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Abstract

This paper systematically addresses the chal-
lenges of rule retrieval, a crucial yet underex-
plored area. Vanilla retrieval methods using
sparse or dense retrievers to directly search
for relevant rules to support downstream rea-
soning, often suffer from low accuracy. This
is primarily due to a significant semantic gap
between the instantiated facts in the queries
and the abstract representations of the rules.
Such misalignment results in suboptimal re-
trieval quality, which in turn negatively impacts
reasoning performance. To overcome these
challenges, we propose Self-Induction Aug-
mented Retrieval (SIAR), a novel approach
that utilizes Large Language Models (LLMs)
to induce potential inferential rules that might
offer benefits for reasoning by abstracting the
underlying knowledge and logical structure in
queries. These induced rules are then used
for query augmentation to improve retrieval
effectiveness. Additionally, we introduce Rule
Relevance ReEstimate (R3), a method that
re-estimates the relevance of retrieved rules by
assessing whether the abstract knowledge they
contain can be instantiated to align with the
facts in the queries and the helpfulness for rea-
soning. Extensive experiments across various
settings demonstrate the effectiveness and ver-
satility of our proposed methods.

1 Introduction

With the advancement of pre-training (Zhou et al.,
2023) and prompting techniques (Schulhoff et al.,
2024; Dong et al., 2024), Large Language Models
(LLMs) (Zhao et al., 2024b; Dubey et al., 2024;
Yang et al., 2024a; Abdin et al., 2024) have made
significant progress in their understanding, reason-
ing, and decision-making capabilities (Wang et al.,
2024a; Huang et al., 2025a). Rules can generate
new knowledge from existing information (or make
decisions based on observed situations), which can

*Kang is the corresponding author.

Query:
Alice moved to California where the newly ratified environmental law mandates recycling. 
Question: Does Alice need to follow the recycling mandate?

Rule in Natural Language:
If Person X moves to Region Z and Legislation Y applies to Region Z, then Person X needs 
to obey Legislation Y.

Rule in Formal Language:
MoveTo(Person X, Region Z) ^ Apply(Legislation Y, Region Z) => NeedToObey(Person, 
Legislation Y)

Query:
Who is the prime minister of Saint Kitts and Nevis?

Passage:
… The prime minister of Saint Kitts and Nevis is the head of government of the Federation 
of Saint Christopher and Nevis. The current Prime Minister is Terrance Drew …
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Figure 1: (a) and (b) show the different characteris-
tics of traditional knowledge retrieval and rule retrieval.
(c) illustrates that the golden rule can significantly im-
prove reasoning performance, while existing rule re-
trieval methods typically lead to a decline in reasoning
performance due to suboptimal recall.

enhance these abilities further (Zhu et al., 2024;
Wang et al., 2024b).

The de facto approach of rule-based reasoning
typically involves summarizing generalized rules
from past experiences by LLMs, then retrieving the
relevant rules based on the descriptions of down-
stream tasks or feedback from the observed envi-
ronment, and finally using the retrieved rules to
assist in reasoning or decision-making (Yang et al.,
2023; Sun et al., 2023a; Zhang et al., 2024; Zhao
et al., 2024a; Huang et al., 2025b). Unfortunately,
existing research has primarily focused on rule gen-
eration (Sivasothy et al., 2024; Wang et al., 2024c)
and application (Wang et al., 2024d), neglecting
the development of the rule retrieval techniques.
Furthermore, rule retrieval plays a crucial role in
real-world scenarios. For example, in legal scenar-
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ios, one must retrieve the relevant laws based on
the crime to make a judgment (Xiao et al., 2018),
and in medical settings, domain-specific rules must
be retrieved based on symptoms to assist in diagno-
sis (Wang et al., 2024e). The above highlights the
urgency of exploring rule retrieval area.

The rules discussed in this paper are referen-
tial rules (Sun et al., 2024b; Wang et al., 2024c),
which typically manifest as the derivation of
one set of facts from another. In natural lan-
guage, they are usually expressed in the form "if
Premise, then Conclusion," whereas in formal
language, they are often represented as "Premise
⇒ Conclusion." As illustrated in Figure 1 (a), the
query and the corresponding golden passage typ-
ically share some keywords or similar semantics
in traditional knowledge retrieval scenarios (Bajaj
et al., 2016; Karpukhin et al., 2020), making direct
matching between the query and passage feasible.
However, in rule retrieval scenarios, the following
characteristics of the query and golden rule present
significant challenges: (1) The facts in the query
are instantiated and specific. (2) The facts con-
tained in the rule are composed of variables and
predicates, where the variables typically have an ab-
stract, conceptual type, and the predicates represent
relationships between different variables, which
might not be expressed in the query explicitly. (3)
The gap between the query (concrete, implicit) and
the rule (abstract, explicit) leads to a semantic mis-
alignment. (4) There is an explicit derivation in the
rule, but not in the query. For example, as shown
in Figure 1 (b), "environmental law in California
mandates recycling" is the fact in the query. In the
golden rule, the entity "California" corresponds to
"Region Z", "environmental law" corresponds to
"Legislation Y", and this fact implies "Legislation
Y applies to Region Z". Furthermore, the rule in-
corporates the inferred conclusion "Person X needs
to obey Legislation Y".

Existing methods typically overlook the afore-
mentioned characteristics and apply traditional re-
trieval techniques directly during the rule retrieval
phase. As demonstrated in Figure 1 (c), whether
using sparse retrieval or dense retrieval, relying
on vanilla retrieval to assist in reasoning often re-
sults in varying degrees of performance degrada-
tion compared to reasoning without rules. This
demonstrates the inadequacy of traditional retrieval
methods in rule-based scenarios. In fact, if the
retrieved rules are irrelevant or contain noise, the
reasoning will be distracted. As the size of the

rule base increases, rule retrieval will become the
bottleneck for downstream task performance. In
contrast, when the golden rule is directly provided
to aid the LLM in its reasoning process, perfor-
mance enhancement of 31.54% and 23.67% can be
witnessed in the 7B and 72B models respectively.
The performance gap highlights the importance of
rules in supporting reasoning and the necessity of
accurate rule retrieval.

To this end, this paper proposes Self-Induction
Augmented Retrieval (SIAR). SIAR leverages
self-induction to summarize and abstract the facts
presented in the query and hypothesize potential
inferential relationships to generate a potential rule.
This newly generated rule is then used as the new
query, or combined with the original query to form
a new query for retrieval. Specifically, we utilize
few-shot in-context learning to prompt the LLM
to produce a self-induced rule. Our theoretical in-
sight is as follows: if we consider the query set
and the rule set as belonging to different seman-
tic subspaces, where the former is characterized
by instantiated, concrete facts and the latter by ab-
stract, conceptual knowledge. We hypothesize that
these two subspaces are nearly non-overlapping.
The role of self-induction is to project the query as
much as possible into the rule subspace, enabling
the query to better match rules that share similar
underlying logic during retrieval.

Although SIAR can improve the ranking of the
golden label in the retrieved rule list, the limited
inductive capabilities of LLMs still make it chal-
lenging to handle more difficult queries. Moreover,
the retriever can only evaluate the semantic simi-
larity instead of the helpfulness of the rule for the
query. Therefore, building on SIAR, we propose
Rule Relevance ReEstimate (R3), which utilizes
the LLMs to estimate the relevance of the retrieved
rule list. R3 evaluates whether each rule can be ap-
plied to the current query for better reasoning and
reranks the list based on the relevance estimation.

We conduct experiments on two synthetic
datasets as well as one real-world dataset. Com-
pared to direct retrieval, SIAR achieves signifi-
cant improvements in both retrieval and reason-
ing performance, demonstrating its effectiveness
in extracting and summarizing the knowledge and
logic embedded in queries to assist retrieval. Build-
ing on SIAR, R3 further enhances both retrieval
and reasoning performance, proving that LLMs
can reliably assess the relevance between queries
and rules, thereby improving the quality of rule
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retrieval. Moreover, SIAR and R3 consistently
improve performance across different settings, in-
cluding varying rule formats (natural and formal
language), different types of retrievers (sparse and
dense retrievers), and LLMs of different parameter
scales. This demonstrates the generalizability of
our proposed methods.

The contributions of this paper are as follows:

• We systematically introduce the problem of
rule retrieval and provide a detailed analysis of
the semantic misalignment challenges faced
in rule retrieval.

• We propose SIAR and R3 to address the is-
sues in rule retrieval: SIAR induces and ab-
stracts the knowledge and logic embedded in
the query to map it into the rule space for more
effective retrieval, while R3 enhances retrieval
quality by assessing the relevance of retrieved
rules to the original query.

• Extensive experiments demonstrate that SIAR
and R3 achieve performance improvements
across various datasets and settings. Further-
more analysis offers more insights for future
research on rule retrieval.

2 Preliminary

In the rule reasoning scenario, we have a rule li-
brary R = {ri}|R|

i=1, which incorporates inferential
rules offering benefits for new knowledge induc-
tion and decision-making. We use the query q to
retrieve relevant rules from this library, and the re-
trieved rules are concatenated with the query as
context. This combined input is then fed into the
LLM to perform reasoning. We name this work-
flow as retrieve-then-reason.

In the retrieval phase, we employ either sparse
retrieval or dense retrieval. The former uses BM25
to compute the similarity between the query and
the rules, while the latter leverages a pre-trained
encoder to map both the query and the rules into a
shared vector space, where their similarity is com-
puted using the cosine function. The top-k rules
are then returned based on the similarity ranking.
To improve retrieval speed, we pre-build and cache
the index of R.

3 Method

In the aforementioned retrieve-then-reason
paradigm, our method primarily focuses on im-

proving retrieval quality by aligning the semantics
between the query and the rule and re-assessing the
relevance of retrieved rules. The former technique
is inserted before the retrieval stage and the lat-
ter one is inserted between retrieval and reasoning.
Furthermore, we aim to positively impact the over-
all reasoning performance. Our method is based on
prompting the LLMs without any training, which
is versatile and cost-efficient.

3.1 SIAR: Self-Induction Augmented
Retrieval

As illustrated in Figure 2, before performing rule
retrieval, we employ a self-induction process where
the LLM generates a potentially useful rule to aid
reasoning. This process highly relies on the induc-
tive capability of LLM (Wang et al., 2024b; Zhu
et al., 2024; Bowen et al., 2024; Cheng et al., 2024).
We refer to this generated rule as the self-induced
rule (SI). The key to self-induction lies in summa-
rizing and abstracting the facts embedded in the
query and hypothesizing potential inferential rela-
tionships. Due to the different characteristics of
query and rule, the primary target of self-induction
is to project the query to rule space. Specifically,
we utilize few-shot prompting to guide the LLM
for self-induction, with the corresponding instruc-
tion template shown in Appendix A. We show one
self-induction example in Figure 2.

After generating the SI, we have two options for
utilizing it in the retrieval process: we can either
treat the SI as the new search query, or we can
concatenate the SI with the original query to form a
new combined search query. The former approach
is referred to as SIAR (w/ SI), while the latter is
referred to as SIAR (w/ SI + input). These two
designs result from the different natures of sparse
retrieval and dense retrieval, and we talk about the
impact in Section 4.

3.2 R3: Rule Relevance ReEstimate
The principle of retrieval is to match two different
strings based on keyword or semantic similarity.
Therefore, if the inductive capability of the LLM
is not strong enough, the generated rule might still
not align well with the golden rule. As a result,
the retrieval list produced by SIAR may still have
suboptimal ranking quality. Moreover, the retriever
cannot determine whether a rule can aid the LLM
in reasoning, nor can it specifically assess the re-
lationship between the two. To address these, we
propose to rerank the top-n rules from the previous
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Rule in Natural Language:
If Person X moves to Region Z and Legislation Y 
applies to Region Z, then Person X needs to obey 
Legislation Y.

Query:
Alice moved to California where the newly ratified environmental law mandates recycling. Question: Does Alice need to follow the 
recycling mandate?

Rule in Formal Language:
MoveTo(Person X, Region Z) ^ Apply(Legislation Y, Region Z) 
=> NeedToObey(Person, Legislation Y)

Query

LLM

Self-induced rule

Retriever

Answerself-induction
self-induction 
augmented

retrieval

re-estimate rule 
relevance

reason with 
retrieved rules

top-k
Retrieved rulestop-n

Retrieved rules

Rule Relevance ReEstimate:

If the abstract knowledge in a rule can be instantiated into the facts 
in query, that rule is more relevant.
If a rule can be applied to the query and thus be helpful for reasoning, 
that rule is more relevant.
…
Output the ranking list by the relevance in descending order.
…
query: {q}
[1]. {r1} … [n]. {rn}

LLM LLM

SIAR-then-reason

SIAR-R 3-then-reason

Seif-Induction Augmented Retrieval:

Self-Induced Rule:
If Person X moves to Region Y and Region Y has 
implemented Legislation Z, then Person X needs to follow 
Legislation Z.

Golden Rule:
If Person X moves to Region Z and Legislation Y applies to 
Region Z, then Person X needs to obey Legislation Y.

Figure 2: The workflow of retrieve-then-reason augmented with our method is shown in the middle of the
Figure. To address the semantic misalignment issues, self-induction is first utilized to generate the hypothesized
rule for query augmentation. Then, the new query is used for rule retrieval. And the retrieved rules are concatenated
with the original query for reasoning. Building on this, we can reestimate the relevance of the rules with the query
and improve the retrieval quality for better reasoning. The left bottom of the Figure shows the example of the
self-induced rule. And the right bottom of the Figure shows the simplified reestimation prompt.

stage by evaluating the relevance of the retrieved
rules to the original query, as shown in Figure 2.
The key to R3 is determining whether the abstract
knowledge in a rule can be instantiated into the
facts contained in the query, and whether the rule
can assist the LLM in reasoning.

Inspired by RankGPT (Sun et al., 2023b), we
prompt the LLM to directly output a ranked list
of rules, which can reduce the prompting times
compared to pair-wise estimation and thus acceler-
ate the R3 process. And we select the top-k rules
from this reranked list as the final retrieval result.
The corresponding instruction template is shown
in Appendix A. This prompt encourages the LLM
to assess both the relevance and utility of each rule,
ensuring a more accurate final retrieval. Based on
the query used in SIAR, R3 also has two versions:
R3 (w/ SI) and R3 (w/ SI + input).

4 Experiment

We select two synthetic datasets, Clutrr (Sinha
et al., 2019) and ULogic (Wang et al., 2024c), as
well as a real-world dataset, CAIL2018 (Xiao et al.,

2018) from RuleBench for our evaluation. We re-
port Recall@1, Recall@5, Recall@10 for retrieval
results and Match for reasoning results. We use
gpt-4o (OpenAI, 2024) and Qwen2.5 (Team, 2024)
series (7B and 72B) as the tested LLMs. Due to
space limitation, we put the entire experiment set-
ting in Appendix B.

4.1 Retrieval Results and Discussion

As shown in Table 1 and Table 4, we report the re-
trieval performance using the different rule libraries
(natural vs. formal). In each table, we present
the performance of different retrievers (sparse vs.
dense), LLMs with varying architectures (openai-
gpt vs. Qwen) and parameter scales (72B vs. 7B),
and different forms of queries (w/ SI vs. w/ SI +
input). Due to space limitation, we put the formal
language results in the Table 4 of the Appendix C.

Open-source models have comparable perfor-
mance with closed-source models. In most set-
tings, Qwen2.5-72B-Instruct demonstrates perfor-
mance similar to GPT-4o, and in certain configu-
rations, such as SIAR-R3 (w/ SI) + CAIL2018, it
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CLUTRR ULogic CAIL2018

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

sparse retrieval (BM25)

vanilla retrieval 6.67 16.60 24.52 68.91 85.42 92.29 25.30 49.40 59.04

gpt-4o
+ SIAR (w/ SI) 7.16 15.55 22.71 58.43 81.08 87.35 68.07 87.34 93.98
+ SIAR (w/ SI + input) 10.78 23.00 30.73 75.78 91.93 96.63 61.45 84.33 89.16
+ SIAR-R3 (w/ SI) 11.45 19.75 24.62 87.83 92.65 92.65 83.13 93.38 93.98
+ SIAR-R3 (w/ SI + input) 16.32 26.81 32.92 92.65 97.71 97.83 83.73 92.17 92.17

Qwen2.5-72B-Instruct
+ SIAR (w/ SI) 8.11 17.36 26.04 57.22 79.76 86.87 78.91 88.55 90.96
+ SIAR (w/ SI + input) 11.06 23.66 32.44 74.82 90.48 94.94 74.70 86.14 89.76
+ SIAR-R3 (w/ SI) 13.36 22.42 28.24 87.47 93.25 93.37 86.75 93.98 93.98
+ SIAR-R3 (w/ SI + input) 14.31 25.38 31.58 92.17 96.39 96.75 86.14 92.17 92.17

Qwen2.5-7B-Instruct
+ SIAR (w/ SI) 2.29 8.30 11.93 60.48 83.86 90.00 62.05 71.08 77.11
+ SIAR (w/ SI + input) 7.06 16.70 22.81 76.14 90.24 95.18 57.83 74.10 78.31
+ SIAR-R3 (w/ SI) 2.00 6.39 10.02 84.81 93.13 93.37 72.89 80.12 80.12
+ SIAR-R3 (w/ SI + input) 4.58 12.5 19.27 88.67 96.14 96.50 75.30 83.13 84.33

dense retrieval (bge)

vanilla retrieval 2.10 7.73 12.02 30.36 58.43 71.45 9.04 15.66 21.69

gpt-4o
+ SIAR (w/ SI) 12.31 22.61 28.91 65.18 87.11 91.33 56.02 74.70 81.33
+ SIAR (w/ SI + input) 5.25 12.60 19.37 43.61 73.13 83.61 21.68 40.96 51.81
+ SIAR-R3 (w/ SI) 16.51 25.38 30.34 86.62 94.58 94.70 78.31 84.94 84.94
+ SIAR-R3 (w/ SI + input) 10.21 18.80 31.58 80.72 88.92 89.52 55.42 60.84 60.84

Qwen2.5-72B-Instruct
+ SIAR (w/ SI) 11.74 24.71 31.58 64.82 86.74 92.65 76.51 84.34 85.54
+ SIAR (w/ SI + input) 4.68 12.98 19.37 41.80 71.80 83.25 23.49 49.40 57.23
+ SIAR-R3 (w/ SI) 14.03 23.09 30.25 88.19 94.70 95.06 81.32 88.55 89.15
+ SIAR-R3 (w/ SI + input) 10.31 16.22 20.32 83.86 89.76 90.00 66.27 69.28 69.28

Qwen2.5-7B-Instruct
+ SIAR (w/ SI) 5.53 12.21 16.13 71.57 90.96 95.54 59.64 68.07 69.88
+ SIAR (w/ SI + input) 2.96 10.88 16.13 42.89 71.93 83.01 23.49 43.98 51.81
+ SIAR-R3 (w/ SI) 2.39 7.73 11.45 87.59 96.39 97.11 70.48 74.10 74.70
+ SIAR-R3 (w/ SI + input) 2.29 7.54 11.64 76.75 87.95 88.92 56.02 59.64 60.24

Table 1: Performance of different methods with rule library in Natural Language. We use Recall@1, Recall@5 and
Recall@10 as the retrieval metrics.

even outperforms GPT-4o. Moreover, compared to
the baseline, they all achieve better performance.
Therefore, we believe that open-source models
have reached a level of rule induction and ranking
capability comparable to that of the most advanced
closed-source models. For fair comparison, the
following analysis uses 72B and 7B Qwen models
within the same family.

SIAR can consistently improve performance
compared to vanilla retrieval. Under various
combinations of retrievers, rule formats, and query
formats, SIAR consistently outperforms direct re-
trieval. In different scenarios, SIAR achieves im-
provements of up to 9.64 (natural, dense, 72B, w/
SI), 60.12 (formal, dense, 72B, w/ SI), and 67.47
(natural, dense, 72B, w/ SI) in Recall@1 on Clutrr,
ULogic, and CAIL2018, respectively. These results
highlight the self-induction capabilities of LLMs,
enabling them to effectively project queries into the

rule space and reduce semantic misalignment be-
tween queries and rules. Additionally, we observe
that models with 72B parameters tend to exhibit
greater performance gains compared to 7B mod-
els, suggesting that inductive abilities improve with
larger model scales.

SIAR-R3 can usually improve performance com-
pared to SIAR. On ULogic and CAIL2018,
R3 significantly boosts the performance of SIAR
across all setup combinations. Notably, SIAR-R3

achieves maximum improvements in Recall@1 of
43.25 (formal, dense, 72B, w/SI + input) and 42.78
(natural, dense, 72B, w/SI + input). These results
indicate that R3 effectively reevaluates and reranks
the relevance of rules retrieved by SIAR. By di-
rectly assessing the relevance between the query
and the rule, R3 overcomes the limitations of re-
trievers that rely solely on keyword or semantic
similarity, thus enhancing retrieval quality. Ad-
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gpt-4o Qwen2.5-72B-Instruct Qwen2.5-7B-Instruct

CLUTRR ULogic CAIL2018 CLUTRR ULogic CAIL2018 CLUTRR ULogic CAIL2018

w/o retrieval
Direct 42.65 92.28 76.47 38.36 93.01 80.12 25.34 87.47 61.45
Golden rule 93.51 89.40 98.67 89.03 94.58 98.90 82.06 88.67 96.39
CoT 51.34 93.61 77.85 49.43 90.12 83.13 17.84 88.07 69.88
Self-Induction 50.76 87.83 82.98 49.62 91.69 84.94 31.58 88.43 64.46

w/ sparse retrieval
vanilla 37.69 89.04 74.36 37.60 93.13 73.49 26.81 87.11 36.75
SIAR 46.09 87.71 80.77 49.14 94.21 86.14 33.87 88.92 59.64
SIAR-R3 49.33 89.64 85.71 51.71 95.90 86.75 33.97 91.33 73.49

w/ dense retrieval
vanilla 34.06 88.07 80.65 30.53 90.00 72.89 25.00 83.25 19.88
SIAR 52.19 86.39 80.75 49.81 95.06 86.75 34.73 89.64 60.24
SIAR-R3 54.20 89.28 83.54 51.05 95.78 84.94 33.59 91.81 68.07

Table 2: Downstream reasoning performance. We use Match as the metric.

ditionally, on the CLUTRR dataset, performance
gains were only observed in models with 72B pa-
rameters, and the improvements from the formal
rule base were smaller than those from the natural
language rule base. This suggests that on more
complex datasets, models with smaller parameter
scales lack the capacity to effectively rerank rules,
limiting their ability to drive performance improve-
ments.

The performance difference of sparse retrieval
and dense retrieval depends on the format of
rule and dataset. On the Clutrr and CAIL2018
datasets, sparse retrieval generally outperforms
dense retrieval. However, on the ULogic dataset,
performance varies depending on the rule base used.
With the natural language rule base, sparse retrieval
achieves a higher accuracy (92.17) compared to
dense retrieval (88.19). Conversely, with the for-
mal rule base, dense retrieval (89.75) surpasses
sparse retrieval (80.60). This suggests that retrieval
performance is highly dependent on the dataset and
the linguistic form of the rule base. Despite these
variations, we believe that in most cases, sparse
retrieval will outperform dense retrieval. This is
because, in rule-based scenarios, many concepts
may not be well-represented in dense vector spaces.
In contrast, sparse retrieval, which relies on key-
word matching, may offer a more precise alignment
between the query and the corresponding rules.

We add more analysis in Appendix D.

4.2 Reasoning Results and Discussion
Baselines (1) Direct: answer the question di-
rectly. This is set as the bottom of the performance.
(2) Golden rule: answer the question with the

golden rule. This is set as the ceil of performance.
(3) CoT (Wei et al., 2022): reason step by step and
then produce the answer. (4) Self-Induction: an-
swer the question with the self-induced rule. (5)
vanilla retrieval: use the original query to retrieve
the rule and then answer the question.

Based on the conclusion from the previous sec-
tion, for sparse retrieval, we use SI+input as the
query, while for dense retrieval, we use SI as the
query for retrieval. And we use the rule library in
natural language. We report downstream reasoning
performance in Table 2.

We use the average performance enhancement
over three different datasets to analyze and get the
following conclusions. Similarly as the Section
4.1, GPT-4o and Qwen2.5-72B have comparable
performance, so we use Qwen-72B and Qwen-7B
for further analysis.

An exception occurs with the ULogic, where
gpt-4o outperforms the golden rule even without
utilizing the rules. Based on our observations, gpt-
4o has already achieved a relatively saturated per-
formance (>90%) on this dataset, and additional
rule knowledge may not bring further performance
improvements on this dataset. Apart from this, the
conclusions drawn from the analysis are reflected
on the other two datasets.

Rules can effectively assist LLMs in reasoning,
while directly retrieving rules for reasoning may
lead to a decline in performance. Incorporat-
ing the Golden Rule as an aid in reasoning, rather
than directly answering questions, has significantly
improved performance across various models. For
instance, the Qwen2.5-7B-Instruct model saw an
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Qwen-2.5-7B-Instruct Llama-3.1-8B-Instruct Yi-1.5-6B-Chat

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

w/ sparse retrieval
vanilla retrieval 68.91 85.42 92.29 68.91 85.42 92.29 68.91 85.42 92.29
vanilla retrieval + R3 86.99 93.98 94.70 56.71 92.77 93.98 69.88 86.14 91.08
SIAR (w/ SI) 71.57 90.96 95.54 54.94 80.12 86.87 59.76 82.65 88.31
SIAR (w/ SI + input) 42.89 71.93 83.01 76.87 91.69 96.27 74.58 90.10 95.06
SIAR-R3 (w/ SI) 84.81 93.13 93.37 61.08 89.04 90.36 61.08 83.73 87.83
SIAR-R3 (w/ SI + input) 88.67 96.14 96.50 58.31 94.94 96.62 73.25 90.00 94.22

w/ dense retrieval
vanilla retrieval 30.36 58.43 71.45 30.36 58.43 71.45 30.36 58.43 71.45
vanilla retrieval + R3 70.12 79.88 80.48 59.15 78.43 79.64 39.52 61.93 71.33
SIAR (w/ SI) 60.48 83.86 90.00 59.76 85.54 90.36 69.28 87.95 92.05
SIAR (w/ SI + input) 76.14 90.24 95.18 42.29 72.29 82.53 41.45 70.60 82.05
SIAR-R3 (w/ SI) 87.59 96.39 97.11 66.75 92.17 93.01 68.19 87.59 91.32
SIAR-R3 (w/ SI + input) 76.75 87.95 88.92 63.86 87.35 89.40 47.71 71.80 81.69

Table 3: Retrieval performance with different types of models.

average improvement of 31.54, while the Qwen2.5-
72B-Instruct model showed a gain of 23.67. These
substantial improvements suggest that the Golden
Rule effectively enhances the ability of LLMs to in-
fer from existing information, generate new knowl-
edge, and make more reasonable decisions. In
contrast, when relying on vanilla retrieval, per-
formance decreases by 7.28 on the Qwen2.5-7B-
Instruct model and by 2.43 on the Qwen2.5-72B-
Instruct model. Vanilla dense retrieval leads to even
larger drops, with declines of 14.79 and 6.03, re-
spectively. These findings indicate that reasoning
without accurate rule-based assistance, such as the
golden rule, is less effective when based solely on
vanilla retrieved results. It is noteworthy that using
the question directly as a query for rule retrieval of-
ten produces low-quality, noisy results. The noise
negatively impacts the reasoning process and de-
grades model performance. This phenomenon un-
derscores a key challenge faced by current retrieval
systems: semantic misalignment between queries
and rules. Existing retrieval techniques struggle to
accurately compute the similarity between the two,
resulting in difficulty retrieving truly relevant rules,
which ultimately hampers reasoning performance.

SIAR and R3 can boost the performance signifi-
cantly. The SIAR method significantly enhances
model performance compared to direct retrieval.
In scenarios utilizing sparse retrieval, performance
increased by 31.76 and 25.27 for the 7B and 72B
models, respectively. The improvements are even

more pronounced with dense retrieval, where per-
formance gains reached 56.48 and 38.20 for the
7B and 72B models. These results demonstrate
that SIAR provides substantial performance boosts
across models of varying sizes. When the R3 mech-
anism was introduced, performance improved fur-
ther. In sparse retrieval, the 7B model gains an addi-
tional 16.36, while the 72B model sees an increase
of 4.87 points. For dense retrieval, the 7B model
achieves an extra gain of 8.86, and the 72B model
improves by 0.15. These findings validate the ef-
fectiveness of SIAR in enhancing retrieval qual-
ity, allowing for better alignment between queries
and relevant rules, which in turn strengthens the
reasoning process. SIAR addresses the semantic
mismatch inherent in traditional retrieval methods
by self-induction to map queries into the rule space.
The R3 mechanism further refines the retrieval by
reassessing the relevance and applicability of each
rule to the current query, overcoming the limita-
tions of traditional retrievers that struggle to evalu-
ate rules effectively. Compared to other baselines
that do not utilize retrieval, our method demon-
strates significant superiority. These results high-
light the critical role of high-quality rule retrieval
in reasoning tasks, showing that accurate retrieval
is essential for improving reasoning performance.

5 Ablation Study

We perform more ablation experiments to explore
more influencing factors. We use the ULogic
dataset and test six methods: vanilla prompt,
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vanilla prompt + R3, SIAR (w/ SI), SIAR (w/ SI
+ input), SIAR-R3 (w/ SI), and SIAR-R3 (w/ SI +
input). Among them, "vanilla prompt + R3" refers
to retrieving using the original query and then di-
rectly performing R3. Due to space limitations, this
method was not presented in the previous section.
Moreover, we put the result table of Section 5.2
and Section 5.3 in Appendix E.

5.1 The effects of different models

Different LLMs have different model architectures
and use different training data. To demonstrate the
generalizability of our method, we conducted ex-
periments on a wider range of model types (Dubey
et al., 2024; AI et al., 2025), as shown in the table
3. The results show that our method achieves a
significant improvement over the baseline across
different models.

5.2 The effects of different retrievers

Different types of retrievers have different char-
acteristics. To validate the generalizability of our
method, we compared the performance of three dif-
ferent types of retrievers: sparse retriever (bm25),
dense retriever (bge), and LLM retriever (bge-
gemma2 (Chen et al., 2024a)). For comparison,
the dense retriever has only 110M parameters, and
the LLM retriever has 9B parameters. As shown in
the table 5, the results demonstrate that our method
performs well across different types of retrievers.
Even with large retrieval model, our method is
still able to provide further enhancement, which
strongly demonstrates the generalizability of our
approach.

5.3 The effects of the number of rules

To validate the robustness of our method, we added
the counterfactual rule set from the ulogic dataset
(constructed by the original RuleBench (Sun et al.,
2024b)) to the original rule set and re-tested the
performance of our method, as shown in Table 3.
In this setup, the number of rules doubles compared
to the original. As the number of irrelevant rules
increases, the performance of retrieval will contin-
uously decline. So the number of rules is a very
important influencing factor. However, our method
still demonstrates a significant improvement com-
pared to the baseline.

6 Related Work

6.1 LLM and rule

As the inductive (Yang et al., 2024b; Wang et al.,
2024c) and deductive (Saparov et al., 2023) ca-
pabilities of LLMs continue to advance, they are
increasingly being employed to summarize latent
transformation patterns from sets of inputs and out-
puts (Sun et al., 2024a; Qiu et al., 2024). These
patterns are then formalized as executable rules,
stored, and used to support reasoning in down-
stream tasks (Yang et al., 2023; Sun et al., 2023a;
Zhu et al., 2024; Wang et al., 2024b,d).

More specifically, They learn rules from input-
output pairs to represent relationships between in-
puts and outputs, then use these rules for reason-
ing and quality verification. High-quality rules are
stored in a library (Zhu et al., 2024; Wang et al.,
2024b). Previous research on rule retrieval includes
two methods: one concatenates all rules with the
input for inference, requiring a hierarchical storage
structure (Zhu et al., 2024); the other uses vanilla re-
trieval (Sun et al., 2023a; Yang et al., 2023), which
deteriorates as the rule set grows. This paper fo-
cuses on addressing semantic misalignment and
relevance estimation issues in retrieval, proposing
solutions to improve semantic matching and rele-
vance evaluation for more accurate rule retrieval.

6.2 Generation Augmented Retrieval

The Generation Augmented Retrieval (GAR) (Mao
et al., 2021) is a common approach that leverages
the capabilities of language models to perform
query decomposition (Chen et al., 2024b), query
rewriting (Ma et al., 2023), and query expansion
(Wang et al., 2023), helping to supplement missing
background knowledge in queries to achieve higher
retrieval quality. In addition to passage retrieval,
GAR can also play a role in code retrieval (Li et al.,
2024). Our SIAR can be seen as a type of GAR that
utilizes the self-inductive abilities of large language
models (LLMs).

7 Conclusion

This paper introduces Self-Induction Augmented
Retrieval (SIAR) and Rule Relevance Re-Estimate
(R3) to address the challenges of rule retrieval in
complex reasoning tasks. These techniques sig-
nificantly enhance retrieval accuracy by LLMs to
induce abstract inferential rules and assess the rele-
vance of retrieved rules to queries. SIAR and R3
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offer promising solutions for overcoming the se-
mantic misalignment issues in traditional retrieval
techniques, paving the way for more effective rule-
based reasoning in real-world applications.

Limitations

Currently, the rule libraries we discussed remain
quite limited in size, as seen in datasets like Clutrr,
ULogic, and CAIL2018, which contain only 1,048,
830, and 166 rules, respectively. Compared to the
vast number of articles in traditional passage re-
trieval, the rule bases we retrieved are still relatively
small. However, even with these small datasets, tra-
ditional retrieval methods have shown a decline in
reasoning performance, underscoring the need for
deeper exploration in rule retrieval. The smaller
number of rules reduces the difficulty of the bench-
mark. In future work, we aim to introduce more
irrelevant rules to explore additional challenges in
rule retrieval.
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A Prompt Template

Self-Induction Prompt Template

You are given a Query. Please write the inferen-
tial rule may help answer the question. The rule
should summarize and abstract the facts in the
query and catch the underlying logic. I will give
some examples. Just output the rule and do not
output anything else.
query: {q1}
rule: {r1}
... more demonstrations

Rule Relevance ReEstimate Prompt Template

You are an intelligent assistant that can rank
rules based on their relevancy to the query. If the
abstract knowledge in a rule can be instantiated
into the facts in query, that rule is more relevant.
If a rule can be applied to the query and thus be
helpful for reasoning, that rule is more relevant.
I will provide you with {num_rule} rules, each
indicated by a numerical identifier []. Rank
the rules based on their relevance to the query:
{query}.
[1] {rule1}
[2] {rule2}
...
Query: {query}.
Rank the {num} rules above based on their rel-
evance to the query. All the rules should be
included and listed using identifiers, in descend-
ing order of relevance. The output format should
be [] > [], e.g., [2] > [1], Only respond with the
ranking results, do not say any word or explain.

B Experiment setting

Test Benchmark RuleBench (Sun et al., 2024b)
evaluates the reasoning capabilities of large lan-
guage models (LLMs) under a given set of rules.
Building on the foundation of RuleBench, we con-
solidate all rules within the entire test set into a
comprehensive rule library and used the original
questions as queries. We establish both a natural
language-based and a formal language-based rule
library to assess the impact of different rule formats
on retrieval performance. We select two synthetic
datasets, Clutrr (Sinha et al., 2019) and ULogic
(Wang et al., 2024c), as well as a real-world dataset,
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CAIL2018 (Xiao et al., 2018) from RuleBench for
our evaluation.

Metrics We employ Recall@1, Recall@5, and
Recall@10 to evaluate retrieval performance, and
use the Match metric (Rau et al., 2024) to assess
reasoning performance. Specifically, if the golden
answer appears in the final answer generated by the
LLM, then it is considered correct.

Implementation Details We use Pyserini (Lin
et al., 2021) to implement the BM25 retriever
and employ bge-base-en (Xiao et al., 2023) as the
dense encoder. For self-induction, rule relevance
re-estimation, and final reasoning, we utilize the
gpt-4o (OpenAI, 2024) and Qwen2.5 (Team, 2024)
series (7B and 72B) as the tested LLMs. We lever-
age VLLM (Kwon et al., 2023) to accelerate infer-
ence. For SIAR, we get top-10 rules for retrieval
performance evaluation and use the top-1 rule for
reasoning evaluation. For SIAR-R3, we get top-20
rules by SIAR, and use R3 to get the top-10 rele-
vant rules for retrieval evaluation and use the top-1
rule for reasoning evaluation.

C Retrieval performance with rule
library in Formal Language

Due to the api cost, we do not test the gpt-4o per-
formance on Formal Language rules. We show the
results in Talbe 4.

D More analysis on retrieval results.

w/ SI is suitable for dense retrieval, while w/ SI +
input is suitable for sparse retrieval. Under the
same conditions, we observe that when using SI
as the query, dense retrieval typically outperforms
sparse retrieval. Conversely, when using SI+input
as the query, sparse retrieval tends to perform bet-
ter than dense retrieval. This difference can be
attributed to the nature of the two retrieval methods.
Dense retrievers map both the query and the rule
into a unified vector space to measure semantic sim-
ilarity, whereas sparse retrievers rely on keyword
matching. When SI+input is used as the query, it
can disrupt the semantic coherence of the SI, while
the rules in the library remain intact, resulting in a
decrease in similarity within the vector space. As
a result, dense retrieval is more effective when SI
alone is used as the query. In contrast, for sparse
retrieval, if the query contains keywords from the
target rule, it can augment the SI, thus increasing
the BM25 score between the SI and the rule. This

makes sparse retrieval more suitable when SI+input
is used as the query.

Rule library suits more in the format of Natural
Language. By comparing Table 1 and Table 4,
we observe that SIAR and SIAR-R3 perform better
when retrieving from the natural language rule base.
Rules expressed in formal language are more ab-
stract and harder to interpret, making it more chal-
lenging for the LLM to perform self-induction and
assess relevance. Poor self-induction and relevance
reestimation by the LLM can therefore degrade
retrieval quality.

E Ablation results on types of retrievers
and the number of rules.

We show the ablation results in Table 5 and Table
6.
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CLUTRR ULogic CAIL2018

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

sparse retrieval (BM25)

vanilla retrieval 6.58 16.60 24.43 22.41 44.10 51.57 22.89 42.77 53.01

Qwen2.5-72B-Instruct
+ SIAR (w/ SI) 6.58 18.89 27.67 45.90 68.67 75.30 79.52 93.37 95.18
+ SIAR (w/ SI + input) 10.01 23.76 31.97 51.57 73.49 80.24 59.04 83.13 89.15
+ SIAR-R3 (w/ SI) 10.21 18.80 26.81 75.54 80.12 80.36 83.13 95.78 95.78
+ SIAR-R3 (w/ SI + input) 11.07 23.00 30.25 80.60 85.42 85.66 83.13 93.37 93.37

Qwen2.5-7B-Instruct
+ SIAR (w/ SI) 2.39 6.34 10.21 47.47 68.67 76.27 69.88 88.55 93.37
+ SIAR (w/ SI + input) 7.16 16.89 23.57 50.48 73.49 81.08 46.99 72.89 82.53
+ SIAR-R3 (w/ SI) 1.34 5.25 9.73 72.17 81.33 82.17 78.31 92.17 93.37
+ SIAR-R3 (w/ SI + input) 2.67 11.07 17.84 75.90 85.66 86.02 72.29 87.35 89.76

dense retrieval (bge)

vanilla retrieval 2.86 8.59 12.79 18.31 43.98 55.66 1.81 7.83 14.46

Qwen2.5-72B-Instruct
+ SIAR (w/ SI) 8.30 20.90 27.10 76.50 90.72 94.46 40.96 60.24 64.46
+ SIAR (w/ SI + input) 4.29 10.59 17.37 30.0 60.24 69.88 6.02 19.28 33.13
+ SIAR-R3 (w/ SI) 8.87 18.70 25.48 89.75 95.90 96.02 62.65 71.69 71.69
+ SIAR-R3 (w/ SI + input) 6.97 14.98 19.47 73.25 80.36 80.60 37.35 42.17 42.77

Qwen2.5-7B-Instruct
+ SIAR (w/ SI) 2.96 8.59 11.93 78.43 92.17 95.54 24.70 44.58 54.22
+ SIAR (w/ SI + input) 3.81 9.64 15.08 31.08 60.36 69.76 8.43 19.88 29.52
+ SIAR-R3 (w/ SI) 1.43 6.58 10.30 88.31 96.98 97.23 55.42 64.46 64.46
+ SIAR-R3 (w/ SI + input) 3.05 7.35 11.93 69.40 80.24 80.48 33.73 40.96 41.57

Table 4: Performance of different methods with rule library in Formal Language. We use Recall@1, Recall@5 and
Recall@10 as the retrieval metrics.

Sparse Retriever Dense Retriever LLM retriever

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

w/ Qwen2.5-7B-Instruct
vanilla retrieval 68.91 85.42 92.29 30.36 58.43 71.45 74.94 95.18 97.83
vanilla retrieval + R3 86.99 93.98 94.70 70.12 79.88 80.48 86.99 97.83 98.67
SIAR (w/ SI) 60.48 83.86 90.00 71.57 90.96 95.54 78.07 95.06 97.47
SIAR (w/ SI + input) 76.14 90.24 95.18 42.89 71.93 83.01 86.39 98.67 99.88
SIAR-R3 (w/ SI) 84.81 93.13 93.37 87.59 96.39 97.11 88.91 98.19 98.67
SIAR-R3 (w/ SI + input) 88.67 96.14 96.50 76.75 87.95 88.92 90.84 98.91 99.28

Table 5: Retrieval performance with different types of retrievers.
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Original Original + Counterfactual

w/ sparse retrieval
vanilla retrieval 68.91/ 85.42/ 92.29 49.04/ 79.40/ 85.30
vanilla retrieval + R3 86.99/ 93.98/ 94.70 79.64/ 90.48/ 91.69
SIAR (w/ SI) 60.48/ 83.86/ 90.00 59.16/ 77.11/ 84.34
SIAR (w/ SI + input) 76.14/ 90.24/ 95.18 72.53/ 87.71/ 91.08
SIAR-R3 (w/ SI) 84.81/ 93.13/ 93.37 81.20/ 90.00/ 90.84
SIAR-R3 (w/ SI + input) 88.67 / 96.14 / 96.50 86.99 / 94.10 / 94.94

w/ sparse retrieval
vanilla retrieval 30.36/ 58.43/ 71.45 20.48/ 49.52/ 60.60
vanilla retrieval + R3 70.12/ 79.88/ 80.48 56.02/ 69.64/ 70.84
SIAR (w/ SI) 71.57/ 90.96/ 95.54 67.83/ 87.47/ 92.53
SIAR (w/ SI + input) 42.89/ 71.93/ 83.01 32.53/ 62.77/ 73..49
SIAR-R3 (w/ SI) 87.59 / 96.39 / 97.11 84.33 / 94.57 / 95.42
SIAR-R3 (w/ SI + input) 76.75/ 87.95/ 88.92 66.87/ 80.48/ 82.65

Table 6: Retrieval performance with different number
of rules. Original represents the rule set used in the pre-
vious section. Counterfactual represents the addtional
rules we select from the RuleBench.
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