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Abstract

The recent emergence of large language mod-
els (LLMs) has brought new opportunities to
knowledge graph question answering (KGQA),
but also introduces challenges such as seman-
tic misalignment and reasoning noise. Seman-
tic parsing (SP), previously a mainstream ap-
proach for KGQA, enables precise graph pat-
tern matching by mapping natural language
queries to executable logical forms. How-
ever, it faces limitations in scalability and
generalization, especially when dealing with
complex, multi-hop reasoning tasks. In this
work, we propose a Fine-Grained Semantic
Parsing (FGSP) framework for KGQA. Our
framework constructs a fine-grained mapping
library via phrase-level segmentation of his-
torical question-logical form pairs, and per-
forms online retrieval and fusion of relevant
subgraph fragments to answer complex queries.
This fine-grained, compositional approach en-
sures tighter semantic alignment between ques-
tions and knowledge graph structures, enhanc-
ing both interpretability and adaptability to di-
verse query types. Experimental results on two
KGQA benchmarks demonstrate the effective-
ness of FGSP, with a notable 18.5% relative F1
performance improvement over the SOTA on
the complex multi-hop CWQ dataset. Our code
is available at https://github.com/NUSTM/
From-Phrases-to-Subgraphs.

1 Introduction

Knowledge Graph Question Answering (KGQA)
aims to leverage structured information stored in
knowledge graphs such as Freebase (Bollacker
et al., 2008) and Wikidata (Vrandecic and Krötzsch,
2014) to answer natural language questions. It has
been widely applied in domains including Web
search (Jang et al., 2017), medical consultation
(Wu et al., 2024), and legal analysis (Cui et al.,
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Figure 1: Comparison of three types of KGQA ap-
proaches.

2024). Knowledge graphs (KGs), which represent
information via triple-based structures of entities
and relations, provide a structured and semantically
rich knowledge source. This inherent structure en-
ables precise reasoning and facilitates multi-hop
inference.

In recent years, the emergence of large language
models (LLMs) has significantly influenced the re-
search paradigm of KGQA. Existing approaches
that combine LLMs with KGs can be broadly cat-
egorized into two types: agent exploration frame-
works (Sun et al., 2024; Zhu et al., 2024; Jiang et al.,
2024) and path generation frameworks (Luo et al.,
2024a; Sui et al., 2024). The former generates
reasoning paths through continuous interaction be-
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tween the LLMs and KGs to solve problems, while
the latter has the LLMs generate reasoning paths
first, which are then mapped to KGs instances to
retrieve relevant information. Both approaches face
the dual challenges of semantic gaps and paths: a)
the unstructured nature of LLMs training data con-
trasts with the structured text of KGs, leading to
hallucination; b) the LLMs’ sequential reasoning
paradigm generates redundant paths when handling
multi-hop problems, causing noise accumulation
in reasoning subgraphs. As illustrated in Figure 1,
the model may generate irrelevant paths such as
"Germany → Scotland → Pound sterling", thereby
introducing spurious connections that hinder accu-
rate reasoning. The root cause of these issues lies in
the difference between natural language and graph-
structured data, which motivates us to explore solu-
tions that are more suited to the characteristics of
graph structures.

Before the rise of LLM-based methods, seman-
tic parsing (SP) was widely regarded as a main-
stream approach for KGQA, known for its preci-
sion and efficiency (Berant and Liang, 2014; Dong
and Lapata, 2016; Shaw et al., 2019). Semantic
parsing transforms natural language questions into
executable logical forms (LFs), which are then
used to query knowledge graphs. This approach
offers several distinct advantages over LLM-based
methods. First, LFs align naturally with the entity-
relationship structure of KGs, ensuring strict se-
mantic alignment. This mitigates the hallucination
problem caused by the unstructured training data
of LLMs. Second, the syntax of LFs supports di-
rect graph pattern matching, enabling precise and
efficient reasoning. This avoids the redundant and
noisy paths often produced by LLMs’ sequential
reasoning in multi-hop tasks. However, mapping
between natural language and graph structures via
LFs still poses challenges in scalability and general-
ization. As illustrated in Figure 1, when the model
encounters an unseen semantic pattern—such as a
question involving "currency"—it may incorrectly
map it to a related but incorrect relation like "econ-
omy," leading to an erroneous LF and ultimately
failing to retrieve the correct answer.

To address this issue, we propose a Fine-Grained
Semantic Parsing (FGSP) framework for KGQA.
FGSP enables the decomposition of complex ques-
tions into atomic semantic units, allowing for more
precise alignment between natural language and
KG structures. The framework operates in two
stages. In the offline stage, a fine-grained map-

ping library is constructed by extracting and curat-
ing historical question-LF pairs, where questions
are decomposed into sub-questions representing
reasoning steps, and the LF is parsed according
to the syntax structure. In the online reasoning
stage, hierarchical reasoning is performed, where
the question decomposition module breaks down
complex queries into sub-questions; the phrase re-
trieval module searches for relevant phrases and in-
stantiates LF fragments; the subgraph fusion mod-
ule implements novel sequential fusion and combi-
nation fusion rules to construct a complete informa-
tional subgraph. Through a fine-grained semantic
alignment mechanism, the framework achieves hi-
erarchical analysis and compositional resolution
of complex questions, enhancing the flexibility of
problem-solving and ultimately improving the ac-
curacy of complex semantic parsing by precisely
matching atomic semantic units. As shown in Fig-
ure 1, fragments such as "countries bordering Ger-
many" and "currencies used in countries" can be
extracted from historical questions. Merging their
corresponding subgraphs yields a complete struc-
ture for answering the current question.

Experiments on the WebQSP (Yih et al., 2016)
and CWQ (Talmor and Berant, 2018) benchmark
datasets demonstrate that our approach achieves
strong performance, with a notable 18.5% relative
F1 score improvement on the complex multi-hop
CWQ dataset. This demonstrates the architectural
advantages of our framework in handling multi-
hop reasoning tasks and effectively reducing the
retrieval of irrelevant information. Ablation studies
further validate that the framework maintains ro-
bust performance across various base models and
retrieval mechanisms.

2 Preliminary

In this section, we first introduce the definition of
KG, KGQA and SP.

Knowledge Graph (KG) is a directed graph
G = (E ,R, T ) , where E is the set of entities, R
is the set of relations, and T ⊆ E × R × E is the
set of triples. Each triple (h, r, t) ∈ T encodes a
factual assertion, where h, t ∈ E are the heads and
tail entities, and r ∈ R is the relation linking them.

Knowledge Graph Question Answering
(KGQA) is a multi-hop reasoning task based on a
knowledge graph (KG). Its goal is to translate a nat-
ural language question q ∈ Q to an answer a ∈ A
, where A ⊆ E . Given a question q , the model
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is decomposed into sub-questions. Then the relevant phrases are retrieved and instantiated into sub-graphs, and
finally the complete information sub-graph is constructed through sub-graph fusion.

extracts a subgraph from the KG G that contains
the path-relevant evidence to infer the answer a .

Semantic Parsing (SP) transforms natural lan-
guage queries q ∈ Q into logical forms z ∈ Z ,
where Z denotes a space of formal representations
such as lambda-DCS, SPARQL, or s-expressions.
In the context of KGQA, the logical form z is a
structured query executable on a knowledge graph
G to retrieve the answer a.

3 Methodology

This section outlines the framework, which adopts
SPARQL as the specific form of LF, and comprises
three components: (1) the phrase-level question-
SPARQL mapping library construction module,
which analyzes questions and SPARQL to build a
mapping library; (2) the phrase-level retrieval mod-
ule, which retrieves relevant phrase pairs from the
library based on sub-questions generated by LLMs;
(3) the subgraph fusion module, which integrates
retrieved SPARQL phrases into global subgraphs
to derive accurate answers. Figure 2 presents an
overview of the framework.

3.1 Phrase-level Question-SPARQL Mapping
Library Construction

In the offline phase, we will construct a mapping
library, with the phrases contained within it con-
stituting the basis for phrase-level retrieval in the
online phase. This stage consists of two key steps:

(1) rule-based preprocessing of SPARQL queries,
and (2) generation of context-aware phrase-level
segmentation using LLMs.

The direct implementation of LLM-driven
phrase-level segmentation introduces two key chal-
lenges: (1) over-aggregation, where a single phrase
contains multiple reasoning steps, and (2) over-
fragmentation, which leads to phrase disintegra-
tion and compromises semantic integrity. To ad-
dress this, we design a rule-based SPARQL parser
for preprocessing. Initially, we identify the Ba-
sic Graph Patterns (BGPs) representing the core
semantics of SPARQL as primary candidates for
reasoning paths. Next, BGP components with
endpoints that are non-entity nodes are merged to
form long phrases with complete semantics. These
phrases maintain structural consistency, enabling
flexible assembly for semantic extension during
multi-hop reasoning, while also ensuring that each
phrase serves as the minimal reasoning unit, pre-
serving the robustness of atomic reasoning.

Building on preprocessed SPARQL fragments,
we construct prompts that include the preprocessed
phrases, the original SPARQL query, and the ques-
tion. These prompts guide the LLM to establish
semantic alignment through bidirectional phrase
alignment. This method differs fundamentally from
traditional approaches that convert triples into natu-
ral language. For instance, given the triple (Zazaki,
iso_639_3_code, zza), traditional methods might
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generate descriptions such as "Zazaki’s ISO 639-
3 code is zza" whereas our framework generates
a sentence more suited to the question, such as
"The abbreviation for the Zazaki language is zza".
It is important to note that, while the preprocess-
ing step extracts the primary reasoning paths, the
LLM still performs semantic mapping for other
SPARQL syntactic structures to ensure the full uti-
lization of SPARQL. In this approach, the LLM
does not need to fully comprehend the entire KG;
instead, it precisely maps the reasoning process of
problem-solving to the closed phrase set, alleviat-
ing semantic mapping biases caused by incomplete
KG understanding.

 Phrase-level Segmentation Prompt

Given a question, SPARQL, mid and its entity name, and 
the main reasoning path, split the question and 
SPARQL into pairs of clauses based on the given 
reasoning path. The parts that do not belong to the 
reasoning path also need to be split.

3.2 Question Decomposition and Phrase-level
Retrieval

For classic multi-hop reasoning tasks such as
KGQA, inspired by previous studies (Khot et al.,
2023; Wang et al., 2023), we use concise prompt
templates to utilize LLMs to decompose a multi-
hop question into sub-questions. As shown in Fig-
ure 2 a, the question “What currencies do countries
bordering Germany use?” is decomposed into two
sub-questions: “What countries border Germany?”
and “What are the currencies used in a country?”.
During this process, the LLM is not exposed to KG
data.

For each sub-question, we retrieve relevant NL
phrases from the phrase-level question-SPARQL
mapping library by computing embedding cosine
similarity, selecting the top-k candidates, and con-
verting them into corresponding SPARQL phrases.
As shown in Figure 2 b, “Countries bordering Ger-
many” and “Currencies used in the country” are
retrieved as related clauses.

Question Decomposition Prompt

Decompose the given question into sub-question. There 
should be no nesting between sub-questions.

3.3 Sub-Knowledge Graph Instantiation and
Fusion

To establish a connection between the retrieved
SPARQL phrases and the final question answer,
this module focuses on converting the retrieved
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Figure 3: Two fusion paradigms, sequential (top) and
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phrases into a coherent subgraph that accurately
represents the original question.

Before subgraph fusion, the first step is to
instantiate the retrieved SPARQL phrases into
question-relevant subgraphs. SPARQL fragments
capture local subgraph information within a KG.
For example, the SPARQL phrase "?country loca-
tion.country.currency_used Euro" corresponds to a
subgraph containing all countries that use Euro as
their currency. The instantiation of the subgraph is
achieved by performing entity replacement on the
entities within the retrieved SPARQL phrases.

A rule-based approach is then employed to fuse
the subgraphs, transforming them into an integrated
subgraph that represents the query’s semantic con-
tent. This process builds on two classic reason-
ing paradigms in KGQA: (a) sequential reasoning
(A → B → C) and (b) compositional reasoning
(A + B → C). Specifically, sequential reason-
ing extends the semantics of a preceding subgraph
with the information from subsequent subgraphs,
forming a reasoning path that eventually leads to
the answer. In contrast, compositional reasoning
synthesizes multi-subgraph constraints to generate
a subgraph that satisfies multiple constraints simul-
taneously, as shown in Figure 3. The rule-based
scheme designed based on these two reasoning
modes systematically integrates local subgraphs
into a unified subgraph that reflects the semantics
of the original query, from which the final answer
is derived, enabling trustworthy inference on the
knowledge graph.
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Type Methods WebQSP CWQ

F1 Hit F1 Hit

LLM-only

Llama3.1-8b (Meta, 2024) 34.8 55.5 22.4 28.1
Qwen2-7B (Qwen et al., 2024) 35.5 50.8 21.6 25.3
ChatGPT (OpenAI, 2022) 59.3 67.4 43.2 47.5
GPT-4 (OpenAI, 2023) 62.3 73.2 49.9 55.6

Inference-based

StructGPT (Jiang et al., 2023a) 63.7 72.6 49.6 54.3
Readi w/GPT-4 (Cheng et al., 2024) - 78.7 - 67.0
ToG w/GPT-4 (Sun et al., 2024) - 82.6 - 67.6
KG-CoT (Zhao et al., 2024) - 84.9 - 62.3

Training-based

NSM (He et al., 2021) 62.8 68.7 42.4 47.6
TransferNet (Shi et al., 2021) - 71.4 - 48.6
SR+NSM w E2E (Zhang et al., 2022) 64.1 69.5 46.3 49.3
UniKGQA (Jiang et al., 2023b) 70.2 75.1 48.0 50.7
DECAF (Yu et al., 2023) 78.8 82.1 - 70.4
RoG (Luo et al., 2024a) 70.8 85.7 56.2 62.6

Ours 73.3 88.4 66.6 91.6

Table 1: QA performance (F1 and Hit) of FGSP on WebQSP and CWQ datasets. Bold fonts indicate the best
performance. The results of lama3.1-8b and Qwen2-7B are from Luo et al. (2024b).The results of ChatGPT and
GPT-4 are from Jiang et al. (2024). others are from the origin paper

4 Experiment

4.1 Datasets
We use two classic benchmarks, WebQuestionSP
(WebQSP) (Yih et al., 2016) and Complex We-
bQuestions (CWQ) (Talmor and Berant, 2018), to
evaluate the effectiveness of our proposed frame-
work. Freebase (Bollacker et al., 2008) is the
underlying knowledge graph of these two datasets,
containing about 88 million entities, 20,000 rela-
tion types, and 126 million RDF triples. The details
of datasets are provided in the appendix A

4.2 Baselines
We compared our framework with 14 baseline mod-
els, categorized into three groups: 1) LLM-only,
where the model relies solely on the LLM to answer
questions without the use of KGs; 2) inference-
based, where the language model and KGs interact
to enable reasoning; and 3) training-based, where
the language model is fine-tuned using a training
dataset. The details of these approaches are pro-
vided in the appendix B.

4.3 Evaluation Metrics
Consistent with previous studies (Tan et al., 2023),
we use Hit and F1 as our evaluation metrics. Hit
verifies whether at least one correct answer appears
in the generated predictions, while F1 measures the
overall coverage of all correct answers by balancing
precision and recall.

4.4 Implementations

For constructing the phrase-level question-
SPARQL mapping library and question decom-
position, we used GPT4o (OpenAI, 2024) as
the base model, and the temperature was set to
0.4. BGE-m3 (Chen et al., 2024) was used as
the embedding model in phrase retrieval. For
the retrieved similar phrases, we used Top-5
as the subsequent subgraph fusion. For the
baseline results in the table, we directly used
the results reported in the corresponding paper
for comparison. The LLM-only method used
zero-shot prompts.

4.5 Main results

Table 1 presents the comparative experimental re-
sults of the proposed framework on two standard
KGQA datasets. Compared to existing approaches
that integrate LLMs with KGs, our framework
demonstrates significant advantages in overall per-
formance, which validates the method of deep
integration of natural language and graph struc-
tures through semantic parsing. This approach
effectively improves the efficiency and accuracy
of information extraction from knowledge graphs.
Specifically, in comparison to the LLM-only base-
line models, our method achieves an F1 score im-
provement of 20.8% on the CWQ dataset, respec-
tively, demonstrating that the structured knowledge
retrieval mechanism can effectively address the
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knowledge gaps of LLMs. Notably, on the more
complex CWQ dataset, our method further sur-
passes the current state-of-the-art approach, RoG,
by 18.5% in F1 score. This improvement is pri-
marily attributed to the technical advantages of
the standardized SPARQL query language, unlike
traditional methods that rely on autonomous rea-
soning path generation by the model, the structured
query mechanism ensures higher accuracy through
a standardized information extraction process. It
is particularly worth noting that this substantial
improvement empirically demonstrates the flexibil-
ity and scalability advantages of our framework,
which are realized through fine-grained semantic
decomposition. Additionally, our approach adopts
a decoupled architectural design, enabling the LLM
to operate independently of the KG during question
reasoning and sub-question decomposition.

5 Analysis

In this section, we further analyze our framework
by addressing the following six questions:

• Q1: How does the top-k selection in the re-
trieval stage affect the performance?

• Q2: How does fine-grained retrieval mapping
affect the performance relative to the complete
question retrieval?

• Q3: How does the scale of phrases affect the
performance?

• Q4: How do different models for phrase-level
segmentation affect the performance?

• Q5: How do different models for question
decomposition affect the performance?

• Q6: How do different retrieval methods affect
the performance?
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Figure 5: The F1 scores (Left) and Hit (Right) of
FGSP on the test set of CWQ with a various amount of
phrases.

5.1 Impact of Top-k and Fine-grained (Q1,
Q2)

This section validates the necessity and effective-
ness of the fine-grained framework through com-
parative experiments, focusing on the performance
differences between the proposed method and ques-
tion retrieval-based approaches under various Top-
k configurations. The baseline method based on
question retrieval uses all questions from the train-
ing set as retrieval sources. Its implementation
consists of two key steps: (1) replacing the enti-
ties in SPARQL with mentioned entities; (2) ex-
ecuting the knowledge graph query. As shown
in Figure 4, the experimental results demonstrate
that our method outperforms the baseline across
all Top-k values, confirming the effectiveness of
the fine-grained framework. Notably, on multi-
hop complex questions in the CWQ dataset, our
method shows a more significant performance gain,
with an average F1 improvement of 49.1%. This
is attributed to the modular nature of fine-grained
phrases compared to the original queries. Through
the flexible phrase composition, the system can
flexibly retrieve the knowledge fragments required
for multi-hop reasoning. Further analysis reveals
that fine-grained retrieval is more sensitive to the
Top-k parameter. Specifically, the growth rate of
F1 in the range of k=1 to k=10 in the CWQ dataset
is 55.9%, while the baseline method experiences a
relatively limited performance improvement, with
only a 25% increase in the same range. This phe-
nomenon suggests that the fine-grained phrases can
better leverage an expanded search space.

5.2 Impact of Phrase Count (Q3)

This section systematically explores the impact
mechanism of phrase size on the model’s robust-
ness. To simulate the data availability differences
in real-world scenarios, The experimental setup
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Models Parameter CWQ

F1 Hit

GPT4o - 66.6 91.6
gpt4o-mini - 66.3 91.9

Qwen2.5

14B 66.4 91.8
7B 66.3 91.0
3B 63.9 86.9

1.5B 54.1 77.7

LLAMA 3.1 8B 63.7 89.5

LLAMA 3.2 3B 62.0 87.8
1B 52.0 77.7

Table 2: Performance of different LLMs on phrase-level
segmentation.

constructs a progressive data size scenario rang-
ing from sparse phrases (5%) to complete phrases
(100%). Figure 5 presents a performance compari-
son curve across different phrase sizes, revealing
two important patterns: first, model performance
shows a significant positive correlation with the
number of phrases, with accuracy increasing lin-
early in the 5%-30% range; second, once the num-
ber of phrases exceeds 30%, the improvement rate
slows down, and as the phrase count approaches
100%, marginal gains are observed, indicating a
performance saturation threshold. It is worth not-
ing that under extreme data-limited conditions (e.g.,
5% phrases), the framework still exhibits excellent
robustness: key metrics, F1 and Hit, remain in the
range of 58.2%-66.6% and 85.1%-91.6%. This
phenomenon validates the dual advantages of the
framework design: scalability via performance im-
provements driven by incremental data, and strong
adaptability under low-resource environments. The
experimental results empirically demonstrate that
the framework can maintain stable performance in
resource-constrained scenarios, which is of signifi-
cant practical value for real-world applications.

5.3 Impact of Phrase-level Segmentation (Q4)

We systematically evaluated the impact of various
open-source and closed-source LLMs on the frame-
work’s performance in the phrase-level segmenta-
tion. In the experimental design, SPARQL state-
ments preprocessed by rules were consistently in-
put into different LLMs for fine-grained phrase de-
composition. As shown in Table 2, GPT-4o demon-
strated the best performance in terms of F1 score,
while GPT-4o-mini outperformed others in the Hit
metric. Notably, open-source models also exhib-
ited performance comparable to that of closed-
source models: Qwen-14B’s decomposition results

Models Parameter CWQ

F1 Hit

GPT4o - 66.6 91.6
GPT4o-mini - 66.2 91.7

Qwen2.5

14B 65.2 89.8
7B 64.6 89.0
3B 63.4 88.4

1.5B 60.7 87.2
0.5B 58.1 84.3

LLAMA 3.1 8B 64.7 90.1

LLAMA 3.2 3B 62.0 87.8
1B 52.0 77.7

no deco - 57.5 80.9

Table 3: Performance of different models in the question
decomposition. The no-deco means don’t decompose
the question.

were closest to GPT-4o, and LLaMA-8B reached
95.6% of GPT-4o’s performance, which validates
the compatibility of this framework with both
closed-source (GPT-4o) and open-source (Qwen,
LLaMA) models. Further analysis revealed a sharp
performance decline when the model’s parameter
size dropped below 1.5B. Diagnosing the outputs
of smaller models, we found that, even with the
aid of rule preprocessing, low-parameter models
still struggled to accurately capture fine-grained
semantic boundaries, frequently resulting in errors
of over-aggregation and over-fragmentation. This
issue is the key factor limiting their performance.

5.4 Impact of Question Decomposition (Q5)

We investigated the impact of different question
decomposition models on the phrase-level retrieval
stage. Four approaches were compared: GPT-4o,
Qwen, LLaMA, and a baseline without decompo-
sition strategy. All experiments were conducted
under identical conditions. The same semantic
embedding model and Top-5 retrieval parameters
were maintained throughout the comparison. As
shown in Table 3, when using LLMs for ques-
tion decomposition, our framework exhibited F1
scores consistently in the 52.0-66.6 range. Remark-
ably, even 3B-parameter models achieved 93-95%
relative performance compared to GPT-4o, which
provides strong evidence for the robustness of this
framework in the question decomposition stage.
Ablation experiments showed that when the ques-
tion decomposition module was removed, Hit and
F1 scores decreased by 9.2% and 9.1%, respec-
tively, compared to GPT-4o’s decomposition ap-
proach, demonstrating the critical role of the ques-
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Top-K Methods WebQSP CWQ

F1 Hit F1 Hit

Top-10

BM25 24.6 35.9 25.3 47.2
Sentence-BERT 73.9 90.2 70.3 94.8
conan 66.6 83.0 67.4 92.7
BGE-m3 78.1 91.9 71.7 95.3

Top-5

BM25 16.5 24.4 17.0 33.2
Sentence-BERT 63.9 82.4 64.9 90.7
conan 57.9 74.6 62.0 88.4
BGE-m3 73.3 88.4 66.6 91.6

Table 4: Performance of different retrieval methods.

tion decomposition module within this framework.

5.5 Impact of Retrieval Methods (Q6)

In phrase-level retrieval method comparison ex-
periments, we systematically evaluated the perfor-
mance differences between BM25 (Robertson and
Walker, 1994) and other dense retrieval models
such as BGE-M3 (Chen et al., 2024) , Sentence-
BERT (Reimers and Gurevych, 2019), and Conan
(Li et al., 2024). As shown in Table 4, vector-based
retrieval methods exhibited slight performance vari-
ations between different embedding models: on
the CWQ dataset, the best-performing BGE-M3
demonstrated a modest improvement of 6.3%-7.4%
in F1 and a 2.8%-3.6% improvement in Hit over Co-
nan, indicating that the choice of embedding model
has a limited impact on this framework. The BM25
method significantly degraded system performance.
This can be attributed to two interrelated factors.
First, entities in historical questions exhibit hetero-
geneous characteristics, where different questions
involve substantially distinct entities. Second, the
phrase structure introduces additional complexity
- specifically, the sparsity of word distributions in
short phrases creates modeling challenges. Term-
frequency-based methods particularly struggle to
establish effective probability distribution models
under these conditions of lexical sparsity.

6 Related Work

Currently, research on KGQA can be broadly cate-
gorized into two main approaches: one leverages
LLMs for KGQA tasks, while the other is based on
semantic parsing methods.

6.1 LLMs for KGQA

KGs, as structured knowledge bases, can effec-
tively supplement the factual knowledge of LLMs
and reduce hallucinations (Pan et al., 2024). Exist-
ing KG-enhanced approaches are primarily divided
into two categories: inference-based and training-

based methods. Inference-based models, such as
StructGPT (Jiang et al., 2023a), ToG (Sun et al.,
2024), and KnowAgent (Zhu et al., 2024), facilitate
multi-round interactions between LLMs and KGs,
treating LLMs as agents. Although this approach
effectively leverages LLMs’ reasoning abilities, the
lack of sufficient understanding of relationships or
entities within the KG by the LLM further am-
plifies hallucinations, leading to incorrect reason-
ing results. Training-based methods aim to inte-
grate the knowledge of KG into LLMs. RoG (Luo
et al., 2024a) samples the reasoning paths from the
graph, injects relational information from the KG
into the LLM, and generates reasoning paths to
retrieve useful information from the KG for infer-
ence. GNN-RAG (Mavromatis and Karypis, 2024)
uses a lightweight GNN to effectively extract in-
formation from the KG to assist LLM reasoning.
Training-based methods, in order to ensure cover-
age of correct reasoning paths, tend to generate ad-
ditional noise paths, which may affect subsequent
LLM reasoning.

6.2 Semantic Parsing

In the KGQA task, semantic parsing (SP) aims
to convert natural language questions into struc-
tured logical forms, such as lambda-DCS (Liang,
2013), SPARQL queries (Das et al., 2021), graph
queries (Yih et al., 2015; Lan and Jiang, 2020),
and s-expressions (Gu et al., 2021). Early meth-
ods employed grammar-based parsers (Mitra et al.,
2022; Sun et al., 2020; Liang et al., 2017), whereas
recent research has focused on leveraging pre-
trained language models to enhance semantic pars-
ing (Scholak et al., 2021; Zhang et al., 2019).
SPARQA (Sun et al., 2020) introduces skeleton
grammar to represent the high-level structure of
complex questions and incorporates BERT to im-
prove the accuracy of semantic dependency rela-
tions. SR (Zhang et al., 2022) employs a train-
able subgraph retriever that utilizes a dual-encoder
model to expand reasoning paths and dynamically
determine termination conditions for expansion.
RNG-KBQA (Ye et al., 2022) combines a con-
trastive ranker with a generative model, leverag-
ing high-confidence candidates to optimize the fi-
nal composition of logical forms. These methods
optimize latent space representations to improve
question generalization. In contrast, our approach
tackles scalability challenges in semantic parsing
through an explicit phrase alignment and retrieval
mechanism.
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7 Conclusion

In this paper, we propose a two-stage fine-grained
phrase alignment framework to address the issues
of semantic gaps and redundant paths that arise in
the integration of LLMs with KGs. By leveraging
SPARQL, we establish a connection between natu-
ral language and graph structures, facilitating the
precise and efficient retrieval of relevant informa-
tion from the KG. Experimental results on two stan-
dard KGQA benchmarks validate the effectiveness
of our approach, demonstrating that the application
of semantic parsing effectively bridges the seman-
tic gap and reasoning discrepancies between LLMs
and KGs, leading to faithful and reliable inference.

Limitations

Although we have demonstrated the effectiveness
and stability of our framework across various exper-
imental settings, several limitations remain. First,
our approach depends on Freebase, which may
limit its applicability to knowledge bases with dif-
ferent structures and entity distributions, such as
Wikidata and DBpedia. Future work should explore
its generalization capability across different knowl-
edge bases. Second, we employ rule-based sub-
stitution for retrieved SPARQL phrases, a process
that could be improved in terms of accuracy and
adaptability through generative models. Lastly, we
use SPARQL as the LF for fine-grained alignment;
extending LF to S-expression and lambda-DCS
could further validate the framework’s generality
and compatibility.
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Datasets #Train #Test Max #hop

WebQSP 2,826 1,628 2
CWQ 27,639 3,531 4

Table 5: Statistics of datasets.

Dataset #Ans = 1 2 ≥ #Ans ≤ 4 5 ≥ #Ans ≤ 9 #Ans ≥ 10

WebQSP 51.2% 27.4% 8.3% 12.1%
CWQ 70.6% 19.4% 6% 4%

Table 6: Statistics of the number of answers for ques-
tions in WebQSP and CWQ.

Dataset 1 hop 2 hop ≥ 3 hop

WebQSP 65.49 % 34.51% 0.00%
CWQ 40.91 % 38.34% 20.75%

Table 7: Statistics of the question hops in WebQSP and
CWQ.

A Datasets

We utilize two standard datasets, WebQSP and
CWQ. To ensure fairness, we adopt the same train-
ing and test splits as in previous studies. The de-
tailed statistics of the datasets are presented in Ta-
ble 5. Both WebQSP and CWQ are based on Free-
base. In our approach, we employ the complete
Freebase as the knowledge graph for information
retrieval.

B Baselines

We compared FGSP against 14 baselines, which
can be categorized into three groups: (1) LLM-
only methods, (2) inference-based methods, and
(3) training-based methods. The specific details of
these approaches are as follows.

B.1 LLM-only method

The results of lama3.1-8b (Meta, 2024) and Qwen2-
7B (Qwen et al., 2024) are from Luo et al.
(2024b).The results of ChatGPT (OpenAI, 2022)
and GPT-4 (OpenAI, 2023) are from Jiang et al.
(2024).

B.2 Inference-based methods

• StructGPT (Jiang et al., 2023a) enhances large
language models’ reasoning ability on struc-
tured data by integrating the iterative reading-

reasoning (IRR) method with structured data
interfaces.

• Readi (Cheng et al., 2024) enables efficient
and faithful reasoning in structured environ-
ments by allowing large language models
(LLMs) to generate and edit reasoning paths.

• ToG (Sun et al., 2024) tightly integrates large
language models with knowledge graphs,
leveraging graphs for deep reasoning and em-
ploying iterative beam search execution to im-
prove reasoning capability and interpretabil-
ity.

• KG-CoT (Zhao et al., 2024) enhances the
knowledge reasoning ability of LLMs by in-
corporating small-scale stepwise graph rea-
soning models and leveraging knowledge
graphs (KGs), thereby improving LLMs’ per-
formance on knowledge-intensive question-
answering tasks without requiring fine-tuning.

B.3 Training-based methods

• NSM (He et al., 2021) proposes a multi-hop
knowledge base question-answering method
based on a teacher-student framework, im-
proving reasoning ability by learning inter-
mediate supervision signals and generating
more reliable intermediate entity distributions
through bidirectional reasoning mechanisms.

• GraftNet (Shi et al., 2021) is an efficient and
transparent framework for multi-hop question
answering that infers answers by propagating
entity scores across entities, supporting the
processing of both labeled and textual entity
relations within a unified framework.

• SR+NSM (Zhang et al., 2022) decouples the
retrieval and reasoning processes to enhance
the performance of embedding-based KBQA
models.

• UniKGQA (Jiang et al., 2023b) addresses
multi-hop knowledge graph question answer-
ing by integrating semantic matching and in-
formation propagation modules while unify-
ing retrieval and reasoning in model architec-
ture and parameter learning.

• DECAF (Yu et al., 2023) improves the accu-
racy of knowledge base question-answering
tasks by jointly generating logical forms and
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Type Split results Remark

over-aggregation

["The character in Cars played by the actor who played Porco Rosso.",

No separation of questions and SPARQL at all
"?c ns:film.actor.dubbing_performances ?k . "]
?k ns:film.dubbing_performance.character ns:m.0nfpg4s .
?c ns:film.actor.film ?y
?y ns:film.performance.character ?x"]

over-fragmentation
["What character", "character ?x"] The split result is not a triple

["Porco Rosso", "m.0nfpg4s"] Split to only a single entity

["in Cars", "?y ns:film.performance.film ns:m.03q0r1 ."] The split result cannot support complete semantics

Table 8: Two kinds of mistakes in the phrase-level segmentation: a)over-encapsulation b)excessive fragmentation

Model Parameter Number
Average length

NL clauses Question

GPT4o - 43066 6.12

13.21

gpt4o-mini - 42373 6.01

Qwen2.5

14B 40310 6.30
7B 41330 5.96
3B 41395 6.24

1.5B 46943 6.72
0.5B 23393 7.13

LLAMA 3.1 8B 44135 6.38

LLAMA 3.2
3B 58886 8.63
1B 61623 6.53

Table 9: Scale details of phrase-level question-SPARQL
mapping libraries built by different models

direct answers, leveraging the strengths of
both approaches while simplifying model
adaptation across different datasets.

• ROG (Luo et al., 2024a) combines large
language models (LLMs) and knowledge
graphs (KGs), employing a plan-retrieve-
reason framework to generate faithful and in-
terpretable reasoning results.

C Error in Phrase-level Segmentation

In phrase-level segmentation, we identify two is-
sues that arise when directly relying on LLMs for
phrase-level segmentation: over-encapsulation and
excessive fragmentation. These two issues are pre-
sented in detail in the table 8.

D Details of the Phrase-level
Question-SPARQL Mapping Libraries

The details of the phrase-level question-SPARQL
mapping libraries are presented in the table 9.
The constructed library comprises approximately
40,000 phrase pairs, with an average natural lan-
guage phrase length of around six words and an
average original question length of 13.21 words.

E Prompt

We present the prompts used throughout our frame-
work.

The prompt employed for the phrase pair decom-
position process is shown in table 10. We adopt a
few-shot approach to ensure that the phrase pairs
generated by the LLM adhere to our predefined
format. The prompt includes preprocessed Ba-
sic Graph Patterns (BGPs), the original SPARQL
query, and the complete question. Notably, the nat-
ural language phrases derived from the question are
not sub-questions but rather declarative statements.

For the online stage, the prompt used for LLM-
based question decomposition is presented in table
10. To minimize constraints on the LLM’s rea-
soning process, we refrain from designing overly
complex prompts for question decomposition.
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Prompt for Phrase-level Segmentation Given a question, a SPARQL query, mid and its entity name
in the SPARQL statement, and the main reasoning path implied by SPARQL, split the question and
SPARQL into pairs of clauses based on the given reasoning path. The parts that do not belong to the
reasoning path also need to be split.
Examples
Few-shot Question
<Question>
SPARQL:
<SPARQL>
mention entity:
<mention entity>
inference chain:
<inference chain>
pairs:
Demonstration Example
Question: What is the national currency of the country where Bajan is spoken?
SPARQL:
PREFIX ns: <http://rdf.freebase.com/ns/>
SELECT DISTINCT ?x
WHERE {
FILTER (?x != ?c)
FILTER (!isLiteral(?x) OR lang(?x) = ” OR langMatches(lang(?x), ’en’))
?c ns:location.country.languages_spoken ns:m.03xx69 .
?c ns:location.country.currency_used ?x .
}
mention entity:
m.03xx69: Bajan Language
inference chain:
?c ns:location.country.languages_spoken ns:m.03xx69 .
?c ns:location.country.currency_used ?x .
pairs:
[["Countries that speak Barbadian", "?c ns:location.country.languages_spoken ns:m.03xx69 ."],
["The country’s currency", "?c ns:location.country.currency_used ?x ."]]
Prompt for Question Decomposition
Decompose the given problem into subproblems. There should be no nesting between subproblems.
Examples:
<Few-shot>
Question
<Question>
Demonstration Example
Question: Which city of residence for Tom Hanks was the birthplace of Elon Musk?
Sub-questions: ["Which city did Tom Hanks live in?", "Where was Elon Musk born?"]

Table 10: Detailed prompts for modules of FGSP
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