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Abstract

Large Language Models (LLMs) have demon-
strated remarkable capabilities, yet their tran-
sition to real-world applications reveals a criti-
cal limitation: the inability to adapt to individ-
ual preferences while maintaining alignment
with universal human values. Current align-
ment techniques adopt a one-size-fits-all ap-
proach that fails to accommodate users’ diverse
backgrounds and needs. This paper presents
the first comprehensive survey of personalized
alignment—a paradigm that enables LLMs to
adapt their behavior within ethical boundaries
based on individual preferences. We propose a
unified framework comprising preference mem-
ory management, personalized generation, and
feedback-based alignment, systematically ana-
lyzing implementation approaches and evalu-
ating their effectiveness across various scenar-
ios. By examining current techniques, potential
risks, and future challenges, this survey pro-
vides a structured foundation for developing
more adaptable and ethically-aligned LLMs.

1 Introduction

Large Language Models (LLMs) have revolution-
ized natural language processing tasks (Achiam
et al., 2023; Team et al., 2024; Guo et al., 2025),
achieved by aligning their behaviors with human
preferences (Ouyang et al., 2022; Bai et al., 2022).
While current alignment techniques optimize for
universal human values such as helpfulness, hon-
esty, and harmlessness (Askell et al., 2021), their
transition to real-world applications reveals a cru-
cial limitation: the inability to adapt to diverse user
needs (Kirk et al., 2023a; Kasirzadeh and Gabriel,
2023), leading to reduced satisfaction and system-
atic bias against minority groups (Siththaranjan
et al., 2024), as exemplified in Table 1. Recent ad-
vances in LLMs, such as GPT-4.5 (OpenAl, 2025),
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Figure 1: A visualization of the generation space for a
certain prompt, illustrating the Pareto-optimal space of
an LLM’s responses under three dimensions of univer-
sal human values (Rame et al., 2023), with two distinct
probability mass concentrations, where the social prefer-
ence dense region emerges as the expected distribution
across all personalized preference densities.

demonstrate improved capabilities in understand-
ing user intent and showing greater “‘emotional
intelligence”, yet personalization remains a funda-
mental challenge that requires systematic solutions.

Personalization has driven substantial socioeco-
nomic value in traditional artificial intelligence (Al)
systems like search engines (Speretta and Gauch,
2005), advertising (Tucker, 2014), and recommen-
dation (Schafer et al., 2001; Guy et al., 2010).
However, they primarily prioritize existing items
based on behavioral signals (e.g., clicks, purchases).
In contrast, LLM personalization must interpret a
broader spectrum of preference indicators such as
dialogue history (Zhang et al., 2024d) and generate
responses through sophisticated reasoning.

To address the challenges, we propose a com-
prehensive personalized alignment framework with
three components: (1) preference memory manage-
ment for maintaining user-specific knowledge, (2)
personalized generation and rewarding for incor-
porating personalized patterns, and (3) alignment
through feedback for improving preference mem-
ory and generations. As illustrated in Figure 1, we
establish a hierarchy of alignment objectives where
universal values define ethical boundaries within
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Table 1: Limitations of current one-size-fits-all alignment approaches. These examples illustrate how generic
responses fail to effectively serve diverse user needs, highlighting the necessity for personalized alignment within
ethical boundaries (helpfulness, honesty, harmlessness).

.. Universal Human Value Constrains
Individuals

Helpfulness Honesty Harmlessness

Prompt: “What’s your view on genetic editing technology?”

Generic Response from GPT-4o: “Genetic editing is an emerging technology with both potential benefits and risks. It could help treat diseases
but also raises ethical concerns. Current research shows promising results while still requiring careful consideration ...”

More technical details More scientific data and uncertainty disclosure More detailed risk analysis

User A Preferred Response: “Based on current clinical data, CRISPR gene editing shows 85% efficacy in treating monogenic disorders
(technical details, scientific data), though uncertainty remains about off-target effects (uncertainty disclosure). We must carefully
weigh both therapeutic potential and long-term implications for human germline modification (detailed risk analysis) ....”

More practical implications More accessible facts Simpler risk explanation
User B Preferred Response: “Think of genetic editing like a smart eraser that can fix mistakes in our DNA recipe (practical implications,

accessible facts). While doctors have used it to help some patients with inherited diseases, they’re still doing careful testing to make
sure it’s completely safe before wider use (simple risk explanation) ...”

Prompt: “What happens after death?”

Generic Response from GPT-4o: “The question of what happens after death has been contemplated across cultures and times. Different
perspectives include scientific explanations of biological processes, various religious beliefs about afterlife, and philosophical discussions ...”

More scientific explanations More empirical evidence More fact-based discussion

User C Preferred Response: “From a biological perspective, death is characterized by measurable cessation of brain activity and organ
functions (scientific explanations). Medical research has documented this process through extensive clinical observations (empirical
evidence), though the exact moment of consciousness loss remains an active area of neurological study (fact-based discussion) ...”

More spiritual guidance More biblical teachings More faith-based comfort
User D Preferred Response: “Scripture teaches us that through faith in Christ, death is not an end but a transition to eternal life (biblical

teachings, spiritual guidance). As Jesus promised in John 14:2, He has prepared a place for believers in His Father’s house, offering
us hope and peace in this divine assurance (faith-based comfort) ...”

which personal preferences are optimized, ensuring
not compromising ethical principles.

This survey presents the first systematic review
of personalized alignment, with key contributions
including: (1) A unified framework for personal-
ized alignment; (2) A thorough analysis of existing
methods and their synergies; and (3) An in-depth
discussion of challenges and future directions. Ap-
pendix A discusses related surveys.

2 Preliminaries

2.1 AI Personalization

Al personalization refers to tailoring Al systems
to specific individual preferences (Rossi et al.,
1996; Montgomery and Smith, 2009; Wedel and
Kannan, 2016). Traditional personalization meth-
ods (Linden et al., 2003) have demonstrated sig-
nificant success across search engines (Pretschner
and Gauch, 1999; Speretta and Gauch, 2005), ad-
vertising (Zaichkowsky, 1994; Tucker, 2014), and
recommendation (Resnick and Varian, 1997; Shani
and Gunawardana, 2011). Formally, a personalized
policy 7 maps from the product space of user pref-
erences and contextual factors to a feasible action:

Definition 2.1. Let U denote the preference space

capturing user characteristics, C represent the con-
text space encompassing temporal, spatial, and
environmental variables, and ) define the action
space containing all feasible system responses,
then : U xC — Y. The optimal policy maximizes
an application-specific utility function R().

This formalization manifests distinctly across ap-
plications, as illustrated in Table 2. While LLMs in-
herit similar personalization components, they face
unprecedented challenges in personalizing genera-
tive processes while maintaining universal values.

2.2 The Development of LLMs

The development of LLMs has progressed through
three distinct stages, each characterized by different
priorities in capability building.

Pre-training Stage. The initial stage focuses on
developing foundation models through innovative
architectures and training methods. The introduc-
tion of the Transformer architecture (Vaswani et al.,
2017) revolutionizes sequence modeling, while
scaling laws (Kaplan et al., 2020) reveal the sys-
tematic relationships between model size, com-
pute budget, and performance. Research on emer-
gent abilities (Wei et al., 2022a) demonstrates how
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Table 2: A systematic comparison for personalization from traditional applications to LLMs. Red text highlights
unique challenges and requirements introduced by personalized alignment in contrast to general alignment.

Aspects Search Advertising R dation General Alj; t Per lized Al;
User Preference Space | Query History, Browsing Demographics, Purchases  Interaction Behavior Null Personalized Preferences
Context Space Query, Location, Time Null Null Dialogue Context Dialogue Context

Action Space Item Ranking Ad Selection and Placement

Item Ranking

Textual Responses Textual Responses

Utility Function Information Accessibility Revenue Generation Sustained User Engagement | Universal Value Universal Value Alignment,
(Jarvelin and Kekildinen, 2017)  (Kumar et al., 2006) (Choi et al., 2020) Alignment Personalized Alignment
Application Google Search Google Ads TikTok, Netflix ChatGPT Growing Up ...
Technical Challenges | Query Understanding, Relevance- Budget Allocation Cold Start, Preference Drift | Value Conflicts Value Conflicts, Preference Inference/-

Personalization Trade-off

Conflicts/Drift, Cold Start, Privacy

Learning from Human and/or AI Feedback (§4.3)

O
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Figure 2: Overview of the personalized alignment framework.

certain capabilities only manifest beyond specific
scale thresholds, such as few-shot learning (Brown
et al., 2020) and chain-of-thought reasoning (Wei
et al., 2022b). These advances yield powerful but
unaligned models, spanning the entire generation
space (Figure 1, entire space).

General Alignment Stage. This stage further
bridges the capability-usability gap through Super-
vised Fine-Tuning (SFT) (Touvron et al., 2023) and
Reinforcement Learning (RL) (Christiano et al.,
2017; Ouyang et al., 2022). SFT optimizes mod-
els on human-curated examples, while RL utilizes
human preferences for policy optimization. These
methods achieve basic alignment with social prefer-
ence but result in homogenized behavior (Figure 1,
red region), failing to accommodate individual dif-
ferences (Kirk et al., 2023b).

Deployment Stage. Currently, this stage encom-
passes two main paradigms: API services like Chat-
GPT (Liu et al., 2023b) that adopt a one-size-fits-
all approach, and task-specific agents (Zhang et al.,
2024a; Li et al., 2024g) designed with specialized
workflows. Both paradigms, however, face limi-
tations in addressing diverse user needs. The key
challenge lies in developing systematic personal-
ization approaches that can adjust model behavior

within universal value constraints to match individ-
ual user preferences (Figure 1, blue region), while
maintaining operational efficiency.

2.3 From Social to Personalized Preference

“What should Al systems be aligned to?” remains a
longstanding research question. Traditional opin-
ions, grounded in social choice theory (Sen, 1986),
advocate for aligning with aggregated human pref-
erences (Harsanyi, 1955; Hare, 1981) to maximize
collective utility. This has become the de facto stan-
dard in LLM development through voting-based
preference aggregation across annotators (Chris-
tiano et al., 2017; Ouyang et al., 2022). However,
the approach faces fundamental challenges: prefer-
ences are often incomparable across different value
systems (Sen, 2017; Korinek and Balwit, 2022;
Carroll et al., 2024); and centralizing alignment
objectives risks imposing values of model creators
onto all users (Verdery, 2005; Scott, 2020).

These limitations motivate aligning LLMs with
personalized preferences while maintaining univer-
sal ethical boundaries. This requires both direct
user intervention during alignment (Huang et al.,
2024b; Guan et al., 2024) and consideration of
broader ethical constraints (Kalai and Smorodin-
sky, 1975; Oldenburg and Zhi-Xuan, 2024). Such
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Implicit Preference Injection (Xu et al., 2022a; Aher et al., 2023; Liu et al., 2023a),
Explicit Preference Injection (Lee et al., 2024b; Dong et al., 2023; Yang et al., 2024b; Li
et al., 2025), Prompt refinement (Li et al., 2024a), Retrieval-Augmentation (Wang et al., 2024a)
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Contextual Embedding (Ning et al., 2024; Li et al., 2024e),
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Parameter-based

Full-Parameter Personalization (Kang et al., 2023; Wu et al., 2024b),
Adapter-Based Personalization (Tan et al., 2024b; Dan et al., 2024; Huang et al., 2024a)

Agent-based

il

Agent Workflow Customization (Xie et al., 2024; Wang et al., 2024d.f; Guan et al., 2024)
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I

Standard Alignment (Jang et al., 2023; Park et al., 2024), Parameter-Efficient Align-
ment (QI et al., 2024; Tan et al., 2024b; Hebert et al., 2024), Agent Alignment (Guan et al.,
2024), Federated Alignment (Huang et al., 2024b,c; Kuang et al., 2024; Fan et al., 2024)

(

Alignment through
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Reward-guided Decoding (Chen et al., 2025b), Prediction En-
semble (Shi et al., 2024), Output Refinement (Yang et al., 2024a)
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Optimization

I

Direct Objective Space Optimization (Li et al., 2024c¢), Preference-guided Optimization (Guo et al., 2024;
Wang et al., 2024c), Preference Learning through Interaction (Shao et al., 2024; Wang et al., 2024b)

Agent Workflow Execution (Zhang et al., 2024b; Wang et al., 2024g), }

Figure 3: A comprehensive taxonomy of personalized alignment techniques in LLMs.

personalization relates to research on theory of
mind (Strachan et al., 2024) and emotional intelli-
gence (Sabour et al., 2024) for understanding users’
immediate mental states and emotions, while focus-
ing on inferring preferences from their long-term
characteristics and behaviors. Formally, for any
context ¢ € C, the relationship between social and
personalized preference can be expressed as:

ms(yle) = Eueu[mp (y|u, )],

where g represents the social preference distribu-
tion adopted as the learning objective in current
alignment practice, m, denotes the personalized
preference distribution for individual v € U.

3 Formalizing Personalized Alignment

Figure 2 illustrates our framework for personalized
alignment (§3.1), guided by hierarchical alignment
objectives (§3.2).

3.1 Personalized Alignment Cycle

Personalized alignment operates as a cycle with
three key phases: (1) Preference Memory Man-
agement: maintaining user preference v € U (Tam
and Ho, 2006; Xu et al., 2022a); (2) Personalized
Generation and Rewarding: incorporating v to
capture preference patterns for generating or re-
warding responses; (3) Alignment through Feed-
back: updating perference u and the generation
policy model through human or Al feedback.

3.2 Alignment Objectives

The objectives comprise two aspects: (1) univer-
sal human values (helpfulness, honesty, harmless-
ness) (Askell et al., 2021) as fundamental ethical
constraints, and (2) personal preferences for user-
specific needs. Given the potential conflicts and
different priorities among these objectives (San-
turkar et al., 2023; Rame et al., 2023), universal
values take precedence in defining ethical bound-
aries, within which personal preferences are opti-
mized. Universal value weights are determined by
ethical principles, while personal preference trade-
offs are learned through user feedback.

4 Techniques for Personalized Alignment

This section examines three core components in
the personalized alignment framework. Figure 3
illustrates the taxonomy of this section.

4.1 Preference Memory Management

Personalization requires a dedicated memory mech-
anism to utilize user-specific knowledge across in-
teractions (Zhang, 2023). In particular, the sparse
distribution of user preferences in interactions
poses significant challenges for retrieving relevant
preferences from long contexts (Zhao et al., 2025;
Pan et al., 2025). Since the capacity of LLMs
in processing long-form text is beyond our scope,
we assume the memory contains only preference-
relevant information sources. This section exam-
ines both explicit and implicit preferences (Jawa-
heer et al., 2014; Zhang et al., 2024d; Li et al.,
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Figure 4: Approaches for personalized generation and rewarding, representing user preferences through (a) textual
prompts, (b) encoded vectors, (c) trainable parameters, and (d) personalized workflows or accessible databases.

2025), and methods for inferring explicit prefer-

ences from various implicit sources.

Explicit Preferences.

mensions {dj,da, - -

"The linear combination modeling is enough to capture
complex preference patterns through appropriate dimension
transformations (e.g., non-linear mappings). To improve inter-
pretability and optimization efficiency, we suggest construct-
ing orthogonal dimensions through variable substitution and
linear transformation (e.g., Principal Component Analysis)

Explicit preferences rep-
resent directly stated user stances toward specific
attributes or behaviors (i.e., preference dimensions).
Formally, consider a preference space with D di-
- ,dp}. The explicit prefer-
ence of a user u € U can be represented by a
normalized stance vector p* = [p{, py,---
Each p!' € [—1,1] refers to the stance value for
the dimension d;, where positive values indicate
favorable attitudes, negative values indicate unfa-
vorable attitudes, and zero indicates neutrality. The
magnitude |p| represents the strength of the stance.
With these explicit preference representations, one
can easily formalize how dimensional evaluations
contribute to users’ overall judgment of model re-
sponses, enabling straightforward personalized gen-
eration and reward computation. Specifically, given
a model response y € ) in context ¢ € C, the re-
sponse is evaluated with a user-agnostic rating vec-
tor r(ylc) = [r1(yle), r2(ylc), - --
preference space, where each dimension is rated
independently of user preferences. The overall
judgment of u for y is assumed as the dot product
of the explicit preference vector and rating vector!:

R*(yle) = (") r(ylc)

when needed.

,Pp)-

,7p(y|c)] in the

This formulation enables direct optimization of per-

sonalized generation models by maximizing the
expected overall judgment. Notably, the preference

Implicit preferences.

vector p* may depend on both the context ¢ and
dimensional ratings . For example, a user might
prefer professional responses in technical discus-
sions but favor empathetic ones in casual conversa-
tions. Furthermore, even in the same context, when
a response receives high ratings in professionalism,
the user’s preference for response length might
shift from negative (preferring concise) to posi-
tive (favoring detailed), demonstrating how ratings
in one dimension can influence preferences in an-
other. However, due to implementation complexity,
most existing studies assume explicit preferences
remain constant regardless of context and model
responses (Zhao et al., 2025; Li et al., 2025).

Implicit preferences refer
to indirect signals that reveal user characteristics,
vaguely reflecting users’ judgments on specific
model responses. As exemplified in Figure 5 in
Appendix B, these signals can be observed through:
(1) User-Generated Content: Textual data such
as social media posts, chat records, reviews, and
articles that exhibit expertise levels, interests, and
writing styles. (2) Demographic Attributes: Self-
reported structured information, e.g., age, gender,

educational background, etc. (3) Behavioral Sig-
nals: Interaction patterns captured through compar-

ative judgments, ratings, click-through behaviors,
etc. While these implicit signals do not directly
state preferences, they offer rich contextual infor-
mation for inferring user characteristics and tenden-
cies without explicitly defining preference dimen-

sions. However, unlike explicit preferences that
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enable direct computation of judgments for unseen
responses through preference-rating aggregation,
implicit preferences require data-driven learning to
map indirect signals to personalization objectives,
such as response generation and reward compu-
tation, necessitating careful design of preference
modeling algorithms.

Preference Inference. Explicit preferences pro-
vide precise personalization signals but are sparse
due to users’ reluctance or inability to articulate
preferences (Lee et al., 2024b). While implicit
preferences are abundant, they present challenges
in noise and inconsistency (Preetha and Shankar,
2014). Preference inference addresses these chal-
lenges by distilling explicit preferences from im-
plicit ones through a structured process (Lee et al.,
2024b): (1) constructing a structured preference
space with key dimensions; (2) estimating explicit
preferences from noisy, partial and ambiguous ex-
amples; and (3) aggregating dimensional prefer-
ences into a unified preference vector. For scenar-
ios without contextual and rating effects, simple
averaging of stance values suffices (Li et al., 2025);
however, data-driven learning becomes necessary
when modeling how stance values vary with spe-
cific context and response rating vectors. Signifi-
cant challenges remain in defining comprehensive
preference dimensions and capturing the temporal
evolution of user preferences (Liu, 2015).

4.2 Personalized Generation and Rewarding

Personalizing LL.Ms can be achieved by either di-
rectly personalizing generation policies or modulat-
ing generation distributions using personalized re-
ward models. Both approaches employ four funda-
mental personalization mechanisms (as illustrated
in Figure 4): prompting-based methods injecting
personal information into inputs, encoding-based
methods encoding user features in intermediate
representations, parameter-based methods adapt-
ing model parameters, and agent-based methods
orchestrating personalized workflows.

Prompting-Based Personalization. It augments
prompts with personal information including im-
plicit preferences (derived from user-generated con-
tent (Xu et al., 2022b; Li et al., 2024b), demograph-
ics (Aher et al., 2023; Argyle et al., 2023), and be-
havioral signals (Liu et al., 2023a; Li et al., 2023b;
Bao et al., 2023a; Li et al., 2023c)) and explicit
preferences (specified dimensions, directions and
weights (Dong et al., 2023; Lee et al., 2024b; Yang

et al., 2024b; Li et al., 2025)). Key challenges lie
in managing extensive histories. Recent advances
include prompt refinement (Li et al., 2024a) and
retrieval-augmentation (Wang et al., 2024a), allow-
ing efficient information selection and presentation.

Encoding-based Personalization. These meth-
ods represent preferences in latent spaces through:
(1) contextual embeddings compressing user data
into fixed representations (Ning et al., 2024; Li
et al., 2024e; Shenfeld et al., 2025), and (2) la-
tent variable frameworks learning preference dis-
tributions (Siththaranjan et al., 2024; Poddar et al.,
2024; Gong et al., 2024; Chen et al., 2025a), cap-
turing uncertainty and multimodal patterns in user
preferences. Both approaches balance preference
preservation with computational efficiency.

Parameter-based Personalization. These ap-
proaches encode user preferences directly into
model parameters through (1) full-parameter per-
sonalization that modifies all parameters through
fine-tuning (Kang et al., 2023; Li et al., 2023a;
Wang et al., 2023a) or reinforcement learning (Jang
et al., 2023; Wu et al., 2024b) despite prohibitive
computational costs for maintaining complete
model copies per user, or (2) adapter-based per-
sonalization that introduces lightweight modules
(< 1% parameters) while keeping the base model
frozen (Tan et al., 2024a,b; Dan et al., 2024; Huang
et al., 2024a). Key challenges include overfitting
to limited personal data, catastrophic forgetting of
general capabilities, and computational constraints.

Agent-based Personalization. The approaches
orchestrate LLM agents at two levels: workflow ex-
ecution and customization. At the execution level,
specialized modules (e.g., User, Item, Searcher) in
recommendation frameworks (Zhang et al., 2024b;
Wang et al., 2024g; Shu et al., 2024) collaborate to
process personalization signals systematically. At
the customization level, workflows dynamically ad-
just based on user preferences for domain-specific
applications, like travel planning (Xie et al., 2024;
Chen et al., 2024a; Tang et al., 2024; Singh et al.,
2024), research support (Wang et al., 2024f; Zhang
et al.; OpenAl, 2025), workplace assistance (Wang
et al., 2024d), and knowledge navigation (Guan
et al., 2024). Key challenges include the intractabil-
ity of optimizing agent workflows, autonomous
preference integration across diverse scenarios, and
managing substantial computational overhead.
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Table 3: Statistical details of the alignment dataset for training.

Dataset Size Feedback (Annotator) Preference Dimensions Preference Type Task
Universal Value Alignment
SHP (Ethayarajh et al., 2022) 385,000 Rating (Human) Helpfulness Explicit Preference Dialogue
HH-RLHF (Bai et al., 2022) 169,550 Ranking (Human) Helpfulness, Harmlessness Explicit Preference Instruction-Following
PRMBS800K (Lightman et al., 2023) 800,000 Rating (Human) Correctness Explicit Preference Math Problem-Solving
HelpSteer (Wang et al., 2023b) 37,000 Rating (AI) Helpfulness, Correctness, Coherence, Complexity, Verbosity Behavioral Signals Instruction-Following
GPT-4-LLM (Peng et al., 2023) 52,000 Rating (AI) Helpfulness, Honesty, Harml Explicit Preference Instruction-Following
Nectar (Zhu et al., 2023) 182,954 Ranking (AI) Helpfulness, Harmlessness Explicit Preference Dialogue
SafeRLHF (Dai et al., 2023) 1,000,000 Ranking (Human) Harmlessness Explicit Preference Instruction-Following
OASST1 (Kopf et al., 2024) 161,443 Rating (Human) Helpfulness Explicit Preference Instruction-Following
Hel 2 (Wang et al., 2024h) 10,681 Rating (AI) Helpfulness, Correctness, Coherence, Complexity, Verbosity Behavioral Signals Instruction-Following
Ultrafeedback (Cui et al., 2024) 63,967 Rating (AI) Helpfulness, Honesty, Instruction-Following, Truthfulness Behavioral Signals Instruction-Following
Argilla-Distilabel-Capybara . . . . I o . . el Qi1 —— .
(Alvaro Bartolomé Del Canto et al., 2024) 7,560 Rating (AI) Helpfulness, Honesty, Instruction-Following, Truthfulness Behavioral Signals Instruction-Following
Beavertails (Ji et al., 2024) 695,866 Rating (Human) Helpfulness, Harmlessness Explicit Preference Question-Answer, Expert Comparison
Ultralnteract (Yuan et al., 2024) 220,000 Ranking (AI) Correctness Explicit Preference Math Problem-Solving, Code
Generation, Logical Reasoning
Personalized Alignment
Reddit TL;DR human feedback . . . . -
(Liu et al, ;020) 123,169 Rating (Human) Not Explicitly Defined Behavioral Signals Summarization
WebGPT (Nakano et al., 2021) 19,578 Rating (Human) Not Explicitly Defined Behavioral Signals Question-Answering
DSP (Cheng et al., 2023) 13,000 Text (AI) Academy, Business, Entertainment, Literature& Art User-Generated Content Instruction-Following
Prometheus (Kim et al., 2023) 100,000 Rating (AI) 1K fine-grained score rubrics Behavioral Signals Instruction-Following
PRISM (Kirk et al., 2024b) 8,010 Rating (Human) Not Explicitly Defined Behavioral Signals Instruction-Following
AL 202 Ly identifiers -
compo (Kumar etal., 2024b) 1389750  Rating (Human) 187 community identifiers covering Behavioral Signals Dialogue
science, finance, history, politics, gender/sexuality
PersonalLLM (Siah et al., 2024) 10,402 Rating (AI) Not Explicitly Defined Behavioral Signals Instruction-Following
MULTIFACETED COLLECTION . .
Not Explicitly Defined ser- ction-]
(Lee et al., 2024b) 197,000 Text (AI) ot Explicitly Define User-Generated Content Instruction-Following
CodeUltraFeedback . Instruction-Following, Code Explanation, Coding Style, . . .
(Weyssow et al., 2024) 10,000 Rating (AD) Code Complexity and Efficiency, Code Readability Behavioral Signals Code Generation
ALIGNX (Li et al,, 2025) 1311.622 Ranking (AD) 90 dimensions covering fundamental human needs, Explicit Preference, Instruction-Following

universal human values, and prevalent interest tags

Implicit Preference

4.3 Alignment through Feedback

This stage leverages user-specific rewards to align
models with individual preferences, considering
both training-time and inference-time approaches
while balancing multiple alignment objectives.

Training-time Alignment. Training-time align-
ment strategies vary across personalization ap-
proaches and model accessibility. When base mod-
els are accessible, standard SFT and RL optimiza-
tion can be directly applied (Park et al., 2024; Jang
et al., 2023) for prompting-based, encoding-based,
and full-parameter personalization. For adapter-
based and agent-based approaches, training focuses
only on user-specific components: adapter param-
eters (QI et al., 2024; Tan et al., 2024b; Hebert
et al., 2024) and agent modules (Guan et al., 2024)
respectively. When base models are inaccessi-
ble, personalized federated learning (Huang et al.,
2024c; Kuang et al., 2024; Fan et al., 2024) enables
privacy-preserving distributed training through ar-
chitectural innovations (Yi et al., 2024; Saadati
et al., 2025; Tran et al., 2025) and dynamic adapta-
tion (Bao et al., 2023b; Lee et al., 2024a).

Inference-time Alignment. Recent advances
achieve personalized alignment through inference-
phase decoding modifications, avoiding costly
training, including: (1) reward-guided decoding,
where PAD (Chen et al., 2025b), Amulet (Zhang
et al., 2025) and CoS (He et al., 2025) gener-
ates token-level personalized adjustments to steer

model predictions; (2) prediction ensemble, where
MOD (Shi et al., 2024) and Drift (Kim et al.,
2025) combine token-level predictions from multi-
ple objective-specific models; and (3) output refine-
ment, where MetaAligner (Yang et al., 2024a) intro-
duces an external correction model to refine outputs
towards desired objectives. While these approaches
offer immediate adaptability and training-free op-
eration, they face inherent trade-offs between real-
time adaptability and long-term preference learning
due to the lack of parameter updates.

Multi-objective Optimization. Three paradigms
address the challenge of balancing inherent ten-
sions among alignment objectives: (1) Direct ob-
jective space optimization (Li et al., 2024c) uses
specialized loss functions considering solution
landscape and Pareto frontier, enabling explicit
trade-offs; (2) Preference-guided optimization em-
ploys preference scores as control signals (Guo
et al., 2024) or conditional policies for dynamic
adjustment (Wang et al., 2024c¢), requiring care-
ful preference specification; (3) Interactive prefer-
ence learning leverages iterative feedback on pol-
icy pairs (Shao et al., 2024) or hierarchical state
tracking (Wang et al., 2024b), adapting to users but
demanding significant engagement.

While sharing technical foundations with the tra-
ditional multi-objective optimization approaches,
personalized alignment differs in its dynamic na-
ture: it learns user-specific objectives and trade-offs
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through continuous interaction, rather than optimiz-
ing predefined objectives with fixed weights. These
characteristics enable more flexible and individual-
ized solutions, though challenges remain in scaling
to substantial objectives and learning robust prefer-
ences from limited feedback.

4.4 Resources

High-quality preference datasets are fundamen-
tal to training personalized generation and reward
models. We present a comprehensive overview of
alignment training datasets in Table 3.

5 Evaluation of Personalized Alignment

Evaluating personalized alignment presents unique
challenges beyond traditional LLM evaluation,
requiring simultaneous assessment of universal
value alignment and individual preference satis-
faction. This section examines current evaluation
approaches and their limitations.

5.1 Metrics

Table 4 summarizes existing metrics for personal-
ized alignment. Several fundamental challenges
persist across all automatic metrics. Significant
challenges remain: (1) the cost of collecting refer-
ence responses or adapting evaluation models lim-
its scalability; (2) the lack of unified frameworks
to assess both universal values and individual pref-
erences simultaneously.

5.2 Benchmarks

While universal value alignment has established
benchmarks, personalized alignment benchmarks
remain limited, as indicated in Table 5. Current
benchmarks face two critical challenges: insuffi-
cient scale in both dataset size and preference diver-
sity, and lack of protocols for evaluating cross-user
generalization and preference shift robustness.

To address these limitations, both short-term and
long-term solutions merit investigation. In the short
term, structured protocols for multi-faceted prefer-
ence collection (Li et al., 2025) and longitudinal
studies for preference evolution can enhance ex-
isting benchmarks. Long-term directions include
developing human-in-the-loop metrics (Wu et al.,
2022) and privacy-preserving evaluation mecha-
nisms. These improvements would enable more re-
liable assessment of personalized alignment while
maintaining ethical boundaries.

6 Application of Personalized Alignment

Personalized LLMs extend beyond chatbots to
transform productivity, daily experience, and so-
cial welfare through user-adaptive interactions. We
discuss the potential application of personalized
alignment in Appendix C.

7 Risks of Personalized Alignment

Personalized alignment introduces interconnected
risks at both individual and societal levels (Kirk
et al., 2024a). Individual risks include: (1) portrait
abuse through targeted attacks (Al-Kharusi et al.,
2024; Wang et al., 2024e; Sabour et al., 2025), such
as personalized phishing based on user preferences;
(2) information leakage via model inversion and
membership inference (Huang et al., 2022; Li et al.,
2024f); and (3) bias reinforcement across multi-
ple dimensions (Raza et al., 2024; Kotek et al.,
2023; Motoki et al., 2024), creating amplifying
feedback loops (He et al., 2024) through personal-
ized responses. These risks extend to societal chal-
lenges: (1) access disparities from technical liter-
acy gaps (Wilson et al., 2003; Sanders and Scanlon,
2021; Lythreatis et al., 2022), benefiting primarily
tech-savvy users; and (2) social polarization (Wei-
dinger et al., 2022; Shelby et al., 2022) through
selective exposure and information asymmetry (Ab-
delzaher et al., 2020; Gurkan et al., 2024).

Mitigation requires both technical solutions (fed-
erated learning, differential privacy, debiasing tech-
niques) and operational measures (bias auditing,
transparent policies, user control mechanisms).
However, balancing these safeguards with effec-
tive personalization remains challenging.

8 Key Challenges and Future Directions

Current challenges in personalized alignment span
three aspects: foundational methodologies, techni-
cal implementation, and practical deployment.
Foundational challenges focus on understand-
ing and modeling user preferences: (1) capturing
complex personalized preferences that evolve tem-
porally (Chandrashekaran et al., 1996), are influ-
enced by social context (Izuma and Adolphs, 2013),
vary across scenarios (e.g., work vs. life situa-
tions) (Smailagic and Siewiorek, 2002), and exhibit
response-dependent trade-offs between different di-
mensions (e.g., quality vs. speed) (Li et al., 2024c);
(2) addressing data-related challenges, including
both the scarcity of high-quality personalization
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Table 4: A systematic categorization of evaluation methods for personalized alignment.

. Reference Reference Personalized Evaluation _n

Evaluation Method Response  Response Pair Evaluation Model Mode Description Weakness

Win Rate X X v Pair-wise ~ Using personalized LLMs to determine Computationally expensive; Requiring substan-

(Khanov et al., 2024) the better one of two generations tially powerful LLMs

Rating X X 4 Point-wise ~ Using personalized reward models to High sensitivity to prompt variations; Requiring

(Chen et al., 2025b) directly rate the generation significant data for model training

Alignment Accuracy X v X Point-wise ~ Measuring correct preference ordering Limited to evaluating white-box models that pro-

(Park et al., 2024) of reference response pairs vide probability access; Requiring many high-
quality reference pairs

BLEU v X X Point-wise ~ N-gram precision between the genera- Struggling to capture preferences; Ineffective for

(Papineni et al., 2002) tion and reference response open-ended responses (Guan and Huang, 2020)

Human Evaluation X X X Point-wise  Assessment through human raters High subjectivity and variance; Poor scalability

Table 5: Summary of alignment benchmarks.

Win: Win Rate; ACC: Alignment Accuracy.

Benchmark Size  Feedback (Annotator) Preference Dimensions Evaluation Metrics Preference Type Task
Universal Value Alignment
TruthfulQA (Lin et al., 2021) 817 Ranking (Human) Truthfulness Rating/Win/ACC/BLEU/ROUGE Explicit Preference Instruction-Following
HHH-AI; ent (Askell et al., 2021) 221 Ranking (Human) Honesty, Harmlessness _C Explicit Preference Instruction-Following
Self-Instruct (Wang et al., 2022) 11,800  Ranking (Human&AT) T fi Rating/Win/BLEU/ROUGE User-Generated Content Instruction-Following
MT Bench (Zheng et al., 2023) 3,360 Ranking (Human&AT) T Rating/Win/ACC/BLEU/ROUGE Explicit Preference Instruction-Following
Advbench (Zou et al., 2023) 150 Harmlessness Rating/Win/BLEU/ROUGE User-Generated Content Instruction-Following
AlpacaEval 2.0 (Dubois et al., 2024) 805 T fi Rating/Win/BLEU/ROUGE User-Generated Content Instruction-Following
Arena Hard (Li et al., 2024d) 500 T fi Rating/Win/ACC/BLEU/ROUGE Explicit Preference Instruction-Following, Code Generation
RewardBench (Lambert et al., 2024) 2,985 Helpfulness ACC Explicit Preference Chat, Chat-Hard, Safety, Reasoning
Personalized Alignment
P-Soups (Jang et al., 2023) 50 Expertise, Infc eness, Style Rating/Win/BLEU/ROUGE User-Generated Content Instruction-Following
LaMP (Salemi et al., 2023) 25,095 Not f Rating/Win/BLEU/ROUGE User-Generated Content Text C Text Generation
OpinionQA (Santurkar et al., 2023) 1,176 ACC Behavioral Signals Question-Answering
GlobalOpinionQA (Durmus etal,, 2023) 2,556 Ranking (Human) N ACC Behavioral Signals Question-Answering
FLASK (Ye et al., 2023) 1,740 No Feedbac N Rating/Win/BLEU/ROUGE User-Generated Content Instruction-Following
REGEN (Sayana et al., 2024) 403,000 Rating (Human) N BLEU/ROUGE/Similarity Scores  User-Generated Content, Signals C i
User-Generated Content, Email Completion, Abstract Generation,
al., 2024 X N e o ° "
LonglLaMP (Kumar et al., 20242) 9,658 ROUGE Demographic Attributes Review Writing, Topic Writing
PGraphRAG (Au et al., 2025) 10,000 N Rating/Win/BLEU/ROUGE __ User-Generated Content, Behavioral Signals_Long and Short Text Generation, Classification
PersonalLLM (Zollo et al., 2025) 10,000 N Rating/Win Behavioral Signals Tnstruction-Following
ALOE (Wu et al,, 2025) 100 N Win Demographic Attributes Tnstruction-Following
PERSONA (Castricato et al., 2025) 3.868 N Win/ACC Demographic Atiributes Tnstruction-Following
PREFEVAL (Zhao et al., 2025) 3,000 Ranking (Human) Not Explicitly De Rating/ACC Explicit Preference, User-Generated Instruction-Following

Content, Behavioral Signals

data (in terms of scale, diversity, and temporal dy-
namics) and the cold-start problem where systems
lack initial user data for meaningful personaliza-
tion (Schein et al., 2002); (3) developing evaluation
frameworks that can reliably assess personaliza-
tion quality beyond surface-level metrics; (4) ensur-
ing models understand user needs and follow user
preference (Zhang et al., 2023; Zhao et al., 2025);
(5) enabling proactive preference exploration and
learning, where systems actively engage with users
to discover and refine preference inference, and
balance exploration of new preferences with ex-
ploitation of known preferences.

Technical challenges concern the implemen-
tation of personalized systems: (1) integrating
multimodal signals (e.g., text, vision, audio) to
better understand and generate personalized con-
tent (Pi et al., 2024, 2025); (2) incorporating
user preferences into long-chain reasoning while
preserving interpretability and contextual consis-
tency (River Dong et al., 2025); (3) balancing per-
formance and computational efficiency for real-
time personalization; (4) ensuring personalized
models can effectively generalize from simple to
complex tasks with weak supervisions (Burns et al.,
2023; Kenton et al., 2024).

Practical challenges address deployment con-

cerns while prioritizing universal values: (1) pro-
tecting user privacy and security while maintaining
personalization effectiveness; (2) ensuring fairness
across different user groups, system transparency,
and positive societal impact; (3) coordinating mul-
tiple personalized agents while preventing harmful
emergent behaviors; (4) safely removing danger-
ous capabilities while preserving personalization
performance and ensuring system accessibility.

9 Conclusion

We present a comprehensive examination of person-
alized alignment in LLMs, demonstrating its criti-
cal role in bridging universal value alignment with
individual user needs. Our unified framework, that
encompasses preference memory management, per-
sonalized generation and rewarding, and alignment
through feedback, provides a structured approach
for advancing this field. By analyzing various im-
plementation strategies and diverse applications,
we reveal the significant potential and current limi-
tations of personalized alignment.

Looking forward, success in this field requires
continued innovation in technical approaches, eval-
uation frameworks, and ethical considerations, es-
pecially as LLMs become increasingly prevalent in
serving diverse users.
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10 Limitations

While this survey strives to provide a comprehen-
sive overview of personalized alignment in LLMs,
several limitations should be acknowledged:

First, given the rapid development of the field,
some very recent advances may not be included.
Additionally, due to space constraints, we could
not exhaustively cover all existing techniques and
applications.

Second, our categorization of approaches into
preference memory management, personalized gen-
eration and rewarding, and alignment through feed-
back, while useful for organization, may oversim-
plify the complex interrelationships between these
components.

Third, the evaluation methods and metrics dis-
cussed in this survey largely reflect current prac-
tices, which may not fully capture the nuanced as-
pects of personalization quality. The field lacks
standardized evaluation frameworks, making it
challenging to compare different approaches ob-
jectively.

Finally, while we attempted to include diverse
perspectives on ethical considerations and societal
impacts, our discussion may not comprehensively
address all potential implications of personalized
alignment, particularly in emerging application sce-
narios.
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A Related Survey

Prior surveys have extensively studied different as-
pects of LLMs and personalization. Zhao et al.
(2023) review the general development of LLMs,
while Ji et al. (2023) specifically examine Al align-
ment techniques. Zhang et al. (2024d) investigate
personalized applications. Chen et al. (2024b) fo-
cus on role-playing LLMs that simulate specific
personas. While these works lay important founda-
tions, personalized alignment presents fundamen-
tally different challenges that have not been sys-
tematically addressed. Unlike traditional alignment
that optimizes for universal values (Ji et al., 2023),
personalized alignment must handle diverse objec-
tives that vary across users and evolve over time
while ensuring ethical boundaries. Unlike conven-
tional personalization that focuses on surface-level
preferences (Zhang et al., 2024d), our framework
addresses deeper preference inference covering fun-
damental values and manages complex trade-offs
between universal values and personal preferences.
Distinctively, our survey provides the first compre-
hensive examination of these unique challenges,
from privacy-preserving preference learning and
real-time adaptation techniques to evaluation meth-
ods and risk mitigation strategies.

B Case Study

Figure 5 shows an example of how a personalized
alignment system infers user preferences from var-
ious sources.

C Application of Personalized Alignment

This section discusses the application of personal-
ized alignment.

C.1 Personal Assistants

Personalized LLMs advance traditional Al assis-
tance (e.g., open-domain QA (High, 2012)) by pro-
viding domain-specific support, including: intelli-
gent coding companions with tailored completions
and optimizations (Dai et al., 2024; Hiraki et al.,
2024; Nejjar et al., 2025; Koohestani and Izadi,
2025), research aids generating customized litera-
ture reviews (Wang et al., 2024f; Lin et al., 2024),
and workplace assistants for personalized task man-
agement (Zhang et al., 2024c; Wang et al., 20241,d;
Teufelberger et al., 2024).
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Task: Given the following preference memory, infer the user’s preferences and generate preference-aligned responses.

Preference Memory:

User-Generated Content:

Post (User): “Can you explain quantum computing?”

Response (LLM): “Quantum computing leverages quantum mechanical phenomena like superposition and entanglement. In quantum bits or qubits,
states can exist simultaneously in multiple configurations, enabling parallel computations through quantum gates and ...

Post (User): “That’s too theoretical. Could you give real-world examples of how it’s used in business or daily life? Theory without application isn’t
helpful” (prefers practical applications)

Demographic Attributes: Professional Background: MBA with S years consulting experience; Learning Style: Action-oriented, prefers case studies
over theoretical frameworks; Content Interaction: High engagement with business case analyses and implementation guides; Reading Pattern: Frequently
accesses professional development and practical business strategy content (prefers practical over theoretical content)

Behavioral Signals:

Post (User): “I’'m planning a trip to Japan next month. Any suggestions welcome!”

Response A (LLM): “Here’s a comprehensive cultural guide: Japan has 47 prefectures, 8 major regions, and a history dating back to 30,000 BCE ...”
Response B (LLM): “Let’s focus on practical tips: Learn basic greetings like "arigatou’ (thank you), avoid tipping as it’s not customary, and remove
shoes before entering homes ...””

User’s Preference: Response B > Response A (Prefers practical, accessible information)

Post (User): “How can I improve my public speaking skills?”

Response A (LLM): “Public speaking originated in ancient Greece with rhetoric principles developed by Aristotle. The fundamental elements include
ethos, pathos, and logos...”

Response B (LLM): “Here are specific techniques you can use: 1) Start with a relevant story, 2) Practice the 10-20-30 rule: 10 slides, 20 minutes,
30-point font...”

User’s Preference: Response B > Response A (prefers actionable advice)

System’s Preference Inference: Based on the user’s consistent preference for practical explanations over theoretical details across differ-
ent domains, the user strongly prefers practical, accessible explanations with real-world applications over theoretical details

Current Post (User): “What’s the best way to understand blockchain?”

Candidate Response 1 (LLM): “Blockchain is a distributed ledger technology utilizing cryptographic hashing functions and consensus mechanisms...”
Candidate Response 2 (LLM): “Think of blockchain like a shared digital notebook - everyone has a copy, and when someone writes something new,
everyone’s copy gets updated automatically...”

System’s Alignment Objective: Response 2 > Response 1

Figure 5: Example showing how a personalized alignment system infers user preferences from multiple information
sources and generates preference-aligned responses.

C.2 Consumer Applications

Personalized LLMs enhance digital services via
user-generated content analysis. In recommenda-
tions, they transcend traditional approaches (Su,
2009; He et al., 2017) via instruction-based gen-
eration (Liu et al., 2023a; Li et al., 2023b,c) or
multi-agent frameworks (Wang et al., 2024g). En-
tertainment applications include adaptive compan-
ions (Zhou et al., 2023), role-playing (Chen et al.,
2024b), and interactive narratives (Wu et al., 2024a;
Sun et al., 2025), though raising ethical concerns
regarding emotional manipulation.

C.3 Public Services

In education, Personalized LLMs enable individ-
ualized learning experiences (Yadav et al., 2023;
Kabir and Lin, 2023) and support educators with
automated analytics and material generation (Jeon
and Lee, 2023; Leiker et al., 2023; Koraishi, 2023;
Kasneci et al., 2023). In healthcare, they advance
patient care (Cascella et al., 2023; Gebreab et al.,
2024) by integrating medical knowledge with in-
dividual profiles (Abbasian et al., 2023; Jo et al.,
2023; Sallam, 2023), though requiring rigorous val-
idation (Mirzaei et al., 2024).
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