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Abstract

Complex multi-hop questions often require
comprehensive retrieval and reasoning. As
a result, effectively parsing such questions
and establishing an efficient interaction chan-
nel between large language models (LLMs)
and knowledge graphs (KGs) is essential for
ensuring reliable reasoning. In this paper,
we present a novel semantic parsing frame-
work Correcting on Graph (CoG), aiming to
establish faithful logical queries that connect
LLMs and KGs. We first propose a struc-
tured knowledge decoding that enables the
LLM to generate fact-aware logical queries
during inference, while leveraging its para-
metric knowledge to fill in the blank interme-
diate entities. Then, we introduce a knowl-
edge path correction that combines the logical
query with KGs to correct hallucination enti-
ties and path deficiencies in the generated con-
tent, ensuring the reliability and comprehen-
siveness of the retrieved knowledge. Exten-
sive experiments demonstrate that CoG outper-
forms the state-of-the-art KGQA methods on
two knowledge-intensive question answering
benchmarks. CoG achieves a high answer hit
rate and exhibits competitive F1 performance
for complex multi-hop questions.

1 Introduction

Large language models (LLMs) (OpenAl et al.,
2023; Dubey et al., 2024) have demonstrated re-
markable capabilities in natural language process-
ing (NLP). They demonstrate deep step-by-step
reasoning capabilities, enabling them to tackle in-
tricate questions that require multi-step analysis
and nuanced understanding (Wei et al., 2022). De-
spite their remarkable performance across various
applications, LLMs still face a significant chal-
lenge of lack of factual knowledge (Ji et al., 2023).
This limitation arises from the static training pro-
cess of LLMs, making it difficult to incorporate
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dynamically updated world knowledge. In this
case, integrating LLMs with external knowledge
sources, such as knowledge graphs (KGs) (Bol-
lacker et al., 2007; Vrandecic and Krotzsch, 2014),
offers a promising solution. This integration al-
lows LLMs to generate faithful responses, reduc-
ing hallucination issues.

There are various methods for integrating LLMs
with KGs (Wang et al., 2023; Luo et al., 2024;
Mavromatis and Karypis, 2024; Zhao et al., 2023).
Based on the frequency of interaction between
LLMs and KG, these methods can be categorized
into two paradigms. The first paradigm follows
the iterative retrieve-then-read strategy (Nishida
et al., 2018; Lewis et al., 2020), where the multi-
hop question is transformed into step-by-step rea-
soning on the KG and the LLM is served as an
agent to determine which knowledge facts should
be considered at each reasoning step (Wang et al.,
2023; Jiang et al., 2023a). Although this strat-
egy is effective in knowledge selection, it typically
leads to high computational costs due to the in-
volvement of processing numerous candidate en-
tities and relations, necessitating extensive rank-
ing and evaluation at each step (Sun et al., 2024).
Consequently, there is an increasing emphasis on
the second paradigm, the semantic parsing strat-
egy (He et al., 2021a; Luo et al., 2024), which
connects LLMs and KGs through logical queries.
Its goal is to convert the complex multi-hop ques-
tion into formal logical queries (He et al., 2021a;
Zhang et al., 2022) that allow LLMs to retrieve
the necessary knowledge from KGs through a sin-
gle query execution. For example, given a ques-
tion “Who is the brother of Michael J. Fox?” (Bol-
lacker et al., 2007), semantic parsing method (Luo
et al., 2024) fine-tunes the LLM to generate a re-
lation path "parent — children" and executes this
query on the KG to retrieve relevant knowledge.
The core of semantic parsing lies in generating
valid and faithful logical queries. However, our
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experiments reveal that 37.2% of the generated
queries are invalid, where we attribute these hal-
lucination errors to the lack of rigorous constraints
during the generation process (Ji et al., 2023). This
issue stems from the failure to consider the insep-
arable relationship between entities and relations
in the KG. The entities play a crucial role in de-
termining which relations exist between the entity
and its neighbors (Lin et al., 2016). When inter-
mediate entities are ignored, the relation path loses
essential constraints, which negatively impacts the
reliability of the query (Luo et al., 2024). By rely-
ing solely on relation-based reasoning and ignor-
ing intermediate entities, LLM generates overly
flexible queries that are more prone to hallucina-
tions, leading to queries that sound plausible but
fail to retrieve any information from the KG.

Similar to the structure of the chain-of-thought
prompts (Wei et al., 2022), LLM+KG methods
aim to retrieve a knowledge path in the KG that
starts from the topic entity, traverses through multi-
hop relations, and ultimately reaches the answer
entity (Sun et al., 2024; Zhao et al., 2024b). Sur-
prisingly, this knowledge path reflects the struc-
ture after incorporating intermediate entities into
the logical query. In other words, to enable LLMs
to generate logical queries with intermediate en-
tity constraints, the essence is to treat the LLM as
a parametric knowledge base and generate knowl-
edge paths for question answering. This concept
is highly consistent with the “Language Models as
Knowledge Bases” paradigm (Petroni et al., 2019;
Heinzerling and Inui, 2021; Zhao et al., 2022) and
the key role of LLM is to generate the logical
query while filling in the missing intermediate enti-
ties. Although LL.Ms are unable to store all world
knowledge (Petroni et al., 2019), and the generated
intermediate entities might suffer from hallucina-
tion errors (Ji et al., 2023), external KGs can effec-
tively correct the generated paths, thus ensuring
the reliability of the knowledge paths (Wang et al.,
2023).

Motivated by this, we propose a novel seman-
tic parsing method called Correcting on Graph
(CoG) to retrieve reliable knowledge paths from
the KG. We introduce a structured knowledge
decoding that incorporates intermediate entities
as constraints during the query generation pro-
cess. We are inspired by the LM-as-KB paradigm
(Petroni et al., 2019) and design a reciting task to
fine-tune the LLLM and force the LLM to memo-
rize knowledge paths during fine-tuning. In this

way, LLM can generate possible knowledge paths
using its stored parametric knowledge when han-
dling multi-hop questions. On the other hand,
we aim to make the LLM generate structured out-
put which in the form of a continuous knowledge
paths. In this way, the LLM can start from the
question entity for path generation. After generat-
ing the first relation, it treats the process of gener-
ating the next entity as a "fill-in-the-blank" task
(Donahue et al., 2020). This approach prompts
the LLM to utilize its internal knowledge to fill in
the missing entity. The generated entities also im-
plicitly carry various attributes (such as a person
or a city), and these attributes help constrain the
generation of the next relation, preventing the pro-
cess from being overly flexible and reducing the
occurrence of hallucination errors. (2) Due to the
black-box nature of LLMs, The generated knowl-
edge paths are often unreliable or incomprehen-
sive. To address this issue, we further introduce
knowledge path correction to refine the generated
knowledge paths. Specifically, we correct halluci-
nation errors in the paths, such as factual errors in
intermediate entities, by retrieving reliable paths
from the KG using logical queries. Additionally,
we address path deficiency, as the paths generated
by the LLM may not cover all possible answers. In
this case, we use logical queries to match missing
knowledge from the KG, thereby ensuring that the
retrieved paths provide broader coverage of possi-
ble answers.

In summary, our contributions are as follows:

* We introduce a structured knowledge decoding
to alleviate the excessive flexibility in the query
generation process for faithful semantic parsing.

* We propose a knowledge path correcting that
combines logical queries with KGs to correct
the generated paths, ensuring the reliability and
comprehensiveness of the knowledge paths.

* The experiments show that CoG achieves the
best performance on WebQSP and CWQ. CoG
achieves a high answer hit rate and exhibits com-
petitive F1 performance for complex questions.

2 Correcting on Graph

In this section, we detailed introduce the Cor-
recting on Graph framework. We first introduce
a structured knowledge decoding to parse the
multi-hop question and generate fact-aware logi-
cal queries. As shown in Figure 1, we fine-tune
the LLM to memorize factual knowledge paths
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Question: Where did Bristol Palin go to school?

1. Bristol Palin->people.person.education->m.0Ocpk4bl->education.education.institution->West Anchorage High School
2. Bristol Palin->people.person.education->m.0cpk4bl->education.education.institution->Wasilla High School
3. Bristol Palin->people.person.education->m.Ocpkbwp->education.education.institution->Juneau-Douglas High School

Answers:

West Anchorage High School
Wasilla High School
Juneau-Douglas High School
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Figure 1: An overview of our proposed Correcting on Graph (CoG) framework. We first introduce a structured
knowledge decoding to parse the multi-hop question and generate fact-aware logical queries. Then, we introduce
a knowledge path correction to correct the fact-aware logical queries. Finally, the retrieved knowledge paths are

used to assist a LLM for joint answer prediction.

through a knowledge reciting task, enable it to
leverage its parametric knowledge to generate log-
ical queries for the question while filling in the
blank intermediate entities during knowledge de-
coding. We then introduce a knowledge path cor-
rection to correct the fact-aware logical queries.
The knowledge path correction combines the ex-
tracted logical queries and the KG to ensure the re-
liability and comprehensiveness of the knowledge
paths. Finally, the retrieved knowledge paths are
used to assist a LLM for joint answer prediction.

2.1 Structured Knowledge Decoding

Given a multi-hop question ¢ and a KG G, previ-
ous semantic parsing methods, such as RoG (Luo
et al., 2024), aim to generate a relation path P,:

Por=ri—=r9—= - =y

(D

The relation path consists of a series of relations
that can be used to retrieve the continuous knowl-
edge path ¢, L er 2 ... I e, connecting the
question entity e, to the answer entity e,. How-
ever, without considering the question entity e,
and the intermediate entities, the excessive flexi-
bility in the relation path generation process leads
to the fact that the generated relation paths are
more prone to hallucinations, leading to queries
that sound plausible but fail to retrieve any infor-
mation from the KG.

Knowledge Reciting. To address this issue, we
first introduce a knowledge reciting task. Given a

question ¢ and the question entity e, our goal is to
enable the LLM to directly generate a knowledge
path that is helpful for solving the question:

T T T
P.=e;—e1 —> ... 5 eq.

2

Compared to relation paths, the first constraint
of a knowledge path is the determination of which
question entity as the starting entity. In complex
multi-hop QA datasets, a question commonly in-
volves multiple question entities.! For example:
“Which movie with an actor named Goran Kostic
was directed by Angelina Jolie?" This question in-
volves two question entities, “Angelina Jolie” and
“Goran Kostic”. Each entity has a different role,
one as an actor and the other as a director. With-
out imposing a constraint on the question entity,
the logical query will inevitable introduce irrele-
vant knowledge, such as retrieving the movies in
which Angelina Jolie (the director) starred.

Another constraint provided by the knowledge
path is the intermediate entities. Since the LLM
generates responses by selecting high-probability
tokens step by step, LLMs can retrieve knowledge
from its parameters by continuing the generation
process. For example, when the LLM generates
the first relation rp, predicting the next intermedi-
ate entity is essentially a “retrieval” process, where
the LLM fills in “e, 17" based on its paramet-
ric knowledge. Therefore, fine-tuning the LLM to

'For example, in the CWQ dataset (Talmor and Berant,
2018), 48.2% of questions have multiple question entities.
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generate such structured outputs can enhance its
ability to utilize the parametric knowledge.

To this end, we first construct question-path
pairs using the training set of two multi-hop QA
datasets. Each pair consists of a question ¢ and
the corresponding knowledge path P, which con-
nects the question entity e, to the answer entity e,
through a sequence of intermediate entities and re-
lations.

We then fine-tune the LLM by using these
question-path pairs. During fine-tuning, the LLM
is trained to output the knowledge path P given
an input question ¢ and the question entity e,.

N

L= —Zlong(Pk|qi7€Qi)' )
i=1

On the one hand, the reciting process is inject-
ing the factual knowledge into the parameters of
the LLM. During fine-tuning, the LLM stores
these knowledge paths in its parameters and es-
tablishes connections with the semantics of the
question. On the other hand, the reciting process
also teaches the LLM semantic parsing. When we
remove the intermediate entities involved in the
knowledge path, the remaining part becomes a log-
ical query that can be executed on the KG.
Knowledge Decoding. During inference, we
leverage the fine-tuned LLM to generate the fact-
aware logical query (i.e., knowledge path) for each
input question.

Pyrea = LLMY (g, ¢,). 4)

Since complex multi-hop questions often contain
multiple answers, we leverage the beam search
strategy that allows the LLM to generate multiple
possible knowledge paths. Each of these paths cor-
responds to different possible answers, ensuring
better answer coverage of the complex multi-hop
question.

Once a knowledge path is generated, it can be
converted into a logical query by extracting the
question entity and the relations along the path.
We follow RoG (Luo et al., 2024) to extract rela-
tion paths to represent logical queries, while incor-
porating the question entity as a constraint.

72

LQ =, 57 2 .0 I, (5)

2.2 Knowledge Path Correction

Due to the limited parametric knowledge and de-
coding strategy, the generated knowledge paths

may contain factual errors or fail to cover all pos-
sible answers.
Hallucination Entity. Although the LLM inte-
grated a set of factual knowledge into its param-
eters during knowledge reciting, it is difficult to
cover billions of knowledge facts in the KG. As a
result, the LLM will inevitably encounter entities
they haven’t met before during inference. In this
case, when the LLM attempts to generate knowl-
edge paths using the question entities and rela-
tions, the intermediate entities in the generated
path may suffer from hallucination errors, result-
ing in generating plausible but fabricated knowl-
edge paths.

Formally, given a question g and the question
entity e, the LLM generates a knowledge path:

71 2 Tn
Ppreqa =e€q — €1 — ... — en. (6)

The hallucination entity refers to an intermediate
entity e; in P,..q Where the triple (e;, 7}, ;) does
not exist in the KG (e;, rj,¢;) ¢ G.

Path Deficiency. Due to the difficulty in control-
ling the decoding process of the LLM directly, it
may generate multiple knowledge paths from the
question entity to the same answer entity. When
handling questions that have multiple answers?, a
fixed beam width decoding strategy might result
in the generated knowledge paths that fail to cover
all possible answers.

Formally, given a question g and the question
entity ey, the LLM generates a set of knowledge
paths P,,..q. Path deficiency refers to the situa-
tion where the path generated by the LLM does
not include all possible answers. The generated
knowledge paths P,..q include path shaped like
eqg = ... 2 ... I ., but there exists an an-
swer entity e, such that the knowledge path from
eq 10 €4 is not present in Py,,..4. This can be repre-
sented as:

1 T2 T
eqg—re1 —= ... = eq & Ppred @)

Correction. Both hallucination errors and path de-
ficiencies in the knowledge paths can be corrected
through the execution of logical queries. Specifi-
cally, for hallucinated entities, the logical query re-
trieves reliable paths by ensuring the intermediate
entities in the generated path are consistent with

’In the WebQSP dataset (Berant et al., 2013), 48.8% of
questions have multiple answers and 12.1% of the questions
have more than 10 answers

5367



Dataset ‘ # Train ‘ # Test Solvable Multi-hop

Dataset ‘l-hop 2-hop >2-hop Unsolvable

WebQSP | 2,826 | 1,628  95.3% 30.0%
CWQ 27,639 | 3,531 80.1% 42.1%

WebQSP | 652% 30.0%  0.0% 4.7%
CWQ 38.0% 42.1%  0.1% 19.8%

Table 1: Data statistics of the WebQSP and CWQ. Solv-
able refers to the proportion of questions for which
there exists at least one knowledge path from the ques-
tion entity to the answer entity in the KG. Multi-hop
refers to the proportion of multi-hop questions.

the KG. For path deficiencies, executing the logi-
cal query ensures that all possible answer entities
are retrieved, filling in the gaps left by the original
knowledge path. The correction process is formal-
ized as:

T1 T2 Tn
Peorrection = exec(G, e, —7 —= ... —57). (8)

Here, the execution of the logical query ensures
that the resulting paths are faithful. The halluci-
nation entities are removed by verifying each in-
termediate step, and missing knowledge paths are
added through a breadth-first search (BFS) starting
from e, with the relation path 7y — 70 — -+ —
7y, as constraints.

3 Experiments

3.1 Experimental Setup

Datasets. We conduct experiments on two
knowledge-intensive multi-hop QA benchmarks.

* WebQSP (Berant et al., 2013) is a multi-hop
question answering dataset with 4,037 questions.
We use the data splits of previous work (Luo
et al., 2024) for fine-tuning and evaluation.

e CWQ (Talmor and Berant, 2018) is a complex
multi-hop KGQA dataset that contains 34,672
questions with intricate constraints. We use the
data splits of previous work (Luo et al., 2024)
for fine-tuning and evaluation.

Knowledge Graphs. We use Freebase (Bol-
lacker et al., 2007) as the KG for both the We-
bQSP and CWQ datasets. WebQSP is a multi-
hop question answering dataset built on Freebase,
while CWQ is an extension of WebQSP, where
questions are derived from the same KG. To facili-
tate the experiments, we follow previous work (He
et al., 2021b; Luo et al., 2024) to retrieve a local
knowledge subgraph for each question. As shown
in Table 1, the extracted subgraphs do not provide
knowledge paths for all questions. However, to en-
sure fairness in the experiments, we retain those
unsolvable questions following previous work.

Table 2: Statistics of the length of the shortest path for
questions in WebQSP and CWQ. The r-hop indicates
the percentage of questions where the answer can be
reached in n hops. The unsolvable representing the per-
centage of questions that cannot be solved by the KG.

Dataset #Ans=1 2<<5 6<<9 10<
WebQSP  50.0% 32.5% 6.2% 11.3%
CWQ 75.8% 19.2% 2.8% 2.2%

Table 3: Data statistics on the number of answers to the
questions in the WebQSP and CWQ test datasets.

Implementation Details. The dataset used for
knowledge reciting to fine-tune the LLM is com-
posed of the training sets from both WebQSP and
CWQ. As shown in Table 2. Although CWQ
is a complex multi-hop QA dataset, the major-
ity of questions can be answered with knowledge
paths of length 2 hops or less. Therefore, when
constructing the reciting dataset for fine-tuning,
we only extracted knowledge paths that are less
than 3 hops to form question-path pairs. More-
over, we fine-tune the Llama 3.1-8B-instruct for
structured knowledge decoding and leverage Ope-
nAl api to call ChatGPT and GPT-4 for answer
prediction and leverage Hit, Hit@1, and F1 met-
rics for evaluation. During decoding, we set the
beam width to 2 and retain only one path for
each possible answer. Further implementation
details and evaluation metrics are shown in the
Appendix A. Our code and data are available at
https://github.com/HUSTNLP-codes/CoG.

Evaluation Metrics. We evaluate the perfor-
mance on these multi-hop QA datasets using three
evaluation metrics: Hit, Hit@1, and F1. Hit mea-
sures whether the model can correctly answer a
given question. Specifically, it is considered a hit
if the correct answer is present in the model’s gen-
erated response. If the correct answer is included,
the Hit value is set to 1 and otherwise 0. Hit@1 is
used to evaluate whether the top-ranked candidate
in the models response is correct. When the model
generates multiple candidate answers, Hit@1 fo-
cuses on whether the highest-ranked candidate is
correct. F1 is a comprehensive evaluation metric.
As shown in Table 3, many questions contain mul-
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Model LLM WebQSP CWQ
Hit Hit@1 F1 Hit Hit@1 F1
Traditional KGQA Methods
GRAFT-Net (Sun et al., 2018) / - 66.7 62.4 - 36.8 32.7
NSM (He et al., 2021a) / - 68.7 62.8 - 47.6 42.4
SR+NSM(+E2E) (Zhang et al., 2022) / - 69.5 64.1 - 50.2 47.1
NSM-+h (He et al., 2021a) / - 74.3 67.4 - 48.8 44.0
UniKGQA (Jiang et al., 2023b) / - 77.2 72.2 - 51.2 49.1
LLM-based KGQA Methods

KD-CoT (Wang et al., 2023) ChatGPT 68.6 - 52.5 557 - -
StructGPT (Jiang et al., 2023a) ChatGPT 72.6 - - - - -
KB-BINDER (Li et al., 2023) Codex 74.4 - - - - -
ToG+ChatGPT (Sun et al., 2024) ChatGPT 76.2 - - 58.9 - -
ToG+GPT-4 (Sun et al., 2024) GPT-4 82.6 - - 69.5 - -
KG-CoT (Zhao et al., 2024b) ChatGPT 82.1 - - 51.6 - -
GoG (Xu et al., 2024) ChatGPT - 78.7 - - 55.7 -
Interactive-KBQA (Xiong et al., 2024) GPT-4 724 - 71.2 59.1 - 49.0
EffiQA+GPT-4 (Dong et al., 2025) GPT-4 82.9 - - 69.5 - -
RoG (Luo et al., 2024) Fine-tuned Llama2-7B-chat 85.7 80.0 70.8 62.6 57.8 56.2
GNN-RAG (Mavromatis and Karypis, 2024) Fine-tuned Llama2-7B-chat 85.7 80.6 713  66.8 61.7 59.4
CoG+ChatGPT (Ours) Fine-tuned Llama3.1-8B-Instruct  88.5 814 769  68.9 62.5 60.4
CoG+GPT-4 (Ours) Fine-tuned Llama3.1-8B-Instruct ~ 90.5 83.3 780 703 63.9 60.8

Table 4: The experiment results of GNN-based methods and LLM-based maethods on WebQSP and CWQ. The
LLM column indicates the LLM used by each method. For example, ToG+ChatGPT uses ChatGPT as the LLM
agent to traverse on the KG. RoG uses a fine-tuned Llama2-7B-chat model to perform both semantic parsing and
question answering. CoG uses a fine-tuned Llama3.1-8B-Instruct model for semantic parsing, and uses ChatGPT
and GPT-4 to perform answer prediction based on the corrected knowledge paths.

tiple answers in WebQSP and CWQ. The F1 score
evaluates both the model’s ability to recall the cor-
rect answers and its capacity to handle noisy or
distracting information effectively.

Baselines. We compare with traditional KGQA
methods and recent LLM-based KGQA methods.

For traditional KGQA methods, GRAFT-NET
(Sun et al., 2018) leverages graph neural network
to handle graph information for question answer-
ing. NSM (He et al., 2021a), SR+NSM (Zhang
et al., 2022), and NSM+h (He et al., 2021a) lever-
age neural symbolic machine for semantic parsing
over KGs. UniKGQA (Jiang et al., 2023b) intro-
duces a pre-training task to perform retrieval and
reasoning within a unified framework.

For LLM-based KGQA methods, KD-CoT
(Wang et al., 2023) corrects the reasoning chain of
LLMs by accessing the KG dynamically. FIT (Ye
et al., 2023) and GRT (Zhao et al., 2024a) lever-
age cross-modal pre-training to enhance LLMs us-
ing KGs. StructGPT (Jiang et al., 2023a) and ToG
(Sun et al., 2024) leverage LLMs to perform struc-
tured reasoning on the KG directly. KB-BINDER
(Li et al., 2023) binds the relation and entity to
constrain the path selection during multi-hop rea-
soning. KG-CoT (Zhao et al., 2024b) integrates
Chain-of-Thought prompting with KG retrieval to

guide LLMs in step-by-step reasoning using rele-
vant KG facts. GoG (Xu et al., 2024) treats the
LLM as an agent, allowing it to generate miss-
ing entities or relations on incomplete KGs for
multi-hop reasoning. Interactive-KBQA (Xiong
et al., 2024) enables interactions between LLMs
and the KG, allowing the model to iteratively de-
compose and resolve complex queries. EffiQA
(Dong et al., 2025) combines LLLMs with a KG
exploration model in a collaborative framework
for question answering. RoG (Luo et al., 2024)
fine-tunes the LLM to generate logical queries and
perform joint reasoning. GNN-RAG (Mavroma-
tis and Karypis, 2024) leverages GNNs to locate
candidate answers and retrieve knowledge paths
toward these entities.

3.2 Main Results

We show the performance comparison between
our proposed Coin and several baseline models in
Table 1. Our proposed Coin achieves the best re-
sults across all metrics on the two datasets.

Effectiveness of CoG. Compared to the LLM
agent baselines, CoG outperforms ToG (Sun et al.,
2024), with a 9.5% improvement in Hit on We-
bQSP and a 1.4% improvement on CWQ. These
results highlight the capability of CoG to gener-
ate answer correctly across both datasets. Un-

5369



Method WebQSP CWQ Method Hitquestion Hitanswer

P R FI P R FI CoG 94.0% 472%
CoG 793 814 769 555 662 60.4 CoG w/o correction 91.2% (| 2.8%) 21.2% (| 26.0%)
CoG wio decoding 642 519 61.0 386 382 388 RoG (Luoetal, 2024) 88.6% 27.5%

CoG w/o correction 80.4 61.6 65.1 508 63.8 56.5

Table 5: Ablation studies on CoG. w/o decoding’
refers to directly retrieving 2-hop knowledge paths for
answer prediction. *w/o correction’ refers to using the
generated knowledge paths for answer prediction.

Method WebQSP CWQ

ChatGPT 51.8 39.9
+ ToG (Sun et al., 2024) 76.2 58.9
+ RoG (Luo et al., 2024) 81.5 52.7
+ GNN-RAG (Mavromatis and Karypis, 2024) 85.3 64.1
+ CoG (Ours) 88.5 68.9

Table 6: Performance of different methods as knowl-
edge retrievers (Hit). The retrieved knowledge paths
are used for answer prediction under the same LLM.

like LLM agent methods (Wang et al., 2023; Jiang
et al., 2023a; Sun et al., 2024) that require to itera-
tively interact with KGs, CoG leverages semantic
parsing strategy and only requires one single inter-
action with KGs to retrieve knowledge paths dur-
ing knowledge path correction. Moreover, CoG
only requires two interactions with LLMs, which
significantly reduces the inference latency.

Effectiveness of structured knowledge decod-
ing. Compared to semantic parsing baselines (Li
et al., 2023; Luo et al., 2024), CoG outperforms
the state-of-the-art semantic parsing method RoG
(Luo et al., 2024) in both Hit and Hit@1 met-
rics. This improvement is attributed to the knowl-
edge reciting of the structured knowledge decod-
ing, which enables the LLM to incorporate factual
knowledge during fine-tuning while considering
constraints on intermediate entities when generat-
ing knowledge paths.

Effectiveness of knowledge path correction.
Compared with the state-of-the-art LLM-based
methods, CoG also outperforms RoG (Luo et al.,
2024) and GNN-RAG (Mavromatis and Karypis,
2024) on the F1 metric. CoG achieves an F1 score
of 78.0 on WebQSP and 60.8 on CWQ, while
GNN-RAG achieves 71.3 and 59.4, respectively.
These improvements in F1 score indicate that the
knowledge path correction method not only re-
sults in better answer recall but also effectively re-
duces the introduction of irrelevant answers. This
demonstrates the advantage of CoG in generating
faithful logical queries and knowledge paths.

Table 7: Answer hit rate of knowledge paths retrieved
by CoG, CoG w/o correction, and RoG on WebQSP. |
denotes the performance drop compared to CoG.
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Figure 2: Performance of CoG and CoG w/o correction
under different beam sizes on WebQSP.

3.3 Further Analysis

Ablation Study. In Table 4, we evaluate the ef-
fectiveness of each component in CoG. 1) w/o de-
coding refers to directly retrieving 2-hop knowl-
edge paths from the KG, without using fine-tuned
LLM to generate knowledge paths and logical
queries. 2) w/o correction refers to directly using
the knowledge paths generated by the fine-tuned
LLM for answer prediction, without correcting the
hallucination entity and path deficiency.

The experimental results demonstrate the effec-
tiveness of structured knowledge decoding. Di-
rectly retrieving 2-hop knowledge paths intro-
duces a large amount of irrelevant knowledge
paths, which prevents the LLM from answering
the question correctly. Furthermore, the recall
drops significantly without knowledge path correc-
tion, as the uncorrected knowledge paths may con-
tain hallucinated entities or path deficiencies. This
demonstrates that knowledge path correction can
significantly enhance the capability of the LLM to
recall correct answers.

Quality of Knowledge Paths. In Table 5, we
treat ToG (Sun et al., 2024), RoG (Luo et al.,
2024), GNN-RAG (Mavromatis and Karypis,
2024), and our proposed CoG as knowledge path
retrievers, and use ChatGPT for answer prediction
based on the retrieved knowledge paths. The ex-
perimental results show that the knowledge paths
retrieved by CoG significantly improve accuracy
of question answering. Since both RoG (Luo et al.,
2024) and GNN-RAG (Mavromatis and Karypis,
2024) use the fine-tuned LLM both knowledge
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Case 1: Hallucination Entity

Question: What is the nationality of Khaosai Galaxy? [Thailand]

Decoding:

Khaosai Galaxy —people.person.nationality— United States of America.

Logical Query:
Khaosai Galaxy —people.person.nationality—?
Correction:

Khaosai Galaxy —people.person.nationality— Thailand. (corrected)

Case 2: Path Deficiency

Question: Who played in Barbara Gordon? [Melinda McGraw, Hannah Gunn, Ilyssa Fradin]

Decoding:

Barbara Gordon —film.character.portrayed_in_films—m.0cO4kpn—film.performance.actor —Melinda McGraw
Barbara Gordon—film.character.portrayed_in_films—m.0y54_x4— film.performance.actor—Hannah Gunn

Logical Query:

Barbara Gordon —film.character.portrayed_in_films— ?— film.performance.actor—?

Correction:

Barbara Gordon —film.character.portrayed_in_films—m.0cO4kpn—:film.performance.actor—Melinda McGraw,
Barbara Gordon —film.character.portrayed_in_films—m.0y54_x4—film.performance.actor—Hannah Gunn
Barbara Gordon —film.character.portrayed_in_films—m.041wOvy— film.performance.actor —llyssa Fradin (corrected)

Table 8: The case studies demonstrate the hallucinated entity and path deficiency in the generated knowledge paths
during knowledge decoding, and how knowledge path correction addresses these issues using logical queries.

retrieval and answer prediction, this experiment
also demonstrates that the superior performance
of CoG is attributed to the high quality of the re-
trieved knowledge paths, rather than only relying
on powerful LLMs for answer prediction.

Effectiveness of Path Correction. To further
demonstrate the effectiveness of knowledge path
correction, we evaluate the answer hit rate of the
retrieved knowledge paths in Table 7. Hitguestion
indicates that if the retrieved path hits at least one
correct answer of the question, Hitgyestion 18 1, oth-
erwise 0. Hit,,swer refers to the hit rate for all an-
swer of a question. For example, if a question has
three answers, we consider the hit rate for each an-
swer in the retrieved knowledge paths.

The experiment shows that the corrected knowl-
edge paths allow more questions to contain knowl-
edge paths leading to the correct answer, which is
the reason why CoG achieves good performance
in Hit and Hit@1 in Table 4. On the other hand,
the results demonstrate that for questions with
multiple answers, the corrected knowledge paths
can cover more possible answers, revealing why
CoG can significantly improve recall and F1 per-
formance in Table 5.

Impact of the Beam Width during Decoding.
During structured knowledge decoding, we in-
crease the beam width during decoding to allow
the LLM to generate more possible knowledge
paths. However, as shown in Figure 2 a, as the

beam width increases, the performance first im-
proves and then decreases. This is because intro-
ducing too many knowledge paths may mislead
the LLM with irrelevant knowledge. As shown in
Figure 2 b, correction plays a crucial role in im-
proving the quality of the knowledge paths. Di-
rectly using the knowledge paths generated by the
LLM cannot cover all the answers, leading to low
recall and F1. As a result, it requires a very large
beam width to ensure the performance.

3.4 Case Study

Case 1: Hallucination Entity. Case 1 shows
that when the LLM generates a knowledge path
from a question entity, it may suffer from halluci-
nation when completing the next-hop neighboring
entity. This is because the LLM may encounter
entities or knowledge they haven’t met before dur-
ing the fine-tuning stage. However, the attribute
information for the generated intermediate entity,
such as whether it is a person or a city, can con-
strain the generation process of the next relation.
In such cases, using the extracted logical queries,
CoG can easily identify hallucination errors in the
knowledge paths and correct them.

Case 2: Path Deficiency. Case 2 shows that the
LLM may overlook knowledge paths leading to
some possible answers. This is because there may
be possible path toward these answers, and for the
LLM, “retrieving” parametric knowledge through
generation is difficult to control directly. In this
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case, knowledge path correction improves the cov-
erage of answers by executing logical queries, en-
suring that the retrieved knowledge path encom-
pass more possible answers and enhancing the
completeness of the generated paths.

4 Related Work

Knowledge Graph Question Answering (KGQA)
aims to answer natural language questions by rea-
soning over structured KGs.

Semantic Parsing Methods. Semantic parsing
methods transform input questions into logical
queries executable over KGs. Neural Symbolic
Machines (NSM) (He et al., 2021a), SR+NSM
(Zhang et al., 2022), and NSM+h (He et al.,
2021a) adopt neural-symbolic models to map
questions into programs. QGG (Lan and Jiang,
2020) enhances logical form generation by in-
corporating constraints and extending relational
paths. RNG-KBQA (Ye et al., 2022) introduces
a ranker-generator framework for producing struc-
tured queries. ArcaneQA (Gu and Su, 2022) dy-
namically restricts the token space to control query
generation and reduce errors. Besides, Embed-
KGQA (Saxena et al., 2020) and TransferNet (Shi
et al., 2021) formulate multi-hop QA as a link
prediction problem. GRAFT-NET (Sun et al.,
2018) applies graph neural networks to aggregate
evidence from the KG. UniKGQA (Jiang et al.,
2023b) unifies retrieval and reasoning in a single
pre-trained framework.

LLM-based Methods Recent methods leverage
LLMs for KGQA, either by integrating retrieved
KG facts into reasoning steps or by guiding the
entire reasoning process. Self-Ask (Press et al.,
2023) decomposes complex questions into sub-
questions.  IR-CoT (Trivedi et al., 2023) in-
terleaves retrieval and reasoning via Chain-of-
Thought prompting. KD-CoT (Wang et al., 2023)
grounds each reasoning step in KG facts to re-
duce hallucinations. DoG (Li et al., 2024) itera-
tively retrieves and reasons over relevant knowl-
edge. Interactive-KBQA (Xiong et al., 2024)
frames QA as a multi-turn interaction with the KG.
GoG (Xu et al., 2024) treats the LLLM as both a rea-
soner and a generator of missing KG links. More-
over, StructGPT (Jiang et al., 2023a) and ToG
(Sun et al., 2024) leverage LLMs as agents to simu-
late structured reasoning over KGs. EffiQA (Dong
et al., 2025) combines LLMs with a KG explo-

ration module to improve efficiency and faithful-
ness. RoG (Luo et al., 2024) fine-tunes LLMs to
jointly generate queries and reason over retrieved
knowledge paths. KG-CoT (Zhao et al., 2024b)
incorporates KG evidence into each step of CoT
reasoning. GNN-RAG (Mavromatis and Karypis,
2024) locates answer candidates using GNNs and
retrieves paths supporting the answers.

5 Conclusion

In this paper, we propose a novel Correcting
on Graph Framework to establish faithful logical
queries that connect LLMs and KGs directly. We
first fine-tune the LLM to recite factual knowl-
edge paths, enabling it to generate fact-aware log-
ical queries for the question. Then, we combine
logical queries with KGs to correct the hallucina-
tion entity and path deficiency, ensuring the re-
liability and comprehensiveness of the retrieved
knowledge. Extensive experiments demonstrate
that CoG achieves a high answer hit rate and ex-
hibits competitive F1 performance for complex
multi-hop questions.

Limitations

Although generating logical queries to connect
LLMs with KGs can effectively reduce frequent in-
teractions between them, compared to the retrieve-
then-read paradigm, generating logical queries of-
ten requires additional fine-tuning of the LLM
to ensure it can accurately output the relation
name correctly. On the other hand, fine-tuning
is also necessary for LLMs to learn the spe-
cific schema of the KG. For example, retrieving
a person’s spouse might seem like a single-hop
query, but it actually is a 2-hop query in Free-
base. For instance, retrieving Richard Nixon’s
wife involves a 2-hop knowledge path: Richard
Nixon — people.person.spouse_s — m.02h98gq
— people.marriage.spouse — Pat Nixon, where
“m.02h98gq” is an intermediate entity. Therefore,
fine-tuning is essential for the LLM to learn the
unique schema of a specific KG.
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A Detailed Implementation

The dataset used for knowledge reciting to fine-
tune the LLM is composed of the training sets
from both WebQSP and CWQ. We perform a
breadth-first search starting from each question en-
tity to find the shortest path to the answer entity,
and then use these shortest paths as the ground
truth paths of the question for fine-tuning. We
fine-tune the Llama 3.1-8B-instruct for structured
knowledge decoding. During fine-tuning, the
batch size is set to 4, the learning rate to 2e-5,
the warmup ratio to 0.03, the learning rate sched-
uler type to cosine, and the number of epochs to 3.

~

N
Instruction:

Please generate a knowledge path starting from the g
uestion entity to possible answers for the following
question.

Input:

Question:

# Qusetion

Question Entity:

# Question Entity 1, # Question Entity 2, ..., # Que
stion Entity k

Output:
# Knowledge Path

L J/

Figure 3: The prompt template for structured knowl-
edge decoding.

We use two NVIDIA A100 (80GB) GPUs for fine-
tuning. For inference, we utilize the OpenAl API
to call ChatGPT and GPT-4 for answer prediction.

In Table 7, we introduce Hitquestion and Hitanswer
to further evaluate the answer hit rate of the knowl-
edge paths.Hitgyestion 1S used to measure whether
a knowledge path contains at least one correct
answer. If the path contains a correct answer,
Hitquestion 18 1, otherwise it is 0. Hityygwer mea-
sures how many correct answers are contained in
the knowledge path. For each correct answer, if
it is in the path, Hitypewer is 1, otherwise it is O.
For example: if a question has three correct an-
swers and the generated path only contains two of
them, Hitgyestion Would be 1 because the path con-
tains at least one correct answer. Hit,,gwer Wwould
be 1 for the two correct answers in the path, and
0 for the missing one. In this way, Hitguestion and
Hit,nswer reflect the effectiveness of the knowledge
path from different perspectives.

B Prompts

Figures 3 and 4 show the prompt templates we
used in CoG.

During fine-tuning, we construct the training
dataset using the prompt template shown in Figure
3. On one hand, we treat the LLM as a paramet-
ric knowledge base and force the LLM to memo-
rize these knowledge facts during fine-tuning. In
this way, LLM can generate possible knowledge
paths using its stored parametric knowledge when
handling with knowledge-intensive questions. On
the other hand, we aim to make the LLM generate
structured output which in the form of a continu-
ous knowledge paths. In this way, the LLM can
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( Instruction:

Please answer the following question based on the
knowledge paths. Please only return the answers,
with one answer per line.

Input:

Knowledge Paths:

# Knowledge Path 1 ...
# Knowledge Path 2 ...

# Knowledge Path n

Question:
# Question

Output:
# Answer 1
# Answer 2

# Answer k
\ y,

Figure 4: The prompt template for joint reasoning with
knowledge paths.

start from the question entity for path generation.
After generating the first relation, it treats the pro-
cess of generating the next entity as a "fill in the
blank" task. This approach prompts the LLM to
utilize its parametric knowledge. thereby prompt-
ing the LLM to utilize its internal knowledge for
question answering. The generated entities also
implicitly carry various attributes (such as a per-
son or a city), and these attributes help constrain
the generation of the next relation, preventing the
process from being overly flexible and reducing
the occurrence of hallucination errors.

After correcting the knowledge paths, we com-
bine the input question and corrected knowledge
paths to allow the LLM to perform joint reason-
ing. By having the LLM output one answer per
line during answer prediction, we make it easier
to extract the answers generated by the LLM for
calculating the F1 scores.
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