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Abstract

We present a simple meta quantization ap-
proach that quantizes different layers of a large
language model (LLM) at different bit levels,
and is independent of the underlying quantiza-
tion technique. Specifically, we quantize the
most important layers to higher bit precision
and less important layers to lower bits. We pro-
pose two effective strategies to measure the im-
portance of layers within LLMs: the first mea-
sures the importance of a layer based on how
different its output embeddings are from the
input embeddings (higher is better); the second
estimates the importance of a layer using the
number of layer weights that are much larger
than average (smaller is better). We show that
quantizing different layers at varying bits as per
our importance scores results in minimal perfor-
mance drop with a far more compressed model.
Finally, we present several practical key take-
aways from our variable layer-wise quantiza-
tion experiments: (a) LLM performance under
variable quantization remains close to the orig-
inal model until 25–50% of layers are moved
in lower quantization using our proposed or-
dering but only until 5–10% if moved using no
specific ordering; (b) Adding layer importance
to inherently dynamic quantization techniques
can further improve their performance, show-
ing that our approach is complementary to other
dynamic quantization methods; (c) Quantizing
LLMs to lower bits performs substantially bet-
ter than pruning unless extreme quantization
(2-bit) is used; and (d) Layer-wise quantization
to lower bits works better in the case of larger
LLMs with more layers compared to smaller
LLMs with fewer layers.

1 Introduction

Large Language Models (LLMs) have achieved
remarkable performance on a variety of tasks, espe-
cially when scaled to billions of parameters (Jiang
et al., 2023, 2024; Touvron et al., 2023; Zhang et al.,
2022; Team et al., 2023). The largest open-source

models available can have an upwards of 400B pa-
rameters, such as LLaMa3-400B (Touvron et al.,
2023). Even small models such as LLaMa3-8B re-
quire as much as 20GB of VRAM to run on a GPU
at the original precision, making them unusable
for low resource settings. In such settings model
compression techniques such as quantization are
critical (Zhu et al., 2023b; Wan et al., 2023).

Most prominent techniques for model compres-
sion broadly cover pruning (Ma et al., 2023),
knowledge distillation (Gu et al., 2023), and quan-
tization (Zhu et al., 2023b). Pruning yields im-
provements in inference speed, but often results in
substantial performance drop (Frantar and Alistarh,
2023; Men et al., 2024). On the other hand, quanti-
zation has proven to be a more robust solution for
model size compression with comparatively much
smaller performance drops (Lin et al., 2024). In
our work, we primarily focus on memory reduction
through quantization. Further, quantization can be
training specific or post-training (Yao et al., 2024),
where trained models are quantized without requir-
ing any further training. We focus on post-training
quantization due to its practicality.

The majority of quantization techniques pro-
posed recently (Frantar et al., 2023; Xiao et al.,
2023; Yao et al., 2022, inter alia) focus on the quan-
tization of all the LLM layers to a single preci-
sion bit, or quantizing only specific weights of the
network (Lin et al., 2024). This has shown to be
costly, their effectiveness is data dependent, and
their implementations can be considered moder-
ately challenging. In contrast, we propose a simple
meta quantization technique that quantizes differ-
ent layers at different bit precision depending on
their importance. Figure 3 shows an example of
our idea. We show that our approach1 is simple to
implement, is independent of the underlying quan-
tization technique (e.g., we experimented with two
1 Our code is publicly available at
https://github.com/RazvanDu/LayerwiseQuant.
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Figure 1: Overall intuition behind our approach. We first
rank the layers in an LLM (e.g., LLaMa-2-13B here) in de-
scending order of an importance score (shown here is ranking
based on our Layer Input Modification (LIM) score, see Sec-
tion 3.1). The color intensity of each layer represents their
LIM importance score (darker green color indicates higher
importance score while darker red indicates least important
scores). Left-hand side of the figure shows layers in the mid-
dle and towards end are less important. This observation holds
for several other LLMs (see Figure 6 in the appendix). After
sorting (right-hand side of the figure), the 30 most important
layers are quantized in 4 bits while the remaining 10 least
important layers are quantized in 2 bits, resulting in 3.5 bits
as the average bit size.

prominent quantization techniques: GPT-Q (Fran-
tar et al., 2023) and Quanto2), performs well, and
provides greater flexibility to compress models in
varying bit precision as per memory requirements.

The contributions of our work are as follows:
(1) We introduce a novel method for layer-wise
quantization of LLMs at different bit levels to
achieve flexible lower bit precision overall. Our
method is designed to maximize performance un-
der a given memory budget by keeping as many
layers as possible in higher precision. We present
a detailed study highlighting importance of layer
ranking for quantizing less important layers with
lower bits and more important layers with higher

2 https://github.com/huggingface/optimum-quanto

bit precision, resulting in a more effective compres-
sion at specific memory limits or variable bit-sizes.

(2) We propose and study two layer importance
scores for variable quantization. To our knowl-
edge, we are the first to propose layer orderings for
quantization and using these orderings for quan-
tizing different layers at different bits. Our first
score, named layer input modification (LIM), is
based on how much a layer changes its input rep-
resentations into the output ones. This score is cal-
culated with an unlabeled text calibration corpus.
The second scoring method, called z-score distribu-
tion (ZD), measures the distribution of parameter
weights within a layer to determine its importance.
Thus, ZD does not require calibration data. We
validate these scores by empirically showing that
when LLM layers are quantized to lower bits as
per rankings from our two importance scores, they
retain performance much more strongly than sev-
eral other layer ordering baselines. We observe that
LIM performs better than ZD on average but the
differences are not large, and ZD has less perfor-
mance variance for different LLMs. We discuss
this a success for ZD as it is simpler and does not
require calibration data.

(3) We evaluate the impact of our variable quanti-
zation method based on layer importance on five
top performing LLMs from different model fami-
lies and different sizes. We draw several important
practical findings from these experiments: (a) LLM
performance under variable quantization remains
close to the original model when using our ordering
until reaching the level of 3.0–3.25 bits on aver-
age; (b) Quantizing LLMs to lower bits performs
substantially better than pruning; however, under
extreme quantization settings (i.e., <= 2-bits) prun-
ing shows slightly better results; (c) We show that
quantization at two levels (i.e., quantizing some
layers in x bits and remaining layers in y bits) per-
forms much better than three levels of quantization,
suggesting that the interaction between layers with
different quantization is complex and may need
more investigation; and (d) Layer-wise quantiza-
tion to lower bits works better in the case of larger
LLMs with more layers compared to smaller LLMs
with fewer layers.

2 Related Work

Quantization techniques for large language models
(LLMs) aim to reduce the precision of weights and
activations to lower-bits without significantly com-
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Figure 2: Plots showing the effect of variable quantization for LLaMa2-13b and multiple datasets using Quanto. The leftmost
point indicates LLM performance when all 40 layers of the LLM are represented in 4-bit; the rightmost point shows LLM
performance when all layers are quantized to 2-bit. The dots on each curve (in each plot) show accuracy when the model is
quantized to lower bits by converting less important layers to 2 bits one by one. Red and purple line indicate performance from
8bit and fp16 precision model (ceiling models). As shown, there is no considerable performance drop from fp16 or 8-bit to 4-bit
precision. Hence, we focus our experiments on quantizing below 4 bits. The vertical gray line indicates the quantization point
that preserves 90% of the 4-bit performance. The red line represents when layers are ordered randomly. We chose 3 random
orders of the layers and quantized layers to 2 bits as per these orders. The standard deviation in performance from random orders
are highlighted on the red curve. The curves are plotted on 2K evaluation data while results on full data is summarized in Table 1.
The figure shows that our method retains performance much better under more aggressive quantization than all baselines.

promising performance (Zhu et al., 2023b). Pop-
ular approaches include Post-Training Quantiza-
tion (PTQ) (Banner et al., 2019) and Quantization-
Aware Training (QAT) (Liu et al., 2023). PTQ can
be divided into static quantization, which uses a
small dataset to calibrate scaling factors for weights
and activations, and dynamic quantization, which
quantizes activations on-the-fly during inference.
Our study focuses on static PTQ techniques such
as GPT-Q (Frantar et al., 2023) in our experiments
for practicality, but, importantly, it is agnostic to
the actual quantization technique used.

A few works have highlighted 4-bit precision
as a robust quantization limit for wide variety of
NLP tasks (Dettmers and Zettlemoyer, 2023). Our
results (Figure 2 and 7) also show similar findings
that performance drop is small from bf16 to 8-bits,
and then to 4-bits. Hence, our experiments focus
more on quantizing LLMs below 4-bits to highlight
the effectiveness of layer-wise quantization based
on layer importance. Specifically, our empirical
results (Section 5) show that variable layer-wise
quantization can retain 90% of the performance
with a notable compression up to 2.85-bits over-

all. Concurrent (ArXiv preprint) work by Tai et al.
(2024) also show effectiveness of variable quanti-
zation in vision language models.

A few previous works have studied layer im-
portance in transformers (Vaswani et al., 2017;
Simoulin and Crabbé, 2021). Some of the recent,
(unpublished) concurrent works such as ShortGPT
(Men et al., 2024) have also proposed utilizing
layer importance but primarily focusing on prun-
ing. Shen et al. (2020) had utilized hessian informa-
tion from each layer as an importance measure to
quantize specific weight matrices at different bits.
Unlike these, our dynamic strategy focuses on layer
importance to quantize more important layers in
higher bits and less important layers in lower bits.
Importantly, our proposed approach of layer-wise
quantization of LLMs based on their layer impor-
tance is a meta method that can be coupled with any
quantization techniques such as GPT-Q and Quanto
(Section 3.3). We also compare ShortGPT’s layer
importance-based pruning with our layerwise quan-
tization approach in Section 6.1, and show that they
are largely complementary.
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3 Method

At a high level, our meta quantization strategy oper-
ates in two steps: first, given an LLM with N layers
denoted as {L1,L2,L3, ....LN}, we first compute
the importance of each layer. Second, we then em-
ploy an existing quantization technique to quantize
layers differently based on their importance.

3.1 Layer Importance Scores
We propose two layer importance scoring methods.

We call our first layer importance score layer in-
put modification (LIM). The intuition behind LIM
is that the more a layer changes its received input
embeddings the more important it must be. More
formally, the LIM score for a specific layer Li mea-
sures the modification of the representations of Li’s
input (denoted by LI

i ) to create its output represen-
tations (denoted by LO

i ). A near similar score has
been also studied for pruning (layer removal) in a
concurrent (unpublished) work (Men et al., 2024).
The LIM score is the negative of cosine similarity
between LI

i and LO
i as shown below:

LIM(Li) = − LI
i · LO

i

∥LI
i∥∥LO

i ∥ (1)

The dot product LI
i · LO

i quantifies the align-
ment between the input and output vectors, while
the normalization factor ∥LI

i∥∥LO
i ∥ scales the dot

product to the range of [-1, 1], corresponding to
the cosine of the angle between the two vectors.
The negative sign in the LIM score indicates that
a higher similarity (cosine similarity closer to 1)
between LI

i and LO
i results in a lower importance

score. For measuring change in LI
i to LO

i , we use
all 50 documents of pg19! (Rae et al., 2019a) (an
unlabelled text corpus) as calibration corpus.

Our second score, called z-score distribution
(ZD), is based on the distribution of parameter
values and does not require any calibration data.
Intuitively, this score considers a layer as more im-
portant if it contains more weights that are much
higher than average.

We examine the proportion of weights in a layer
exhibiting a z-score greater than 1. The z-score
of a weight w is defined as z = w−µ

σ , where for
layer L, w represents an individual weight, µ the
mean of the weights, and σ their standard devia-
tion. The measure of interest, ZD(L), is expressed
as ZD(L) = |Lz−score>1|

N , quantifying the ratio of
weights whose z-scores exceed 1 (|LZscore > 1|)
to the total number of weights N in the layer L.

Our intuition is that if a layer has weights far apart
they are harder to be quantized.

Note that both these two scores have distinct ad-
vantages and disadvantages. LIM relies on runtime
information (i.e., changes in representations) so it
is more aligned with inference behavior, but LIM
requires a tuning dataset to compute these represen-
tations. In contrast, ZD does not require calibration
data as it uses solely the network parameters.

Baselines: To highlight the benefits of our layer
importance scores, we compare them to three base-
lines. The first baseline simply randomly ranks
layers.3 The second baseline implements a reverse
LIM ordering. Finally, to compare our approach
with pruning, we implemented the pruning strategy
of Gromov et al. (2024), who has shown that re-
moving layers from the top of the LLM to be an
effective pruning strategy.

3.2 Choosing the Number of Layers in Higher
Precision

Given Mavailable memory, Nlayers layers, and two
precision levels (lower with Mlower memory and
higher with Mhigher), the maximum number of
higher-precision layers is:

Nhigher =

⌊
Mavailable −Mlower

Mhigher −Mlower
Nlayers

⌋
.

For LLaMa2-70B, assume Mavailable = 80GB,
Nlayers = 80, Mlower = 42GB (4-bit), and
Mhigher = 84GB (8-bit). Substituting we get

Nhigher =
⌊
80−42
84−42 × 80

⌋
= ⌊72.38⌋ = 72.

Thus, 72 layers use 8-bit and 8 layers use 4-
bit. The total memory is Mtotal = Mlower +
Nhigher

Nlayers
(Mhigher − Mlower) which equates to

Mtotal = 42 + 72
80(84− 42) = 79.8GB < 80GB

This mixed-precision configuration fits in one
GPU without sacrificing as much performance.
LLaMa2-70B is a usual use-case in which users are
forced to quantized to very low levels such as 4-bit
to fit the model on a single A100 with 80GB, thus
sacrificing a lot of the performance.

3.3 Quantization Techniques
To show that our meta quantization approach is
independent of the underlying quantization tech-
nique, we couple it with two well-known post-
training quantization techniques: GPT-Q and
Quanto. While our focus is not on the quantization
methods, we summarize both methods below.
3 We use multiple different random seeds for stability.
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3.3.1 Quanto

Quanto is a fast-acting quantization method4 that
simplifies the process of reducing precision after
training. In practice, Quanto achieves quicker quan-
tization by applying uniform scaling factors across
all layers of a model, avoiding the need for detailed
data-driven analysis of each layer’s distribution.
Similarly to most techniques, it allows for int2,
int4, int8, and fp8 quantization. The Quanto library
is part of Hugging Face, with symmetric per-tensor
or per-channel projection for int8 and float8, and
group-wise affine (with a shift or ’zero-point’) for
lower bit-widths, such as int2 or int4. In this pa-
per, we used Quanto in the 2-bit and 4-bit setting,
utilizing an asymmetric quantization method with
RTN (round to the nearest), with the exception of
Table 5 where we used 4-bit and 8-bit settings. In
our implementation for variable quantization of dif-
ferent layers, we quantized the same model to two
different bit levels (int2 and int4). Then, based on
the layer importance order, we selected less impor-
tant layers from the int2 quantized sets and more
important layers from the int4 quantized sets.

3.3.2 GPT-Q

GPT-Q is a post-training quantization technique
specifically designed for GPT models (Frantar
et al., 2023). Utilizing a dataset, it calculates the
necessary scaling factors for quantization. Af-
ter training, GPT-Q assesses the distribution of
weights using this dataset to determine optimal
scaling factors for converting floating-point repre-
sentations to lower-bit formats such as int8 or int4.
We only used a few data points for GPT-Q as it adds
significant execution time overhead to our exper-
iments. We modified the GPT-Q implementation
in the Hugging Face library (Wolf et al., 2019) for
our use-case in the same way as for Quanto.

4 Experiments

4.1 Models and Hyperparameters

We studied quantization on 5 LLMs from different
model families and different sizes – LLaMa-2-7b
(Touvron et al., 2023), LLaMa-2-13B, Mistral-7b
(Jiang et al., 2023), QWEN-1.8b, and QWEN-7b
(Bai et al., 2023). We evaluated these LLMs on
8 A100 GPUs with a batch size of 1 for inference
using an LLM harness library (Gao et al., 2023).

4 https://github.com/huggingface/optimum-quanto

4.2 Evaluation Datasets
We select five diverse NLP tasks for evaluating the
quantization effects: Winogrande (Sakaguchi et al.,
2021), ARC-easy (Clark et al., 2018), PIQA (Bisk
et al., 2020), HellaSwag (Zellers et al., 2019), and
MMLU (Hendrycks et al., 2020). We also evaluate
our approach on two generation datasets to cover
diverse tasks of reasoning and answer generation:
GSM8K (Cobbe et al., 2021), which contains math
questions, and the Natural Questions (open) dataset
(Kwiatkowski et al., 2019), which consists of open-
domain answer generation task. To calibrate the
LIM score we used 50 samples from PG19 (Rae
et al., 2019b), a data-set that is comprised of books
published before 1919.

5 Discussion of Results

Our main results are shown in Figure 2 (please also
see Figure 8, 9, 10, and 7 in Appendix). In both
these figures, we ranked the layers in the respec-
tive LLMs in descending order of their importance
score. The left most point in the plots indicates that
all layers of Mistral-7b and LLaMa2-7B are quan-
tized in 4-bits; as we move to the right on x-axis,
we quantize the next least important layer to 2-bits.
For example, the overall bit size of 3.75 mentioned
on the x-axis represents 28 (most important) layers
in 4-bit and 4 (least important) layers in 2-bit. The
horizontal red dotted lines indicate the performance
of the entire model represented in 8-bit precision;
as shown, this performs very similarly to the full
model in 4-bit precision (the top left most point
in Figure 2). Because the gap between the full
model in 8-bit vs. 4-bit precision was less than
1% across the majority of the datasets, we focus
mostly on quantizing below 4-bits precision in our
experiments.

As a result, we draw the following observations:
(1) Variable quantization is useful: The first key
finding of our work is that a fixed quantization
technique can be extended to a variable number of
bits by quantizing different layers at different bits
according to their importance. This allows LLMs
to retain more of the original performance while
fitting in a reduced memory budget. Overall, our
method of layer-wise quantization, guided by layer
importance, proves to be an efficient strategy for
attaining adaptable precision bit levels.

(2) Layer importance scoring is crucial: In the
figures we compare layer ranking using our LIM
and ZD importance scores with ranking using a

538

https://github.com/huggingface/optimum-quanto


Quanto Quantization
Model Avg. Layers WNGD ARC PIQA HLSWG MMLU Avg.Acc.

bits 2-bits 4-2 bits

LLaMa-7B 4.0 0 67.9 74.2 77.3 55.9 38.4 62.7
Mistral-7B 4.0 0 72.5 78.8 79.8 59.3 55.5 69.2

LLaMa-13B 4.0 0 71.0 78.7 79.2 59.0 50.0 67.6
QWEN-7B 4.0 0 68.7 79.0 79.2 57.7 66.3 70.2

L
IM

O
rd

er
in

g

LLaMa-7B
3.68 5 65.6 68.7 74.6 53.7 36.6 59.8
3.37 10 65.3 61.9 70.6 49.8 34.3 56.4
3.06 15 60.8 45.6 64.3 42.2 27.6 48.1

Mistral-7B
3.68 5 71.7 74.0 76.7 56.4 54.9 66.7
3.37 10 69.3 61.8 70.0 50.1 51.7 60.6
3.06 15 59.4 43.6 61.2 37.6 26.4 45.6

LLama-13B
3.75 5 70.2 76.6 78.0 57.7 48.9 66.3
3.50 10 69.1 72.9 76.3 55.7 47.4 64.3
3.25 15 69.7 66.9 73.7 52.6 45.8 61.7

Qwen-2-7B
3.64 5 51.1 46.3 67.3 40.9 24.1 46.0
3.28 10 51.7 31.0 57.4 29.8 23.4 38.6
2.92 15 48.2 25.7 53.1 26.1 24.5 35.5

Z
-s

co
re

O
rd

er
in

g

LLama-7B
3.68 5 65.7 68.7 74.9 53.0 33.5 59.1
3.37 10 64.1 59.2 69.7 48.7 31.2 54.6
3.06 15 55.4 43.8 61.4 36.4 24.5 44.3

Mistral-7B
3.68 5 70.7 74.2 77.5 56.3 53.0 66.3
3.37 10 53.3 39.3 60.0 30.5 23.4 41.3
3.06 15 51.7 27.5 53.3 27.2 23.5 36.6

LLama-13B
3.75 5 70.3 76.0 77.2 57.1 48.1 65.7
3.50 10 70.7 72.3 75.8 54.6 47.0 64.1
3.25 15 68.9 66.8 72.1 51.9 47.0 61.3

Qwen-2-7B
3.64 5 63.1 61.0 70.5 48.4 55.6 59.7
3.28 10 51.5 29.3 53.6 27.0 25.3 37.3
2.92 15 49.9 26.0 52.5 26.0 25.0 35.9

Table 1: Accuracy on full evaluation datasets of different models quantized with Quanto. All layers start at 4-bits; we then
quantize N number of layers in 2-bits where N is mentioned in the “Layers 2-bits” column. We also show results for 8 to 4 bit
quantization in Appendix in Table 5. Average performances within 90% of the 4-bit model are highlighted in bold.

reverse LIM and random ordering. As seen in Fig-
ure 2 and Appendix A.4 the quantization of least
important layers from 4-bit to 2-bit as per the LIM
score ranking shows strong performance retention.
In contrast, quantizing based on the reverse of LIM
score shows much worse performance when most
important layers are quantized to 2-bit, highlighting
the strength of meaningful layer ranking. Further,
LIM and ZD ranking performs substantially better
than random ordering of layers baseline where we
quantize layers to lower bits randomly. Lastly, LIM
performs better than ZD on average, but the differ-
ences are not large. In some cases, i.e., Figure 9 (in
appendix), ZD performs considerably better. We
conjecture this is because for this LLM the infor-
mation gathered from the dataset used to calibrate
LIM transferred less well to the evaluation datasets.
All in all, we consider this a success for ZD, which
is simpler and does not require calibration data.

(3) Improving dynamic quantization tech-
niques: Table 3 shows that we can use our tech-
nique to further improve quantization techniques

that are inherently dynamic. Although this is not
the main goal of the paper, it further underscores
its usefulness and flexibility. The reason why this
works is because the SOTA quantization technique
SpQR (Dettmers et al., 2023), similarly to most
dynamic techniques, chooses a fixed percentage of
values that will be quantized to higher precision in
each layer, while our technique adds that not all
layers are equally important. This shows that our
proposed technique can be used an enhancement to
any category of quantization techniques.

(4) Layer-wise quantization is useful until 3.0–
3.25-bits: As shown in Figure 2 and Appendix A.4,
our first key observation is that quantization to 8-
bits barely affects performance (red vs. purple line).
While there is marginal drop in performance quan-
tizing to 4-bits, we observed significant drops only
after quantizing below 3.0–3.25 bits on average
using Quanto. The bit size for which performance
drops below 90% on Winogrande for Mistral-7b,
LLaMa-7b, QWEN-7b, and LLaMa2-13b are 3.2,
3.1, 3.85, and 2.85 respectively.
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GPT-Q Quantization
Model Avg. Layers WNGD ARC PIQA HLSWG MMLU Avg.Acc

bits 2 bits

L
IM

O
rd

er
in

g
LLama-7B

3.68 5 67.1 73.4 76.2 54.9 37.5 61.8
3.37 10 67.6 67.5 73.4 52.9 35.2 59.3
3.06 15 65.1 56.0 68.0 46.4 31.5 53.4

Mistral-7B
3.68 5 73.1 77.4 78.0 59.1 55.4 68.6
3.37 10 70.6 74.8 76.9 56.8 54.9 66.8
3.06 15 66.1 65.3 72.9 50.7 42.0 59.4

LLama-13B
3.75 5 71.4 77.5 78.5 59.0 49.3 67.1
3.50 10 71.8 76.4 77.7 58.2 48.2 66.5
3.25 15 72.6 73.7 75.7 56.7 47.3 65.2

Qwen-2-7B
3.64 5 62.0 67.2 77.0 52.0 56.6 63.0
3.28 10 56.7 53.1 71.4 45.5 29.4 51.2
2.92 15 53.4 45.0 66.4 42.0 25.0 46.4

Z
-s

co
re

O
rd

er
in

g

LLama-7B
3.68 5 67.2 71.1 75.9 54.9 38.1 61.4
3.37 10 68.0 66.9 73.1 52.1 33.7 58.8
3.06 15 62.9 56.7 67.8 46.2 28.5 52.4

Mistral-7B
3.68 5 72.9 77.7 78.8 59.2 55.1 68.7
3.37 10 69.1 72.1 74.8 53.2 38.9 61.6
3.06 15 62.0 52.7 65.6 39.5 25.1 49.0

LLama-13B
3.75 5 - - - - - -
3.50 10 71.3 75.0 76.4 57.4 48.2 65.6
3.25 15 72.3 73.5 76.2 56.4 45.7 64.8

Qwen-2-7B
3.64 5 69.1 71.1 75.2 54.0 64.3 66.8
3.28 10 65.6 65.2 71.6 48.2 47.5 59.6
2.92 15 54.8 50.0 66.7 42.8 30.4 49.4

Table 2: Comparison of 4 models and their performance across various tasks with GPT-Q quantization.

(5) Quantization is more useful for larger
LLMs: Variable quantization of larger models
(Figure 2) using our importance score shows much
better retention of performance with lower quanti-
zation bit precision compared to moderately-sized
LLMs such as LLaMa-7B (Figure 8 in appendix)
and Mistral-7B (Figure 7 in appendix). Further, as
we go down to even smaller LLMs such as QWEN-
1.8B (see Figure 10 in Appendix) with only 20
layers, we observed layer importance ranking to be
not as effective. This observation aligns with many
other previous works that have shown quantization
to be substantially more effective for larger LLMs
when compared to their smaller counterparts (Jin
et al., 2024).

(6) Our method is applicable to different quan-
tization techniques: Tables 1 and 2 summarize the
overall results when quantizing individual layers
with Quanto and GPT-Q, respectively. The tables
show that our method can be coupled with any
other quantization techniques. On average, GPT-
Q leads to an average of 4% better accuracy than
Quanto across all 5 tasks. Additionally, GPT-Q en-
ables models such as LLaMa2-13B to be quantized
down from 4-bits to 3.25-bits with less than a 3%
loss in average accuracy, as seen in Table 2.

(7) Effect on generation tasks: We also evaluate
our approach of variable quantization of different
layers on generation tasks. As shown in Table 6 (in
appendix), we observe substantial drop in perfor-
mance on both GSM8K and NQ_open generation
tasks when quantizing more layers in 2-bits. Im-
portantly, the performance drop in these generation
tasks is more drastic when compared to the average
performance drop in classification tasks (Table 1),
emphasizing the need for more dedicated research
in quantization for generation tasks.

6 Analyses

We present several analyses to further spotlight on
benefits from variable layer-wise quantization.

6.1 Pruning vs. Quantization

We compare our variable quantization against vari-
able pruning (using the same layer importance rank-
ing) as an alternative for the same goal of reducing
model memory requirement. In Figure 4a (in ap-
pendix), we show that for less extreme quantization
levels, it is significantly better to move layers into
lower quantization levels instead of removing them.
For example, when 2 least important layers are
removed resulting in remaining 30 layers (each
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Method Layers / Avg. Wikitext ppl C4 ppl
Threshold Bits

O
ur

M
et

ho
d

32 3.94 5.613 7.594
27 3.90 5.643 7.610
22 3.85 5.659 7.632
17 3.81 5.663 7.648
12 3.76 5.684 7.673
6 3.71 5.700 7.693
0 3.65 5.714 7.712

Sp
Q

R

1.00% 3.94 5.613 7.594
0.85% 3.90 5.640 7.652
0.70% 3.85 5.692 7.687
0.55% 3.80 5.688 7.704
0.40% 3.75 5.705 7.706
0.25% 3.71 5.715 7.714
0.10% 3.65 5.714 7.712

Table 3: Comparison of our method and SpQR (Dettmers
et al., 2023) on LLaMa2-7B on the same avg. bit level/memory
requirement. Our technique aims to optimize performance
given memory constraints, allowing quantization to fit more
precisely within available memory, which, as shown, improves
results over fixed bit-width quantization. For SpQR, we fixed
the bit levels to 3 and beta values to 4, varying the outlier
limit/threshold from 0.1% to 1%. For our method, we applied
SpQR with thresholds of 0.1% to less important layers and
1% to more important layers based on LIM ordering. The
second column indicates the number of layers with a higher
threshold for our method and the outlier threshold for SpQR.
We bold the higher values and we use italics to denote identical
values. Note that each row in the “Our Method” block should
be compared with the row at the same position in the “SpQR”
block. That is, our setting with 32 layers in higher precision
is comparable to SpQR with the 1.00% outlier threshold; our
setting with 0 layers in higher precision is comparable with
SpQR with all layers using 0.10% outlier threshold.

in 8-bit) of LLaMa2-7b, the average performance
drops to 62.7% (shown by red line denoting work
by Gromov et al. (2024)). But on the quantization
counterpart with same memory i.e., when 4 lay-
ers are quantized to 4-bit and remaining 28 layers
are in 8-bit (shown by blue line), performance re-
mains intact close to 66.8% as shown in Figure 4a
(in appendix). When 12 layers are removed, the
performance drops around 53% on average while
having 8 layers in 8-bits and 24 layers quantized to
4-bits (shown by blue curve) to maintain the same
size, average performance still remains intact and
close to 66%. This highlights the important finding
that quantization until 4-bits overall is a substan-
tially more effective strategy compared to pruning
for model compression.

On the other hand, in case of extreme levels of
quantization (i.e., < 4−bits) as shown Figure 4b
(in appendix), it is better to plainly remove layers.
The same image shows that where the model is ini-
tially quantized with 4-bits, removing > 7 layers re-
sults in better average performance when compared
to quantizing > 14 layers in 2-bits. Thus, when

Figure 3: Comparison of LLaMa2-7b quantized between 8
and 4 bits with LLaMa2-13b quantized between 4 and 2 bits
to check when the performance intersects.

model compression is required to be the equivalent
of < 3-bits, pruning may be the more effective
strategy.

6.2 Quantizing Larger vs. Smaller LLMs

We further evaluate the feasibility of quantizing
larger LLMs more drastically (i.e., < 4-bits by
quantizing less important layers in 2-bits and more
important in 4-bits) or quantizing smaller LLMs
moderately (i.e., < 8-bits by quantizing less im-
portant layers in 4-bits and keeping more impor-
tant in 8-bits). As shown in Figure 3, we quantize
LLaMa2-13B < 4-bits and LLaMa2-7B < 8-bits
and compare them across different memory sizes.
Our findings suggests it is beneficial to quantize
larger LLMs to smaller bits but until a certain point,
after which layer-wise quantizing smaller LLMs
moderately (≈ 6-bits) shows better performance.

6.3 Actual Memory Savings

A central goal of our work is to translate per–layer
bit–width allocation into tangible reductions in the
run-time memory footprint. Table 4 reports the
measured GPU memory required to load QWEN-
7B when we progressively push more layers to
2-bit precision while keeping the remaining layers
at 4-bit in the LIM ordering. Because the model
parameters are the dominant contributor to resident
memory, the figures closely track the theoretical
linear relationship between bit-width and storage
cost.

Moving the first 16 layers (≈ 50%) to 2-bit pre-
cision already yields a 20.8 % memory reduction.
The final schedule, in which 90 % of layers operate
at 2-bits, trims the footprint by 36.5 % compared
with a uniform 4-bit baseline.
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Avg. bits Layers @ 2-bits Memory (GB) Saving vs. 4-bit (%)

4.00 0 8.01 0.0
3.71 4 7.59 5.2
3.43 8 7.18 10.4
3.14 12 6.76 15.6
2.86 16 6.34 20.8
2.57 20 5.92 26.1
2.29 24 5.51 31.2
2.00 28 5.09 36.5

Table 4: Peak GPU memory required to load QWEN-7B
under progressively more aggressive variable-precision
schedules.

7 Conclusion

We introduced a simple, flexible quantization ap-
proach that quantizes different layers at different
bits based on their importance. We presented two
layer importance scoring techniques which when
used to select more important layers for quantizing
them in 4 bits and less important layers in 2-bits
lead to strong performance retention across several
LLMs even until 2.85 overall bit size. Our work
presents several key practical findings such as layer-
wise quantization is more effective for larger LLMs
(with more number of layers), in the same memory
setting; quantization is better than pruning until
a certain bit precision level, text generation tasks
are affected more with quantization, etc. Overall,
our work introduces layer-wise quantization and
presents detailed empirical findings for motivating
future research in this direction.

8 Limitations

Limitations of our work are as follows:

• Our experiments and results have focused
more on quantization to lower bits i.e., <
4bits to highlight gains from layer-wise quan-
tization based on their importance. As men-
tioned in Section 5, we observed very simi-
lar performance between fp16 and 8-bit quan-
tized model, minimal drop (< 1% on average)
in performance between 8-bit and 4-bit quan-
tized model (please see Table 5 in appendix).
We did not observe meaningful changes in
performance from layer-wise quantization be-
tween 8-bit and 4-bit because of such minute
difference between their performances. Our
study is limited to two level quantization i.e.,
more important layers in 4 bits and less impor-
tant layers in 2 bits. One can also potentially
apply three level of quantization i.e., most im-
portant layers in 8 bits, moderately important

in 4 bits and least important in 2 bits. In our
experiments, we observed three level quan-
tization to be always worse than two level
quantization for similar memory sizes (please
see Appendix A.2 in Appendix).

• We have proposed LIM and ZD scores for rat-
ing importance of each layer in LLM. These
scores are very simple to implement, and only
LIM needs a calibration corpus which is also
an (readily available) unlabelled corpus. As
future works, there can be more sophisticated
measures to find importance of layers. For
example, supervised methods that can show
layer-wise impact on specific annotated NLP
tasks (Zhu et al., 2023a), in depth model in-
terpretability approaches (Singh et al., 2024;
Sun et al., 2023), analyses of block of layers
and their interactions(Yang et al., 2024), etc.
In this work, we limited and focused our study
on LIM and ZD score to emphasize more on
the main contribution of the paper - quantizing
different layers at different bits as per layer
importance. To the best of our knowledge, our
work is the first to introduce variable quanti-
zation layer wise as per their importance and
our study can be easily extended with more
layer importance measuring scores in future
work.

• We presented comparison between pruning
and quantization in Section 6.1. A potential
setup can also be combining pruning and quan-
tization by removing few of the least impor-
tant layers, quantizing remaining less impor-
tant layers in lower 2 bits and keeping more
important layers in 8 bits or above. Our work
is primarily focused on introducing the idea of
achieving variable quantization by quantizing
different layers as per their importance. We
leave exploration of combining quantization
and pruning for future works.

9 Ethical Considerations

Our study is focused on post training quantization
(PTQ) of LLMs. We have not finetuned LLMs for
any specific task or data and have selected well
established LLMs such as LLaMa, Mistral, and
QWEN in our experiments. Our study also uses
widely used evaluation datsets such as MMLU,
HellaSwag, ARC easy, etc. that contain safe test
cases. Thus, we believe our experiments do not
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contain any harmful cases and to the best of our
knowledge, we did not observe any unsafe outputs
in our evaluations.
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A Appendix

A.1 Quantization as Pruning

We explore the relationship between quantization
and pruning for model compression. Quantiza-
tion compresses parameters into lower-bit formats,
while pruning removes layers to save memory. Us-
ing the LLaMa2-7B model, we find quantization
outperforms pruning in preserving performance un-
der similar memory constraints.

However, in extreme compression (e.g., 2-bit
quantization), pruning shows better performance,
as removing 7 layers surpasses quantizing 14 layers
to 2 bits. These findings suggest a potential hybrid
strategy: combining pruning for the least impor-
tant layers with quantization for moderately and
highly important layers to optimize performance
and memory use. The results can be seen in fig. 4.

A.2 Quantizing Layers Using 3 Levels

In all of our experiments, we have focused on two
level quantization, i.e., either less important layers
are quantized in 2-bits and more important lay-
ers in 4-bits or less important in 4-bits and more
important in 8-bits. As a plausible variant, LLM
layers can also be easily quantized using three lev-
els, i.e., least important layers in 2-bits, moderately
important in 4 bits, and the most important ones
in 8-bits. In our study, we observed three level
quantization almost always performs worse than
two level quantization. We show three level quanti-
zation of LLaMa2-7b with fixed overall model bit
size of 4-bits. We first quantize all the 32 layers in
4-bits as shown by the leftmost bar of fig. 5. We
then convert two least important layers to 2-bits
each and one most important layer to 8-bits, thus
maintaining the overall bit size of the model to 4-
bits. This is represented by second bar from the left
in fig. 5. We repeat the same process of converting
two more layers in 2-bits and a more important
layer to 8-bits represented by the consecutive bars
in fig. 5. As observed, three level quantization al-
ways performs worse than one level quantization
when the target bit-level is the same, thus we don’t
propose the technique as a way to achieve better
performance for a set quantization level, but as
a way to achieve a variable level of quantization
while retaining maximum performance.

A.3 LIM Ordering Examples

fig. 6 showcases the LIM ordering of the layers of
different models. This shows that four different

models have similar similar behaviour in terms of
which layers are more or less important.

A.4 Extra Data for Different Models

In this section, we provide additional plots: fig. 7,
fig. 8, fig. 9, and fig. 10. They illustrate the per-
formance of various models under different quan-
tization strategies. These figures complement the
results discussed in the main text. All notations are
same as in fig. 2. These curves were also gener-
ated on 2K evaluation instances from each of the
datasets. In table 5 we see the behaviour of various
models in the 8-4 bit configuration that we don’t
cover in the main paper. The trend is the same as
the one presented in the paper but the differences
are smaller as the level of quantization is not as
extreme and thus leading to marginal differences.

A.5 Generation Benchmarks

In table 6 we can see detailed results of our eval-
uation on generation datasets, including GSM8K
and Natural Questions. These benchmarks illus-
trate the trade-offs between varying quantization
levels and their impact on performance, particularly
for reasoning and open-domain answer generation
tasks.

The findings emphasize the sensitivity of gener-
ation tasks to quantization, with performance drop-
ping more significantly compared to classification
tasks. This aligns with our observations that retain-
ing higher precision for certain layers is critical for
tasks requiring generative reasoning.

A.6 Commonality between layer importance

To the best of our knowledge, we are the first one
to propose layer importance and utilize the impor-
tance order to quantize different layers at different
bits. in Figure 6, we show the intensity bars below
for each layer based on their importance for four
different LLMs with different number of layers and
sizes. As observed, there is a substantial pattern
overlap of least important layers across multiple
LLMs. We observe that first and the last layer are
the most two important layers. Many of the im-
portant layers also tend to be the initial few set of
layers. Lesser important layers (shown by block
of layers with faded intensity) tend to be towards
halfway of middle and end of the network. These
observations suggest generalized patterns in layer
importance across LLMs and pre-computed layer
importance orders can be roughly utilized to quan-
tize a wide variety of LLMs.
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(a) Quantizing from 8 to 4 bits against pruning (b) Quantizing from 4 to 2 bits against pruning

Figure 4: We compare quantization against pruning as a method to reduce the memory requirement of a model
(LLaMa-2-7b here). One increment means two layers moved to lower quantization for the blue line (quantization),
and one layer removed for the red and orange lines (pruning), thus reducing the same amount of memory. We show
the average accuracy over MMLU, Winogrande, PIQA, and Hellaswag.

Figure 5: We compare different ways to achieve 4-bit quantization using three quantization levels. Each bar going
from left to right represents adding one important layer in 8 bits and moving two less important layers to 2 bits, thus
keeping an average of 4-bit quantization for all of the bars. Each bar having a value x on the x-axis represents the
most important x layers in 8-bits, the least important 2*x in 2-bits and the rest in 4-bits.
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Models Layers WNGD ARC PIQA HLSWG MMLU Average
low-bits Accuracy

B
IO

rd
er

in
g

LLaMa2-7B
5 69.06 75.88 77.69 57.05 41.28 64.2

10 68.82 76.3 77.42 57.11 41.96 64.3
15 68.82 76.3 77.42 57.11 41.96 64.3

Mistral-7B
5 73.87 81.01 80.9 61.13 58.56 71.1

10 73.95 80.3 80.95 61.28 58.39 71.0
15 73.79 80.42 80.79 61.17 58.14 70.9

LLaMa2-13B
5 72.29 79.33 79.16 60.15 50.49 68.3

10 71.74 79.08 79.32 59.96 50.53 68.1
15 71.74 79.37 79.32 59.96 50.55 68.2

Qwen-2-7B
5 70.71 79.2 80.03 58.66 68.06 71.3

10 70.95 79.2 79.97 58.44 67.68 71.2
15 68.82 78.32 79.81 58.26 67.66 70.6

Z
O

rd
er

in
g

LLaMa2-7B
5 68.82 76.13 77.91 57.02 40.85 64.1

10 68.66 75.92 77.63 57.09 40.6 64.0
15 68.27 75.54 77.42 57.09 39.7 63.6

Mistral-7B
5 73.87 80.76 80.9 61.24 58.62 71.1

10 74.19 80.47 81.12 61.03 58.2 71.0
15 74.42 80.47 80.84 60.89 58.31 71.0

LLaMa2-13B
5 72.29 79.54 78.94 60 50.54 68.3

10 72.21 79.58 79.16 59.99 50.51 68.3
15 72.05 79.46 79.37 59.98 50.59 68.3

Qwen-2-7B
5 71.58 79.2 79.76 59.2 69.44 71.8

10 71.5 79.08 80.35 58.82 69.01 71.8
15 71.58 78.61 79.92 58.54 68.65 71.5

Table 5: Accuracy results of different models across various tasks for 8bit and 4bit quantization using Quanto as the
quantization technique.
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4 to 2 bits 8 to 4 bits
Models Layers GSM8K NQ_open GSM8K NQ_open

2-bits F1 F1

L
IM

O
rd

er
in

g
LLama-Ins

5 7.5 15.0 10.5 36.6
10 1.5 6.7 13.5 37.9
15 0.5 3.1 11.0 35.4

Mistral-Ins
5 24.5 16.2 34.5 29.6
10 20.0 9.2 36.5 29.8
15 4.5 5.1 34.0 27.7

Z
O

rd
er

in
g LLama-Ins

5 6.0 11.7 12.5 37.3
10 3.5 5.3 12.5 36.9
15 1.0 1.8 10.0 34.7

Mistral-Ins
5 25.0 15.4 37.0 28.5
10 10.5 8.7 34.5 30.1
15 1.0 2.2 34.0 29.3

Table 6: Performance comparison of LLaMa-instruct-7b and Mistral-instruct-7b across two generation tasks -
GSM8K and Natural Questions open split.
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Figure 6: Visualization of the layer importance score
for four different LLMs. Shown here is our Layer In-
put Modification (LIM) score. The color intensity of
each layer, which represents their LIM importance score
(darker color indicates higher importance score), high-
lights that the original layer structure does not have the
layers sorted according to their importance.

It is worth noting that (unpublished) concurrent
works like (Gromov et al., 2024) have presented
an empirical finding that layers towards the end
of the model can be removed except the last layer.
The reverse order of layers indexes surprisingly has
overlap with the importance order calculated with
our LIM score but we believe our LIM score is
more broadly applicable to any LLM where even
the layers towards the end can be more important.

A.7 Results of 8-bits to 4-bits quantization on
different datasets

We show results of quantizing models lower than
8-bits. Following our proposed methodology, the
same techinque can be applied to have the more
important layers in 8-bits and the least important
ones in 4-bits. While this does still increase the
performance that can be fit within a memory re-
quirement, the results are not as major as the ones
for the 4-2 bit range, thus we mainly focus on that
range.
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Figure 7: Plots showing the effect of variable quantization for Mistral-7b and multiple datasets using Quanto. All
notations are the same as in Figure 2. Again, the figure shows that our method retains performance much better
under more aggressive quantization than all baselines.

Figure 8: Similarly to the other bit plots the graphs showcase the accuracy on four distinct data sets when quantizing
LLaMa2-7b from full 4-bits quantization to 2-bit by moving less important layers in 2-bits quantization.
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Figure 9: Qwen2 quantized with quanto between 4 and 2 bits. All notations are same as in fig. 2.

Figure 10: Qwen1.5-1.8b quantized with quanto between 4 and 2 bits. All notations are same as in fig. 2.
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