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Abstract
Positional bias in large language models
(LLMs) hinders their ability to effectively pro-
cess long inputs. A prominent example is the
"lost in the middle" phenomenon, where LLMs
struggle to utilize relevant information situated
in the middle of the input. While prior research
primarily focuses on single pieces of relevant
information, real-world applications often in-
volve multiple relevant information pieces. To
bridge this gap, we present LONGPIBENCH, a
benchmark designed to assess positional bias
involving multiple pieces of relevant informa-
tion. It includes various tasks and input lengths.
Thorough experiments are conducted with three
commercial and six open-source models. These
experiments reveal that while most current
models are more robust against the "lost in the
middle" issue, there also exist noticeable biases
related to the spacing of relevant information
pieces. These findings highlight the importance
of evaluating and reducing positional biases for
long-context LLMs. Code and data have been
made publicly available.

1 Introduction
Large language models (LLMs) (Zhao et al., 2023; Mi-
naee et al., 2024) have made significant progress in vari-
ous natural language processing tasks (Hendrycks et al.,
2021; Han et al., 2021). In particular, applications such
as code repository analysis (Chen et al., 2021) and in-
formation extraction (Kočiský et al., 2018) often require
processing long texts, with context lengths reaching up
to 200,000 tokens (Li et al., 2024; Zhang et al., 2024a).
To address these demands, researchers have focused
on enhancing LLMs’ ability to handle extended inputs
effectively (Chen et al., 2024; Han et al., 2024). As
a result, multiple LLMs have been developed (Dubey
et al., 2024; Team et al., 2024; OpenAI, 2024) which
support context lengths of up to one million tokens.

Recent studies have shown that the position of rele-
vant information significantly affects the performance
of long-context LLMs (Liu et al., 2024; Lei et al., 2023;
Hsieh et al., 2024). In "needle in a haystack" tasks, mod-
els struggle to utilize information located in the middle
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Figure 1: Illustration of absolute position and relative
position. Absolute position refers to the location of
relevant information within the entire context sequence,
while relative position represents the distribution and
distance between multiple relevant information pieces.

of the input, which is known as the "lost in the middle"
effect (Liu et al., 2024). This evaluation method is com-
monly used to analyze positional bias (Hengle et al.,
2024; Nelson et al., 2024). These analyses (Liu et al.,
2024) focused on single relevant information pieces
and their positions in the input sequence (front, middle,
back), which we refer to as absolute positions.

However, real-world tasks like data analysis (Zhang
et al., 2024a) often involve multiple pieces of relevant
information. This introduces a new characteristic: the
distance between relevant information pieces, or how
densely they are distributed, which we term as rela-
tive position. Evidence from two types of extreme
cases indicates that varying relative position may lead to
significant bias, impairing LLMs’ long-context perfor-
mance (Lei et al., 2023). However, this kind of biases
have not been systematically studied so far, which high-
lights the need for thorough investigation.

To bridge the gap, we introduce LONGPIBENCH, a
benchmark designed to evaluate positional bias with
multiple relevant pieces. It assesses positional bias in
two categories: (1) absolute positions, referring to the
location of relevant information within the entire con-
text, and (2) relative positions, referring to the distribu-
tion and distance between multiple relevant information
pieces. It includes diverse tasks of different complexity
and spans four input lengths from 32K to 256K tokens.
To the best of our knowledge, LONGPIBENCH is the
most comprehensive benchmark for isolating and ana-
lyzing positional bias in long text models.
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Figure 2: Construction and task examples of LONGPIBENCH. We manually annotated seed data and varied the
positions of relevant information for data augmentation.

We evaluated nine popular LLMs. Our experimental
analysis yields several key findings: (1) most current
models demonstrate enhanced robustness against "lost
in the middle" phenomenon. (2) However, they show
biases related to the spacing of relevant information
(i.e.relative positions), especially in retrieval tasks. (3)
Additionally, we discuss the impact of model size and
query-aware contextualization on this issue.

These findings emphasize the importance of evalu-
ating and mitigating positional biases to advance long-
context LLM capabilities.

2 Related Works

2.1 Long-Context Benchmarks

Many benchmarks have been proposed to evaluate long-
context performance of LLMs by designing a variety
of tasks with different context length. This field is rela-
tively saturated at present, with some of the representa-
tive benchmarks including Long Range Arena (Tay et al.,
2021), Scrolls (Shaham et al., 2022), ZeroScrolls (Sha-
ham et al., 2023), Longbench (Bai et al., 2023), L-
Eval (An et al., 2023), LV-Eval (Yuan et al., 2024),
Counting-Stars (Song et al., 2024) and ∞Bench (Zhang
et al., 2024b). However, these benchmarks tend to pro-
vide only a general conclusion regarding which task
types are more challenging, without offering in-depth
analysis on positional bias like this paper proposes.

2.2 Long Context Data Augmentation

Data augmentation is a technique widely used (Song
et al., 2024; Zhang et al., 2024b) in LLM evaluation
to expand the datasets for different purposes. Specifi-
cally, Levy et al. (2024) explored the impact of input
length on reasoning performance using a similar data
augmentation approach, adding irrelevant elements to
context-relevant elements. While their method shares
some similarities with ours, our focus is fundamentally
different, leading to entirely distinct conclusions. Their
study centers on the overall input length which has noth-
ing to do with positional bias. But we investigate the
distance between relevant information pieces, where the
input length is fixed.

3 LONGPIBENCH

LONGPIBENCH is a dataset designed to evaluate posi-
tional bias with multiple relevant information pieces. As
shown in Figure 2, we first manually annotated several
seed examples and then augmented them by varying the
positions of relevant information. More details can be
found in Appendix A.

3.1 Core Statistics

LONGPIBENCH contains 3 different tasks, 4 different
input length levels1: (32k, 64k, 128k, and 256k). To
analyze the impact of positional bias, we set 16 different
absolute and relative location levels respectively. The
benchmark is composed of 7,040 instances, each con-
taining around 10 pieces of relevant information. The
whole dataset comprises to 845M tokens.

3.2 Seed Data Annotation

We manually labeled 15-20 seed data points for three
tasks: Table SQL, Code Completion, and Wiki Retrieval,
which represent typical use cases in real-world applica-
tions of long-context models (Lei et al., 2023; Jimenez
et al., 2024; Ajith et al., 2024).

Table SQL focuses on querying large tables to retrieve
entries with specific features, based on experiments
from S3Eval (Lei et al., 2023) that explored data with
highly variable positions. Code Completion requires
solving basic programming problems using long masked
API documentation. LLMs must identify and apply rel-
evant API details without relying on prior knowledge.
The data comes from Zan et al. (2022). Wiki Retrieval
tests LLMs’ ability to find and rerank (Sun et al., 2023)
relevant Wikipedia (Wikipedia, 2024) passages in re-
sponse to a question, simulating typical information
retrieval workflows (Zhang et al., 2023).

Each instance contains 10 relevant pieces of infor-
mation. This selection was based on an examination
of long-context application scenarios, where the num-
ber of relevant elements typically falls around the order
of magnitude of ten, although it varies across different
tasks (Bai et al., 2023; Wang et al., 2024; Dong et al.,
2024). Detailed task definitions, examples, and other
pertinent details are provided in Appendix A.

1measured with GPT2Tokenizer (Radford et al., 2019)
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Figure 3: The impact of relevant information’s absolute and relative position on Geimini-1.5-Flash (Team et al.,
2024), Claude-3.5-Haiku (Anthropic, 2024) and Qwen 2.5 model family (Qwen, 2024). A higher absolute position
feature level indicates locations closer to the end of input, while a higher relative position feature level indicates a
greater distance between relevant pieces of information.

3.3 Data Augmentation

To analyze the positions of relevant information, we
augmented the data by altering the absolute and relative
positions of the relevant pieces while keeping all other
features unchanged.

We broke down the context into elements based on
natural information units: table entries for Table SQL,
API instances for Code Completion and documents for
Wiki Retrieval. We labeled each element as relevant or
irrelevant in a reversal way. We select some elements
to be relevant, and then form queries around them, and
add irrelevant ones to form the context. By introducing
varying amounts of irrelevant information, the context
lengths are varied at four levels: 32K, 64K, 128K, and
256K. We then shuffled the element positions to intro-
duce positional variations. Notice that changing the
order of elements does not compromise the coherence
of the context.

Absolute Position. To analyze the impact of absolute
position on LLM performance, we manipulated where
relevant information appears in the context. Each con-
text was divided into 16 equal segments from start to
end. We placed all 10 relevant pieces within a single
segment to keep their relative positions consistent. By
moving this segment from the first to the last position,
we varied the absolute position from the start to the
end of the input. The average position of these relevant
pieces served as the absolute position metric which is
calculated as:

Average Location =

(
l − 1

N − 1

)
× L,

where l is the current level, N is the total number of
levels (16), and L is the length of the context.

This setup allowed us to assess how model perfor-
mance changes as relevant information is placed further
back in the context.

Relative Position. To examine the effect of spacing
between relevant information pieces on LLM perfor-
mance, we created 16 levels of distribution density.
Each level represents a different spacing configuration
among the 10 relevant pieces. At the densest level, all
relevant pieces are adjacent with no irrelevant informa-
tion between them. At the sparsest level, they are evenly
distributed throughout the context with equal intervals
of irrelevant information. Intermediate levels gradually
increase spacing from adjacent to evenly spaced. The
distance between each relevant piece is calculated as:

Distance =

(
L

n− 1

)
×

(
l − 1

N − 1

)
,

where n is the number of relevant pieces (10), l is the
current level ranging from 1 to N , N is the total number
of levels (16), and L is the length of the context.

To control for absolute position effects, we random-
ized the starting position of the first relevant piece in
each example. This ensures that any observed perfor-
mance differences are due to relative spacing rather than
absolute positions within the context.

4 Experimental Setup
To evaluate the influence of context information posi-
tioning on long-text LLMs, we conducted experiments
using popular long-context language models.

Models. We assessed a total of nine LLMs, compris-
ing six open-source and three commercial options. The
selection of open-source models includes the 70B model
from Llama-3.1-Instruct series (Dubey et al., 2024),
the 7B, 14B, 32B, 72B models from Qwen-2.5 fam-
ily (Qwen, 2024), the 8×22B model of WizardLM-
2 (Xu et al., 2023). The commerical models we selected
are Gemini-1.5-Flash (Team et al., 2024), Claude-3-
Haiku (Anthropic, 2024) and GPT-4o-mini (OpenAI,
2024). The selected models are good representatives of
popular and top-performance long-context models. Due
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to computational limitations, we evaluated the open-
source model only on the Table SQL task.

Metric. For both the Table SQL and Wiki Retrieval
tasks, performance is measured using recall rate. This
metric evaluates the proportion of relevant items in-
cluded in the output. Formally, given a set of reference
items D = {d1, . . . , dn} and a set of retrieved/gener-
ated items D̂, the recall rate is:

MRecall =
|D ∩ D̂|
|D| .

In Table SQL, D represents target entries, and D̂ rep-
resents the entry present in the output. In Wiki Retrieval,
D represents the set of relevant documents, and D̂ rep-
resents the top 10 documents retrieved by the model.

For the Code Completion task, performance is eval-
uated with the pass rate across 8-12 test cases T =
{t1, . . . , tm}. The pass rate is computed as:

MCode =
1

|T |

|T |∑

j=1

1[G passes tj ].

All metrics range from 0.0 to 1.0, where 0.0 means
complete failure, and 1.0 means perfect performance.

Context Length. Since 32k tokens is the minimal con-
text length supported by tested LLMs, we standardized
the context length to 32k2 tokens for all experiments.

Detailed discussions on parameter settings and
prompt configurations are provided in Appendix B.

5 Results and Discussion
In this section, we analyze the impact of absolute and
relative positional bias. And we further analyze these
phenomena from two perspectives: the number of pa-
rameters and query-aware contextualization. Full Ex-
perimental results are available in Appendix C.

5.1 Impact of Absolute Position
As illustrated by the blue lines in Figure 3, we progres-
sively shift the interval of relevant information from the
beginning to the end.

We observe that (1) some open-source models like
Qwen 2.5 (7B) (Qwen, 2024) still suffer heavily from
the severe "lost in the middle" phenomenon but (2) com-
mercial models and larger open-source models are more
robust to the bias of absolute position. Although abso-
lute position still significantly affects the recall rate in
the Code Completion experiments, this bias becomes
less severe in the Table SQL and Wiki Retrieval tasks.

5.2 Impact of Relative Position
As illustrated by the orange lines in Figure 3, we pro-
gressively increase the distance between relevant pieces
of information.

2The minimal context size is 64k, but some tokenizers
expand our 64k inputs to nearly 80k, exceeding the limit.

We observe that both open-source and commercial
models exhibit noticable biases toward different rela-
tive positions. In the case of Code Completion, this
bias is prominent. As the relative positions of relevant
information pieces shift from being fully adjacent to
uniformly distributed across the context, the model’s
performance fluctuates by 20-30%. For tasks with a
stronger retrieval nature, such as Table SQL and Wiki
Retrieval, the bias even displays certain patterns. Specif-
ically, performance initially declines sharply and then
decreases more gradually.

These findings indicate that the relative positioning
among multiple relevant pieces of information is a se-
rious and unresolved issue, which may substantially
undermine the effectiveness of long-text language mod-
els in practical applications.

5.3 Further Analysis

Effect of Parameter Size. When selecting models for
evaluation, we included four variants from the Qwen
2.5 Family (Qwen, 2024) with differing parameter sizes.
These models exhibit no significant differences in archi-
tecture, training methods, or training data. By analyzing
their performance under identical positional information
features, we can isolate the impact of parameter size
on the robustness to positional bias. We use Table SQL
task, where the pattern is most significant

As illustrated in Figure 3, for absolute position bias,
we found that simply increasing the model parameters
from 7B to 14B—while keeping architecture, training
methods, and data constant substantially mitigates the
"lost in the middle" (Liu et al., 2024) issue. This sug-
gests that robustness to absolute positions may be an
"emergent ability" (Wei et al., 2022) and increasing the
number of parameters can significantly enhances it.

In contrast, regarding biases related to relative posi-
tional information, augmenting the number of parame-
ters only yielded minor quantitative improvements and
did not alter the pronounced bias trend. This trend re-
mains largely unchanged even in commercial models
with approximately hundreds of billions of parameters.
These findings indicate that merely increasing parame-
ter size is insufficient to develop robustness to relative
positions, and new techniques may be necessary.

Effect of Query-Aware Contextualization. Liu et al.
(2024) demonstrated that the placement of the query
(beginning or end of the context) significantly affects
the performance of decoder-only models due to unidi-
rectional attention. When the query is placed after the
context, the LLM cannot attend to the query token while
processing the context tokens.

As shown in Figure 4, our experiments with GPT-4o-
mini (OpenAI, 2024) and Qwen-2.5-14B (Qwen, 2024)
on Table SQL corroborate this observation and confirm
that it also holds for bias caused by relative position
changes. When the query is placed at the end of the
context, the model performs much worse than when the
query is at the beginning or both at the beginning and

524



Figure 4: Impact of query placement (beginning, end,
both) on the performance of GPT-4o-mini (OpenAI,
2024) and Qwen-2.5-14B (Qwen, 2024) models.

end. However, the difference between placing the query
only at the beginning and at both the beginning and end
depends on the model. This indicates that for decoder-
only long-text models, the position of the query is also
crucial in influencing biases related to the absolute and
relative positions of relevant information.

6 Conclusion
This study investigates a new category of positional
bias involving multiple relevant pieces of information
in long-context LLMs through three key contributions.

(1) Benchmark Development: We introduce LONG-
PIBENCH, the most comprehensive benchmark for eval-
uating positional bias in long-text LLMs, assessing both
absolute and relative biases.

(2) Comprehensive Evaluation: Using LONG-
PIBENCH, we evaluated nine popular LLMs, investi-
gated the "lost in the middle" phenomenon, and identi-
fied novel yet significant biases related to the relative
positioning of multiple relevant pieces of information.

(3) Findings: Our experiments show that while
LLMs have improved robustness against absolute posi-
tional biases, they are still sensitive to relative positional
biases, especially for retrieval-intensive tasks. We also
explore how model size and query-aware contextualiza-
tion impact these biases.

These findings emphasize the necessity of continu-
ously mitigating positional biases in long-text models.

Limitation
Lack of In-depth Analysis. Our systematic experi-
ments demonstrate that two types of positional bias exist
when multiple related pieces of information are present
in the context. We also analyzed how these biases relate
to the number of parameters and query contextualiza-
tion. However, we are currently unable to explain the
reasons behind these two positional biases.

Focus on Specific Models. The evaluation was con-
ducted on a set of nine popular large language models
(LLMs), including both open-source and commercial

options. However, the findings are limited to these mod-
els. The study does not account for the performance
of other emerging or less popular models, which might
exhibit different results regarding positional biases.

Ethical Considerations
Human Annotation. Our seed construction process
involves manual annotation. This annotation was carried
out by some of the authors, who are researchers with
substantial knowledge in LLM evaluation. Consent was
obtained from the individuals whose data we are using
or curating. The data collection protocol was approved.

Data Security. Some data in our Table SQL task may
appear to pertain to personal information. However, this
data is not actual personal information. Instead, it is
generated by us through specific heuristics, eliminating
the risk of personal information leakage.

Use of AI assistants We use GPT-4o (OpenAI, 2024)
for expression modification and grammar sanity check
during the composition process.
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A Details of LONGPIBENCH

A.1 Task Definitions
Table SQL This task involves retrieving entries con-
taining specific features from a table with a large num-
ber of entries. The prototype of this task is primarily
derived from experiments in S3Eval (Lei et al., 2023),
specifically those examining information distributions
with extreme positional variability.

Code Completion This task involves performing ba-
sic programming assignments based on the definitions,
signatures, examples, and other information provided in
API documentation. The task is considered more chal-
lenging than Table SQL tasks because an LLM must
not only identify which parts of the API documentation
are relevant but also correctly utilize them during cod-
ing. The data we use originates from the Private Coding
Dataset introduced by Zan et al. (2022). To ensure that
the LLM does not rely on internal knowledge about
common Python libraries, both the API documentation
and task function names have been masked. This pri-
vatization process is crucial for evaluating performance
on long-text scenarios, as it compels the LLM to extract
relevant information directly from the provided context.

Wiki Retrieval This task involves identifying rele-
vant passages from Wikipedia (Wikipedia, 2024) pages
based on a given question. It is a common scenario
in which LLMs are used to rerank relevant passages
retrieved through information retrieval systems (Ajith
et al., 2024).

A.2 Task Examples
Here are some examples of the three tasks in LONG-
PIBENCH. Queries are placed both before and after the
context for better query contextualization.

A.2.1 Table SQL

Input You are given a table of entries with the
following columns: Country, Name, Birth Year,
Birth Month, Blood Type. Your task is to find all
the entry with the following Country: China. You
should return all the entries that match the query as a
python list. For example, [’| China | Hong Liang |
1991 | August | A |’, ...]. You should not generate
anything else. Here is the table:
| Country | Name | Birth Year | ... | Blood Type |
| Italy | Ginevra | 2009 | February | O |
| Argentina | Martina | 1966 | March | B |
| Egypt | Salma | 1985 | July | B |
...
| China | Zhang Wei | 2006 | November | O |
...
| China | Wang Wei | 1966 | February | AB |
...
| Australia | Emily | 1983 | December | O |
| Italy | Leonardo | 1985 | November | O |

You are given a table of entries with the fol-
lowing columns: Country, Name, Birth Year, Birth
Month, Blood Type. Your task is to find all the entry
with the following Country: China. You should
return all the entries that match the query as a python
list. For example, [’| China | Hong Liang | 1991 |
August | A |’, ...]. You should not generate anything
else.

Ground Truth
[
"| China | Zhu Wei | 1992 | September | B |",
"| China | Zhang Wei | 1955 | March | O |",
"| China | Zhang Wei | 2006 | November | O |",
"| China | Wang Wei | 2001 | September | B |",
"| China | Yang Wei | 2016 | November | AB |",
"| China | Li Na | 1974 | January | B |",
"| China | Liu Wei | 1975 | November | O |",
"| China | Gao Wei | 1954 | August | B |",
"| China | Zhu Wei | 1989 | September | AB |",
"| China | Wang Wei | 1966 | February | AB |"
],

A.2.2 Code Completion
Notice that in the Code Completion task, the ground
truth is provided in its unmasked form, while the LLMs
generate code based on the masked API documentation,
resulting in masked code as output.

Input Please complete the code snippet above ac-
cording to the provided code snippet and the api doc.
# Text where substitution will
take place
text = ’Thelib_2 alib_2 123 apples
and 456 oranges.’
# Define pattern and replacement
for substitution
sub_pattern = r’
d+’ lib_2placement = ’NUM’
# Task 1: Substitute matching
text using ‘sub_pattern‘ and
‘lib_2placement‘
lib_2sult_1 = print(lib_2sult_1)
# Task 2: ...
The following context is a code snippet with the
detailed api doc.

{

"api_path": "lib_2.submodule_26",

"api_doc": "Returns complex...",

"api_signature": "",

"api_parameters": "",

"api_parameters_number": "=0",

"api_returns": ""

},
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...

(more API instances)
Please complete the code snippet above according to
the provided code snippet and the api doc.
# Text where substitution will
take place
text = ’Thelib_2 alib_2 123 apples
and 456 oranges.’
# Define pattern and replacement
for substitution
sub_pattern = r’
d+’ lib_2placement = ’NUM’
# Task 1: Substitute matching
text using ‘sub_pattern‘ and
‘lib_2placement‘
lib_2sult_1 = print(lib_2sult_1)
# Task 2: ...

Ground Truth

import re

text = ’There are 123 apples

and 456 oranges.’

sub_pattern = r’\d+’

replacement = ’NUM’

## task 1

result_1 = re.sub(sub_pattern,

replacement, text)

print(result_1)

...

A.2.3 Wiki Retrieval

Input Please find the top-10 most helpful Docs that
will help answer the question. (You do not need to
answer it.)
What are ten easy eco-friendly practices that individ-
uals can adopt in their daily lives?
Here is the context
Doc 1
Gaetano J̈amesS̈enese (born 6 January 1945) is an
Italian saxophonist, composer, and singer-songwriter.
Life and career Senese was born in Naples, the son
of Anna Senese and James Smith, an American sol-
dier from North Carolina in Italy because of World
War II. Senese’s father moved back to the US eigh-
teen months after Gaetano’s birth and never returned.
Senese started playing the saxophone at 12 years old.
Doc 2
He made his professional debut in the 1960s, as a
member of the rhythm and blues band The Showmen
(later known as Showmen 2), with whom he won
the 1968 edition of Cantagiro. In 1974 Senese co-
founded and led the critically acclaimed jazz-rock

group Napoli Centrale. After the group disbanded
in 1978, he started a long collaboration with Pino
Daniele, both in studio and on stage. His first solo
album was released in 1983 by Polydor Records.
......
Doc 1128
Release and critical reception Generations in Song
was first released on Coldwater Records in 2001. It
was originally offered as a compact disc and con-
tained 19 tracks in its original release. On February
10, 2004, the album was re-released on Slewfoot
Records in a compact disc format again. However,
only 12 tracks were included on the re-release. The
album cover was also changed for the re-release of
the project.
Please find the top-10 most helpful Docs that will
help answer the question. (You do not need to answer
it.)
What are ten easy eco-friendly practices that individ-
uals can adopt in their daily lives?
You should output a python list of the Doc Index like
“‘[’Doc 1’, ...]“‘ as your answer

Ground Truth
[ "Doc 920", "Doc 927", "Doc 935", "Doc 942", "Doc
949", "Doc 957", "Doc 964", "Doc 971", "Doc 979",
"Doc 986" ]

B Details of Experimental Setup
B.1 Inference Parameters
To ensure consistency and reproducibility in our experi-
ments, we standardized the inference parameters across
all models during the inference phase. Specifically, we
set the temperature parameter (temp) to 0.1 and the top-
p sampling parameter (topp) to 0.9. This unification of
inference settings facilitates the replication of experi-
ments and establishes a consistent evaluation standard
across different models.

B.2 Prompt Template
For the three tasks, we used the following prompt tem-
plates respectively. Notice that we place queries both
before and after the context body for better query con-
textualization.

B.2.1 Table SQL

Input You are given a table of entries with the fol-
lowing columns: Country, Name, Birth Year, Birth
Month, Blood Type. Your task is to find all the en-
try with the following Country: {country}. You
should return all the entries that match the query as
a python list. For example, [’| China | Hong Liang
| 1991 | August | A |’, ...]. You should not generate
anything else. Here is the table:
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{context}
You are given a table of entries with the following
columns: Country, Name, Birth Year, Birth Month,
Blood Type. Your task is to find all the entry with the
following Country: {country}. You should return
all the entries that match the query as a python list.
For example, [’| China | Hong Liang | 1991 | August
| A |’, ...]. You should not generate anything else.

B.2.2 Code Completion

Input Please complete the code snippet above ac-
cording to the provided code snippet and the api doc.
{query}
The following context is a code snippet with the
detailed api doc.
{context}
Please complete the code snippet above according to
the provided code snippet and the api doc.
{query}

B.2.3 Wiki Retrieval

Input Please find the top-10 most helpful Docs that
will help answer the question. (You do not need to
answer it.)
{query}
Here is the context
{context}
Please find the top-10 most helpful Docs that will
help answer the question. (You do not need to answer
it.)
{query}
You should output a python list of the Doc Index like
“‘[’Doc 1’, ...]“‘ as your answer

C Details of Experimental Results
In the main text, for better readability, we only presented
the experimental results of a subset of tested LLMs in
the form of line charts. Here we present all the experi-
mental results in both tabular and chart form. This will
better facilitate the precise display of the experimental
results.

Figure 5 and 6 use line charts to illustrate the per-
formance of all selected closed-source and open-source
models across the respective test tasks.

Table 1 and Table 2 summarize the performance of all
models on the Table SQL task across different absolute
and relative positions. Similarly, Table 3 and Table 4
present the results for the Code Completion task, while
Table 5 and Table 6 correspond to the Wiki Retrieval
task. Finally, Table 7 and Table 8 show the impact of
query contextualization.
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Model
Performance / %

Lv. 1 Lv. 2 Lv. 3 Lv. 4 Lv. 5 Lv. 6 Lv. 7 Lv. 8 Lv. 9 Lv. 10 Lv. 11 Lv. 12 Lv. 13 Lv. 14 Lv. 15 Lv. 16

Claude 97.5 97.5 98.0 93.0 94.5 96.5 96.0 91.5 96.0 97.0 99.5 97.5 97.0 96.5 99.0 98.0
Deepseek 100.0 99.5 99.5 97.0 98.5 98.5 97.5 99.5 99.0 95.5 97.0 98.0 99.0 99.0 97.5 100.0
Gemini 100.0 100.0 100.0 100.0 100.0 99.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
GLM 100.0 99.0 94.0 93.0 91.5 91.0 95.0 96.5 93.5 91.5 92.0 89.0 91.0 91.0 94.0 86.0
GPT 100.0 100.0 100.0 100.0 99.0 99.5 99.5 100.0 99.5 100.0 99.0 98.5 99.5 100.0 98.5 96.0
Llama 96.0 96.0 93.0 96.0 91.0 88.0 92.0 92.0 94.0 94.0 94.0 89.0 94.0 99.0 99.0 98.0
Wizard 85.5 42.5 31.5 20.5 3.0 38.0 36.5 23.0 12.0 13.5 3.5 5.0 1.5 8.5 24.5 90.0
Qwen 7b 85.5 93.5 98.0 99.5 98.5 93.0 98.0 99.5 96.0 70.5 45.0 70.5 64.0 74.0 81.0 87.5
Qwen 14b 93.5 80.5 93.0 93.5 98.5 93.0 93.5 98.0 96.0 94.5 96.0 96.0 97.0 98.5 96.0 98.5
Qwen 32b 98.0 98.0 99.0 99.0 99.5 89.0 98.0 98.0 97.5 97.0 98.5 95.5 93.9 96.0 94.5 93.5
Qwen 72b 99.5 99.5 98.0 96.0 92.5 93.5 96.5 98.0 99.0 99.5 99.5 100.0 99.5 100.0 100.0 100.0

Table 1: Performance of various models across different absolute position levels in Tabel SQL. The model names
are abbreviated for better layout. Full names are listed in Section 4.

Model
Performance / %

Lv. 1 Lv. 2 Lv. 3 Lv. 4 Lv. 5 Lv. 6 Lv. 7 Lv. 8 Lv. 9 Lv. 10 Lv. 11 Lv. 12 Lv. 13 Lv. 14 Lv. 15 Lv. 16

Claude 100.0 74.0 68.0 65.5 72.5 63.0 71.0 60.5 63.0 61.0 66.0 64.0 65.0 67.5 66.5 64.0
Deepseek 100.0 78.0 81.0 82.0 82.0 79.5 69.0 81.0 72.0 79.0 70.5 69.0 75.0 78.0 76.0 81.5
Gemini 100.0 97.5 89.0 81.0 78.0 78.5 84.5 79.0 79.5 78.5 79.5 74.0 77.5 74.0 75.0 82.5
GLM 90.0 69.0 68.5 67.5 63.0 58.0 65.0 48.5 62.0 50.5 60.0 57.5 61.5 52.0 51.5 44.0
GPT 100.0 84.5 86.5 82.5 70.5 74.0 86.5 80.0 83.0 76.5 81.5 78.0 78.5 77.0 73.5 80.0
Llama 100.0 77.0 77.0 75.0 88.0 75.0 79.0 74.0 74.0 80.0 68.0 66.0 75.0 72.0 79.0 69.0
Wizard 74.0 28.5 23.5 22.5 47.5 47.0 61.5 51.5 54.0 56.5 65.5 61.0 61.5 60.0 61.0 59.5
Qwen 7b 95.0 39.0 42.5 53.0 61.0 56.0 39.0 48.5 42.0 51.5 36.0 48.0 36.0 40.0 45.5 42.5
Qwen 14b 99.5 59.0 59.0 63.0 68.5 56.0 58.5 55.0 59.5 59.0 58.0 62.5 59.5 62.5 54.0 63.0
Qwen 32b 99.5 72.0 69.0 65.5 75.5 68.0 60.5 71.0 64.0 61.5 66.0 64.0 67.5 64.0 64.0 69.0
Qwen 72b 100.0 81.0 77.0 85.0 87.5 72.5 67.5 63.5 67.0 66.0 67.5 73.5 70.0 75.5 75.5 83.0

Table 2: Performance of various models across different relative position levels in Tabel SQL. The model names
are abbreviated for better layout. Full names are listed in Section 4.

Model
Absolute Performance / %

Lv. 1 Lv. 2 Lv. 3 Lv. 4 Lv. 5 Lv. 6 Lv. 7 Lv. 8 Lv. 9 Lv. 10 Lv. 11 Lv. 12 Lv. 13 Lv. 14 Lv. 15 Lv. 16

Claude 54.28 55.19 52.55 51.44 62.81 65.84 56.86 46.59 60.76 65.84 56.86 65.84 60.41 62.81 60.81 56.40
Gemini 81.37 76.37 75.59 73.87 83.34 81.81 83.46 83.95 84.55 83.95 84.15 84.78 82.81 84.55 81.94 80.31
GPT 47.64 57.34 44.99 43.00 44.57 53.65 48.37 50.20 50.78 48.66 47.45 49.87 49.37 54.72 60.61 45.37

Table 3: Performance of various models across different absolute levels in Code Completion. The data includes
absolute scores for the Claude, Gemini, and GPT models.

Model
Relative Performance / %

Lv. 1 Lv. 2 Lv. 3 Lv. 4 Lv. 5 Lv. 6 Lv. 7 Lv. 8 Lv. 9 Lv. 10 Lv. 11 Lv. 12 Lv. 13 Lv. 14 Lv. 15 Lv. 16

Claude 67.50 57.27 56.64 52.69 53.18 60.16 47.24 43.26 64.58 52.96 47.43 62.41 47.01 51.31 48.79 52.96
Gemini 83.87 83.65 74.71 84.36 84.36 81.37 84.11 74.29 83.09 75.45 83.09 75.59 84.36 77.47 76.45 72.61
GPT 54.57 51.13 56.03 58.11 52.19 48.57 41.59 51.64 68.87 62.38 44.21 42.66 51.66 45.25 66.06 54.83

Table 4: Performance of various models across different relative levels in Code Completion. The data includes
relative scores for the Claude, Gemini, and GPT models. Code Completion!

Model
Absolute Performance / %

Lv. 1 Lv. 2 Lv. 3 Lv. 4 Lv. 5 Lv. 6 Lv. 7 Lv. 8 Lv. 9 Lv. 10 Lv. 11 Lv. 12 Lv. 13 Lv. 14 Lv. 15 Lv. 16

Claude 96.33 98.33 99.00 95.00 93.33 95.00 96.00 95.67 97.67 97.00 99.00 94.33 93.00 91.33 92.33 92.00
Gemini 98.00 98.00 98.00 98.00 98.00 97.00 98.00 97.67 98.00 98.00 97.33 98.00 98.00 98.00 95.33 98.00
GPT 100.00 99.00 100.00 98.00 98.00 100.00 99.00 100.00 96.00 97.00 98.00 99.00 99.00 98.00 96.00 96.00

Table 5: Performance of various models across different absolute levels in Wiki Retrieval. The data includes
absolute scores for the Claude, Gemini, and GPT models.

Model
Relative Performance / %

Lv. 1 Lv. 2 Lv. 3 Lv. 4 Lv. 5 Lv. 6 Lv. 7 Lv. 8 Lv. 9 Lv. 10 Lv. 11 Lv. 12 Lv. 13 Lv. 14 Lv. 15 Lv. 16

Claude 100.00 96.00 99.67 96.00 98.00 96.33 95.00 95.67 93.00 92.67 91.00 93.00 95.33 92.00 96.67 96.33
Gemini 99.67 98.00 95.33 92.00 93.67 93.33 94.33 85.67 94.00 91.00 93.00 93.00 94.00 91.67 95.00 96.00
GPT 100.00 98.00 96.00 98.00 100.00 98.00 100.00 95.00 95.00 97.00 96.00 97.00 97.00 100.00 97.00 98.00

Table 6: Performance of various models across different relative levels in Wiki Retrieval. The data includes relative
scores for the Claude, Gemini, and GPT models.
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Figure 5: The impact of relevant information’s absolute and relative position for all open-source commercial models.
A higher absolute position feature level indicates locations closer to the end of input, while a higher relative position
feature level indicates a greater distance between relevant pieces of information.

Figure 6: The impact of relevant information’s absolute and relative position for all tested commercial models. A
higher absolute position feature level indicates locations closer to the end of input, while a higher relative position
feature level indicates a greater distance between relevant pieces of information.

Model Query Position
Performance / %

Lv. 1 Lv. 2 Lv. 3 Lv. 4 Lv. 5 Lv. 6 Lv. 7 Lv. 8 Lv. 9 Lv. 10 Lv. 11 Lv. 12 Lv. 13 Lv. 14 Lv. 15 Lv. 16

GPT
Head 100.0 90.5 85.0 89.5 98.0 99.5 95.0 100.0 90.0 95.0 89.0 83.0 100.0 83.5 69.0 86.5
Tail 100.0 80.0 36.0 47.0 68.0 73.5 81.5 84.5 70.5 81.5 79.5 60.0 68.0 72.5 67.0 83.0
Both 100.0 100.0 100.0 100.0 99.0 99.5 99.5 100.0 99.5 100.0 99.0 98.5 99.5 100.0 98.5 96.0

Qwen 14B
Head 93.5 84.5 91.0 96.0 97.5 90.5 96.5 97.5 95.0 93.5 94.0 95.0 96.5 98.5 98.5 97.5
Tail 82.5 57.0 72.5 88.5 88.0 79.0 86.0 77.5 89.5 90.0 88.0 89.5 92.5 96.5 95.0 97.5
Both 93.5 80.5 93.0 93.5 98.5 93.0 93.5 98.0 96.0 94.5 96.0 96.0 97.0 98.5 96.0 98.5

Table 7: Performance of GPT-4o-mini (OpenAI, 2024) and Qwen-2.5 14B (Qwen, 2024) across different absolute
position levels with varying placement of the query. The query position can be at the head, tail, or both positions in
the input.
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Model Query Position
Performance / %

Lv. 1 Lv. 2 Lv. 3 Lv. 4 Lv. 5 Lv. 6 Lv. 7 Lv. 8 Lv. 9 Lv. 10 Lv. 11 Lv. 12 Lv. 13 Lv. 14 Lv. 15 Lv. 16

GPT
Head 95.0 60.0 68.5 69.5 60.5 63.0 64.0 75.5 54.5 63.5 66.0 62.0 67.0 46.5 60.0 79.0
Tail 94.0 67.5 60.0 55.5 40.5 50.0 69.5 58.0 52.5 49.0 55.0 51.0 52.5 58.0 49.0 68.0
Both 100.0 84.5 86.5 82.5 70.5 74.0 86.5 80.0 83.0 76.5 81.5 78.0 78.5 77.0 73.5 80.0

Qwen 14b
Head 95.0 60.0 68.5 69.5 60.5 63.0 64.0 75.5 54.5 63.5 66.0 62.0 67.0 46.5 60.0 79.0
Tail 94.0 67.5 60.0 55.5 40.5 50.0 69.5 58.0 52.5 49.0 55.0 51.0 52.5 58.0 49.0 68.0
Both 100.0 84.5 86.5 82.5 70.5 74.0 86.5 80.0 83.0 76.5 81.5 78.0 78.5 77.0 73.5 80.0

Table 8: Performance of GPT and Qwen 14b across different relative levels with varying placement of the query.
The query position can be at the head, tail, or both positions in the input.
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