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Abstract

As the scale of large language models (LLMs)
grows and natural language tasks become in-
creasingly diverse, Parameter-Efficient Fine-
Tuning (PEFT) has become the standard
paradigm for fine-tuning LLMs. Among PEFT
methods, LoRA is widely adopted for not in-
troducing additional inference overhead. How-
ever, existing LoRA’s shared parameter space
paradigm introduces parameter interference,
leading to a gap in generalization performance
for specific tasks compared to full fine-tuning.
To address this issue, we propose a parameter-
separated low-rank adapter, called Subspace
Low-Rank Adaptation (SuLoRA). The core
idea of SuLoRA is to account for task differ-
ences by decomposing LoRA’s parameter ma-
trix into multiple independent subspaces and
assigning them differentially to distinct tasks.
This prevents interference across tasks and en-
hances the effectiveness of low-rank adapta-
tion. Additionally, SuLoRA achieves higher
rank expansion by freezing the A matrix, fur-
ther improving generalization capability. We
conduct extensive experiments on various NLP
tasks, demonstrating that SuLoRA significantly
outperforms LoRA in trainable parameter effi-
ciency and overall model performance. Further-
more, we validate SuLoRA’s effectiveness in
domain generalization and multi-modal tasks,
showcasing its strong generalization ability.

1 Introduction

Large language models (LLMs), such as GPT (Rad-
ford, 2018), Llama (Touvron et al., 2023a), and
DeepSeek (Liu et al., 2024), have emerged as the
standard in natural language processing (NLP) ow-
ing to their exceptional comprehension capabili-
ties (Brown et al., 2020). However, as the scale of
these models and the complexity of tasks continue
to grow, full fine-tuning (FT) has become imprac-
tical due to its substantial computational cost. In
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(a) Comparison between LoRA (left) and our method SuLoRA (right).
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(b) Activation levels of the parameter space for different classes.

Figure 1: (a) Comparison between LoRA (left) and our
method SuLoRA (right). The core of our method is to
partition the internal parameter space of LoRA and se-
lect different parameter spaces for different tasks, avoid-
ing interference between tasks. (b) Activation of the
internal parameter space in LoORA B. G and ¢ denote the
parameter subspace and task, respectively. Darker col-
ors indicate higher levels of activation. Taking STS-B
as an example, we find that the activation of the internal
parameter space in LoRA varies across different tasks.

response, parameter-efficient fine-tuning (PEFT)
methods (Ding et al., 2023), including low-rank
adaptation (LoRA)(Hu et al., 2021), adapters(He
et al., 2021), and prompt-based approaches (Lester
et al., 2021a) have been successfully applied across
a diverse range of NLP tasks.

Among these methods, LoRA (Hu et al., 2021)
is widely employed because it does not incur ad-
ditional inference overhead. As illustrated in Fig.
1(a) (left), LoORA approximates the update of pre-
trained weights (W) by decomposing them into a
low-rank matrix (A) and a high-rank matrix (B).

5334

Findings of the Association for Computational Linguistics: ACL 2025, pages 5334-5349
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics



By applying low-rank decomposition to the incre-
mental updates of the pre-trained weights, LoRA
significantly reduces the memory overhead asso-
ciated with fine-tuning. However, compared to
full fine-tuning, low-rank approximations may re-
sult in a considerable generalization performance
gap (Ren et al., 2024). Consequently, enhancing
the performance of low-rank approximations while
minimizing computational overhead has emerged
as a critical challenge.

Recently, AsyLoRA (Zhu et al., 2024) proposed
a method that requires no additional parameters
by leveraging the inherent asymmetry of LoRA
matrices. Specifically, the A matrix captures funda-
mental features, while the B matrix utilizes these
features to generate task-specific outputs. Conse-
quently, fine-tuning B is inherently more effective
than fine-tuning A. This method enhances the ef-
fective rank by freezing the A matrix during fine-
tuning. However, despite successfully expanding
the rank, it yields minimal performance improve-
ment. This motivates a deeper investigation into
the functional role of the B matrix in LoRA.

In Fig. 1(b), we partition the parameter space of
the LoORA B matrix and visualize the activations of
these parameter groups (G) across different classes.
It can be observed that distinct classes exhibit sig-
nificant differences in their parameter preferences;
for instance, the parameter groups predominantly
activated by ‘c-1" and ‘c-2’ are nearly mutually
exclusive. However, traditional LoRA does not
account for such inter-task preference differences,
as it employs a shared parameter space paradigm.
This approach may lead to interference among the
parameter spaces of different classes during fine-
tuning (Liu et al., 2023; Ghiassian et al., 2020),
ultimately affecting the performance of LoRA.

How can we effectively distinguish the
parameter preferences across tasks to
mitigate such interference and enhance
the model’s generalization capability?

Given our objective to segregate the parameter
space during fine-tuning to accommodate the dis-
tinct preferences of different tasks (e.g., varying cat-
egories or datasets) and mitigate inter-task interfer-
ence, we propose a low-rank adapter that partitions
the parameter space, termed Subspace Low-Rank
Adaptation (SuLoRA).

As shown in Fig. 1 (a), we first freeze matrix
A, which is insensitive to fine-tuning performance,
to improve its effective rank and thereby expand

the trainable parameter space of matrix B (Zhu
etal., 2024). In contrast to traditional LoRA, which
shares a single low-rank adaptation matrix across
all task instances, SULoRA partitions the parameter
space of matrix B into N subspaces (N > r). During
training, SuLoRA dynamically selects r subspaces
based on the parameter preferences of each task,
constructing a dedicated matrix B for each task
to mitigate inter-task interference. Experimental
results demonstrate that this strategy yields signifi-
cant performance improvements.

To validate the effectiveness and generalization
capability of SuLoRA, we conducted extensive ex-
periments across various NLP tasks and extended
our evaluation to domain generalization and multi-
modal tasks. Experimental results demonstrate that
SuLoRA consistently outperforms LoRA while uti-
lizing fewer parameters and a lower rank, and it
even surpasses full-parameter fine-tuning across
multiple tasks. In summary, our method makes the
following main contributions:

* Through experiments and analysis, we found that
different tasks exhibit significant differences in
parameter preferences during the fine-tuning of
LoRA, which plays a crucial role in enhancing
the performance of low-rank approximations.

* We propose a parameter-separated low-rank
adapter, SuLoRA, which allocates distinct sub-
parameter spaces for different tasks, effectively
mitigating inter-task interference.

» Extensive experiments conducted across three
domain tasks demonstrate the effectiveness of
SuLLoRA, which outperforms LoRA and SOTA
methods in both parameter efficiency and perfor-
mance.

2 Related Work

Low-Rank Adaptation (LoRA). LoRA (Hu et al.,
2021) is a lightweight fine-tuning method designed
to reduce the cost of adapting large pre-trained
models for specific tasks. By introducing low-rank
matrices to approximate weight updates, LoRA
avoids full parameter fine-tuning, significantly re-
ducing computational and memory overhead. Vari-
ants and extensions of LoRA have been widely
applied in natural language processing (Zhu et al.,
2024; Zhang et al., 2023; Ren et al., 2024; Tian
et al., 2024) and computer vision (Yao et al., 2024;
Shen et al., 2024), for fine-tuning models like
BERT (Alaparthi and Mishra, 2020) and GPT (Rad-
ford, 2018).
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Notably, AsyLoRA (Zhu et al., 2024) has re-
vealed an asymmetry between the roles of the A
and B matrices in LoRA. The study demonstrates
that the performance of a randomly initialized A
matrix is comparable to that of a fine-tuned one.
Consequently, a strategy was proposed to extend
the rank by freezing the A matrix and exclusively
fine-tuning the B matrix. However, this work did
not delve deeply into the parameter space of the B
matrix, resulting in limited performance improve-
ments. Furthermore, MELoRA (Ren et al., 2024)
achieves efficient inference by integrating multiple
sub-LoRAs. However, these sub-LoRAs are shared
across different tasks, which is fundamentally dis-
tinct from our approach.

Parameter Efficiency in Existing Methods.
Adapter methods (Zhang et al., 2023; Fu et al.,
2022; Gao et al., 2024) enhance fine-tuning ef-
ficiency by inserting small, trainable modules at
each layer of a pre-trained model. In contrast,
prompt tuning (Lester et al., 2021b; Liu et al., 2021)
and prefix tuning (Li and Liang, 2021) adjust the
model’s output by adding trainable prompts or pre-
fixes to the input, without modifying the internal
weights. Unlike these methods, LoRA replaces
full model weight updates with low-rank matri-
ces, avoiding large-scale modifications to the pre-
trained model parameters. Moreover, as this work
focuses on LoRA improvements and a fair compari-
son with the above approaches is challenging, these
methods were excluded from our experiments.
Parameter Interference. Parameter conflict (Ben-
gio et al., 2020) refers to the interference between
model parameters, leading to performance degra-
dation. In reinforcement learning, parameter con-
flict typically manifests as incompatibility between
states, where learning in one state may overwrite
knowledge in another, resulting in a decline in
model performance and generalization ability (Liu
et al., 2023; Ghiassian et al., 2020).

This paper examines the performance degrada-
tion caused by parameter sharing in LoRA fine-
tuning from the perspective of parameter con-
flicts and addresses it by allocating distinct sub-
parameter spaces to each task.

3 Method

3.1 Preliminaries

LoRA (Low-Rank Adaptation) is a parameter-
efficient fine-tuning (PEFT) method that integrates
trainable low-rank decomposition matrices into

each layer of Transformer models, enabling fine-
tuning without the need for a full update of the
model’s original weights. As shown in Fig. 1(a)
(left), the computation of a linear layer can be rep-
resented as:

h = Wh, (1)

where W € R%u>dn ig the pre-trained weight ma-
trix, with dj, and doy representing the input and
output dimensions, respectively.

LoRA adjusts the weights by introducing low-
rank decomposition matrices, achieving parameter-
efficient adaptation. The computation is as follows:

h=Wh+AWh=Wh+a-BAh, (2)

where AW = BA is the trainable adjustment ma-
trix composed of low-rank matrices A € R”*%n
and B € R%uw*" where the rank r satisfies r <
min(diy, doyt). The hyperparameter o > 0 con-
trols the influence of the adjustment matrix on the
overall weights.

During fine-tuning, LoRA updates only the low-
rank decomposition matrices (LoORA A and B),
leaving the original pre-trained weights unchanged.
This enables efficient task-specific adaptation with
reduced computational overhead by training inde-
pendent LoRA modules for each downstream task.

3.2 Parameter Activation Sensitivity

This work explores parameter preferences across
tasks in natural language tasks and examines their
activations. For task 7, the normalized gradient
update magnitude is used to represent the update
behavior of the parameter groups:

Z Wi © VW, p

Wil + ¢ )

where N is the total number of parameters in the
parameter groups involved in the computation, €
is a small constant, VIW; is the gradient of W,
and || - || ¢ represents the Frobenius norm of the
parameters, which normalizes the parameter scale.
The term ||W; © VW;|| ¢ performs an element-wise
multiplication between the gradient and the param-
eters, which measures directional consistency. If
W; and VW; are aligned in the same direction, the
update is more effective.

Leveraging the normalized gradient obtained
from Eq. 3, we can measure the activation level of
parameters relative to themselves, avoiding the in-
fluence between parameters of different scales, and
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by comparison, determine which parameter groups
are effectively activated.

Therefore, a parameter group is defined as effec-
tively activated when £ > 0.7 (indicated by dark
green in Fig. 1(b)). If £ < 0.3, the parameter
group is considered dormant (indicated by

in Fig. 1(b)). Values in between are clas-
sified as an intermediate state (indicated by grass
green in Fig. 1(b)).

We conducted experiments on the fine-tuned
RoBERTa-base (Liu, 2019) model using LoRA
with a rank of 4 and calculated the parameter acti-
vation of LoRA B from five types of sentence pairs
with different similarity levels in STS-B (Cer et al.,
2017). Fig. 1(b) shows the parameter activation
scores of LoRA B in the fifth transformer (Vaswani,
2017) layer.

Our study reveals that parameter activation in
LoRA B varies across different tasks. For instance,
in STS-B, the activated parameter groups in class
0 exhibit significant differences in parameter pref-
erences compared to those in class 1. The con-
ventional parameter-sharing mechanism in LoRA
inevitably overlooks these preferences, potentially
leading to interference between task-specific pa-
rameter learning and, consequently, affecting the
effectiveness of model fine-tuning.

To address this issue, we decompose the LoORA
parameter matrix into multiple independent sub-
spaces and assign them separately to different tasks
to capture each task’s preferences. Meanwhile, fine-
tuning the B matrix is inherently more effective for
specific tasks than fine-tuning the A matrix (Zhu
et al., 2024). Consequently, we choose to freeze
the A matrix to enhance the model’s generalization
capability and improve the scalability of the rank.

3.3 Subspace Low-Rank Adaptation

Through analysis of the prior section, we propose
Subspace Low-Rank Adaptation (SuLoRA). As
shown in Fig. 2, it divides LORA B matrix into a set
of N (N > r) distinct parameter subspaces {b; }.
By dynamically selecting r subspaces from {b;},
SulL.oRA customizes the LoORA B matrix for each
input instance. The low-rank adaptation expression
of SuLoRA is as follows:

h=Wh+ AWh
= Wh+ «- (concat]_g b;) Ah 4)
— Wh+a- BAh,

where b; € R%u*1 represents a selected parameter
subspace, and A € R"*%n,

|
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Figure 2: Parameter subspace selection of LoORA B ma-
trix in SuLoRA. SuLoRA treats different parameter sub-
spaces as experts and allocates r parameter subspaces to
each instance through a routing method based on hidden
features.

3.4 Parameter Subspace Selection

To allocate a dedicated parameter space for each in-
stance, we adopt an instance-based routing method,
inspired by the mixture of experts (MoE) (Shazeer
et al., 2017) approach, to assign r parameter sub-
spaces for each instance based on its hidden fea-
tures. Compared to traditional token-based rout-
ing methods, this approach is significantly more
memory-efficient.

Specifically, the router first computes the average
over the sequence dimension of the input hidden
features h € R%9%%n resulting in the averaged
hidden features h = Avg(h).

Next, we allocate h using a set of learnable
weights W, € RN*din - Combined with top-k se-
lection, this allows us to identify r parameter sub-
spaces tailored to the specific instance:

exp(qu_lZ
2 exp(Wghi)

where gp represents the selected parameter group
consisting of the chosen {b; }.

Through careful parameter selection, we can ef-
fectively mitigate parameter interference between
tasks based on the parameter preferences of differ-
ent tasks, creating a distinct parameter space for
each instance and achieving parameter separation
to address the interference issue in LoRA.

9B = tOpr( )a (5)

4 Experimental Setup
4.1 Datasets

NLP tasks. Based on previous work (Ren et al.,
2024), we adopt two widely-used benchmarks:
GLUE (Wang, 2018) and INSTRUCTEVAL (Chia
et al., 2023). - The GLUE benchmark covers vari-
ous natural language understanding (NLU) tasks,
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Method #Params CoLA  SST-2 MRPC QNLI STS-B  RTE MNLI  QQP Avg.
FT 184M  69.21 95.64 89.22 93.78 91.59 82.49 8998  92.05 87.82
AdaLoRA 1.27M  70.86  95.95 90.22 94.28 91.39 8736  90.27 92.13  88.83
MELoRA 1.33M  70.67  96.41 90.98 94.39 91.83 87.94 9035 91.77  89.29
AsyLora,—g 0.67M 6746  95.49 88.38 93.71 91.02 7724 9036 9156  86.90
AsyLora,—16 1.33M  69.73 95.64 89.46 93.74 91.18 80.14  90.08 9198 87.74
LoRA,—3 1.33M  69.73 95.57 89.71 93.76 91.86 8532 9047 9195 88.38
SuLoRA,—4 0.3d4M 7122  96.55 91.02 94.12 91.84 87.01 90.06  91.51 89.17
SuLoRA,—g 0.67M  71.86  96.79 92.07 94.75 92.36  88.39 90.52 92.20 89.87

Table 1: Different adaptation methods on the GLUE benchmark for natural language understanding tasks.
We report the overall (matched and mismatched) accuracy for MNLI, Matthew’s correlation for CoLA, Pearson
correlation for STS-B, and accuracy for other tasks. Higher is better for all metrics. #Params represents the
number of trainable parameters in each adaptation method. Boldface highlights the best results according to the
corresponding metrics, while the second-best results are underlined.

including classification, semantic similarity, para-
phrase detection, and natural language inference. It
contains datasets such as CoLA (Xia et al., 2024),
SST-2 (Socher et al., 2013), MRPC (Dolan and
Brockett, 2005), QNLI (Rajpurkar et al., 2016),
STS-B (Cer et al., 2017), RTE (Bentivogli et al.,
2009b; Bar-Haim et al., 2014; Giampiccolo et al.,
2007; Bentivogli et al., 2009a), MNLI (Williams
et al., 2018), and QQP. - INSTRUCTEVAL fo-
cuses on instruction-following tasks and includes
MMLU (Hendrycks et al., 2020), DROP (Dua et al.,
2019), HumanEval (HEval) (Chen et al., 2021),
and BBH (Srivastava et al., 2023). We fine-tune
Llama2-7b (Touvron et al., 2023b) on cleaned Al-
paca data and evaluate performance based on IN-
STRUCTEVAL.

Visual domain generalization tasks use the Do-
mainBed benchmark, which contains VLCS (Fang
et al., 2013), PACS (Li et al., 2017), and Office-
Home (Venkateswara et al., 2017) datasets. The
original 80% training and 20% testing splits are
followed. This benchmark assesses image classifi-
cation domain generalization across different style
environments.

Multi-modal tasks. Following (Shen et al., 2024),
we conduct instruction tuning on a subset of Vision-
Flan (Xu et al., 2023), which consists of 187 tasks
with up to 1,000 instances per task, totaling 182,167
examples. To further verify generalization, we also
test on Text-VQA (Singh et al., 2019), VSR (Liu
et al., 2022), CIFAR-100 (Krizhevsky et al., 2009),
and MNIST (LeCun, 1998) datasets.

4.2 Comparison Methods

We conduct a comprehensive and fair compar-
ison of our proposed method, SuLoRA, with
conventional full fine-tuning (FT) approaches,

the classical LoRA method (Hu et al., 2021),
and other LoRA-based improvements, such as
AdalLLoRA (Zhang et al., 2023), MELoRA (Ren
et al., 2024), and AsyLoRA (Zhu et al., 2024),
across multiple tasks. Notably, similar to Asy-
LoRA, our approach freezes the A matrix in LoRA
during training, focusing solely on training the B
matrix, whereas LoRA, AdaLLoRA, and MELoRA
concurrently train both the A and B matrices. For
further details, please refer to Appendix A.2.

4.3 Implementation Details

In all experiments, we only fine-tune the projection

matrices W and Wy (Zhang et al., 2023). Experi-

ments are conducted on NVIDIA A800 GPUs, and
results are averaged over 3 random seeds.

* For the GLUE benchmark, we use RoBERTa-
base as the backbone model. To ensure fair com-
parison, the rank of LoRA is set to 8. When the
rank r = 4, the number of parameter subspaces
issetto N = 8; whenr = 8, N = 16. Since
the number of trainable parameters in SuLoRA
is independent of N when the rank is fixed, we
explore N from {6, 8, 10, 12} and report the best
performance.

e For the INSTRUCTEVAL benchmark, the
backbone is LLaMA-2-7B, with training on the
Alpaca dataset and 2k randomly selected samples
as the development set. Following INSTRUCTE-
VAL (Chia et al., 2023) settings, we apply 5-
shot direct prompting for MMLU, 3-shot for
BBH and DROP (dev), and 0-shot for HEval.
We use AdamW optimizer, train for 3 epochs to
match baseline epochs, apply a linear learning
rate scheduler starting from 3 x 10™%, and use
a batch size of 16. The number of parameter
subspaces is set to twice the rank.
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Method VLCS PACS OfficeHome
ID OOD ID 00D ID OO0D

LoRA r=8 73.51i0.62 56.43i1.96 94.94i0.56 75.58i0,92 78.54i1_49 74.46i0_40
LP 75.58+1.66 71.70+1.04 81.6240.34 61.73 415 58.38+0.76 68.594+0.22
Full Fine-tuning 76.21 +1.95 64.87i6_44 98-15i0.56 74‘90i2.43 80.67i1.22 63-23i0_64
AdaLORA/r-ZB 76.85j:2,40 64.92:5:],75 91.98:5:2,30 71 .89;}:1.10 77,]2;}:0,95 74-30:I:0.35
MELoRA, —5 7772422 71.014163 92.59 1563 71451103 77.621089 75.8840.28
AsyLORArzg 77.40;‘:2430 75.81 +1.65 92-45:5:2.68 72.55:}:],03 7766;}:0,89 77-72:I:0.32
AsyLoRA,—16 79.1041.41 75404124 93.521020 73.76 1067 77.63 1084 77.854033
SuLoRA,—g 79.601.25 76.8011.40 96.77+0.15 75.48 1+0.50 78.64 1078 79.231 030

Table 2: DomainBed results. ID and OOD denote in-domain and out-of-domain test error, respectively. For OOD
we report the average performance across different environments.

Method #Params MMLU DROP HEval BBH Method Text-VQA VSR CIFAR-100 MNIST Avg

Llama2 - 4596 31.55 1220  32.04 LLaVAalign 32.62 50.16 58.04 52779 4840
FT B 47.30 29.12  12.80 32.72 FT 37.26 53.76 63.73 94.27 62.26
LoRA 33.6M  45.64 3246  15.09 3240 LoRA ,—g 39.20 53.27 46.88 8295 5558
QLoRA  33.6M  45.40 28.97 1524  32.81 AdaLoRA  40.59 53.73 49.31 83.16 56.70
AdaLoRA 33.6M 4596 3194  14.02 32.85 MELoRA 40.72 53.65 57.24 85.19 59.20
MELoRA 33.6M  46.50 3274 16.19  32.98 AsyLoRA 40.63 52.81 57.29 8532 59.01
AsyLoRA 16.8M  46.35 32.58 1597  32.83 SuLoRA 42.31 53.92 60.22 86.57 60.76
SuLoRA 16.8M  46.68 32.77 1629  33.27

Table 3: Results on INSTRUCTEVAL for instruction-
following tasks. We report the exact match for MMLU,
DROP and BBH, pass@1 for HumanEval. Higher is
better for all metrics. The best results are in bold and
the second-best results are underlined.

* For the DomainBed benchmark, we adopt an
ImageNet-pretrained ViT model for image clas-
sification and domain generalization. We fine-
tune ViT on different environments (LabelMe,
Cartoon, Clipart) from VLCS, PACS, and Office-
Home datasets respectively.

e For the Multi-modal tasks, Llaval-13B is
used as the backbone. Experiments on Vision-
Flan subset, Text-VQA, VSR, CIFAR-100, and
MNIST further demonstrate the model’s diverse
capabilities.

5 Results

5.1 Results on NLP tasks

Results on GLUE. Table 1 presents a compari-
son of our method with other approaches on the
GLUE benchmark using the same backbone. We
can observe that, under the same LoRA rank set-
ting, our method outperforms LoRA on all GLUE
datasets, achieving an Avg improvement of 1.49.
Even with a rank of 4, SuLoRA achieves better per-
formance than LoRA on 5 out of 8 datasets (with
an Avg improvement of 0.79). Additionally, com-
pared to MELoRA, when both methods have the

Table 4: Zero-shot for Multi-modal Evaluation. We
report the performance of our method on the Text-VQA,
VSR, CIFAR-100, and MNIST. LLaVA 5j;e, indicates
the stage-one LLaVA-v1 with only feature alignment
but not visual instruction tuning. The best results are in
bold and the second-best results are underlined.

same number of parameters as LoRA, SuLoRA
shows superior performance at rank 8, with an Avg
improvement of 0.58.

It is worth noting that SuLoRA demonstrates
more significant improvements on datasets with
limited training data, such as CoLA, MRPC, and
RTE. We believe this is because SuLoRA avoids
overfitting on limited data by separating the param-
eter spaces. Additionally, by freezing the LoRA
A matrix, SuLoRA enhances generalization abil-
ity. The performance of SULoRA on the remaining
datasets further demonstrates that it is stable and
effective for different NLU tasks.

Results on INSTRUCTEVAL. To further validate
the effectiveness of our method, we conducted tests
on the INSTRUCTEVAL benchmark dataset. As
shown in Table 3, under the same backbone, Su-
LoRA demonstrated superior performance com-
pared to other methods, achieving the best results
on all datasets except for MMLU. Compared to
LoRA, we achieved improvements of 1.04, 0.31,
1.20, and 0.87 on MMLU, DROP, HEval, and
BBH, respectively. The performance on the IN-
STRUCTEVAL benchmark further demonstrates
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Method #Params CoLA SST-2  MRPC QNLI STS-B RTE MNLI QQP Avg.
BeatA 0.67TM 71.21 95.76 90.20 94.27 91.78 87.12 90.30 91.86 89.06
BAcat 0.67"M 70.88 96.44 90.44 94.17 91.71 87.36 90.26 91.07 89.04
BAcat 0.34M 71.09 95.68 90.36 94.33 91.57 85.06 90.29 91.22 88.70
BcatA (Ours) 0.34M 71.22 96.55 91.02 94.12 91.84 87.01 90.06 91.51 89.17

Table 5: Comparison of Different Design Strategies for SuLoRA. The experiments are conducted on the
GLUE benchmark. (A) indicates that the parameter is trainable, and "cat" refers to the use of a parameter space
decomposition strategy. In SuLoRA, A is frozen, while B uses the parameter space decomposition strategy.
Boldface indicates the best result, while the second-best result is underlined.

Method ~MMLU DROP HEval BBH
Llama? 45.96 31.55 1220  32.04
Be.:A 46.71 32.49 16.08  33.11
BAca: 45.88 31.75 1575 3281
BAcas 45.74 32.15 1553 32.70
BeacA (Ours) 46.68 3277 1629 3327

Table 6: Comparison of Different Design Strategies
for SulLoRA. The experiments are conducted on the

INSTRUCTEVAL benchmark. (A) indicates that the
parameter is trainable, and "cat" refers to the use of a
parameter space decomposition strategy. In SuLoRA,
A is frozen, while B uses the parameter space decom-
position strategy. The best results are in bold and the
second-best results are underlined.

that our approach remains effective and feasible
even when faced with different backbones and di-
verse tasks. At the same time, it also validates
the effectiveness of our parameter separation strat-
egy. Separating the parameter space for different
tasks indeed enhances model performance without
increasing the number of training parameters.

5.2 Results on Domain generalization tasks

To further validate the generalization capability
of SuLoRA, we conducted additional tests on Do-
mainbed (Gulrajani and Lopez-Paz, 2020), and the
experimental results are shown in Table 2. As
expected, SuLoRA achieved the best overall per-
formance among all methods. Compared to Asy-
LoRA, SuLoRA showed an average improvement
of 2.50% and 1.81% in ID and OOD, respectively.
The results on Domainbed further demonstrate that
our method remains effective even when tackling
domain generalization tasks in computer vision.

5.3 Results on Multi-modal tasks

To evaluate SuLoRA’s performance on multi-modal
tasks, we tested it on various multi-modal tasks,
as shown in Table 4. It can be observed that,
when experiments are conducted with the same

rank, SuLoRA consistently outperforms LoRA and
AsyLoRA, achieving improvements of 5.18% and
1.75% in average accuracy compared to the two
methods, respectively. The superior performance in
multi-modal tasks further demonstrates the robust-
ness and effectiveness of SULoORA when dealing
with different tasks.

6 Analysis

6.1 Analysis of Different Design Strategies for
SuLL.oRA

In this section, we will delve into the impact of

different design strategies. We conducted experi-

ments on various benchmarks, and the results on

GLUE and INSTRUCTEVAL are shown in Table

5 and Table 6, respectively.

The design applied in SuLoRA (i.e., freezing
A and partitioning the subspace of B) consistently
achieved superior or comparable performance com-
pared to other design strategies across different
benchmarks.

e Compared to EcatA (i.e., the SuLoRA where
both A and B are trained), SuLoRA achieved
better performance on a significant number of
datasets, especially on INSTRUCTEVAL, while
reducing the trainable parameters by half. This
suggests that freezing the A matrix can indeed re-
duce the number of trainable parameters without
excessive loss, and even improve model perfor-
mance. Additionally, freezing A can provide
better generalization, further supporting the no-
tion that the A matrix in LoRA is closely related
to generalization ability (Zhu et al., 2024).

* Compared to ﬁAcat and BAcat, SuLLoRA demon-
strates a clear advantage, indicating that apply-
ing the subspace strategy to B is more effective
than applying it to A. We believe this is because
A is responsible for extracting shared features,
and the parameter space activations for shared
features across different tasks are highly similar.
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Method N CoLA  SST-2 MRPC  QNLI STS-B RTE MNLI QQP Avg.
SuLoRA 4 66.81 95.53 87.50 93.25 89.66 71.11 89.04 90.57 85.43
SuLoRA 6 71.05 96.26 90.88 93.91 91.26 86.54 89.77 90.91 88.75
SuLoRA 8 71.22 96.55 91.02 94.12 91.84 87.01 90.06 91.51 89.17
SuLoRA 10 71.15 95.53 91.06 94.15 91.78 86.96 90.08 91.50  89.03
SuLoRA 12 71.26 95.64 91.02 94.19 91.84 87.10 90.12 91.53  89.09

Table 7: The performance of SuLoRA under different parameter configurations. The experiments are conducted
on the GLUE benchmark. In the experiment, the rank of SuLoRA is set to 4. When N = r = 4, SuLoRA degenerates
into AsyLoRA. Boldface highlights the best results according to the corresponding metrics, while the second-best

results are underlined.

Therefore, there is no need to apply the subspace
strategy to A. Additionally, we found that train-
ing B is more effective than not training it, further
supporting the idea that the B matrix in LoRA is
indeed associated with task-specific capabilities.
Thus, implementing parameter space separation
for LoORA’s B matrix to enhance model perfor-
mance is logically sound.

6.2 Analysis of the Number of Parameter
Subspaces

We analyze the number of parameter subspaces,
N. As shown in Table 7, we find that SuLoRA
achieves the best performance when N = 2r.
When N > 27, the benefits of increasing the num-
ber of subspaces begin to diminish, and in some
datasets, performance even deteriorates. We be-
lieve this is because, although the parameter space
separation strategy allocates different subspaces to
different instances, when the number of candidate
subspaces increases significantly, there is a risk of
selecting poorly trained subspaces, which leads to
performance degradation on certain datasets.

6.3 Analysis of the Rank of SuLoRA

To analyze the impact of r, we conducted experi-
ments on the performance of SuLoRA with differ-
ent r values on GLUE, and the results are shown in
Fig. 3. As r increases, the overall performance of
the model tends to improve. This observation sug-
gests that when there is sufficient training data, a
higher rank and more trainable parameters are gen-
erally favored in terms of performance. However,
higher rank and more trainable parameters usually
imply higher training costs. For a comparison with
LoRA and more detailed results, please refer to the
Appendix D.1.

7 Conclusion

In this paper, we propose a novel parameter-
efficient fine-tuning method, SuloRA. This

CoLA SST-2

*-SuLoRA 9

LoRA
r=1 =2 r=4 =8 r=16 =32 =1 =2 =4 =8 =16 r=32 r=64
QNLI STS-B

. . . .
.
945 . 92 o

=1 =2 =

Rank r Rank r

=8 =16 =32 =64 =1 =2 =4 =8 =16 =32 =64

Figure 3: Performance of SuLoRA with different ranks
and fixed N = 2r on different datasets.

method adopts an innovative strategy that dynami-
cally selects the optimal parameter subspace based
on specific instances and tasks, enabling the separa-
tion of parameter spaces across different instances
and tasks. This effectively reduces parameter inter-
ference between tasks and improves fine-tuning ef-
ficiency. Through extensive experiments on multi-
ple benchmarks, we fully validate the effectiveness
of SuLoRA’s parameter space segmentation strat-
egy. Compared to the traditional LoRA with shared
parameter spaces, SULoRA not only demonstrates
stronger adaptability but also shows significant ad-
vantages in alleviating parameter interference.

Limitations

Our study focuses on allocating different parameter
subspaces for each task, while designing dynamic
subspace numbers for each task and fine-tuning
in the field of computer vision are left as future
research directions. Additionally, due to training
cost concerns, our experiments did not further use
Llama2-13b to validate the effectiveness of our
method on larger LLMs. Therefore, future research
could validate the effectiveness of our method on
more LLMs and instruction-tuning datasets. More-
over, compared to traditional LoRA, our method
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introduces additional computational overhead due
to the dynamic parameter subspace selection.
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A Additional Experimental Details .

A.1 Additional Benchmark Details

Natural Language Understanding (NLU) Task.
The GLUE benchmark is used for NLU tasks, in-
cluding classification, semantic similarity, para-
phrase, and natural language inference tasks. Itin-
cludes the CoLA (Xia et al., 2024), SST-2 (Socher

et al., 2013), MRPC (Dolan and Brockett, 2005),
QNLI (Rajpurkar et al., 2016), STS-B (Cer et al.,
2017), RTE (Bentivogli et al., 2009b; Bar-Haim

et al., 2014; Giampiccolo et al., 2007; Bentivogli
et al., 2009a), MNLI (Williams et al., 2018), and
QQP datasets. The detailed information for each
benchmark and dataset is provided in Table 8.

Dataset | #Train  #Dev  #Test | #Metrics .

STS-B (Cer et al., 2017) dataset consists of sen-
tence pairs drawn from news headlines, video
and image captions, and natural language in-
ference data, with human-annotated similarity
scores ranging from 1 to 5, designed to predict
these similarity scores.

RTE (Bentivogli et al., 2009b; Bar-Haim et al.,
2014; Giampiccolo et al., 2007) datasets con-
sist of challenges from a series of annual textual
entailment tasks, designed to predict whether a
premise entails a given hypothesis.

MNLI (Williams et al., 2018) dataset is a crowd-
sourced collection of sentence pairs with tex-
tual entailment annotations, designed to assess
whether a premise entails, contradicts, or is neu-
tral with respect to a given hypothesis.

QQP dataset consists of question pairs from the

GLUE BM Quora! community question-answering website,

CoLA 8.5k 1k 1k Matthews corr aiming to determine whether the two questions
SST-2 67k 872 1.8k Accuracy are semantically equivalent.
MRPC 3.7k 408 1.7k AccuracyF1 . .
QNLI 108k 3.7k 3.7k Accuracy Instruction Following Tasks. We fine-tuned
%‘%B 27;( 1275é< 1;11(k :earson Llama2-7b (Touvron et al., 2023b) with our Su-
MNLI 393k 20k 20k Aﬁgﬁiig LoRA on the cleaned Alpaca data and evaluated its
QQP 364k 40k 391k AccuracyF1 performance on the instruction-following task us-

INSTRUCT EVAL BM ing the INSTRUCTEVAL (Chia et al., 2023) bench-
MMLU | 998k 1.8k 14k Accuracy mark, which includes the MMLU (Hendrycks
DROP 77.4k 0 9.5k Accuracy et al., 2020), DROP (Dua et al., 2019), HumanEval
HEval 0 0 164 pass@1 :
BBH 0 0 6.5k Accuracy (HEval) (Chen et al., 2021), and BBH (Srivastava

Table 8: Datasets Information. “BM” is short for ¢
“Benchmark”. We train the models on the cleaned Al-
paca dataset and evaluate them on the test sets of IN-
STRUCTEVAL.

¢ CoLA (Xia et al., 2024) dataset consists of En-
glish acceptability judgments collected from lin-
guistic theory sources, aiming to evaluate models’
ability to distinguish grammatically correct sen-
tences from incorrect ones.

¢ SST-2 (Socher et al., 2013) dataset consists of

movie review sentences with human-annotated

sentiment labels, designed for binary sentiment
classification tasks.

« MRPC (Dolan and Brockett, 2005) dataset con-
sists of sentence pairs extracted from online news
sources, designed to evaluate whether two sen-
tences are semantically equivalent.

* QNLI (Rajpurkar et al., 2016) dataset is

a question-answering dataset consisting of

question-paragraph pairs, designed to determine
whether a context sentence contains the answer

et al., 2023) datasets.

MMLU (Hendrycks et al., 2020) dataset is de-
signed to assess world knowledge and problem-
solving abilities across a broad range of subjects,
evaluating models in both zero-shot and few-shot
settings, with questions ranging from elementary
to advanced professional levels.

DROP (Dua et al., 2019) dataset is a math-based
reading comprehension task that requires sys-
tems to perform discrete reasoning on passages
extracted from Wikipedia articles, involving op-
erations such as addition, counting, and sorting.
HumanEval (HEval) (Chen et al., 2021) is a
benchmark used to evaluate the problem-solving
abilities of large language models in program-
ming. It consists of 164 original programming
problems that assess language comprehension,
algorithms, and basic mathematics, with some
problems comparable to simple software inter-
view questions.

BBH (Srivastava et al., 2023) is a subset of 23

1https: //huggingface.co/datasets/glue/viewer/

to a given question. agp
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challenging tasks from the BIG-Bench (Srivas-
tava et al., 2022) benchmark, focusing on tasks
that are believed to be beyond the capabilities of
current language models. It requires models to
perform challenging instructions such as naviga-
tion, logical deduction, and fallacy detection.

Domain generalization tasks. In addition, to fur-

ther validate the effectiveness of our method, we

also conducted visual domain generalization tests
on the Domainbed benchmark, which includes
the VLCS (Fang et al., 2013), PACS (Li et al.,,

2017), and OfficeHome (Venkateswara et al., 2017)

datasets. The training and testing data are split fol-

lowing the original 80% training and 20% testing
ratio.

* VLCS (Fang et al., 2013) is an important re-
source for domain generalization tasks. The goal
of domain generalization is to train a model that
performs well on unseen domains, even when
their data distributions differ from the training
data.

* PACS (Li et al., 2017) is a domain adaptation
image dataset that contains four domains: pho-
tographs (1,670 images), art paintings (2,048
images), cartoons (2,344 images), and sketches
(3,929 images), with each domain consisting of 7
categories. The dataset is divided into three parts:
the training set with 8,977 images, the test set
with 1,014 images, and the validation set with
9,991 images.

¢ Office-Home (Venkateswara et al., 2017) is a
benchmark dataset for domain adaptation, con-
sisting of 4 domains, each containing 65 cate-
gories with an average of 70 images per cate-
gory, totaling 15,500 images. The four domains
and their details are as follows: Art, which in-
cludes artistic images in the form of sketches,
paintings, and decorations; Clipart, a collection
of clipart images; Product, featuring images of
objects without backgrounds; and Real-World-
images, containing images of objects captured by
regular cameras.

Multimodal tasks. To verify the generalization

of our method, we follow (Shen et al., 2024) and

perform instruction tuning on a Vision-Flan (Xu
et al., 2023) subset, a multimodal dataset with

187 tasks. The subset includes up to 1,000 in-

stances per task, totaling 182,167 instances. Sub-

sequently, we test on four multimodal datasets:

Text-VQA (Singh et al., 2019), VSR (Liu et al.,

2022), CIFAR-100 (Krizhevsky et al., 2009), and

MNIST (LeCun, 1998). Below are the detailed

explanations of these four datasets.

» Text-VQA (Singh et al., 2019) is a dataset for
Visual Question Answering (VQA), where the
goal is to answer questions related to an image
that require understanding both visual content
and textual information. The dataset contains
images paired with questions and answers, and
these questions often involve text within the im-
ages, requiring models to integrate both visual
and textual understanding.

* VSR (Liu et al., 2022) is a dataset designed for
recognizing sentiment in images based on both
visual and textual cues. It contains images an-
notated with sentiment labels (such as positive,
negative, or neutral) along with related textual
descriptions. The task is to classify the sentiment
of the image based on its visual content and any
accompanying text.

* CIFAR-100 (Krizhevsky et al., 2009) is a well-
known image classification dataset containing
60,000 32x32 color images across 100 classes.
The dataset is divided into 50,000 training images
and 10,000 testing images. It is commonly used
for evaluating image classification models, where
each image is labeled with one of the 100 classes,
ranging from animals to objects.

e MNIST (LeCun, 1998) dataset is a collection
of handwritten digits from O to 9. It consists of
60,000 training images and 10,000 testing im-
ages, each image being a 28x28 grayscale image
of a digit. MNIST is widely used for benchmark-
ing image recognition models, particularly in the
area of digit recognition.

A.2 Additional Introduction to Comparison
Methods

Full finetuning (FT) - the method is initialized
with pretrained weights, and all parameters are in-
volved in training.

LoRA (Hu et al., 2021) - as introduced in the sec-
tion 2.

AdaLoRA (Zhang et al., 2023) - the method fo-
cuses on determining the optimal rank for each
layer in the model. It adjusts the rank selection
based on the magnitude of each singular value.
MELoRA (Ren et al., 2024) - the method focuses
on stacking multiple mini LoRAs in parallel. It
concatenates multiple mini LoRAs along the di-
agonal to construct an equivalent block-diagonal
LoRA matrix.

AsyLoRA (Zhu et al., 2024) - as introduced in
section 2.
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B Further Explanation of SuLoRA

B.1 A More Detailed Motivation Explanation

From the perspective of gradients, we agree
that gradient differences inherently capture task-
specific features. However, within a shared pa-
rameter space, differential gradients may introduce
harmful interference due to conflicting update di-
rections, as illustrated in Figure 1(b) of the main
text.

¢ Parameter Preference Divergence: Our
Equation (3) and Figure 1(b) demonstrate that
the LoORA B matrix subspaces activated by
different tasks exhibit high divergence. When
parameters are shared, these conflicting gradi-
ents are forced to optimize the same parame-
ters, resulting in overwriting or cancellation.

* Evidence of Performance Degradation: Ta-
bles 1 and 7 show that SuLoRA with separated
parameters significantly outperforms LoRA
with shared parameters, especially in cross-
task scenarios (e.g., a 3.07% improvement on
the RTE task), confirming the presence of in-
terference.

Therefore, although gradient differences natu-
rally exist, they must be managed through parame-
ter isolation (e.g., subspace allocation in SuLoRA)
to prevent them from turning into harmful con-
flicts. In a shared parameter space, differentiated
gradients can overwrite or cancel each other out,
analogous to negative transfer in multitask learn-
ing, ultimately degrading the model’s adaptability
to specific tasks.

From the perspective of tasks and instances, our
goal is to address subtasks within datasets (e.g.,
classes). We associate different classes with differ-
ent tasks. For example, in Figure 1(b), different
classes are treated as distinct tasks. The instance-
level routing mechanism in SuLLoRA is essentially
a finer-grained solution for task-level parameter
isolation; the two approaches are not contradictory
but complementary. By dynamically allocating
instance-level subspaces, more flexible parameter
isolation across tasks can be achieved.

B.2 More Explanation of Parameter
Grouping

The following are explanations regarding parameter
group partitioning and activation/sleep thresholds:

1. Parameter Group Partitioning.

The core concept of parameter grouping in
Section 3.2 involves structurally decomposing
the LoRA matrix B into multiple parameter
groups. For example, a d X r matrix B can
be divided into r column vectors of size d X
1, where each column vector represents an
independent d-dimensional parameter group.
Physically, this corresponds to partitioning
matrix B column-wise, where each parameter
group (or subspace) corresponds to a latent
task-specific feature pattern.

2. Activation/Sleep Thresholds.

Thresholds of 0.7 (activation) and 0.3 (sleep)
are determined based on statistical distribu-
tions. During fine-tuning on STS-B, we com-
puted scores for the partitioned parameter
groups and set these thresholds according to
the mean and standard deviation of the final
statistics.

B.3 Training Mechanism Clarification

We adopt a load balancing strategy similar to MoE.
SuL.oRA draws on the load balancing concept from
MOoE and employs an entropy maximization con-
straint to ensure comprehensive subspace training.
Specifically, we add a load balancing loss to the
training objective, which maximizes the entropy
of subspace selection to encourage the router to
explore underutilized subspaces.

Formally, let the probability distribution over
subspace selections be p = (p1,p2,...,PK)s
where K is the number of subspaces. The load
balancing loss is defined as the negative entropy of
this distribution:

K

Lioad = — Y _ prlogp. (6)
k=1

By minimizing this loss, we maximize the en-
tropy, encouraging balanced utilization of all sub-
spaces during training.

B.4 Analysis of Parameter Space
Arrangement

First, we analyzed the architecture of SuLoRA it-
self. After selecting and merging subspaces, Su-
LoRA optimizes the combined parameter space as
a whole, which to some extent mitigates the issue
of individual subspaces being overly specialized
in a single type of feature. Second, to validate
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Method Random SST-2 RTE QQP
LoRA - 95.57 8532 91.95
SuLoRA r=8 Y 96.78 8832 9223
SuLoRA (Ours) r=8 N 96.79 8839 92.20

Table 9: Subspace Arrangement Analysis

SuLoRA’s effectiveness in mitigating permutation
inconsistency, we conducted a robustness analysis
experiment involving subspace order permutation
during the testing phase. In this experiment, af-
ter selecting the subspace indices for testing, we
randomly permuted the chosen subspaces and per-
formed inference based on the shuffled configu-
ration. Below we present the robustness test re-
sults, with all experiments conducted on the GLUE
benchmark. The detailed experimental results are
shown in Table 9.

C Additional Experiment

C.1 More Detailed Experiments on

Multimodal Tasks
Method Text-VQA VSR CIFAR-100 MNIST MME
LoRA ,—s 3920 5327 46.88 8295  1312.87
MELoRA 40.72  53.65 57.24 85.19  1430.97
AsyLoRA  40.63 52.81 57.29 8532 1422.05
SuLoRA  42.31 53.92 60.22 86.57  1487.60

Table 10: More detailed experiments on multimodal
tasks. The best results are in bold and the second-best
results are underlined.

We present the performance on multimodal tasks,
including MME, in Table 10, to further demonstrate
the effectiveness of our method in multimodal set-
tings.

D Additional Analysis

D.1 Additional Analysis of the Rank of
SuLoRA

In this section, we present the impact of different
ranks on SuLoRA across the remaining datasets in
GLUE. As shown in Fig. 4, SuLoRA outperforms
LoRA across all rank settings.

D.2 Computational Cost Analysis

We conducted a comparative analysis of memory
consumption, computation speed, and performance
with different numbers of subspaces (/V). These
experiments were performed on the CoL A dataset,
and the results are shown in the Table 11. An
asterisk (x) indicates the hyperparameters we used.
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Figure 4: Performance of SuLoRA with different ranks
and fixed N = 2r on different datasets.

Method N Memory it/s CoLA
MELoRA - 12591 142 70.67
SuLoRA (Ours) r=8 12 13070 1.59 71.49
SuLoRA (Ours) r=8 * 16 13076 145 71.86
SuLoRA (Ours) r=8 20 13082 1.19 71.90

Table 11: Cost Comparison of Different Methods

D.3 Further comparison with
HydralLoRA/MALoRA

To further illustrate the differences between
our method and multi-head LoRA approaches
such as MALoRA (Wang et al., 2024) and Hy-
dralL.oRA (Tian et al., 2024), we provide a detailed
comparison between SuLoRA and these methods
in Table 12.

5348



Method Router Mechanism Subspace Sharing
SuLoRA Dynamic routing; selects subspaces Partial sharing of LoRA matrices
HydraLoRA/MALORA | Dynamic routing; selects multiple LoRAs | Shares and fuses multiple LoRAs
Computational Efficiency Suitable Scenarios Standard MoE?
High (selective activation) Resource-constrained No (output order may vary)

Moderate (parallel branch computation) | Compute-rich environments

Yes (follows standard MoE aggregation)

Table 12: Comparison of SuLoRA and HydraLoRA/MALo0RA methods (split view)
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