al.,
2022), such long-context LLMs have become a
reality. Even with very large context lengths, effec-
tively reasoning over longer inputs is challenging
(Xiong et al., 2023; Shi et al., 2023; Levy et al.,
2024). This motivates us to think about concise rep-
resentations that can better-utilize LLM context.

Compressing representations: When handling
heavy inputs, deep learning models have relied on
compressed representations. It may come in the
form of pruning (Ryoo et al., 2021; Bolya et al.,
2022), latent memory (Graves et al., 2014; Wu
et al., 2022; Ryoo et al., 2023), or external feature
banks (Wu et al., 2019), to name a few. Despite the
efficiency gains of such techniques, it is challeng-
ing to realize which information gets preserved,
and how semantically-meaningful they are, post-
compression. A compressed representation that is
also interpretable, may shed light on such details.

Language as an interpretable modality: More-
recently, language has emerged as a dominant
modality in computer vision due to its strong gen-
eralization capabilities (Radford et al., 2021; Jia
et al., 2021). It can act as a bridge between various
domain-specific models (Zeng et al., 2022), other
modalities (Girdhar et al., 2023; Liu et al., 2024),
and even human instructions (Suris et al., 2023;
Gupta and Kembhavi, 2023), showing intriguing
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Captions per-video
0.5% 1x 2%
EgoSchema (Mangalam et al., 2024) 49.8 488  46.8

NExT-QA (Xiao et al., 2021) 482 482 469
IntentQA (Li et al., 2023a) 47.1 469 452

Dataset

Table 1: Observations on increasing input length:
We evaluate the VQA performance of an LLM (Jiang
et al., 2023) at different input lengths, on multiple long-
video benchmarks. Even with a sufficient context length,
the effectiveness of predictions decreases with longer
input. Here, 1x corresponds to captions generated at
a standard frame-rate (and, 0.5x/2x corresponds to a
compression/expansion by a factor of 2).

applications in domains such as chat agents (e.g.
ChatGPT, Bard) and robotics (Ahn et al., 2022;
Liang et al., 2023). It has also supported two-stage
VQA pipelines with an intermediate text modality
(Ma et al., 2024; Liao et al., 2024; Li et al., 2023c¢).
Since language is interpretable, it enables humans
to interact with models naturally and make sense
of model predictions.

Motivated by the above, we introduce an inter-
pretable language representation that can (1) prune
redundant information, and (2) extract multi-scale
(or, high-level) semantics, enabling better context-
utilization within LLMs.

3 Observations on Long-range Inputs

In this section, we investigate how LLMs perform
with increasing inputs lengths (i.e., #tokens). Re-
cent LLMs with very-large context lengths such as
Gemini-Pro-1.5 (Team et al., 2023) (1M tokens) or
Claude-2.1 (200k tokens), can support extremely
long input sequences. Yet, when feeding longer
inputs, the reasoning capabilities (especially, long-
term reasoning) of such models diminish. This
behavior is also observed in concurrent work (Levy
et al., 2024), and evident in benchmark results of
state-of-the-art models (Ye et al., 2023; Yu et al.,
2024) (i.e., better performance with shorter inputs,
or fewer video frames). To better investigate this in
our setup, we evaluate VQA performance on stan-
dard long-term video understanding benchmarks
while varying the input length (see Table 1). We
consider frame/short-clip captions extracted using
a VLLM at a baseline framerate (1) as inputs (in-
troduced in (Zhang et al., 2023a)). We either sub-
sample (0.5 x) or replicate (2x) the captions, de-
creasing/increasing the input lengths of a question-
answering LLM, namely, Mistral-7B (Jiang et al.,
2023) with 8k (or, theoretical 128k) context length.
All inputs fit within the context, without any over-

flow. The observation from this study is consistent:
even though the context length of the LLM is suffi-
cient to process given inputs, the effectiveness of
its predictions (shown by VQA performance) drops
with longer inputs (see Table A.1a for more details).
This motivates us to introduce a concise language
representation that preserves important details of
long-range inputs, while pruning any redundant
information.

4 Language Repository

We present a Language Repository (LangRepo) that
iteratively updates with multi-scale descriptions
from video chunks. In contrast to external fea-
ture banks (Wu et al., 2019) or learnable latent
memory representations (Wu et al., 2022; Ryoo
et al., 2023; BalaZevi¢ et al., 2024), our proposal
has a few key advantages: (1) it requires no train-
ing (i.e., zero-shot), and (2) it is compatible with
both LLM-based processing and human interpreta-
tion, as it is fully-textual, i.e., it exists in language-
space instead of a latent-space. LangRepo consists
of two main operations: (1) information writing
(write-to-repo), which prunes redundancies and
iteratively updates language descriptions based on
increasingly-longer video chunks, and (2) infor-
mation reading (read-from-repo), which extracts
preserved descriptions (with any optional metadata)
in multiple temporal scales. We show a detailed
view of these operations in Fig. 2, and further elab-
orate in the following subsections.

Consider a long video that is split in to n non-
overlapping chunks, denoted as V' = {v; | i =
1,---,n}. Assume that we already have frame
or short-clip captions extracted by a VLLM (e.g.
LLaVA (Liu et al., 2024)) corresponding to such
chunks, denoted by C° = {c? | i = 1,--- ,n}.
Here, each chunk may consist of p such captions
asin c? = {cgj | j=1,---,p}. Altogether, V is
represented by n X p captions which we consider
as inputs to our framework.

4.1 Writing to repository

We intend to create a concise, all-textual represen-
tation with multiple scales (or, semantic-levels) of
information. Hence, our writing operation is text-
based, and applied iteratively on different scales of
input. In the first iteration, it consumes low-level
details in each chunk 4, in the form of captions !,
generating initial entries to the repository repo(7),

0
orr;.

r) = write-to-repo(c}) . (1)

5629



Sl

[o]
[*N)
()
Pole —
Q 2
o g Spln into G"OUP - Rephrase
CID < g two subsets — ——>
5 |8 III
Compute

similarity

l , I_l
\_ | chunk (i+1) src (i) xK

Summarize
(multi-scale) VQA
_—>

read-from-repo
A
Iterative repository entries

repo” « + + repok

Algorithm Long-video VQA pipeline in LangRepo

repo? (i-1)

I

repo” (i+1)

Create longer chunks &
~ Re-write-to-repo

require captions of video chunks C° = {c? | i = 1,--- ,n},
number of iterations K.

desc. occ. time

def write-to-repo(c):

[ — ;
o Casty Core = split(c)
00 Simgrease = similarity(encode(cyc), encode(cas))
00 Corp = group(Cas, Csre, SiMsrc-ast)
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return

def read-from-repo(r):
d = summarize(templateg,,(r))
return d

) = write-to-repo(c?)
d? = read-from-repo(r?)

for k in range(K): // iteratiy ‘ write and read
C** = re-chunk([---, rF, ---])
k1 e+l
it = write-to- repo( +

= read-from- repo(

k41 k+1
d;; )

ans = question-answer(q, [d?,---]) / q: query

Figure 2: Detailed view of our Language Repository (LangRepo): Here we present the write and read operations
within LangRepo. Given short-captions corresponding to video chunks, write-to-repo first prunes redundant
captions within each chunk. The same process is iteratively applied on increasingly longer (or, higher-level)
chunks— that are already within the repository— to generate multi-scale repository entries. Pruning consists of
two stages: (1) grouping most similar captions based on embedding (e.g. CLIP (Radford et al., 2021)) similarities
between two subsets, and (2) rephrasing grouped captions with an LLM-call. The resulting LangRepo will include
rephrased-captions and any optional metadata (e.g. #occurrences, timestamps). Next, read-from-repo generates
concise descriptions for different semantic levels by summarizing the multi-scale language representation, which is

also an LLM-call.

In each subsequent iteration k + 1, previous repo
entries of iteration k are re-combined into longer
chunks and processed in the same way, generating
information for higher semantic-levels.

[le“rl’ Tty ’c’:rj’l} = re_Chunk([Tlf7 Tty TfLD ) (2)
it = write-to-repo(cit) . 3)

Here, re-chunk(-) denotes the creation of longer
(and, fewer, i.e., m < n) chunks within the repos-
itory. More specifically, we simply concatenate
(denoted by [-]) all entries from previous iteration,
and split them again into fewer number of chunks
(hence, longer chunk size). Note that i’ in the
above equation is not the same as the previous
chunk indexing ¢, as we may have different (usu-
ally, fewer) number of chunks in each subsequent
iteration. Each write operation involves two stages:
(1) Grouping redundant text, and (2) Rephrasing,
which are detailed below.

Grouping redundant text: Given textual descrip-
tions of a video chunk (i.e., captions in the first
write iteration, or previous repo descriptions in
subsequent iterations), we plan to identify most-
similar ones and merge them as a single descrip-
tion. Without loss of generality, let us consider
the first write iteration, for which the input is in
the form of ¢! = {c?j j=1,---,p}. Inspired
by (Bolya et al., 2022), we first split the captions

of each chunk into two sets, namely, source (src)
captions cgrc ; and destination (dst) captions cgst i
Let us drop the chunk index (2) and iteration index
(0) for brevity. Here, dst captions cqg are sampled
uniformly distributed across the temporal span of
a chunk, while all the rest are considered as src

captions cg (see Fig. 2 top-left).

Cdst, Csrc = Split(c) . 4)

Here, we usually have fewer dst captions (i.e.,
|cast| < |csre]). Next, we embed all captions using a
text-encoder (e.g. CLIP (Radford et al., 2021)), and
compute the cosine similarity of each pair between
src-dst sets to find most-similar matches.

SiMgre.ase = similarity(encode(csc), encode(cas)) - (5)

Based on the similarity matrix above (simgrc-dst)s
we then prune the highest 2% similarities by group-
ing such source captions with their corresponding
destination matches, forming a set of grouped de-
scriptions cgyp for the given chunk. Refer to the
color-coded captions after ‘Group’ in Fig. 2.

Cagrp = group(cdsl, Csre,y Simsrc-dst) . (6)

Here, an additional hyperparameter (i.e., x) de-
cides the grouping ratio. Finally, such grouped de-
scriptions go through a rephrasing operation prior
to entering the repository.
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[INST] <<SYS>> You are a helpful expert in first person view video analysis. <</SYS>>

Rephrase
(template,qpp)

The rephrased list is as follows:

Summarize
(templateg,n,)

You are given a list of ${num_of_groups} language descriptions for a first person view video. Each sentence
describes a ${clip_length}s clip. Here are the descriptions as a list: ${grouped_captions}.

Please summarize and rephrase each item in the list as a single sentence of ${num_words} words. Keep the

same original subject. Keep all information intact without leaving anything out. Return only the rephrased list of
${num_of_groups} descriptions in the same order, without additional details. [/INST]

[INST] <<SYS>> You are a helpful expert in first person view video analysis. <</SYS>>

You are given some language descriptions of a first person view video. The video is ${duration}s long.
The descriptions cover the whole video exactly. Here are the descriptions: ${language_repository_entry}.

Please give me a ${num_words} words summary. When doing summarization, remember that your summary
will be used to answer this multiple choice question: ${question} [/INST]

Figure 3: LLM prompt templates in LangRepo: Here, we show the zero-shot prompt templates used for rephrasing
(template,,,,) and summarizing (templates,,) operations. Rephrase prompt needs a list of grouped captions as
input, while its output adheres to more-strict requirements (e.g. same order, same number of list items) needed for
correct parsing. Summarize prompt takes in each repository entry and generates a more-flexible (i.e., open-ended)

output, while optionally conditioning on the question.

Rephrasing: Grouped captions cgyp, of each chunk
are rephrased via an LLM-call. This allows redun-
dant information within each group to be dropped,
while generating a concise and coherent descrip-
tion. We first form a list of grouped captions, where
each list item corresponds to a single group (i.e.,
a dst caption and any one or more src captions
matched to it), and feed it to the LLM, wrapped in
a rephrasing-template (template epy) as shown in
Fig. 3 (top).

Creph = rephrase(template oy (cap)) - 7

Here, the LLM output (crepn) is restricted to be
a list in the same order with the same number of
items, where each item is a single concise sentence.
Finally, such rephrased descriptions together with
other metadata such as timestamps (¢) and number
of occurrences (o) are written in the repository.

7= {(crepnj> tj, 05) |5 =1,---,p'}. (®)

Note that here p’ < p as we have grouped and
rephrased a pre-defined ratio (e.g. 50%) of most-
similar captions. Alongside each description in a
repository entry, t maintains a list of timestamps
corresponding to its founding captions, whereas
the occurrences counter (o) keeps track of the num-
ber of captions grouped together. A qualitative
example of a repository entry is given in Fig. 4.

In subsequent iterations, the same operations
apply when writing multi-scale entries. The only
difference is the change in input, which now con-
stitutes of previous repo entries re-combined into
high-level chunks (i.e., A — ¢F). Each new it-
eration generates information corresponding to a

higher semantic-level (i.e., going from short-range
to long-range dependencies), forming our multi-
scale language representation.

4.2 Reading from repository

As we make a single VQA prediction for a given
long video— instead of making predictions ev-
ery chunk— our read operation (read-from-repo)
is applied after fully-forming each scale of
multi-scale repository (i.e., after writing all
chunks). The repo entries from K scales can
be denoted as {r¥ | &k = 0,---,K} where
each scale (r¥) may consist of multiple entries
{, rf_l, rf, er, -+ }. When reading, we
generate summaries for each entry in the repo sep-
arately, allowing it to focus on varying temporal
spans. More specifically, each entry goes through
a summarizing-template (templateg,,) as shown
in Fig. 3 (bottom), and the resulting prompt is fed
to the LLM.

d¥ = read-from-repo(rf)

= summarize(template,,, (1)) . )

Here, df corresponds to the output description
of each entry 7 in the repository, at the respective
scale k. Optionally, we can make use of additional
metadata such as timestamps and #occurrences,
by prompting the read operation with descrip-
tions of repo entries formatted as “[timestamps]
description (x#occurrences)” (see Fig. 4).
Finally, we concatenate all output descriptions and
prompt the LLM again to generate the answer.

ans = question-answer(g, [--- dr D - (10)
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Grouped redundant captions

[t=17]: #0O man X picks a domino piece.
[t=18]: #0 man X picks a domino piece.

Repository entry
Rephrased captions

Multi-scale Repo.
entries

Output description

In the first-person video, the protagonist,

H referred to as C, engages in various activities,
Py while other individuals, referred to as man X,
man A, and persons X, also participate in some

. . [t=17,18]: Man X picks domino pieces. (x2) of these activities. The overall purpose of C's
[t=16]: #0 man X picks dominoes. [t=16-27]: Man X picks/takes dominoes. (x4) actions revolves around playing games,
[t=21]: #0 man X takes dominoes. > [t=2,26-28,37]: Person C plays puzzle. (x4) specifically puzzles, dice, and dominoes. C
. [t=23]: #0 man X takes dominoes. [t=3,24-39]: Person C plays dominoes. (x4) starts by playing with dice, then shifts focus to
chunk [t=27]: #0 man X picks dominoes. [t=35,36]: Person O holds/picks a dice. (x2) solving a puzzle. Subsequently, C picks up

: #C C plays puzzle.
: #C C plays puzzle. _
: #C C plays puzzle.
: #C C plays puzzle. [t=0]:

: #C C plays dominoes.

: #C C plays dominoes.

: #0 O holds a dice. [t=40]: #C C plays dice.

Non-redundant captions

#C C picks up dominoes. (x1)
[t=8]: #O man X plays dominoes game. (x1)
[t=12]: #C C puts dominoes piece down.  (x1)
: #C C plays the dominoes game. [t=20]: #O man X picks up domino. (x1)
: #C C plays dominoes game. > [t=25]: #C C moves dominoes. (x1)

[t=29]: #C C puts dominoes on table. (x1)
[t=34]: #0O O drinks the juice.

: #0 O picks a dice. [t=44]: #C C looks around.

dominoes, which are initially arranged and later
moved around. C also interacts with other

- individuals in the video, as observed when
shaking hands with man X, who subsequently
plays a dominoes game with C. Man X, man A,
and other persons also participate in the
dominoes game, either by picking up or
arranging the pieces. Throughout the video, C
is seen looking around, possibly observing the

actions of others and the game's progression.
(x1) C also sets the dice aside, suggesting a shift in
(x1) focus from one game to another. Towards the
(x1) end of the video, C picks up a bottle, which

could indicate a break from the games ...

Figure 4: A qualitative example of a LangRepo entry: Given a video chunk, redundant captions are first grouped
together during pruning operation. During rephrasing, such groups are more-concisely written to the repository,
along with additional metadata. Other non-redundant captions are written directly. This process is continued
iteratively with increasingly-longer chunks, creating multi-scale repository entries (refer Fig. A.1 for a more-detailed
view). Finally, such descriptions from various temporal scales are read to generate the output.

5 Experiments

In our experiments, we rely on captions pre-
extracted using VLLMs, as given in (Zhang et al.,
2023a). As for the LLM, we use either Mistral-7B
(Jiang et al., 2023) (w/ 7B parameters) or Mixtral-
8x7B (Jiang et al., 2024) (w/ 12B active parame-
ters) by default. As the text encoder in similarity-
based pruning, we use CLIP-L/14 (Radford et al.,
2021). Note that all the models used in our frame-
work are open-source and within a reasonable
model-scale, making our work accessible even in
academic settings. We do zero-shot inference on all
datasets without any finetuning, evaluating the per-
formance on long-form video VQA benchmarks.

For evaluations, we consider three challenging
long-video VQA benchmarks in our evaluations.
EgoSchema (Mangalam et al., 2024) derived from
Ego4D (Grauman et al., 2022), consists of 3-minute
long clips, each with a question and 5 answer-
choices. Its public validation subset consists of 500
videos, whereas the held-out fullset has 5K videos.
NExT-QA (Xiao et al., 2021) contains videos up
to 2 minutes long (at an average of 44 seconds),
annotated with 52k open-ended questions and 48k
close-ended questions (i.e., multiple-choice with
5 answer options). The questions belong to either
temporal, causal, or descriptive categories, eval-
uating different reasoning capabilities of models.
We consider zero-shot evaluation on the validation
set. IntentQA (Li et al., 2023a) is based on the
same NExT-QA videos, yet focuses more on intent-
related questions (e.g. why?, how? or before/after)
with a total of 16k multiple-choice questions on
4.3k videos. Here, we consider zero-shot setting
on the test set.

5.1 Main results

EgoSchema: In Table 2 (left), we present the VQA
performance of LangRepo on standard EgoSchema
(Mangalam et al., 2024) splits, comparing with
other state-of-the-art frameworks. Here, we focus
on zero-shot evaluation. We consider Mistral-7B
(Jiang et al., 2023) and Mixtral-8 x 7B (Jiang et al.,
2024) as the choice of LLMs in our setup, both with
reasonable model scales (7B and 12B active param-
eters, respectively). We de-emphasize the com-
parisons with multi-modal LLMs that use video-
caption pretraining. LangRepo shows significantly-
better performance compared to other methods at
a similar scale, validating its effectiveness. We
achieve +7.8% on fullset over mPLUG-Owl (Ye
et al., 2023), +12.0% on subset over pure Mistral
LLM baseline (Jiang et al., 2023), +10.0% on sub-
set and +5.4% on fullset over LLoVi (7B) (Zhang
et al., 2023a) (w/ Mistral (Jiang et al., 2023)),
+4.5% on fullset over Vamos (Wang et al., 2023)
(w/ Llama?2 (Touvron et al., 2023)), and +4.8% on
subset over Tarsier (7B) (Wang et al., 2024a).

NEXxT-QA: In Table 2 (right), we report the perfor-
mance of LangRepo on standard NExT-QA (Xiao
et al., 2021) validation set. On zero-shot evalua-
tion, our framework outperforms other methods
consistently. Compared to smaller models, we gain
+11.8% over InternVideo (Wang et al., 2022a) and
+9.4% over VFC (Momeni et al., 2023). Com-
pared to models of similar scale, we gain +3.5%
over baseline Mistral LLM (Jiang et al., 2023) and
+2.7% over LLoVi (12B) (Zhang et al., 2023a). We
de-emphasize the comparisons with multi-modal
LLMs pretrained with video captions.
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Model Params  Subset Fullset Model Params NEXxT-QA IntentQA
with proprietary LLMs with proprietary LLMs

Vamos (Wang et al., 2023) 175B - 41.2 ViperGPT (Suris et al., 2023) 175B 60.0 -
LLoVi (Zhang et al., 2023a) 175B 57.6 50.3 ProViQ (Choudhury et al., 2023) 175B 64.6 -
ProViQ (Choudhury et al., 2023) 175B - 57.1 MoReVQA (Min et al., 2024) 340B 69.2 -
MoReVQA (Min et al., 2024) 340B - 51.7 LVNet (Park et al., 2024) <1.8T 72.9 71.1
LVNet (Park et al., 2024) <1.8T 68.2 61.1 IG-VLM (Kim et al., 2024) 1.8T 68.6 64.2
Vamos (Wang et al., 2023) 1.8T - 483 LLoVi (Zhang et al., 2023a) 1.8T 67.7 64.0
VideoAgent-[S] (Wang et al., 2024b) 1.8T 602 541 TraveLER (Shang et al., 2024) 18T 682 -
VideoAgent-[P] (Fan et al., 2024) 1.8T 62.8 - VideoAgent-[S] (Wang et al., 2024b)  1.8T 71.3 -
IG-VLM (Kim et al., 2024) 1.8T - 59.8 VideoTree (Wang et al., 2024e) 1.8T 73.5 66.9
VideoTree (Wang et al., 2024e) 1.8T 66.2 61.1 with open-source LLMs

LifelongMemory (Wang et a]., 2024d) 1.8T 68.0 62.1 VEC (MOani et al., 2023) 164M 51.5 _
with open-source LLMs InternVideo (Wang et al., 2022a) 478M 49.1 -
InternVideo (Wang et al., 2022a) 478M - 32.1 SeViLA (Yu et al., 2024) 4B

FrozenBiLM (Yang et al., 2022) 890M N 26.9 Mistral (Jiang et al., 2023) 7B 51.1 50.4
SeViLA (Yu et al., 2024) 4B LLoVi (Zhang et al., 2023a) 7B 54.3 53.6
mPLUG-OwI (Ye et al., 2023) 7B - 31.1 LLoVi (Zhang et al., 2023a) 12B 58.2 56.6
Mistral (Jiang et al., 2023) 7B 48.8 - Tarsier (Wang et al., 2024a) 34B

LLoVi (Zhang et al., 2023a) 7B 508 335 LangRepo (ours) 7B 546 538
Tarsier (Wang et al., 2024a) 7B LangRepo (ours) 2B 609 59.1
VideoLLaMA 2 (Cheng et al., 2024) 12B

Vamos (Wang et al., 2023) 13B - 36.7

InternVideo2 (Wang et al., 2024c) 13B

Tarsier (Wang et al., 2024a) 34B

LangRepo (ours) 7B 60.8 38.9

LangRepo (ours) 12B 66.2 41.2

Table 2: Main results (Left) on EgoSchema (Mangalam et al., 2024), and (Right) on NExT-QA (Xiao et al., 2021)
and IntentQA (Li et al., 2023a): We focus on the zero-shot video VQA. LangRepo shows a strong performance at its

scale. Open-source multi-modal LLMs with video-caption pretraining are

IntentQA: In Table 2 (right), we evaluate our
zero-shot framework against other state-of-the-art
models on IntentQA (Li et al., 2023a) test set.
LangRepo outperform comparable models with
similar scale consistently, showing gains of +3.4%
over baseline Mistral LLM (Jiang et al., 2023) and
+2.5% over LLoVi (12B) (Zhang et al., 2023a).
We include evaluations on additional video VQA
benchmarks in the supplementary (see Sec. A.4).

5.2 Ablation study

Choice of backbone LLM, text encoder and clas-
sifier: We ablate the choice of LLM-backbones
within the framework in Zhang et al. (2023a) in
Table 3a. We observe that Mistral-7B (Jiang et al.,
2023) is significantly better at video reasoning com-
pared to LL.ama2-13B (Touvron et al., 2023). Next,
we consider different text encoders to embed our
text descriptions prior to pruning, such as CLIP-
L/14 (Radford et al., 2021) or Sentence-T5-XL
(Reimers and Gurevych, 2019) in Table 3b. Sur-
prisingly, CLIP outperforms Sentence-T5 that is
trained with a sentence-level objective (which is
expected to better align with our caption-similarity
computation). Finally, we evaluate different clas-
sifiers used for close-ended (i.e., multiple-choice
question) VQA setups (see Table 3c). Despite
commonly-used in LLM literature, generative clas-

for fair comparison.

sifier performs worse than log-likelihood classifier.
Such performance is also intuitive as the latter con-
strains predictions within the given answer choices
(hence, less hallucination). More discussion on this
is in the supplementary (see Sec. A.2).

Repository setup and metadata: In the formula-
tion of LangRepo we ablate different hyperparame-
ter settings related to the number of repo-updates
(#iterations), the number of video chunks in each
iteration (#chunks), and multiple temporal-scales
considered when reading data in repository. In Ta-
ble 3d, we make two observations: (1) more update
iterations with finer chunks (higher #chunks per
iteration) can preserve more-useful information,
and (2) reading information in multiple temporal-
scales is consistently better. Moreover, we con-
sider optional metadata to help preserve informa-
tion that may get lost when pruning (e.g. temporal
ordering, or repetitive captions), namely, times-
tamps and #occurrences (i.e., the number of cap-
tions grouped within each repo description). We
see in Table 3e that #occurrences help weigh each
description when summarizing, resulting in better
performance. However, timestamps do not pro-
vide meaningful improvement in our setup, in the
context of EgoSchema VQA.

Efficiency in a multi-query setup: We also ab-
late the efficiency of our concise representation
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LLM Scale Acc. Text encoder Acc. VQA classifier Acc.
Mistral (Jiang et al.) 7B 50.8 Sentence-T5-XL (Reimers and Gurevych) 56.4 Generative 57.8
Llama2 (Touvron etal.) 13B  43.0 CLIP-L/14 (Radford et al.) 57.8 Log-likelihood 60.8
Llama3.1 (Dubey etal.) 70B 62.2

(a) Choice of LLM: In the LLoVi frame- (b) Text encoder: CLIP outperforms Sentence-T5 (¢) VQA classifier: Log-

work, Mistral outperforms LLama2 even (trained with setntence objective) for similarity- likelihood classifier performs

at a smaller scale.

based pruning. better on close-ended VQA.

#lter #Ch Read Acc. Model Acc. Model Params Latency per video (s)
/N=1 g/v=2 qlv=5
! [21 b570 LangRepo (ours) 608 LLoVi (zh 1) 7B qzz 11 ‘14: 34 ?(;18 75
oVi (Zhang et al. . . 75
1 (4] 1 60.8 I :)Sctinp g(l)i LangRepo 7B 30.98 37.46 56.90
3 [4,3,2] ! 28.4 + tstmp + occ 58:2 LLoVi (Zhang et al.) 12B 50.06  99.84 249.95
3 [4,3,2] 2 59.4 LangRepo 12B 85.09 9490 124.33
3 [4,3,2] 3 61.2

(d) Repository setup: Having more
iterations (#Iter) with finer chunks
(#Ch) in writing, and multiple scales
in reading improve performance.

(e) Metadata in repository: (f) Efficiency in a multi-query setup: Despite being
Timestamps (tstmp) do not help initially expensive, re-using our concise representation
in this setup, yet #occurrences on videos with multiple queries is more efficient (mea-
(occ) help by weighing entries. sured on a single A5000 GPU).

Captions Acc. Streaming setup Acc. Model 05x 1x 2x
BLIP-2 (Li et al.) 55.4 LLoVi (Zhang et al.) 50.8 Mistral (Jiang et al.)  49.8 48.8 46.8
LLaVA-1.5 (Liuetal.) 584 Chunk-based LLoVi 57.8 LLoVi (Zhangetal.) 57.2 554 53.6
LaViLa (Zhao et al.) 60.8 LangRepo (ours) 60.8 LangRepo 564 578 564
Oracle 69.2

(g) Captioner: Clip-level captions
(e.g. LaViLa) performs better than
frame-level ones. A gap to oracle

annotated captions exists. captions at-once.

(h) Video input: Feeding short cap- (i) Input length: Both Mistral and LLoVi
tions chunk-by-chunk to the LLM is
empirically-better than feeding all the length, whereas LangRepo retains a more-

drops performance with increasing input

stable performance.

Table 3: Ablating design decisions: We evaluate different design decisions of our framework on EgoSchema
(Mangalam et al., 2024) 500-video subset for zero-shot video VQA.

in Table 3f. LangRepo can be initially expensive,
as it requires multiple write-read operations (yet,
each processing smaller context-lengths). However,
once repository is created, it can be re-used more-
efficiently in a setup with multiple-queries for a
given video (i.e., the initial cost will be amortized).
This is especially relevant in practical scenarios,
where users may have multiple queries per video
(e.g. 8.76 g/v in NEXT-QA (Xiao et al., 2021) and
3.76 g/v in IntentQA (Li et al., 2023a)).

Captioner quality: In Table 3g, we evaluate the
quality of captions consumed by LangRepo. By
default, we use short-clip captions from LaViLa
(Zhao et al., 2023c¢), which outperform frame-level
captions (BLIP-2 (Li et al., 2023b), LLaVA-1.5
(Liu et al., 2023)). Oracle captions from Ego4D
show the performance upper-bound w.r.t. the input
(i.e., quality of captions).

Input format and length: We consider differ-
ent ways of consuming long video data, either
as a whole or as chunks (see Table 3h). Among
these options, processing as chunks enables pre-
serving more fine-grained details in LLM outputs.

Our repository setup provides further improvement
showing its effectiveness over the baseline with the
same chunk-based processing. Finally, we re-visit
the experiment on how the input length affects the
effectiveness of LLMs, presented in Table 1. In
Table 3i, we show that LangRepo provide more-
stable performance with increasing input lengths,
in contrast to baselines.

6 Conclusion

In this paper, we introduced a Language Repository
(LangRepo), which reads and writes textual infor-
mation corresponding to video chunks, as a concise,
multi-scale and interpretable language representa-
tion, together with additional metadata. Both our
write-to-repo and read-from-repo operations
are text-based and implemented as calls to a back-
bone LLM. Our empirical results show the superior
performance of LangRepo on multiple long-video
reasoning benchmarks at its respective scale, while
also being (1) less-prone to performance drops due
to increasing input lengths, and (2) interpretable,
enabling easier human intervention as needed.
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Limitations

Despite the effectiveness of LangRepo— as vali-
dated by benchmark experiments and thorough ab-
lations, there exists a few limitations of our study
which we discuss below.

e First, we note that we are unable to test our
approach with all available open-source LLMs
due to the rapid pace of development and com-
pute limitations. Yet, we carefully select state-
of-the-art model backbones in our main experi-
ments (e.g. Mistral (Jiang et al., 2023), Mixtral
(Jiang et al., 2024)) and further show general-
ization to other models/scales in our ablations
(e.g. LLama?2 (Touvron et al., 2023), LLama3.1
(Dubey et al., 2024), GPT-4).

* We also highlight that since our study is focused
on a concise and interpretable (i.e., all-textual)
representation that applies to two-stage VQA
pipelines (i.e., captioner + question-answering
LLM), we do not explore single-stage VQA
pipelines (i.e., multi-modal LLM such as LLaVA
(Liu et al., 2024)) within the scope of this paper.

¢ Our default redundancy detection technique re-
lies on text embeddings (e.g. CLIP (Radford
et al., 2021)). Although this decision is validated
based on ablations with (i) alternate approaches
(e.g. LLM-based), (ii) different encoders (e.g.
Sentence-T5 (Reimers and Gurevych, 2019)),
and (iii) hyperparameter search on reduction rate,
we note that a very few redundancies may exist
in our repository entries.

* As any LLM based approach, LangRepo is sen-
sitive to prompting. We carefully select our
prompts, being faithful to prior methods that
we compare with (e.g. LLoVi (Zhang et al.,
2023a)). We also include an extended discus-
sion on such sensitivity in the supplementary,
particularly w.r.t. the classifier used in VQA.

* Finally, we note that since our approach is zero-
shot, any limitations or biases in pretrained mod-
els may still exist in the outputs of LangRepo.

Reproducibility Statement

Our experiments utilize open-source vision mod-
ules, including ResNet and Clippy, with publicly
available code and pretrained weights, alongside
the proprietary GPT-40 model. Since all experi-
ments are conducted in a zero-shot setting, we do
not modify any pretrained weights. Evaluations are
performed on publicly available long-video bench-
marks, ensuring transparency and comparability.
We provide detailed steps and prompts necessary
to reproduce our results. Finally, we commit to
releasing our code alongside the paper to facilitate
further research and reproducibility.
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A Appendix

A.1 Extended ablation and discussion

Similarity-based pruning: We notice that the
short captions generated by the VLLM captioner
can be highly-redundant, as it has a limited tempo-
ral span. Such excess details can adversely affect
the performance (see Table 1), while also wast-
ing the LLM context. This motivates us to prune
redundancies. We consider prompting the LLM
directly to identify and rephrase redundant infor-
mation. However, the outputs in this setup can be
noisy and lack of any structure that is useful for
parsing. In other words, although redundancies get
pruned, there is limited controllability and inability
of identifying what gets pruned. Hence, we decide
to delegate the function of identifying redundancies
to a separate module: a similarity-based grouping
with the help of text embeddings (e.g. CLIP (Rad-
ford et al., 2021)). This gives more control on what
to prune and how much to prune, while generating
outputs that can be parsed to extract other useful
metadata (e.g. timestamps). In Table A.1c, we show
that this CLIP-based approach outperforms LLM-
based alternative. We also ablate the reduction rate
as a hyperparameter (i.e., percentage of captions
detected as redundant), which needs to be balanced
to avoid over- or under-detection of redundancy.

Processing videos as chunks: Our decision to con-
sume longer videos as chunks is motivated by prior
work (Wu et al., 2022; Ryoo et al., 2023). It allows
us to not lose short-term details, while also keeping
track of long-term dependencies via multi-scale
processing. Additionally, although not explored
in our scope, such a setup integrates well with
temporally-fine-grained prediction tasks, where an
LLM needs to make multiple predictions over time.

Choice of metadata: To avoid the loss of impor-
tant details during pruning, we maintain additional
metadata in our LangRepo. Since captions across
time can be grouped together in a single repo de-
scription, we save their timestamps as a separate
field. This can help with temporal reasoning ques-
tions. We also update an occurrence counter, which
shows the number of captions grouped within a
single description. This can act as a weight, to
help in cases such as counting or identifying repet-
itive events. In Table 3e, we see that the occur-
rence counter does improve the performance on
EgoSchema. We implicitly see the benefit of times-
tamps in LangRepo for time-sensitive question an-

swering (e.g. Temporal questions in NExT-QA as
in Table A.2, Before/After questions in IntentQA
as in Table A.3, and grounded VQA in NEXT-GQA
as in Table A .4).

Two-stage VQA pipeline: LangRepo is a two-
stage VQA pipeline that relies purely on text in-
formation to perform visual question-answering.
Such pipelines (Zhang et al., 2023a; Islam et al.,
2024; Ranasinghe et al., 2024) are usually com-
prised of two separate components that focus on
either (1) converting visual-information to text,
or (2) question-answering. Different from single-
stage VQA pipelines, i.e., multi-modal question-
answering LL.Ms (Liu et al., 2024; Wang et al.,
2024a,c), that only consist of latent representations
(Balazevi¢€ et al., 2024), two-stage pipelines gener-
ate an intermediate language representation with
useful properties (e.g. interpretability for human ob-
servers, a more-natural form of structure for LLM-
based processing). Among such, closest to ours
are LLoVi (Zhang et al., 2023a) (in-terms of its
summarization), Video ReCap (Islam et al., 2024)
(in-terms of its multi-scale descriptions), and MVU
(Ranasinghe et al., 2024) (in-terms of its multi-
modal information as text). Different from these,
the novelty of LangRepo is on removing redun-
dancies in visual information given as text, across
varying scales (based on iterative refinement), im-
proving the effectiveness and context utilization of
question-answering LL.Ms.

Classifier for close-ended VQA: The multiple-
choice question-answering setup usually consid-
ers a generative classifier. Meaning, an LLM is
prompted to generate the correct answer option
among multiple-choices, directly as next-token pre-
diction. Another approach used in NLP literature
is log-likelihood based classification (see Cloze
prompting in (Robinson et al., 2023)). Here, the
LLM is prompted separately for each of the mul-
tiple choices with a template such as “Question:
Answer-option”. The choice that maximizes the
log-likelihood of predicted tokens (i.e., tokens
corresponding to Answer-option) is selected as
the correct answer. This is a more-natural setup
for close-ended VQA since it avoids hallucina-
tion. Among these classifiers, we find the latter
to be better-performing, and use it in LangRepo as
well as other closely-related baselines (e.g. LLo Vi,
Mistral) in our comparisons (see Table A.1b). It
even helps smaller backbones to outperform much
larger ones (e.g. see Table A.le: LangRepo with
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Captions per-video Model VQA classifier Grouping Red. Acc.
Dataset 0.5x I 2% (7B) Gen.  LL 10% 554
#tokens Acc. #tokens Acc. #tokens Acc. Mistral 47.2  48.8 (+1.6) CLIP-based 25% 57.8
EgoSch 0.9k 49.8 1.8k 48.8 3.6k  46.8 LLoVi 02 0800 o
goochema  ~0. : ~L : ~. : LangRepo 58.8  60.8 (+2.0) :
NEXT-QA  ~045k 482 ~09k 482 ~18k 469 LEM-based 25% 526
IntentQA  ~045k 47.1 ~09k 469 ~1.8k 452

(a) Input length: We extend Table 1 by including the average (b) VQA Classifier:
#tokens per-video. Despite comfortably fitting into the context likelihood classifier is consis-
length of LLM (i.e., Mistral-7B (Jiang et al.)), the performance tently better than a generative

degrades with longer inputs.

Log- (c) Detecting redundancy
with CLIP embeddings is
cleaner, yet balancing re-

one across various models. duction rate is important.

Model Red. removal ~ Params Acc. w/ open-source LLMs w/ proprietary LLMs
LifelongMemory ~ Caption Digest oo Zgg Model (7B) Acc. (Gen.) Model (70B) Acc. (LL) Model (1.8T) Acc. (Gen.)

: Mistral 47.2 LLama3.1 - GPT-4 59.0

LaneRepo Group/Rephrase 7B 60.8 LLoVi 50.2 LLoVi 62.2 LLoVi 61.2

grep up/rep 12B 66.2 LangRepo 58.8 LangRepo 67.0 LangRepo 64.6

(d) Redundancy removal with Group/Rephrase (e) Model scales: Utility of LangRepo is visible not only in relatively-small
in LangRepo is better than Caption Digest in Life- open-source LLMs (e.g. Mistral-7B (Jiang et al.)), but also in large and

longMemory (Wang et al.).

proprietary LLMs (e.g. LLama3.1-70B (Dubey et al.), GPT-4).

Table A.1: Additional Ablation experiments: We evaluate different design decisions of our framework on zero-shot
video VQA (unless otherwise-stated, on EgoSchema (Mangalam et al., 2024) 500-video subset).

LLama3.1-70B and LL-classifier gives 67.0% on
EgoSchema vs. the same with GPT-4 and Gen-
classifier at 64.6%). However, we find that the
LL-classifier is also more-sensitive to the prompt
template. We direct the reader to the next subsec-
tion (A.2) for more details.

Soft degradation of LLM performance: In this
paper, we propose an approach that effectively uti-
lizes the context of question-answering LLMs. It
can handle both (i) soft performance degradations
due to longer inputs that do no exceed context limit,
and (ii) context truncation— which is an extreme
case. We formally show the observations of the
more-generic case of (i) above w.r.t. the number
of captions (in Table 1), and further extend it to
include token counts in Table A.1a. We highlight
that the Mistral-7B (Jiang et al., 2023) backbone
used here, can definitely handle the full dense cap-
tions without any context overflow/truncation in
all configurations of this experiment. For instance,
EgoSchema dense captions at 2 setting contains
~3.6k tokens— that is reduced to ~1.4k tokens
by LangRepo— which can be handled comfortably
within the context length (8k) of this model. This
validates that, we will not be triggering a context
truncation (even after considering prompt tokens),
but rather the observations in this study is due to a
soft-trigger of information decay. This behavior is
shown to be true even for much-larger LLMs (e.g.
Gemini) in concurrent work (Levy et al., 2024),
which is attributed to the attention mechanism be-
ing overwhelmed with increasingly-longer inputs.

A.2 Sensitivity of prompting for VQA

Given the close-ended answer formulation in our
VQA setup, we can consider two different classi-
fiers to make the prediction: (1) a Generative clas-
sifier, which directly generates the answer choice,
or (2) a Log-likelihood classifier, which select the
most-probable choice. Although the latter is less-
prone to hallucinations (i.e., prediction is explicitly
constrained to answer choices), it can also be sen-
sitive to how we prompt— as discussed below.

Generative classifier: Here, we directly prompt
the LLM to generate the correct answer, condi-
tioned on the descriptions generated by LangRepo,
the question and the answer options (inspired by
(Zhang et al., 2023a)). To make sure that the out-
put can be parsed, we provide additional guiding
instructions and any syntax specific to the LLM
(Mistral (Jiang et al., 2023)). This also discourages
any hallucinations. On all benchmarks, we use the
common prompt given below.

“LINST] «SYS» You are a helpful expert in
«/SYS»

Please provide a single-letter answer (A, B,

first person view video analysis.

C, D, E) to the following multiple-choice
question, and your answer must be one of the
letters (A, B, C, D, or E). You must not pro-
vide any other response or explanation. You
are given some language descriptions of a
first person view video. The video is ${du-
ration} seconds long. Here are the descrip-

tions: ${description}.\n You are going to
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answer a multiple choice question based on
the descriptions, and your answer should be
a single letter chosen from the choices.\n
Here is the question: ${question}.\n Here
are the choices.\n A: ${optionA}\n B: ${op-
tionB}\n C: ${optionC}\n D: ${optionD}\n E:

${optionE}\n [/INST]”

Log-likelihood classifier: Inspired by (Robin-
son et al., 2023; Ranasinghe et al., 2024), in this
setup, we prompt the LLM with each answer op-
tion separately, and select the highest-probable an-
swer. The probability is computed only on the
tokens of the answer option, conditioned on the
input sequence. In our experiments, we notice
that the effectiveness of this method is sensitive
to the prompt. This is due to the question-answer
formats in the dataset considered. For instance,
EgoSchema (Mangalam et al., 2024) consists of
full-sentence answers, whereas NEXT-QA (Xiao
et al., 2021) consists of answer phrases. Hence, the
latter benefits from additional guidance from for-
matting within the prompt template. More specifi-
cally, on EgoSchema (Mangalam et al., 2024), our
prompt has the following format.

“${description} ${question} ${answer_option}”

Here, the probability is computed only on
${answer_option}. However, on the benchmarks
based on NEXT-QA (Xiao et al., 2021) data, our
prompt has a more-structured format as below.

“${description} Based on the description

above, answer the following question:

${question}? Select one of these choices
as the answer:\n A: ${optionA}\n B: ${op-
tionB}\n C: ${optionC}\n D: ${optionD}\n E:
${optionE}\n The correct answer is, ${op-

tion_id}: ${answer_option}”

Here, the probability is computed only on
${option_id}: ${answer_option}. We observe
that neither prompt template works as effective
when interchanged.

A.3 Qualitative examples of repository entries

We present qualitative examples from EgoSchema
(Mangalam et al., 2024) dataset to better clarify the
operations in LangRepo. In Fig. 4, we show the
format of repository entries. Here, non-redundant
captions from the input get directly written to
the repo. In contrast, any redundant captions—
grouped based on similarity— get rephrased as
concise descriptions (1 per-group). Each reposi-

tory description may come with additional meta-
data such as timestamps and #occurrences to avoid
the loss of meaningful information due to prun-
ing. In Fig. A.1, we further elaborate on multiple
scales within the repository, which are generated by
iteratively processing increasingly-longer chunks
(created by re-chunk operation). During reading,
we can decide to summarize information at vari-
ous temporal scales to generate output descriptions
useful for VQA.

A.4 Additional benchmark results

Detailed results on NExT-QA and IntentQA: In
Table A.2, we extend the benchmark evaluation on
NEXT-QA (Xiao et al., 2021) to include its valida-
tion splits (Causal, Temporal and Descriptive) to
provide a better semantic understanding of model
performance. Similarly, in Table A.3, we extend
the benchmark evaluation on IntentQA (Li et al.,
2023a) to include its test splits splits (Why?, How?
and Before/After). In both benchmarks, we ob-
serve that LangRepo outperforms the competition
on respective splits, showing the generalization of
our language representation for various semantic
reasoning tasks.

Grounded VQA: We consider NEXT-GQA (Xiao
et al., 2023), a visually-grounded VQA dataset
with 10.5K temporal grounding annotations, where
we perform zero-shot inference similar to (Zhang
et al., 2023a) on its test split. We report multi-
ple metrics including Intersection-over-Prediction
(IoP) that measures the overlap w.r.t. the predicted
window, Intersection-over-Union (IoU) that mea-
sures the overlap w.r.t. the union of ground-truth
and predicted windows, and Acc@GQA that mea-
sures the accuracy of correctly-grounded predic-
tions. In Table A.4, we compare the performance
of LangRepo with state-of-the-art models on NExT-
GQA (Xiao et al., 2023). We follow the same
grounding setup as in (Zhang et al., 2023a). Our
method achieves a strong performance at its scale,
outperforming baseline Mistral LLM (Jiang et al.,
2023) by +2.0% and LLoVi (12B) (Zhang et al.,
2023a) by +0.9% on Acc@GQA metric.

Very-short video VQA: We consider MSRVTT-
QA (Xu et al., 2016) as a very-short video VQA
benchmark for LangRepo evaluation. It is based
on MSR-VTT dataset with ~3k clips that range
from 10-30s of duration (with an average of 15s),
and consists of open-ended questions. Here, we
can not rely on log-likelihood classifier to select an
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Grouped redundant captions
(Scale 1)
#0 person A takes a card from the table.

#0 person A picks the card from the table.
#0 person A picks a card.

Repository entries
(Scale 1)

. Person A reaches for and picks up a card

from the table.

#0 person A picks up a card on the table. 2. Man X engages in conversation with person C.
3. Person X holds cards on the table, then selects

#0 man A talks to C. a play car

#0 man X talks to C. 4

#0 person X talks to C.

#0 person X holds a cards on the table.
#0 person X takes a play card.
#0 person A holds the card.

#0 The man X picks the phone from the table ...
#0 The man X picks up a phone from the table ...

#0 The man A turns the card on the table ...
#0 The man X drops the cards in his right hand ...

#0 man X picks 2 playing card from the table.
#0 man X picks a card from the t
#0 man X picks a card from the e

#0 The man X holds a game board game with ...
#0 The man X picks a game card from game ...

#0 person X picks the dice.
#0 person X picks a dice.
#0 person X picks dice.
#0 person X picks a dice.

#0 A man X picks up a dice from the bed.
#0 A man X picks a dice.

#0 person A takes the cards.
#0 person A picks the cards.
#0 person X picks a card.

#0 Man X picks a poker chip from the table

#0 The man X picks a game token from the table ...

#0 The man X picks a game board chip from .

#0 The man X picks the game cards on the table
#0 The man X drops the game card on the table
#0 The man X places the game cards in his left
#0 The man X drops the game tokens in his rig

#0 The man X drops the playing cards in his left ...

#0 man X picks a dice.
#0 Man X picks a game dice from the table.
#0 man X picks a dice from the table.

«

~No

@

A& woN

o

N

Nounsw

- Man X retrieves the phone from the table using
ft han

his lef

. Man A rotates a card on the table with his right
and.

Man X repeatedly picks a card from the table

. Man X grasps the game board with his left hand

and selects a card with his right.
Person X picks up a single dlce from the table.

(&)

- A man reaches for and picks up a dice from
e bed.

. Person A collects the cards, while person X

picks one out.

. Man X uses his right hand to pick a chip from

the table.

Man X gathers the game cards with his right
hand and sets them down on the table,
then drops the tokens in his right hand.

. Man X selects a dice from the table.

Person X sets the dice on the table, shakes it,
and then plays it, while person A moves it

| v

Man X speaks with person C.
Man X transfers a spoon to the bowl, and raises
the spoon in his right hai

Man X retrieves 4 dice from the dining table.
Man X holds a dice in his hand.

Man X lays cards on the table.

Man X retrieves cards from the table.

Person X interacts with the dice, either touching
or picking it up.

Grouped redundant captions
(Scale 2)

Man X repeatedly picks a card from the table,
Man X gathers the game cards with his right hand .

#0 man A holds a book on his left hand.
#0 Man A holds a phone with his right hand.

#0 person A puts the dice on the table.
#0 person A picks the dice.

#0 person X puts the dice on the table.
#0 person A picks the dice on the table.
#0 person X puts the dice down

#0 man X holds a dice in his left hand.

#0 A man X picks the dice.
#0 man A picks a dice on the table.

#0 man A picks a glass of water.
#0 man A picks a cup from the table.

#0 The man X drops the game chip on the table .

#0 The man X picks up a game chip from the tabl

#0 man A drops a card on the table.
#0 man A picks a card from the dining table.
#0 man A touches the game board card on ...

#C C touches the game board.
#C C points at the game board.
#C C points at a game board.

#C C plays card game.
#C C plays the dice game.
#C C picks a dice on the table.

#0 person A pulls a chair.
#0 person A sits on the chair.

#0 person X picks up a phone.
#0 person X stares at a card.

#0 person X picks a card.

#0 person B places a card on the table.
#0 person X plays card.

#0 person B picks a card.

#0 man A talks to man D.
#0 Man A talks to C.

#0 The man X picks up a dice from the table with ...

#0 The man X drops the game chip in his right

#0 The man X drops the game card in his Teft hand ...

Repository entries
(Scale 2)

1. Man X repeatedly picks up and sets down game cards
Jith his ight hand, dropping tokens n the process,
olds a book in his left hand and a phone in his

ngm han

. Person A places and retreves dice mulipe times, with
person X doing the sam

- Man A picks up 3 glass of water from the table using
both han

. Man X aiternately drops and picks up game chips from
the table and game board with his right

o ) A v, e e e el i

dining table.

msm[\u

v

#C touches and points at the game board.

#C plays a card game, picks up a dice, and points at

the table.

. #0 person A pulls a chair and sits on it.

. #0 person X picks a card, stares at it, places a card

on the table, and picks another card. #0 person B also

picks a car

#0 man A talks to man C and man D.

. #0 man X picks up a dice with his left hand, drops a
game chip in his right hand, and drops a game card in
his left hand on the table.

- #0 man X touches the table, and #0 person A holds It
while #0 person X plays the table gam:

. #0 person X adjusts nis face with RS right hand and

puts a hand on his chin.

NS

on

® N

In the given first person view video, which lasts for
90 seconds, two individuals, identified as Man X and
Person A, engage in various activities around a dining

table and other areas. The video opens with Man X
interacting with a game board, selecting a card with his
right hand while holding the game in place with his left.
Person A s also present, reaching for and picking up a card
from the table. Both individuals engage in similar actions,
picking up, setting down, and manipulating game cards
and dice throughout the video.Man X is seen holding cards
on the table and selecting a play card, while Person A
places, retrieves, and touches a card on the dining table.
Man X repeatedly picks up and sets down game cards

#0 person X puts the dice on the table.
#0 person X shakes the dice

#0 person A plays the dice,

#0 person A moves the dice on the table.

#0 person X takes a dice. In the given first person view video,

which lasts for 60 seconds, ...

#0 man A talks to C. ¢
#0 person X talks to C.

#0 The man X drops the spoon in b ight hand ...
#0 The man X picks a spoon frof

In the given frst person view video,
%0 The man X lfts Up the spoon e nght hand. g T S

which lasts for 60 seconds,

#0 man X picks a dice from a dining table.
#0 Man X drops a dice on the table with his right ...
#0 man X picks a dice from a tray.

#0 man X picks a dice from the table. ¥

#0 Man X holds a dice.
#0 man X holds dice.

— In the given first person view v\deo,

#0 man A places a cards on the table. which lasts for 60 seconds,

#0 man X drops the cards on the table.

#0 man X picks the cards from the table.
#0 A man X picks a card from the table.

#0 A man X touches a card. [Optional]

#0 person X touches the dice. Output descriptions
#0 person X picks up the dice.

#0 person A picks a dice. (Scale 1)

#0 person A picks a dice.
#0 person X picks a dice from the table.
#0 person X touches a dice.

with his right hand, dropping tokens in the process. Both
individuals exhibit a focus on the game and its components.
Man X and Person A engage in conversation with each other
and with another individual, C. Man X picks up a single dice
from the table and a black bowl, while ...

#0 man X touches the table.
#0 person A holds the table.
#0 person X plays the table game.

#0 The man X adjusts his face with his right hand.
#0 person X puts a hand on the chin. v

The given first person view video is a 90-second long
recording of two characters, identified as #C (Character C)
and #0 (Character X or other characters), engaging in
various activities centered around table games and
interactions. The video opens with Character C touching a
card, setting the stage for the table games to follow.
Character X is introduced in the first clip, where they touch
and point at the game board, indicating their interest and
involvement in the games. In the second clip, Character X
plays a card game, further emphasizing the theme of table
games. Throughout the video, both characters engage in
various activities related to table games. Character X
moves a game token on the board, picks up a dice, and
arranges colored chips on the table. They also interact with
other characters, such as Person A, who picks up a dice and
arranges cards on the table. Character C, on the other
hand, looks at the game board and paper game cards. The
video also showcases several instances of characters ...

—> Rephrase

)>—> Read-from-repo

i —> Re-chunk

Output descriptions
(Scale 2)

Figure A.1: A qualitative example of iterative writing and multi-scale reading in LangRepo: Here, we present
an example with 2-scales, given captions of a 180s long video. In scale-1, we consider 3 chunks of 60s each, and
in scale-2, we re-chunk them into 2 chunks of 90s each. We only show the redundant captions that go through
pruning, and also, omit any metadata (e.g. timestamps) within the repository. In each scale, captions grouped
based on similarity get rephrased concisely. To generate inputs of the subsequent scale, we simply order previous
repository descriptions in time, and split (i.e., re-chunk) into fewer (and, longer) chunks. When reading, each
entry in each scale is summarized separately to create output descriptions of various temporal spans. In general,
we always consider the last-scale descriptions to be mandatory, but any prior-scale to be optional. Yet, we observe
multiple scales to be beneficial (see Table 3d). Best-viewed with zoom-in.

answer, but rater generate an open-ended answer
and compare it with the ground-truth using LLM-
as-a-judge (Zheng et al., 2024b), as in prior work.
It involves an additional step of querying an LLM
to evaluate the correctness of a predicted answer,
together with a confidence score (within the range
of 1-5). In Table A.5, we compare the performance
of LangRepo with similar-sized models (7B). We
rely on LLaVA-1.5-7B (Liu et al., 2023) captions
(at 4fps) to answer questions in a two-stage VQA
pipeline. Here, a two-stage pipeline refers to a
“captioner + question-answering LLM” setup as in
LangRepo, in contrast to a single-stage pipeline
(i.e., multi-modal question-answering LLM). We

see that LangRepo achieves a competitive perfor-
mance compared to other baselines, while outper-
forming LLoVi (Zhang et al., 2023a) in the same ex-
perimental setup. This validates that LangRepo gen-
eralizes to the extreme case of very-short video QA,
and our redundancy removal technique is useful
even for shorter videos.

Very-long video VQA: We consider recent
LongVideoBench (Wu et al., 2024) as a very-
long video VQA benchmark. It consists of ~3.7k
video clips corresponding to various domains, that
range from 8s-1hr of duration, and annotated with
multiple-choice questions. In Table A.6, we per-
form evaluations on its validation set, and report av-
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Model Params Causal Temporal Descriptive All

with proprietary LLMs

ViperGPT (Suris et al., 2023) 175B - - - 60.0
ProViQ (Choudhury et al., 2023) 175B - - - 64.6
MoReVQA (Min et al., 2024) 340B 70.2 64.6 - 69.2
LVNet (Park et al., 2024) <1.8T 75.0 65.5 81.5 72.9
1IG-VLM (Kim et al., 2024) 1.8T 69.8 63.6 74.7 68.6
LLoVi (Zhang et al., 2023a) 1.8T 69.5 61.0 75.6 67.7
TraveLER (Shang et al., 2024) 1.8T 70.0 60.5 78.2 68.2
VideoAgent-[S] (Wang et al., 2024b) 1.8T 72.7 64.5 81.1 71.3
VideoTree (Wang et al., 2024e) 1.8T 75.2 67.0 81.3 73.5
with open-source LLMs

VFC (Momeni et al., 2023) 164M 454 51.6 64.1 51.5
InternVideo (Wang et al., 2022a) 478M 43.4 48.0 65.1 49.1
SeViLA (Yu et al., 2024) 4B

Mistral (Jiang et al., 2023) 7B 51.0 48.1 574 51.1
LLoVi (Zhang et al., 2023a) 7B 55.6 479 63.2 54.3
LLoVi (Zhang et al., 2023a) 12B 60.2 51.2 66.0 58.2
Tarsier (Wang et al., 2024a) 34B

LangRepo (ours) 7B 57.8 45.7 61.9 54.6
LangRepo (ours) 12B 64.4 514 69.1 60.9

Table A.2: Extended results on NExT-QA (Xiao et al., 2021): We compare LangRepo against state-of-the-art
zero-shot methods on NExT-QA validation set, highlighting standard splits: causal, temporal and descriptive. Our
method shows strong performance across all splits at its scale. Open-source multi-modal LLMs with video-caption
pretraining are for fair comparison.

Model Params Why? How? Before/After All
with proprietary LLMs

LVNet (Park et al., 2024) <1.8T 75.0 744 62.1 71.7
LLoVi (Zhang et al., 2023a) 1.8T 68.4 674 51.1 64.0
IG-VLM (Kim et al., 2024) 1.8T - - - 64.2
VideoTree (Wang et al., 2024e) 1.8T - - - 66.9
with open-source LLMs

SeViLA (Yu et al., 2024) 4B

Mistral(Jiang et al., 2023) 7B 527 554 41.5 50.4
LLoVi (Zhang et al., 2023a) 7B 579 554 423 53.6
LLoVi (Zhang et al., 2023a) 12B 59.7 627 45.1 56.6
LangRepo (ours) 7B 56.9 60.2 42.1 53.8
LangRepo (ours) 12B 62.8 62.4 47.8 59.1

Table A.3: Extended results on IntentQA (Li et al., 2023a): We compare LangRepo against state-of-the-art
zero-shot methods on IntentQA test set, highlighting standard splits: why?, how? and before/after. We focus on the
zero-shot setting. Our method shows strong performance across all splits at its scale. Open-source multi-modal

LLMs with video-caption pretraining are for fair comparison.
Model Params mloP [oP@0.5 mloU IoU@0.5 Acc@GQA
with proprietary LLMs
MoReVQA (Min et al., 2024) 340B 37.8 37.6 19.7 154 39.6
LLoVi (Zhang et al., 2023a) 1.8T 37.3 369 200 153 24.3
with open-source LLMs
Mistral (Jiang et al., 2023) 7B 204 202 87 59 9.2
LLoVi (Zhang et al., 2023a) 7B 20.7 20.5 8.7 6.0 11.2
LLoVi (Zhang et al., 2023a) 12B 314 28.8 184 120 16.2
LangRepo (ours) 7B 20.3  20.0 8.7 6.0 11.2
LangRepo (ours) 12B 313 287 185 12.2 17.1

Table A.4: Grounded VQA results on NExT-GQA (Xiao et al., 2023): We compare LangRepo against state-of-
the-art zero-shot methods on NExT-GQA test set. Our method shows strong performance across at its scale.

5645



Model (7B) Acc. Confidence

single-stage

MovieChat (Song et al., 2024) 52.7 2.6
VideoChat2 (Li et al., 2024a)

IG-VLM (Kim et al., 2024)  63.7 3.5

two-stage

VideoChat (Li et al., 2023¢)  45.0 2.5
LLoVi (Zhang et al., 2023a)  58.6 29
LangRepo (ours) 59.2 3.0

Table A.5: Very-short video VQA results: We com-
pare LangRepo against state-of-the-art zero-shot meth-
ods at the same scale (7B), on open-ended question
answering on MSRVTT-QA (Xu et al., 2016) (using
LLM-as-a-judge). Our method shows competitive per-
formance at its scale. Open-source multi-modal LLMs
with video-caption pretraining are for
fair comparison.

Model Params Acc.
single-stage

VideoChat2 (Li et al., 2024a) 7B 36.0
mPLUG-OwI2 (Ye et al., 2023) 7B 39.1
VideoLLaVA (Lin et al., 2023) 7B
ShareGPT4Video (Chen et al., 2024) 8B
PLLaVA (Xu et al., 2024) 7B 40.2
two-stage

Mistral (Jiang et al., 2023) 7B 374
LangRepo (ours) 7B 38.2

Table A.6: Very-long video VQA results: We compare
LangRepo against state-of-the-art zero-shot methods at
a similar scale, on LongVideoBench (Wu et al., 2024)
validation set. Our method shows a competitive per-
formance at its scale. Open-source multi-modal LL.Ms
with video-caption pretraining are for
fair comparison.

erage performance across all duration splits. Here,
we run our framework on captions extracted with
LLaVA-1.5-7B (Liu et al., 2023) in a two-stage
pipeline, evaluating its performance against similar-
scaled models. We observe that LangRepo shows
a competitive performance, while outperforming
Mistral (Jiang et al., 2023) based on the same cap-
tioner. Even in a benchmark that better-supports
single-stage VQA pipelines based on multi-modal
LLMs, such a performance from LangRepo vali-
dates its effectiveness in the extreme case of very-
long video QA.
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