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Abstract
Recent multimodal retrieval methods have en-
dowed text-based retrievers with multimodal
capabilities by utilizing pre-training strategies
for visual-text alignment. They often directly
fuse the two modalities for cross-reference dur-
ing the alignment to understand multimodal
queries. However, existing methods often
overlook crucial visual information due to a
text-dominant issue, which overly depends on
text-driven signals. In this paper, we intro-
duce MIRe, a retrieval framework that achieves
modality interaction without fusing textual fea-
tures during the alignment. Our method al-
lows the textual query to attend to visual em-
beddings while not feeding text-driven signals
back into the visual representations. Addition-
ally, we construct a pre-training dataset for mul-
timodal query retrieval by transforming con-
cise question-answer pairs into extended pas-
sages. Our experiments demonstrate that our
pre-training strategy significantly enhances the
understanding of multimodal queries, result-
ing in strong performance across four multi-
modal retrieval benchmarks under zero-shot
settings. Moreover, our ablation studies and
analyses explicitly verify the effectiveness of
our framework in mitigating the text-dominant
issue. Our code is publicly available: https:
//github.com/yeongjoonJu/MIRe

1 Introduction

Information retrieval aims to fetch relevant in-
formation from a large collection given a user
query, underpinning numerous NLP tasks such
as search engines, open-domain question answer-
ing (Chen, 2017; Zhu et al., 2021), and fact-
checking (Thorne et al., 2018). Beyond con-
ventional methods based on lexical similarities
(e.g., TF-IDF and BM25 (Robertson et al., 2009)),
embedding-based retrieval methods (Lee et al.,
2019; Karpukhin et al., 2020; Izacard et al., 2022;
Chen et al., 2024) have achieved rich semantic
matching by learning high-dimensional represen-
tations of queries and passages via large-scale pre-
training. However, they focus on textual queries,
struggling to address multimodal queries that en-
compass both textual and visual information.

What kind of object is being 

advertised in the poster on the left?

𝐾1: Many more Guinness adverts and 

… with dozens of types of beer …

𝐾4: … Guinness's sales soared from 

350,000 barrels in 1868 to … Guinness 

became a public company, …

What kind of beverage is being 

advertised in the poster on the left?

𝐾1: Beverage Guinness is an irish dry 

stout that originated in the brewery …

𝐾2: Alcohol advertising is the promotion 

of alcoholic beverages by alcohol …

𝐾3: … Guinness's sales soared from 

350,000 barrels in 1868 to … Guinness 

became a public company, …

𝐾1: Samsung is one of the most widely 

available brand names in consumer …

𝐾4: The Toshiba satellite (dynabook 

satellite in Japan) is a line of consumer 

grade notebook computers …

Baseline: w/ direct intervention of textual features
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Baseline / Ours
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… …
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Retrieval from 

knowledge base

Figure 1: Effect of the text-dominant issue in multi-
modal query retrieval.

In real-world scenarios, users often include vi-
sual references in their queries (e.g., complex ob-
jects or named entities depicted in an image), which
are difficult to represent by text alone fully (Liu
et al., 2023). Recent multimodal retrieval meth-
ods (Lin et al., 2023; Luo et al., 2023; Lin et al.,
2024; Zhou et al., 2024a,b) have endowed text-
based retrievers with multimodal capabilities by
utilizing pre-training strategies for visual-text align-
ment. Most existing methods directly fuse the two
modalities for cross-reference during visual-text
alignment to enhance the understanding of multi-
modal queries. For instance, Luo et al. (2023) and
Zhou et al. (2024a) facilitate modality interaction
through early token fusion, where visual represen-
tations are prepended before passing through self-
attention layers in the query encoder. Similarly, Lin
et al. (2024) integrate modalities within the mul-
timodal query using a cross-attention mechanism,
where the textual query embeddings function as
keys and values.

However, these methods often overlook crucial
visual information due to a text-dominant issue in-
duced by excessive reliance on text-driven signals
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during the alignment stage. In this stage, the re-
triever over-relies on textual similarities, thereby
hindering proper visual alignment. Consequently,
the retriever assigns high scores to irrelevant pas-
sages when textual cues are ambiguous. Fig. 1
shows the effect of the text-dominant issue. The
baseline, which is trained with a direct fusion of
textual features, fails to retrieve the desired pas-
sages due to its excessive reliance on text when
the textual query becomes partially ambiguous
(e.g., replacing a specific term like ‘beverage’
with a more generic word like ‘object’). This
text-dominant issue is further amplified through
pre-training datasets constructed such that pseudo-
queries are extracted from passages (Luo et al.,
2023). Datasets obtained via this approach contain
text-based queries that alone are sufficient to match
relevant passages. This hinders visual-text align-
ment by relying on the high contextual similarity
between textual queries and passages, even in the
absence of visual information. This issue highlights
the need for a retrieval framework that leverages
multimodal queries by mapping both visual and
textual cues into a linguistic space, capturing com-
plementary interactions between these modalities
without over-relying on textual features alone.

To address these issues, we introduce MIRe, a
retrieval framework that achieves modality inter-
action without fusing textual features during the
alignment stage. Instead of directly merging both
modalities, MIRe allows the textual query to attend
to patch-level visual embeddings without feeding
text-driven signals back into the visual representa-
tions. We then fuse the two modalities during the
relevance scoring stage based on a late-interaction
mechanism (Khattab and Zaharia, 2020). This de-
sign alleviates the dependency on text-driven sig-
nals in the context of knowledge retrieval using a
multimodal query. Furthermore, we construct a
pre-training dataset by transforming multimodal
query-response pairs into extensive passages via
our response-to-passage conversion process that
utilizes solely a text retrieval model. The con-
structed dataset requires the integration of both
modalities to match a desired passage during train-
ing, enabling the model to link image understand-
ing with complex textual queries. Our experiments
demonstrate that our pre-training strategy signifi-
cantly enhances multimodal query understanding
for knowledge retrieval, resulting in strong per-
formance across four multimodal retrieval bench-
marks under zero-shot settings.

2 Related Work

Traditional methods such as TF-IDF and
BM25 (Robertson et al., 2009) rely on keyword
matching to retrieve relevant content but often
fail to capture the deeper semantics underlying
queries and documents. Beyond the surface-level
lexical similarities, dense retrieval methods (Lee
et al., 2019; Karpukhin et al., 2020; Izacard et al.,
2022; Chen et al., 2024; Ni et al., 2022) leverage
high-dimensional embedding models for richer
semantic matching.

The transition from traditional text queries to
multimodal queries has marked a significant evo-
lution in information retrieval (Luo et al., 2021a).
Early methods focused on converting images into
textual representations, such as captions (Qu et al.,
2021; Gao et al., 2022) and object tags (Gui et al.,
2022; Yang et al., 2022). EnFoRe (Wu and Mooney,
2022) and DEDR (Salemi et al., 2023) improve
image-query representations derived from a multi-
modal encoder with generated entities and captions,
respectively. The OVEN dataset (Hu et al., 2023)
has also provided insights into multimodal entity
recognition. Whereas most of these approaches uti-
lize DPR (Karpukhin et al., 2020) based on a single
embedding for retrieval, FLMR (Lin et al., 2023)
refines multimodal queries by incorporating RoIs
and generated captions with the late-interaction
mechanism. ReViz (Luo et al., 2023) represents
an end-to-end multimodal retrieval system that re-
moves the dependency on intermediate modules
by pre-training on the VL-ICT, which automati-
cally constructs a pre-training dataset by applying
the Inverse Cloze Task (ICT) (Lee et al., 2019)
to a multimodal knowledge base. UniIR (Wei
et al., 2024) proposes an instruction-guided mul-
timodal retriever along with its benchmark. They
design two variants of the model architecture for
modality interaction: score-level fusion and feature-
level fusion based on CLIP and BLIP (Li et al.,
2022). VISTA (Zhou et al., 2024a) introduces an
in-depth fusion strategy by prepending visual to-
kens to the input of a text retrieval model to enhance
multimodal understanding. PreFLMR (Lin et al.,
2024) extends FLMR to investigate the scalability
of multimodal retrievers under the late-interaction
mechanism. In contrast to previous methods that
rely heavily on text information within multimodal
queries, we address the text-dominant issue in mul-
timodal query representations caused by the direct
intervention of textual features. We also adopt the
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late-interaction mechanism to fuse modalities dur-
ing the scoring stage.

3 Method

In this section, we first define the problem of knowl-
edge retrieval with multimodal queries. Next, we
describe the architecture of our retrieval model and
our data construction method.

3.1 Problem Definition
Given a multimodal query Q = (I, T ), the primary
objective of our retriever R is to retrieve a set of
relevant passages K = {D1, D2, . . . , Dn} from
a knowledge base U , where I and T denote an
image and a textual query, respectively. Each Di

corresponds to a passage of text. To achieve this
goal, R should encode the multi-modal query Q,
integrating both the image and text modalities.

3.2 Background: Late Interaction in Retrieval
Late interaction (Khattab and Zaharia, 2020) is a
retrieval strategy that preserves token-level embed-
dings for both queries and passages, enabling more
fine-grained matching compared to single-vector
retrieval. This mechanism defers the aggregation of
embeddings to the scoring phase, retaining token-
level signals. The retrieval model generates a set of
low-dimensional embeddings E = {e1, ..., el} for
tokens in both the query and the passage. Then, the
final relevance score between query embeddings
EQ and document embeddings ED is computed
via the following MaxSim operation:

rQ,D =

lQ∑

i=1

lD
max
j=1

(
EQ · ET

D

)
, (1)

where lQ and lD denote the number of tokens in
the query and the document, respectively. Each
query token is matched with its most relevant doc-
ument token. In our MIRe framework, we extend
this mechanism to handle retrieval with multimodal
queries. Our rationale for this adoption is to mit-
igate the overemphasis on textual features during
alignment by maintaining distinct representations
for each modality.

3.3 Model Architecture
We detail our model architecture, focusing on how
it integrates visual and textual features for multi-
modal query retrieval.
Textual Embeddings. We employ a pre-trained
text retriever RT to encode the input textual query
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Figure 2: Overview of the MIRe architecture. This
figure illustrates the interaction between the text encoder
RT and the vision encoder RV .

T and passage D, utilizing multi-vector repre-
sentations under the late-interaction mechanism.
The text encoder generates token-level embeddings
Et ∈ Rlt×dt , where lt denotes the number of to-
kens in T and dt represents the embedding dimen-
sion.
Visual Embeddings. We use ViT (Dosovitskiy
et al., 2021) to encode image I . We adopt two
kinds of visual embeddings: (1) global embeddings
Vg derived from the CLS token, representing the
overall content of the image, and (2) token-level
embeddings Vm extracted from the penultimate
layer of ViT, representing individual patches of
the image. The global embedding Vg ∈ Rdv is
directly projected into the latent space of the text
retriever RT via a two-layer perception, producing
embedding with dimension of Rlg ·dt , where lg is
the pre-defined number of tokens. Subsequently,
the projected Vg is reshaped into token-level em-
beddings Eg ∈ Rlg×dt .
Query-guided Attentive Pooling. Our architec-
ture aims to achieve modality interaction without
directly incorporating textual features in the pre-
training stage for multimodal alignment, thereby
mitigating the text dominance issue. To this end,
we introduce a query-guided attentive pooling mod-
ule employing an attention layer. This module re-
trieves visual information required by the textual
query T from Vm ∈ Rlv×dv and then aggregates
the visual information based on its relevance to
tokens within the textual query, where lv denotes
the number of image patches. Employing Et as
query vectors, attention scores A ∈ Rh×lt×lv are
calculated as follows:

A = Softmax
(
Et · K⊤

m√
dt

)
, (2)

where Km ∈ Rh×lv×dt denotes key vectors of Vm

projected by a linear layer and split into h tokens
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Top-𝐾 retrieved passages

What type of aircraft is 

shown in the image?

Response

The image shows a large 

passenger jet belonging to 

China airlines.

Question

Image

China Airlines (CAL; ) is the state-owned flag carrier 

of the Republic of China (Taiwan), and one of its two 

major airlines along with EVA Air. It is headquartered 

in Taoyuan International Airport and operates over 

1,400 flights weekly (including 91 pure cargo flights) 

to 102 cities across Asia, Europe, North America, and 

Oceania. Carrying over 19 million passengers and 

5700 tons of cargo in 2017, the carrier was the 33rd 

largest airline in the world in terms of revenue 

passenger kilometers (RPK) and 10th largest in terms 

of freight revenue ton kilometers (FRTK)…

China Airlines Flight 676 (CAL676, CI676) was a 

scheduled international passenger flight. On Monday, 

16 February 1998, the Airbus A300 jet airliner 

operating the flight crashed into a road and residential 

area in Tayuan, Taoyuan County (now Taoyuan City), 

near Chiang Kai-shek International Airport (present-

day Taoyuan International Airport), Taiwan.The A300, 

registered as B-1814, was en route from Ngurah Rai 

Airport in Bali, Indonesia to Taipei, Taiwan…

The Commercial Aircraft Corporation of China, Ltd. 

(COMAC, ) is a Chinese state-owned aerospace 

manufacturer established on 11 May 2008 in 

Shanghai. The headquarters are in Pudong, 

Shanghai. The company has a registered capital of 

RMB 19 billion ( as of May 2008). The corporation 

is a designer and constructor of large passenger 

aircraft with capacities of over 150 passengers…Wikipedia

Visual dialog datasets

Split turns & Filter out 
“yes/no” answers

Add information for 

simple answers

What brand of wine 

is this?
Chateau garraud

The Commercial Aircraft Corporation of China, Ltd. (COMAC, ) is a Chinese state-

owned aerospace manufacturer established on 11 May 2008 in Shanghai. The 

headquarters are in Pudong, Shanghai. The company has a registered capital of RMB 

19 billion ( as of May 2008). The image shows a large passenger jet belonging to 

China airlines. China Airlines Flight 676 (CAL676, CI676) was a scheduled 

international passenger flight. On Monday, 16 February 1998, the Airbus A300 jet 

airliner operating the flight crashed into a road and residential area in Tayuan, 

Taoyuan County (now Taoyuan City), near Chiang Kai-shek International Airport 

(present-day Taoyuan International Airport), Taiwan.The A300, registered as B-1814, 

was en route from Ngurah Rai Airport in Bali, Indonesia to Taipei, Taiwan…

Synthesized passage

+

Response-to-Passage conversion

Chateau garraud (brand, wine)

Figure 3: Our data construction process. Starting with visual dialogue datasets, our process involves two steps to
convert the dialogue tasks to knowledge retrieval tasks. After preprocessing, we transform responses into a passage
format by unifying the response and relevant passages retrieved from Wikipedia.

for each embedding within Vm. Then, the attended
visual output Em ∈ Rh×dt is calculated with value
vectors Vm ∈ Rh×lv×dt of Vm as follows:

Em = Linear

(
1

lt

lt∑

i

(A · Vm)

)
, (3)

where Vm is produced via operations identical with
Km. Unlike the standard cross-attention mecha-
nism, we apply mean-pooling along the sequence
dimension without a residual connection, yielding
h visual embeddings. In this modality interaction
process, we only leverage textual embeddings Et

to calculate A as relevance scores for T without
direct fusion. Our module alleviates the text dom-
inance issue by explicitly limiting textual infor-
mation during visual representation alignment, as
demonstrated in our empirical analyses (see Sec. 5).

3.4 Dataset Construction
We aim to train our model to comprehend im-
ages based on textual queries, thereby enabling
effective multimodal query understanding. To
achieve this goal, we leverage existing multi-
modal question-response datasets, such as visual
instruction-following data and VQA data. These
datasets consist of query-response pairs where each
pair is associated with a single image. In each pair,
the response provides a concise and image-specific
answer that directly addresses the textual query.
Thus, the response serves as a clear bridge between
the visual content and the query, explicitly linking
image understanding to the language of the query.
However, despite the explicit information provided

by these responses, the datasets are not directly
suitable for training the retriever R because of the
inherent difference between concise responses and
more expansive passages. In practice, responses
can be matched with queries without ambiguity,
whereas real-world retrieval tasks demand the iden-
tification of relevant information embedded within
broader documents that often contain noisy content.
To bridge this gap, we transform query-response
pairs into a format suitable for multimodal retrieval
tasks via response-to-passage conversion, as illus-
trated in Fig. 3.
Response-to-Passage Conversion. Let a multi-
modal query-response pair S as follows:

S = {(I, T ), R}, (4)

where R represents the response. We first attain
multiple QA pairs for a single image from samples
with several turns in source datasets. We divide the
response R into two types: (1) detailed responses
and (2) simple responses with a single word or a
phrase. The simple responses often lack sufficient
context to facilitate effective knowledge retrieval.
Thus, we compensate simple responses with nouns
extracted from the textual query T . Note that we
filter out pairs of responses that do not contribute
to knowledge-based retrieval, such as simple affir-
mations and negations (e.g., “yes” or “no”).

The nature of the data S guarantees a high cor-
relation between (I, T ) and R since the responses
contain information conditioned on the given multi-
modal query while the textual queries have restric-
tive information. Thus, we utilize the response R to
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transform the response into an informative passage.
From an arbitrary knowledge base U , we retrieve
relevant passages using the response R as the query.
Specifically, we obtain the top-k passages:

{D1, D2, . . . , Dk} = RetrieveRT
(R,U, k), (5)

where RetrieveRT
denotes the retrieval function

that returns the top k relevant passages from the
knowledge base U based on the query R using the
text retriever RT . To maintain contextual relevance
with the multimodal query (I, T ), we then augment
the response R by combining it with the retrieved
passages:

R′ = [D1;R;D2; . . . ;Dk]. (6)

This conversion strategy yields training data that
more closely mimic the complexity and noise of
real-world documents. Consequently, the retriever
is exposed to more challenging and realistic sce-
narios during training, enabling it to effectively
integrate visual cues and ultimately achieve more
robust retrieval performance.

3.5 Training and Inference
We deal with passages including the golden an-
swers to a given question Q as relevant passages K.
To train our model, we employ in-batch negative
sampling, which treats all passages in a training
batch except for a passage D belonging to K as
negative passages K̄ for Q. We optimize our model
by minimizing the following contrastive loss LCL

over the dataset D:

LCL = −
∑

D
log

exp(rQ,D/τ)

exp(rQ,D/τ) +
∑

D̄∈K̄ exp(rQ,D̄/τ)
,

(7)

where τ is the temperature parameter that regulates
the influence of penalties on negative samples. Dur-
ing the alignment stage, all parameters of RT and
RV are frozen, preserving the established text re-
trieval performance. To focus on visual alignment,
we exclude the textual embeddings Et from the
final query embedding EQ, using only the visual
features [Eg;Em] as EQ. We also integrate a subset
of a multimodal knowledge base, WiT (Srinivasan
et al., 2021), into our dataset to enrich the world
knowledge learned during alignment. Note that this
addition does not affect multimodal query under-
standing because the dataset consists solely of pairs
of an image and a passage (i.e., it does not include
a textual query). For such data, we simply assign
dummy prompts for multimodal queries (e.g., What

is the core object or subject shown here?). We dis-
cuss this integration in Sec. 5 in detail.

After the alignment stage, we add textual embed-
dings Et to EQ when training on downstream tasks
and the inference stage. For efficient retrieval, all
passages within knowledge base U are pre-indexed
using PLAID (Santhanam et al., 2022a), identical
to ColBERTv2 (Santhanam et al., 2022b).

4 Experiments

4.1 Setup

Benchmarks. We employ four benchmarks for
knowledge retrieval with multimodal queries: two
variants of OK-VQA (Marino et al., 2019), Re-
MuQ (Luo et al., 2023), and E-VQA (Mensink
et al., 2023). For OK-VQA, we use two versions
based on different knowledge bases: OKVQA-GS,
a corpus collected using Google search API as
introduced in Luo et al. (2021a), and OKVQA-
WK11M, a corpus containing 11 million Wikipedia
passages compiled by Qu et al. (2020).
Metrics. We evaluate retrieval performance using
Mean Reciprocal Rank at 5 (MRR@5), Recall@k
(R@k), and Pseudo Recall@k (PR@k) across four
benchmarks. MRR@5 measures the ranking qual-
ity of the first relevant passage. For OKVQA-GS
and E-VQA, which do not provide explicit ground-
truth passages, we compute PR@5 by checking
whether retrieved documents contain the correct
answer. For OKVQA-WK11M and ReMuQ, we
evaluate R@k by verifying whether the target pas-
sages appear in the top-k results.
Implementation Details. Our pre-training dataset
is synthesized from three visual instruction
datasets (Zhang et al., 2023; Wang et al., 2023;
Liu et al., 2024) and two VQA datasets (Singh
et al., 2019; Biten et al., 2019), resulting in 1.35
million QA pairs, each paired with an image af-
ter preprocessing. We sampled to have no more
than 12 question-response pairs per image. For
the response-to-passage conversion, we utilize 6
million Wikipedia articles released by Chen et al.
(2023) as our data pool. We retrieve three candi-
date passages for each response using ColBERTv2,
trained with the MS MARCO Passage Ranking
task (Nguyen et al., 2016). Each passage is trun-
cated to three sentences, and the response is in-
serted between the first and second passages to
ensure contextual consistency. We also added 0.5
million pairs randomly sampled from WiT.

For our base model, we adopt CLIP ViT-
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Model
OKVQA-GS OKVQA-WK11M ReMuQ E-VQA

MRR@5 PR@5 PR@10 MRR@5 R@5 R@10 MRR@5 R@5 R@10 MRR@5 PR@5 PR@10

CLIP (Radford et al., 2021) 19.08 34.54 50.48 16.45 29.81 43.0 0.34 0.78 1.36 - - -
FLMR (Lin et al., 2023) 38.15 57.25 69.42 32.56 50.61 62.58 66.67 72.10 74.95 29.97 42.0 50.75
ReViz (Luo et al., 2023) 45.77 64.05 75.39 44.03 62.43 73.44 23.61 39.43 46.77 - - -
UniIR (Wei et al., 2024) 53.27 73.94 84.19 - - - 79.15 84.34 86.62 31.59 44.21 55.31
VISTA (Zhou et al., 2024a) 55.33 72.83 81.61 - - - 78.32 84.21 87.03 33.9 47.73 56.72
PreFLMR† (Lin et al., 2024) 59.38 76.83 84.34 45.68 63.85 73.64 52.27 54.31 55.06 30.92 41.71 49.44

MIRe 63.03 80.48 88.15 51.15 70.71 81.25 83.06 86.84 88.56 41.88 54.24 61.01
w/ ViT-large 63.17 81.13 88.72 50.64 69.92 80.18 82.56 86.48 88.17 44.92 57.65 64.40

Table 1: Zero-shot performance of MIRe and comparison methods. Note that FLMR was only pre-trained on
the WiT dataset. PreFLMR† were trained using our dataset and experimental settings. Bold indicates the highest
performance.

base (Radford et al., 2021) as a vision encoder
and ColBERTv2 as a text encoder based on BERT-
base (Devlin et al., 2019). The number of tokens
for visual embeddings Eg and Em are set to 16 and
12, respectively. The value for Em is determined
by the number of heads h in the interaction module.
The dimension of the final embeddings dt is set
to 128, consistent with the text encoder. Our base
model has 211M parameters. Further implementa-
tion details are provided in Appendix A.
Comparison Methods. We benchmark our MIRe
model against a diverse set of baseline models that
employ pre-training stages for visual-text align-
ment: CLIP (Radford et al., 2021), FLMR (Lin
et al., 2023), ReViz (Luo et al., 2023), Pre-
FLMR (Lin et al., 2024), and VISTA (Zhou et al.,
2024a). UniIR (Wei et al., 2024), which requires
an explicit instruction input, is also included; we
follow their protocol and use the instruction "Re-
trieve a passage that answers the given query about
the image" during evaluation. Both FLMR and Pre-
FLMR utilize the same vision and text encoders as
our model, where FLMR was pre-trained with a
subset of the WiT dataset. For direct comparison,
PreFLMR was trained using the same pre-training
procedure as our model, thereby highlighting the
distinct advantages of our model architecture. For
zero-shot (ZS) evaluation, we exclude baselines
requiring external supervision for fairness, while
for few-shot (FS) evaluation, models utilizing su-
pervision datasets are included.

4.2 Main Results

Zero-shot Retrieval Performance. Tab. 1 shows
that our method achieves superior zero-shot re-
trieval performance across all four benchmarks,
significantly outperforming the comparison mod-
els. Despite employing a two-stage training strat-
egy and directly optimizing the vision encoder

for retrieval, VISTA still underperforms relative
to our approach. Even though PreFLMR was
trained under the same settings as our model, it
exhibits a significant performance gap compared
to our model. These results validate the effective-
ness of our modality interaction approach. Our
method also benefits from increased model capac-
ity. The variant employing a larger vision encoder
(ViT-large) shows similar performance to the stan-
dard model, but it further outperforms the standard
model in E-VQA.
Fine-tuning on Downstream Tasks We further
demonstrate the adaptability of our model and the
effectiveness of our pre-training task by fine-tuning
models on downstream tasks. Tab. 2 demonstrates
remarkable adaptability when fine-tuned on down-
stream tasks. On the OKVQA-GS dataset, our
model substantially outperforms all state-of-the-
art models. On the ReMuQ dataset, our model
still delivers strong performance, showing its com-
petitive results. It is important to note that our
method achieved higher performance on ReMuQ
than VISTA in the zero-shot setting, which sug-
gests that our pre-training and modality interaction
approach endow our model with strong generaliza-
tion capabilities. Notably, the variant without pre-
training clearly lags behind the pre-trained model,
highlighting the crucial role of our pre-training
task. Furthermore, employing a larger vision en-
coder (ViT-large) yields additional improvements
on OKVQA-GS, demonstrating the scalability of
our approach. Overall, these results confirm that
our model not only excels in zero-shot settings
but also adapts effectively to fine-tuning on down-
stream tasks.

4.3 Ablation Studies

Our ablation studies, summarized in Tab. 3, reveal
that each component in our framework plays a sig-
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Model
OKVQA-GS ReMuQ

PR@5 PR@10 R@5 R@10

FLMR (Lin et al., 2023) 70.63 81.23 62.76 74.67
VRR (Luo et al., 2021b) 71.5 81.5 - -
ReViz (Luo et al., 2023) 73.35 83.17 23.61 39.43
GeMKR (Long et al., 2024) 78.6 86.2 90.3 92.7
VISTA (Zhou et al., 2024a) 82.06 90.11 96.3 97.3

Ours w/o Pre-training 74.26 84.07 92.44 94.38
Ours 83.59 90.59 94.40 96.20
w/ ViT-large 84.66 91.30 94.38 96.18

Table 2: Fine-tuning performance on two tasks.

Method OK-GS OK-WK ReMuQ E-VQA Avg.

Base 63.03 51.15 83.06 41.88 59.78

PT

w/o WiT 62.54 50.53 82.63 40.88 59.15
w/o R2P 60.43 42.93 81.87 38.13 55.84
w/ Single T 59.72 49.09 79.27 29.29 54.34

w/ Residual 61.65 47.95 80.47 43.06 58.28
w/o Em 60.19 47.23 81.70 39.01 57.03
w/ Et 51.38 42.13 71.69 32.80 49.50

IF

w/o Em 60.43 44.13 85.10 42.4 58.02
w/o Eg 58.4 44.61 85.91 40.24 57.29
w/o Eg&Em 52.46 36.0 71.69 42.48 50.66
w/o Et 36.99 36.68 2.73 11.39 21.95

Table 3: Ablation Studies. Retrieval performance
(MRR@5) in zero-shot settings across four datasets.
"PT" and "IF" indicate ablations performed at the pre-
training and inference stages, respectively.

nificant role in achieving robust zero-shot retrieval
performance. We examine the contributions of our
design from three perspectives: the dataset, model
architecture during alignment, and the embeddings
used at inference.
Dataset. In the pre-training stage (PT), omitting
external knowledge from the WiT dataset causes
only a slight performance drop, underscoring its
supportive role (see Sec. 5). In contrast, training
the model on original responses without applying
the response-to-passage conversion (R2P) results
in a substantially larger decline. These observa-
tions indicate that the R2P mechanism is essential
for enhancing visual-text alignment and overall
knowledge retrieval. We also investigate the ef-
fect of multiple QA pairs per image. As shown in
Tab. 3, although sampling a single QA pair per im-
age keeps the total number of images, this variant
(w/ Single T ) significantly degrades retrieval per-
formance, suggesting the presence of hard-negative
effects beyond simple visual-image alignment.
Model. We further examine how directly fusing
text features during the alignment process affects
performance. When we add a residual connection
to our model architecture before sequential-wise

(a) UMAP visualization

[CLS] [Q] Dog Puppy

Cat[CLS] [Q] Kitty

𝑻: [CLS] [Q] What is the dog or puppy’s species? [SEP]

𝑻: [CLS] [Q] What is the cat or kitty’s species? [SEP]

(b) Attention visualization for each token 

(averaged across heads)

Figure 4: Visualization of multimodal query process-
ing, illustrating the alignment between textual and vi-
sual modalities.

pooling (w/ Residual), we observe a performance
drop, indicating a slight exacerbation of the text-
dominant issue. Moreover, when text features are
allowed an even more direct influence, by setting
EQ = [Eg, Em, Et] during alignment, the perfor-
mance degrades considerably.

Embeddings EQ. At the inference stage (IF), our
analysis shows that each embedding type plays a
unique and complementary role. Removing either
the modality-specific embedding (w/o Em) or the
general embedding (w/o Eg) leads to a moderate de-
cline in performance, suggesting that both capture
distinct yet essential aspects of the data. However,
removing these components simultaneously causes
a sharper performance drop. Notably, omitting the
text embedding (w/o Et) results in severe degra-
dation of retrieval accuracy, indicating that Et is
indispensable for maintaining semantic coherence.
This clear hierarchy in the impact of each embed-
ding underscores their distinct functions and the
need for their balanced integration.
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Dataset OKVQA-GS ReMuQ E-VQA Infoseek

FLMR (Lin et al., 2023) 57.25 72.10 42.0 42.93

w/o WiT 81.11 87.45 51.95 37.15
Ours w/ WiT (0.5M) 80.48 86.84 54.24 42.61

w/ WiT (1.0M) 79.63 86.59 54.05 44.01

Table 4: Zero-shot retrieval performance (R@5) under
knowledge integration settings using WiT data.

(a) Training loss curves (b) R@5 on OK-VQA

Figure 5: Training convergence and retrieval perfor-
mance. All models were trained for only one epoch
under the same settings.

5 Discussion

Effect of Query-guided Attentive Pooling To
demonstrate the effectiveness of MIRe in captur-
ing modality interactions, we visualize the embed-
dings and attention maps of multimodal queries
on a controlled dataset. We synthesized 224 im-
ages with the prompt ‘A dog and a cat in an image’
using Diffusion-XL (Podell et al., 2024), and condi-
tioned the embeddings Em on three distinct textual
prompts: (1) What is the dog or puppy’s species?,
(2) What is the cat or kitty’s species?, and (3)
Where is the place in the image? In Fig. 4(a), the
UMAP clustering (McInnes et al., 2018) of Eg and
Em illustrates MIRe effectively separates visual
embeddings based on the query’s intent. Addition-
ally, Fig. 4(b) visualizes attention patterns of our
pooling module, revealing how the model attends
to specific visual patches relevant to each query.
These results demonstrate that MIRe enhances in-
teractions between textual and visual modalities.
Effect of Knowledge Integration. We further as-
sess MIRe’s capacity for external knowledge inte-
gration by incorporating the WiT dataset and an-
alyzing its effect on retrieval performance, partic-
ularly on the Infoseek dataset (Chen et al., 2023).
As shown in Tab. 4, Ours w/o WiT falls short on
Infoseek relative to FLMR while competitively per-
forming on other benchmarks. Notably, FLMR
was learned with a subset of WiT without modality
interaction. When we integrate external knowl-
edge using 0.5 million WiT data, our model’s per-
formance on Infoseek is substantially improved

(a) w/ 𝐸𝑡 during alignment (b) Ours

Figure 6: Comparison of Embedding Distribution.
(a) with Et during alignment, where query embeddings
(Q, orange) remain distinct from passage embeddings
(D, blue); (b) our method, where Q (green) is better
integrated into the textual space.

to 42.61, bringing it on par with FLMR. More-
over, further increasing the WiT data to 1.0 million
boosts the R@5 on Infoseek to 44.01. These find-
ings, however, reveal that the performance gains
observed on Infoseek are largely driven by its heavy
reliance on external knowledge, which raises con-
cerns about the generality of evaluation protocols
that depend on such background information.

Text-dominant Issue. We analyze how certain pre-
training strategies and model architectures exacer-
bate reliance on textual features during multimodal
alignment. In Fig. 5(a), both PreFLMR and w/
Residual exhibit faster loss convergence compared
to our model, suggesting that directly leveraging
text features accelerates optimization. However,
as shown in Fig. 5(b), the accelerated convergence
does not translate to improved performance, with
PreFLMR and w/ Residual underperforming rela-
tive to our model. The text-dominant issue is fur-
ther exacerbated when using VL-ICT, introduced
in ReViz, which constructs pseudo-queries from
passages. Such behavior reveals the text-dominant
issue, where excessive dependence on text features
during alignment hinders the model’s ability to
fully leverage multimodal information. Fig. 6 il-
lustrates this effect by visualizing the alignment
of multimodal query embeddings Q with passage
embeddings D. In (a), when Et is explicitly used
during alignment Q embeddings (orange) remain
largely separated from the passage space, indicat-
ing poor alignment. In contrast, (b) demonstrates
that our method effectively incorporates Q embed-
dings (green) into the linguistic space, improving
alignment. These results suggest that excessive
reliance on text features inhibits the multimodal
query embeddings from adapting properly to the
passage space.
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6 Conclusion

We introduced MIRe, a novel retrieval framework
designed for multimodal query retrieval without
fusing textual features during the alignment stage.
Our query-guided attentive pooling module allows
textual embeddings to attend to visual patches
while preventing text-driven signals from domi-
nating the visual representations. We also con-
structed a pre-training dataset by converting con-
cise question-answer pairs into extended passages,
thereby exposing the model to more realistic re-
trieval tasks. Our extensive experiments demon-
strate that MIRe consistently outperforms existing
methods under both zero-shot and fine-tuned set-
tings. Ablation studies further validate that each
component of MIRe is crucial for achieving robust
multimodal query retrieval.

7 Limitations

Despite the promising results, our work has sev-
eral limitations that point to potential directions for
future research. First, while our approach demon-
strates strong performance across general-domain
benchmarks, it remains untested in specialized do-
mains (e.g., medical or legal documents), where
multimodal content may exhibit more complex and
domain-specific features. Second, we have not
explored synergy with retrieval-augmented genera-
tive (RAG) frameworks, which typically prepend
retrieved passages to a language model for down-
stream generation tasks. Although we believe our
retrieval improvements would benefit RAG-based
methods, in line with findings from Kim et al.
(2024) showing that stronger retrievers enhance
downstream generation, fully validating our ap-
proach in a RAG pipeline is left for future work.
Finally, our current data construction method fo-
cuses on retrieval from large yet homogeneous cor-
pora; adapting the framework to more diverse or
dynamically changing knowledge sources may re-
quire additional techniques to handle domain shifts
or continuously updated information.
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A Appendix

A.1 Training and Inference Details
In all experiments, we train models using the
AdamW optimizer (Loshchilov and Hutter, 2019)
with warm-up steps on a machine with 4 RTX
A6000 GPUs. We chose model checkpoints based
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Dataset
Hyperparameter

LR # Epochs # Batch per GPU # Global Batch # Warm-up τ

Pre-training (R2P) 1e-4 5 128 512 300 0.3
OKVQA-GS 5e-5 15 128 512 10 0.8
ReMuQ 5e-5 5 128 512 10 0.8

Table 5: Summary of hyperparameters utilized for training. The LR denotes the learning rate.

Dataset
Size

#Train #Test KB U

OKVQA-GS 8,958 5,046 166,390
OKVQA-WK11M - 2,523 11,000,000
ReMuQ 8,418 3,609 195,387
E-VQA - 3,750 51,462

Table 6: Summary of dataset statistics for evalua-
tion. This table presents the distribution of training and
testing instances alongside the size of the knowledge
bases for each dataset employed in our study. GS and
KB denote the corpus collected from the Google Search
API and used knowledge base, respectively.

Statistic Counts

# Total data 1,356,536

# Images 264,262
# Max. queries per image 12
# Avg. queries per image 8.32
# Queries requiring description 230,877 (17.02%)
# Other types of queries 1,125,659 (82.98%)

Table 7: Statistics of our constructed dataset.

on the validation loss. We set hyperparameters for
each dataset as shown in Tab. 5.
Pre-training. We used EQ = [Eg;Em] without
Et to align visual embeddings with the linguistic
space during the pre-training stage. In this stage,
we only tuned the mapping network, such as a MLP
layer for Eg and the query-guided attentive pooling
module. PreFLMR and MIRe were set with the
same hyperparameters.
Fine-tuning. For fine-tuning our model on down-
stream tasks, we tuned all parameters of our model
except for the vision model in all experiments.
Since the parameters of the vision model are not
updated during training, we cached the outputs of
the vision model before training. In our setting,
training one epoch for our dataset took about 20
minutes on 4 RTX A6000 GPUs, where one epoch
encompasses 3625 steps. We detail statistics of
benchmark datasets in Tab. 6.

Figure 7: UMAP visualization of embeddings ex-
tracted using the Contriever model (Izacard et al., 2022),
comparing Wikipedia documents (purple) and LLaVA
responses (red). The separation between clusters high-
lights the structural and semantic differences.

Inference. Passages within the knowledge base
were pre-indexed, following the method established
by the previous work (Santhanam et al., 2022b).
The indexing process consists of three critical steps:
centroid selection, passage encoding, and index in-
version. To enhance storage efficiency, embeddings
were compressed to 2 bits per dimension. In the
OK-VQA dataset using a corpus collected from
Google search API, the retrieval time of MIRe and
ColBERTv2 is approximately 0.085 seconds and
0.081 seconds per query on one RTX A6000 GPU,
respectively. Thus, MIRe spends slightly more
time retrieving relevant passages with multimodal
queries, compared to the base text retriever.

A.2 Details for Our Dataset
To construct our dataset, we employ three visual
instruction datasets (Zhang et al., 2023; Wang
et al., 2023; Liu et al., 2024) and two VQA
datasets (Singh et al., 2019; Biten et al., 2019). Ini-
tially, samples were split into individual turns. We
removed turns with responses shorter than 30 char-
acters only for detailed responses. Subsequently,
we edited responses containing simple affirmations
(“yes", “no") and excluded samples for tasks irrel-
evant to retrieval tasks (e.g., location and count),
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Source Dataset # Data # Images # Avg. S per I # Max. S per I

ST-VQA (Biten et al., 2019) 25,154 18,518 1.36 7
TextVQA (Singh et al., 2019) 26,406 18,913 1.40 2
LLaVAR (Zhang et al., 2023) 42,690 19,787 2.16 7
Instruct4V (Wang et al., 2023) 222,711 26,663 8.35 12
LLaVA-1.5 (Liu et al., 2024) 1,017,622 158,429 6.42 12
Subset of WiT (Srinivasan et al., 2021) 500,000 500,000 1 1

Table 8: Statistics of each source dataset within our dataset. S per I denotes the number of queries per image.

Source Dataset
OKVQA-GS OKVQA-WK11M ReMuQ E-VQA

PR@5 PR@10 R@5 R@10 R@5 R@10 PR@5 PR@10

ST-VQA (Biten et al., 2019) 72.29 81.45 57.35 67.97 85.79 87.81 51.01 58.37
TextVQA (Singh et al., 2019) 72.18 81.75 57.83 69.20 86.03 87.97 51.41 58.80
LLaVAR (Zhang et al., 2023) 73.11 82.62 60.88 71.90 86.34 88.39 51.89 58.75
Instruct4V (Wang et al., 2023) 78.72 86.88 65.83 75.90 86.01 87.81 52.0 59.25
LLaVA-1.5 (Liu et al., 2024) 79.41 87.77 68.05 78.32 86.56 88.31 52.56 59.92

Total 81.11 88.84 70.55 82.20 87.45 88.45 51.95 59.12

Table 9: Zero-shot performance by each source dataset. We apply our response-to-passage conversion process to
each source dataset. Note that we did not add WiT data in this experiment.

where we automatically filtered out based on spe-
cific phrases.

Fig. 7 illustrates there exists a clear distinction
between the concise responses and more expan-
sive passages, supporting our perspective. After
the pre-processing, we refined the data through a
response-to-passage conversion using ColBERTv2,
a text retriever trained on the MS MARCO Passage
Ranking task (Nguyen et al., 2016). Responses
were converted into passages using a pool of 6 mil-
lion Wikipedia documents (Chen et al., 2023), with
textual queries limited to 128 tokens. As shown
in Fig. 8, our constructed dataset is featured by
pairs of multimodal queries and passages includ-
ing responses to different queries about the same
image, advancing the capability to retrieve relevant
information from multimodal queries. This process
yielded a total of 1.36 million QA pairs; further
data statistics are provided in Tab. 7 and Tab. 8.

Table 9 summarizes the zero-shot retrieval per-
formance for each source dataset. The results
demonstrate that our conversion process effectively
leverages complementary strengths from various
datasets, underscoring the robustness of our ap-
proach. Additionally, when unifying WiT data,
we assigned textual queries by randomly sampling
from the following prompts: “What is the main ob-
ject?”, “Identify the subject of this image.”, “Who
or what is the subject in this picture?”, “Identify

the main entity.”, and “What is the core object or
subject shown here?”.

A.3 Architectural Differences: MIRe vs.
PreFLMR

Our architecture differs from PreFLMR in sev-
eral important aspects. In PreFLMR, visual to-
kens serve as queries, and the hidden states of
the text encoder act as keys and values within
a cross-attention mechanism. Attention scores
A ∈ RH×Q×K are computed using these compo-
nents, and value vectors V are derived from the trun-
cated text encoder hidden states, which may cause
information loss. The resulting outputs have di-
mensions [H,Q,D] and are reshaped to [Q,H ·D]
before undergoing further reduction by the Col-
BERT head.

In contrast, MIRe uses textual embeddings Et

from the ColBERT head as queries, with visual
tokens split into multiple heads for keys and val-
ues. Here, Q corresponds to the number of textual
tokens and K to the number of visual tokens, re-
versing the modality roles compared to PreFLMR.
Value vectors are obtained directly from the visual
embeddings without truncation. Output aggrega-
tion is performed by mean-pooling across the se-
quence dimension, producing representations of
shape [H,D], which are passed through a linear
layer without further dimensionality reduction.

5362



What feature can be seen 

on the back of the bus?
In bus advertising, buses and their related infrastructure is a medium 

commonly used by advertisers to reach the public with their message. 

Usually, this takes the form of promoting commercial brands, but can also 

be used for public campaign messages. The back of the bus features an 

advertisement. School bus advertising is a form of advertising in the United 

States in which advertising space is sold on the sides of school buses. …

What are the colors of the 

bus in the image?
Red & White Services was a bus company operating in south east Wales 

and Gloucestershire, England between 1929 and 1978. Red & White 

evolved into Red & White United Transport Ltd, formed in 1937, which 

owned bus and road freight companies in the United Kingdom and 

Southern Africa. The bus is white and red. Red Jammers are the vintage 

White Motor Company/Bender Body Company Model 706 buses used at 

Glacier National Park in the United States …

Image 𝐼 Question 𝑇 Passage 𝐷

What type of surface are 

the birds standing on?

Are there any specific 

objects near the birds in 

the image?

The Sandy Island and Low Rock Important Bird Area comprises two small 

islands with a collective area of 9 lying at the western end of the Gulf of 

Carpentaria in the Northern Territory of Australia. They lie south-west of 

Groote Eylandt off the coast of Arnhem Land, with the nearest settlement 

there the Numbulwar community. The birds are standing on a sandy beach. 

Sandy Island is a 20 (ha) island lying about 5 (km) off the coast of Windy 

Harbour in south-west Western Australia, and near Point D’ …

In agriculture, poultry litter or broiler litter is a mixture of poultry excreta, 

spilled feed, feathers, and material used as bedding in poultry operations. 

This term is also used to refer to unused bedding materials. There are 

straws lying on the sand near the birds. Bat-fowling is an archaic method of 

catching birds at night, while they are at roost. The process involves 

lighting straw or torches near their roost. After awakening them from their 

roost, the birds fly toward the flames, …

Image 𝐼

What is the man doing in 

the image?

Is there any official or 

umpire present in the 

image?

A passing shot is a forceful shot, as in tennis or team handball, that travels 

to one side out of the reach of one\'s opponent. In tennis, this shot is 

generally a groundstroke and is used when one\'s opponent is running to 

the net or if they are at the net already. … The man is playing tennis near 

the net and getting ready to hit a ball. he might have just made a play, and 

he is attempting to return the ball to continue the tennis match. 

Gamesmanship is the use of dubious (although not technically illegal) 

methods to win or gain a serious advantage in a game or sport. …

A challenge is a request made to the holder of a competitive title for a 

match between champion and challenger, the winner of which will acquire 

or retain the title. … There is an official looking on  indicating that the 

tennis match is likely a formal or competitive one. The tennis scoring 

system is a standard widespread method for scoring tennis matches, 

including pick-up games. Some tennis matches are played as part of a 

tournament, which may have various categories, such as singles and 

doubles. The great majority are organised as a single-elimination 

tournament, with competitors being eliminated after a single loss, and the 

overall winner being the last competitor without a loss. A tournament is a 

competition involving at least three competitors, all participating in a sport 

or game. More specifically, the term may be used in …

Image 𝐼

Figure 8: Examples for our dataset. The figure illustrates samples in the dataset, where the red-colored text
denotes inserted responses.
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