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Abstract

Surveys are widely used to collect patient data
in healthcare, and there is significant clinical
interest in predicting patient outcomes using
survey data. However, surveys often include nu-
merous features that lead to high-dimensional
inputs for machine learning models. This paper
exploits a unique source of information in sur-
veys for feature selection. We observe that fea-
ture names (i.e., survey questions) are often se-
mantically indicative of what features are most
useful. Using language models, we leverage se-
mantic textual similarity (STS) scores between
features and targets to select features. The per-
formance of STS scores in directly ranking fea-
tures as well as in the minimal-redundancy-
maximal-relevance (mRMR) algorithm is eval-
uated using survey data collected as part of a
clinical study on persistent post-surgical pain
(PPSP) as well as an accessible dataset col-
lected through the NIH All of Us program.
Our findings show that features selected with
STS can result in higher performance models
compared to traditional feature selection algo-
rithms.

1 Introduction

Survey data can have many features and a relatively
low number of examples, particularly in human
subjects research where there is a high cost of re-
cruiting participants. Small and novel populations
combined with multiple externally-validated ques-
tionnaires can easily result in high-dimensional
data. A typical solution is to apply feature selection
using statistical measures, but because this relies
upon the same high-dimensional data being filtered,
suboptimal selections can be made. Conversely,
features can be manually selected for inclusion in
a model, but this can be limited as it involves test-
ing individual combinations of features. An ideal
solution would combine the empirical ranking of
the former approach with the domain-informed se-
lection offered by the latter approach.

We explore this problem through two clinical
datasets, a private dataset from a study examining
persistent post-surgical pain (PPSP) and the All of
Us dataset. Both of these datasets collect answers
to hundreds of questions filled out by clinicians
and participants covering a broad range of topics.
For the PPSP dataset, there are only 617 examples,
which limits the amount of information available
for feature selection.

1.1 Proposed Approach

Survey questions are, in practice, semantically re-
lated to a target outcome and semantically similar
to or distinct from other questions. Semantic tex-
tual similarity (STS) could be an analogue to statis-
tical measures that capture relationships between
features, such as mutual information (MI). STS
may then be useful for determining which ques-
tions are relevant to predicting a target question,
or which questions are redundant to one another.
To this end, we evaluate the use of STS scores di-
rectly to determine the most relevant features, and
test STS scores both as a direct replacement and
as a complement in algorithms utilizing statisti-
cal scores, such as minimal-redundancy-maximal-
relevance (mRMR). Our overall approach, outlined
in Figure 1, is to first score features using a lan-
guage model (LM) that produces STS scores, sta-
tistical scores, or a linear combination of both; and
then use a general selection algorithm to pick fea-
tures from these scores.

There appears to be nearly no literature examin-
ing feature selection with embeddings or STS. The
closest match to our knowledge examined the usage
of word2vec continuous bag-of-words embeddings
(Mikolov et al., 2013) trained upon Twitter data to
select Google search query trends matching the em-
beddings of a target concept (Lampos et al., 2017).
Our approach differs in several key ways, with the
principal difference being that we use STS scores
to make comparative selections with limited tab-
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ular data, whereas (Lampos et al., 2017) use the
distribution of STS scores produced by thousands
of candidate time-series features to make selec-
tions. In addition, we compare the performance
of different selection algorithms, pre-trained LMs,
fine-tuning datasets and scoring combinations as
they relate to feature selection performance.
We present several empirical contributions:

* An examination of how STS scores generated
by LMs between feature-feature and feature-
target question pairs can help select features,
either alone or in combination with statistical
measures such as ML

* A comparison of different LM scoring con-
figurations as they relate to classifier perfor-
mance.

* A demonstration of how STS-based feature
selection algorithms can reduce overfitting us-
ing a gated-access and private clinical dataset
relating to persistent post-surgical pain.

We make our code available at https://
github.com/bcwarner/sts-select and via pip
install sts-select. Additionally, a Hugging
Face collection with the best performing models
for each dataset can be found through our GitHub.

2 Preliminaries

2.1 Feature Selection

Fitting high-dimensional data is particularly diffi-
cult when the number of examples is low since a
model can easily overfit on the training data. To
counter this, we can utilize feature selection, where
a subset of the overall features in a dataset are se-
lected for learning.

Feature selection methods can be divided into
three categories: embedded, wrapper, and filter
methods. Embedded methods incorporate feature
selection as a part of training, while wrapper meth-
ods interact in a feedback loop with the learning
model. Filter methods select a subset of features
based on properties of the dataset before the model
is trained, which differs from embedded and wrap-
per methods in that they do not form a feedback
loop with the model (Guyon et al., 2008). Because
of their independence, they tend to generalize well
(Remeseiro and Bolon-Canedo, 2019).

Feature selection methods used in clinical survey
data cover a broad range of techniques. A study
examining autism spectrum disorder (ASD) survey

data, examined feature selection using principal
component analysis, t-distributed stochastic neigh-
bor embedding, and denoising autoencoders; and
also found that survey features targeting ASD tend
to have high levels of redundancy (Washington
et al., 2019). Some of the other feature selection
methods found for models involve questionnaires
include wrapper models based on random forests
(Niemann et al., 2020), bootstrapped feature se-
lection (Abbas et al., 2018), principal component
analysis, multicluster feature selection (Saridewi
and Sari, 2020), permutation importance (Chen
et al., 2023), and ReliefF (Abut et al., 2016).

One particularly useful feature selection tech-
nique is minimal-redundancy-maximal-relevance
(mRMR), which aims to maximize the relevance
of features to the target, while minimizing the re-
dundancy between selected features. This is par-
ticularly useful when we have a small number of
features that are correlated and want to ensure a
model incorporates as broad as a set of information
as possible (Peng et al., 2005; Ramirez-Gallego
etal., 2017).

Underpinning the mRMR objective function is
the mutual information (MI) between classes and
features, which measures the amount of shared
information between two distributions. In addition
to M1, Pearson’s r and F-statistic p-values, can also
be used in the mRMR algorithm.

2.2 Semantic Textual Similarity

Semantic textual similarity (STS) is a task where a
LM is used to score the semantic similarity of two
sentences, generally by evaluating the differences
between embeddings generated by a model. Cosine
similarity is one typical function used to measure
the difference between embeddings (Reimers and
Gurevych, 2019; Oniani et al., 2022).

STS scores can be produced with language mod-
els (LMs) that follow the pre-training/foundation
model paradigm. These latter models are trained
with a self-supervised learning task, and then mod-
ified and trained to complete a supervised task (De-
vlin et al., 2018; Radford et al., 2019). Pre-training
is particularly useful since it results in better gener-
alization (Erhan et al., 2010), and because it allows
computationally expensive models to be reused
for different tasks (Wolf et al., 2019). Some large
language models (LLMs) have demonstrated capa-
bilities at many reasoning tasks involving semantic
meaning (Singhal et al., 2022; Wei et al., 2023),
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Figure 1: Overview of the STS-based feature selection process. Feature-feature and feature-label relationships are
first scored, using statistical algorithms and/or models fine-tuned to produce STS scores. These scores are then used
to select the best subset of features for a downstream model.

and are highly applicable since survey features may
involve complex word relationships.

Clinical language involves vocabulary and se-
mantic meaning that is often not present in non-
clinical texts, and various pre-trained architectures
exist to fill this gap. To date, there are over 80
clinical LMs available (Wornow et al., 2023), with
a diverse set of architectural and training designs.
Clinical LMs can perform better than general LMs
on tasks specific to the clinical domain (Alsentzer
et al., 2019), and can do so more efficiently than a
general-purpose models (Lehman et al., 2023).

3 Methodology

3.1 Scoring & Selection

A distinction can be made between the scoring of
features, where we measure a feature’s relation-
ship to a target or another feature, and the selec-
tion of features, where we then use these scores
to select the appropriate features. We evaluate the
performance of STS, as well as three baseline scor-
ing methods: MI, Pearson’s r coefficients, and
F-statistic p-values. We also evaluate the linear
combination of them, with the coefficient for STS
being a hyperparameter «,, which we test over a
logarithmically-spaced range of 30 values from
[1072,10?%]. For selection algorithms with these
scores we evaluate selecting the top N feature-
target scores, selecting feature-target scores above
a given standard deviation k, and selection of N

features using these scores in mRMR.

We evaluate several baseline feature selectors
from the filter method category because they do
not have a feedback loop from which overfitting
could occur (Remeseiro and Bolon-Canedo, 2019)
which makes them appropriate for small datasets.
We use selection based on the best weights from a
linear support vector machine (SVM) model and
an XGBoost model (Chen and Guestrin, 2016)
using SelectFromModel from scikit-learn (Pe-
dregosa et al., 2011), and recursive feature elim-
ination (RFE). The linear SVM model is tested
with C' over 10 logarithmically spaced values from
[1072, 1], while the XGBoost instance used in Se-
lectFromModel has the default settings. RFE is
also evaluated using a linear SVM model with
C = 1 to select features.

For all of the aforementioned selection algo-
rithms and the baseline algorithms we compare
against, we select 40 features. For selection by
standard deviations, all features with scores above
u + ko are selected, where k = 1.

Other than formatting to support the one-hot vec-
torization of categorical features, the feature names
are unmodified from their original text. In addition
to each of the features used to assign the target
label, we also use the name persistent_pain to
the target, and average their STS scores together in
evaluation. Details for how each dataset derived the
target label can be found in Sections 4.1.1 and 4.1.2.
The MI, and Pearson’s r and F-statistic approxima-
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Dataset | Type | Pairs
bio_simlex (Chiu et al., 2018) Clin. 987
bio_sim_verb (Chiu et al., 2018) | Clin. 1,000
mayosrs (Pedersen et al., 2007) Clin. 101
Total Clinical 2,088
sts-companion (Cer et al., 2017) | Gen. 5,289
stsb_multi_mt;en (May, 2021) | Gen. 5,749
Total General 11,038
Total 13,126

Table 1: Datasets used for training and fine-tuning se-
lected models.

tion methods used in this paper are implemented
from scikit-learn (Pedregosa et al., 2011).

3.2 LMs and Fine-Tuning Datasets

For generating STS scores, we evaluate the per-
formance of several different pre-trained LMs us-
ing Hugging Face’s transformers (Wolf et al.,
2019) with the sentence_transformers library
(Reimers and Gurevych, 2019) to fine-tune and pro-
duce STS scores. We evaluate two models trained
on general vocabulary, namely all-MinilM-L12-
v2 (Reimers and Gurevych, 2019) and bert-base-
uncased (Devlin et al., 2018). We also evaluate
the performance of models pre-trained on clin-
ical/scientific text, including Bio_ClinicalBERT
(Alsentzer et al., 2019), BioMed-RoBERTa-base
(Gururangan et al., 2020), PubMedBERT (Gu et al.,
2021), BioGPT (Luo et al., 2022), and GatorTron
(Yang et al., 2022).

To fine-tune these models, we train the model
to predict cosine similarity on one of two com-
bined STS datasets, which we group into a general
sentence-level and clinical phrase-level set. We
also evaluate the performance of fine-tuning on the
combination of both the general and clinical STS
datasets. Table 1 highlights the composition of the
selected fine-tuning datasets.

Additionally, ClinicalSTS (Xiong et al., 2020)
and MedSTS (Wang et al., 2020) are two clinical
sentence-pair datasets we were unable to obtain for
fine-tuning. To overcome this limitation, we also
evaluate the performance of a Bio_CinicalBERT
model fine-tuned on just the ClinicalSTS dataset
(Mulyar et al., 2019).

4 Experiments

4.1 Data

To evaluate our proposed approach, we utilize two
datasets, a private dataset examining PPSP and
a cohort subset from the All of Us gated-access

dataset from the National Institutes of Health. Both
datasets use the Research Electronic Data Capture
(REDCap) system (Harris et al., 2009) for collect-
ing and organizing patient survey data.

4.1.1 PPSP Dataset

The PPSP dataset is a partially complete set of
participants from the P5: Personalized Predic-
tion of Persistent Postsurgical Pain study (IRB
#202101123) conducted at the Washington Univer-
sity School of Medicine in St. Louis/BJC Health-
Care system. This dataset attempts to examine who
will get PPSP, the phenomenon of a patient experi-
encing surgically-related pain for a longer duration
of time than expected (Vila et al., 2020).

The dataset contains 1631 partial responses from
a total 617 participants as a part of a final goal of
2,000 participants from the BJC HealthCare system.
When exported from REDCap, the combination of
these questionnaires results in 458 named features,
ranging from demographic features to various mea-
sures of psychological and physical pain and corre-
lated variables. Table 4 in Appendix A outlines the
key characteristics of the dataset, including number
of examples and general demographics.

4.1.2 All of Us Dataset

The All of Us dataset is a gated-access dataset of
electronic health records, surveys, and other med-
ical data collected by the National Institutes of
Health for a broad range of biomedical research.
The All of Us program collects extensive survey
data capturing patient history.

To parallel our private dataset, we utilize the
All of Us Registered Tier Dataset v7 and select a
cohort of patients who experienced “Persistent pain
following procedure” or ”Pre-surgery evaluation”
and use the presence of the former condition as
the label for that dataset. We only include patients
who have the “Contains Surveys Codes” condition,
resulting in 32,631 patients.

4.2 Data & Model Preparation

To deal with missing entries in survey data, sev-
eral imputation strategies are applied. For columns
with numerical types of data, null entries are re-
placed with the mean value, and then have the Lo
norm applied to that column. Date/time types are
dropped for simplicity. String types—which we are
treating as categorical types given the previous fil-
tering of unique values—will be imputed with the
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most common value, and then split up into one-hot
columns.

Classifier models tested include linear SVM,
multilayer perceptron, Gaussian Naive Bayes
(Gaussian NB), and k-nearest neighbors (k-NN).
For linear SVM, we test over 10 values of C
logarithmically-spaced from 0.01 to 1. For k-
NN, we evaluate 3, 5, and 7 neighbors, and for
MLP, we evaluate tanh and ReL U activations with
o logarithmically-spaced from 0.01 to 1 over 10
steps.

An 80%/20% train/test split is used for evalu-
ating overall performance, and 5-fold flat cross-
validation (CV) is employed to both select hyper-
parameters and evaluate the overall performance
of the dataset. Nested CV is typically employed
for evaluating model selection with small datasets,
but experimentally may not be necessary with low
numbers of hyperparameters while using specific
model types, such as gradient boosted trees (Wainer
and Cawley, 2021). For this reason, and due to the
fact that nested CV with K outer-folds would incur
a proportional increase in run-time, flat 5-fold CV
is used. For randomization in NumPy and PyTorch
and any of their dependencies, we use the seeds
278797835 and 424989.

To emulate the low-dimensional setting found in
the PPSP dataset, the All of Us dataset has examples
randomly dropped such that the ratio of features
to examples is 1:1 (i.e. 1466 examples with 1466
features). The final dimensionality of the PPSP
dataset after preprocessing is 617 examples with
269 features.

5 Results

We evaluated 1108 different feature selection and
classifier pairings for the PPSP dataset, and 821
pairings for the All of Us dataset. Tables 2
and 3 show the the performance in area under the
receiver-operator curve (AUROC) and area under
the precision-recall curve (AUPRC) for each of
the STS-based feature selectors compared to all
baselines using the Gaussian NB classifier, which
was the most significantly improved classifier for
both datasets. Two-tailed t-test p-values between
those groups, which were corrected for multiple
hypotheses using the Benjamini-Yekutieli method
with = 0.05 (Benjamini and Yekutieli, 2001;
Virtanen et al., 2020; Seabold and Perktold, 2010),
are also shown. Full results stratified by all classi-
fiers tested can be found in Tables 9 to 12 in Ap-
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Figure 2: MI feature-feature and feature-target pairings
from the PPSP dataset.

pendix C. Detailed summaries of training results
with the Gaussian NB can be found in Tables 13
and 14.

5.1 Scoring Performance

When evaluating the performance between the STS
and non-STS scorers, as shown in Tables 2 and 3,
we find that STS tends to slightly drop in test per-
formance for the All of Us dataset and slightly im-
prove in test performance for the PPSP dataset. We
find in both cases the test-train gap improves with
both STS alone or in combination with the majority
of the baseline scoring methods compared to the
baseline feature selectors.

We compare performance for each of these hy-
perparameters overall using ANOVA and Tukey’s
honestly significant difference (HSD) test in Ta-
bles 5 to 8 in Appendix B (Tukey, 1949; Seabold
and Perktold, 2010). For training the STS scoring
models, we find that the differences between a clin-
ical and general fine-tuning dataset appear to be
significant for the All of Us dataset but negligible
with the PPSP dataset, as seen in Tables 5 and 7 in
Appendix B. Similarly, for fine-tuned scoring mod-
els, we find that for the majority of pairings, there
is no significant difference in model performance,
as seen in Tables 6 and 8 in Appendix B.

5.2 Feature Scoring Differences

When evaluating the selected features, we see a
noticeable difference between those selected us-
ing MI and STS scores. Figures 2 and 4,which
shows MI, and Figures 3 and 5, which shows se-
lected STS scores for the features and targets for
the dataset, highlights why this difference exists,
as the STS scores are capable of highlighting more
relationships between features and targets. The
performance of Pearson’s r and F-statistic scores
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Table 2: Results stratified by scorer measured by AUROC using Gaussian NB, with average baseline performance
(uB), average performance for a given scorer (ug), average difference between baseline and scorer (A), and the
t-test p value corrected with the Benjamini-Yekutieli method.

Hyperparameters Test - Train AUROC Test AUROC
D. [ Scorer UB [ s [ A [ p pe | ps [ A [ p
Al STS —0.057 | 0.066 | 0.003 0.578 | —0.050 | 0.852
5 | F-Score & STS —0.040 | 0.084 | 0.077 0.705 | 0.078 0.234
% | MI& STS —0.123 | —0.059 | 0.064 | 0.009 0.628 | 0.551 | —0.076 | 0.002
S | Pearson’s 7 & STS —0.055 | 0.068 | 0.027 0.592 | —0.035 | 1.000
STS —0.062 | 0.061 | 0.013 0.548 | —0.080 | 0.002
All STS 0.060 0.085 | 7.0-107 98 0.840 | 0.098 8.7-107 %
n, | F-Score & STS 0.065 0.089 | 1.5-107%° 0.839 | 0.097 0.024
£ | MI& STS —0.024 | 0.050 0.074 | 9.6-107°* | 0.742 | 0.816 | 0.074 0.261
A | Pearson’s r & STS 0.066 0.090 | 4.6-1079¢ 0.857 | 0.115 1.7-107%
STS 0.060 0.084 | 7.3-1079¢ 0.849 | 0.107 1.8-1079¢
Table 3: Results stratified by scorer measured by AUPRC using Gaussian NB.
Hyperparameters Test - Train AUPRC Test AUPRC
D. [ Scorer B [ s [ A [ p ps | ps [ A [ p
All STS —0.011 [ 0.025 [ 4.0-1079° 0.027 | —0.006 [ 1.000
5 | B-Score & STS —0.026 | 0.010 | 0.972 0.046 | 0.013 0.173
% | MI& STS —0.036 | —0.007 | 0.029 | 7.3-107°% | 0.033 | 0.023 | —0.010 | 1.9.107°
SC Pearson’s » & STS —0.012 | 0.023 | 0.039 0.030 —0.003 1.000
STS —0.007 | 0.028 | 7.3-10798 0.023 | —0.010 | 1.9-1079¢
All STS 0.102 0.065 | 0.002 0.423 | 0.126 4.3.107%
o | F-Score & STS 0.106 0.069 | 0.012 0.410 | 0.114 0.056
£ | MI& STS 0.037 0.087 0.050 | 0.065 0.296 | 0.406 | 0.110 0.056
A~ | Pearson’s r & STS 0.115 0.078 | 2.9-1079% 0.440 | 0.143 1.9-107%
STS 0.100 0.063 | 0.003 0.435 | 0.138 3.5-1079
STS X-X Pairings )%—y Pairings 0 STS X-X Pairings XU'Y Pairings
50 0.8
:g 100 100 ] £ 0.6
g 150 . = 04
ﬁ =
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Figure 3: STS scoring with microsoft/biogpt fine-
tuned on both the general and clinical vocab pairings
from the PPSP dataset.

MI X-X Pairings )%y Pairings

0.6
0.5
0.4
0.3
0.2
0.1
0.0

Target Score

Feature Index

500 1000
Feature Index

Figure 4: MI feature-feature and feature-target pairings
from the All of Us dataset.
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Figure 5: STS scoring with UFNLP/gatortron-base
fine-tuned on both the general and clinical vocab pair-
ings from the All of Us dataset.

shows a similar trend, which can be seen in Fig-
ures 6a, 6b and 7a in Appendix D.

6 Discussion

6.1 Feature Selection Performance

Using STS to select features appears to offer signif-
icant performance benefits over traditional feature
selection methods. One main reason that the usage
of STS appears to work better than statistical scor-
ing methods is that STS scores are not affected by
the curse of dimensionality. As can be seen with
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MI in Figures 2 and 4, complex relationships can
cause individual features to share little information,
and features that we would expect to be more rel-
evant than others will be scored only marginally
better than those that would not be relevant.

STS also provides a contrasting, non-correlated,
source of information compared to statistical mea-
sures like MI. This can be seen from the strong
contrast in highlighted regions between Figs. 2
and 3. This is particularly useful for when statisti-
cal scores that result from the training dataset fails
to match what we might expect from the population
sampled, as STS is not vulnerable to differences
in the sample and population distributions. STS is
clearly more able to highlight redundant regions,
especially near the diagonal, and is more able to
distinguish between relevant and irrelevant features
than traditional statistical scores.

Inspection of the features selected with STS and
statistically scored models highlights these issues.
For example, in the All of Us dataset, when examin-
ing the top N features scored with MI, we find that
the majority of features are variations of “Can’t Af-
ford Care: Skipped Med to Save Money”, “Can’t
Afford Care: Took Less Med To Save Money”, etc.
In contrast, the top N features for PubMedBERT
begin with questions such as “Are you still see-
ing a doctor or health care provider for a hernia?”
and “Are you still seeing a doctor or health care
provider for reactions to anesthesia (such as hyper-
thermia)?”’. While the first set of features is more
strongly correlated to the labels in the training set,
the second set of features are more semantically
related to the label, and are more likely to reflect
ground-truth explanations.

6.2 Implications on Survey Writing

The surveys used here were not designed in antic-
ipation of this type of feature selection algorithm,
but subsequent questionnaires—or other data with
descriptive feature names—may be designed with
STS-based feature selection in mind. We offer sev-
eral guidelines for feature name writing.

A key consideration is that of the limitations of
the LMs’ vocabulary. Not all possible words or
sub-words will be present, and furthering this, not
all words will appear in the pre-training corpora
or fine-tuning data. However, as long as either the
pre-training or fine-tuning data contains references
to a desired relationship, the LM should be able to
produce a meaningful STS score, as the LM will

have learned word relationships in its vocabulary
during pre-training.

Furthering these limitations are features with hid-
den semantics, which may not be clearly related to
the target, may be mistaken for other concepts, or
may be a component of another concept. A clear ex-
ample of this is the group of questions with “Color-
Word Score (CW).” These particular questions have
hidden semantics as they involve a phrase that is
unlikely to be interpreted as the Stroop Color-Word
test often used for assessing cognition (Jensen and
Jr, 1966; Bjekic et al., 2018; Martinsen et al., 2014).
Because this question was written for a clinician to
fill out, key contextual information is absent. This
particular phrase is picked up when using MI to
score, but is missed when using STS for features
with more direct connections to the targets. To
deal with this, we suggest that phrases should be
expanded to include words that connect it to the
target outcome.

Another issue we do not examine in-depth is
how writing style affects the outcome of the fea-
tures chosen. While parts of the feature name are
intrinsically linked to the outcome of the feature
itself, the overall writing style (i.e., word order-
ing, word choice, verbosity, etc.) can be more
random. Although LMs can be used to detect dif-
ferences in writing style (Rios-Toledo et al., 2022;
Yamshchikov et al., 2021), the fine-tuning datasets
we use here incorporate smaller positive scores for
two sentence pairs sharing the same topic, and for
this reason it is likely that the impact of writing
style could be a smaller concern than the topics of
the feature names. However, to minimize variabil-
ity in selections, we still recommend adopting a
uniform and detailed writing style across a set of
feature names.

Although the evidence presented here suggests
that there may be a negligible difference between
the performance of tokenizers—as the models
tested use different tokenizers—subtle differences
in tokenization may change the way that semantic
relationships are captured. For example, (Bostrom
and Durrett, 2020) note that byte-pair encoding
(Gage, 1994; Sennrich et al., 2016) has weaker per-
formance than unigram language modeling (Kudo,
2018) with respect to morphological segmentations,
implying that features tokenized with the latter al-
gorithm may produce more meaningful STS scores.

Overall, our recommendations can be summa-
rized as follows:
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* Common and meaningful vocabulary should
be prioritized to ensure an LM recognizes it.

* Acronyms should be expanded where possi-
ble, and rare or ambiguous phrases should be
qualified with supporting contextual details
where possible.

* Feature names should be as stylistically con-
sistent and detailed throughout.

* Attention should be paid with the algorithm
used to tokenize feature names.

6.3 Future Work

One area of future work is evaluating the perfor-
mance of other measures, as the scorers evaluated
here both have limitations. MI, Pearson’s r, and
the F-statistic are incapable of measuring the true
amount of information a feature contains in con-
text with other features, and STS only represent
semantic relationships without any regard to their
underlying statistical relationship.

Future work could also consider the choice of
other LMs, or alternatives to fine-tuning such as
adapters (Houlsby et al., 2019). Resource limita-
tions prevented us from evaluating the performance
of LMs in the billion-parameter range, although the
evidence presented here suggests that there may be
marginal benefits to different scoring models.

Future work regarding STS-based feature selec-
tion could also consider the use of semantic pairs
that specifically rate relevancy and redundancy be-
tween pairs of questions rather than similarity. Rel-
evant and redundant questions may not always be
semantically similar, and a model fine-tuned for
this may select better features than those for STS.
Similarly, the performance of other selection algo-
rithms with STS could also be evaluated.

Another potential area of future work would be
to serialize the the feature selection task into a text
prompt. Serialization of tabular data into a question
prompt for a LLM can achieve high performance
in a few-shot learning context (Hegselmann et al.,
2022), and serialization of a feature selection ob-
jective may also be able to capture further semantic
relationships between features.

7 Conclusion

Overall, we demonstrate that our proposed ap-
proach of using STS to score features—either alone

or with statistically-based scorers—can be effec-
tive in the context of clinical survey feature se-
lection. We discussed the intrinsic differences be-
tween STS-based and statistical scoring that result
in the observed performance difference on two dif-
ferent datasets, as well as how different fine-tuning
hyperparameters affect the performance. Finally,
we suggest various considerations for writing sur-
vey questions that work with this approach, and
potential areas of future research with regards to
STS-based feature selection.

Limitations

One key limitation is that we only evaluate our re-
sults on one non-public and another gated-access
dataset of protected health information (PHI). We
were unable to find other fully-public datasets that
were similar in dimensionality with descriptive fea-
ture names.

Another limitation is that many types of data
were dropped from the PPSP dataset for simplic-
ity, such as non-categorical string types. The pre-
processing steps we use reduce the overall feature
count from 458 features to 269 features, before any
further feature selection is applied.

For the All of Us dataset, we did not include mi-
crosoft/biogpt and the ClinicalSTS fine-tuning
of Bio_CinicalBERT that dataset due to package
incompatibilities.

The feature selectors evaluated here are a sub-
set of possible approaches, and future work may
evaluate other baselines and STS-based selection
algorithms. Further limitations that could be areas
of future work are discussed further in Section 6.3.

Ethical Considerations

The data from the PPSP dataset is a part of the P5:
Personalized Prediction of Persistent Postsurgical
Pain study (IRB #202101123) performed at the
Washington University School of Medicine in St.
Louis/BJC HealthCare system. All code and model
artifacts we release are not derived from any PHI
collected in this study.

The features selected from such a model are
not comprehensive, particularly in a clinical con-
text. The example features we discuss are thus
relative, and should not be used to inform any clin-
ical decision-making.
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A Private PPSP Dataset Demographics

The demographics of the PPSP dataset are reported
in Table 4.

512


https://doi.org/10.2307/3001913
https://doi.org/10.2307/3001913
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1609/aaai.v35i16.17672
https://doi.org/10.1609/aaai.v35i16.17672
https://doi.org/10.1609/aaai.v35i16.17672

Name | Value

PPSP Characteristics
Completed Cases 617
Responses by Individual (mean) 2.64
Responses by Individual (std. dev.) 1.54
Responses by Individual (max) 10
Positive Cases 25
Negative Cases 592
Race
Caucasian 497
American Indian / Alaskan Native 7
Asian 4
Black / African Heritage 98
Hawaiian Native / Other Pacific Islander 1
Other 9
Prefer not to answer 7
Sex Assigned at Birth
Female 425
Male 185
(No Answer) 7
Age
Age (min) 19
Age (mean) 52.47
Age (std. dev.) 13.52
Age (max) 75

Table 4: Demographics of the partial PPSP dataset.

B Performance By Feature Selector
Hyperparameter

Tables 5 and 6 highlights the performance of all
classifiers tested as fine-tuning dataset, feature se-
lector, and STS scoring models are changed, re-
spectively, for the All of Us dataset.

Tables 7 and 8 highlights the performance of
all classifiers tested as fine-tuning dataset, feature
selector, and STS scoring models are changed, re-
spectively, for the PPSP dataset.

C Performance By Classifier

Tables 13 and 14 summarizes the performance of
individual configurations of Gaussian NB for the
All of Us and PPSP dataset respectively.

D Baseline Feature Scoring Performance

Figures 6a, 6b, 7a and 7b show the feature and
target scorings using Pearson’s 7 and F-statistic for
both the All of Us and Pearson’s r datasets.
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Table 5: Results for fine-tuning dataset grouped by test AUROC for the All of Us dataset. One-way ANOVA
p = 0.011, significant Tukey HSD results highlighted.

Fine-Tuning Dataset | Mean [ Std. Dev. [[ (1) [ @ [
Clinical Pairs (1) | 0.572 | 0.091 - 0.026 | 0.024
Combined Pairs (2) | 0.594 | 0.095 0.026 | - 1.000
General Pairs (3) | 0.594 | 0.101 0.024 | 1.000 | -

Table 6: Results for scoring model grouped by test AUROC for the All of Us dataset. One-way ANOVA p = 0.001,
significant Tukey HSD results highlighted.

Scoring Model | Mean [ Std. Dev. [[ (1) [ @ [® 1@ (& T®
Bio_ClinicalBERT (1) | 0.569 | 0.080 - 0.012 | 0.966 | 1.000 0.369 | 0.033
bert-base-uncased (2) | 0.608 | 0.093 0.012 | - 0.121 | 0.010 | 0.747 | 1.000
all-MiniLM-L12-v2 (3) | 0.578 | 0.097 0.966 0.121 - 0.953 0.862 | 0.243
biomed_roberta_base (4) | 0.568 | 0.099 1.000 0.010 | 0.953 | - 0.332 | 0.027
gatortron-base (5) | 0.592 | 0.101 0.369 0.747 0.862 | 0.332 - 0.903
PubMedBERT (6) | 0.604 | 0.100 0.033 | 1.000 0.243 | 0.027 | 0.903 | -

Table 7: Results for fine-tuning dataset grouped by test AUROC for the PPSP dataset. One-way ANOVA p = 0.027,
significant Tukey HSD results highlighted.

Fine-Tuning Dataset | Mean [ Std. Dev. [ () [ (@) [® [ @&
Combined Pairs (1) | 0.709 | 0.107 - 0.994 0.061 0.457
Clinical Pairs (2) | 0.707 | 0.105 0.994 | - 0.043 | 0.308
ClinicalSTS (3) | 0.749 | 0.089 0.061 | 0.043 | - 0.292
General Pairs (4) | 0.720 | 0.101 0.457 | 0.308 0.292 -

Table 8: Results for scoring model grouped by test AUROC for the PPSP dataset. One-way ANOVA p = 0.799,
significant Tukey HSD results highlighted.

ScoringModel [ Mean [ Std.Dev. [ (D [ (2@ [B® [® G [J® 10O
PubMedBERT (1) | 0.710 | 0.106 - 0.998 | 1.000 | 0.996 | 1.000 | 0.941 | 0.999
all-MiniLM-L12-v2 (2) | 0.717 | 0.097 0.998 | - 1.000 | 1.000 | 1.000 | 0.999 | 0.943
bert-base-uncased (3) | 0.712 | 0.098 1.000 | 1.000 | - 0.999 | 1.000 | 0.973 | 0.996
biomed_roberta_base (4) | 0.718 | 0.109 0.996 | 1.000 | 0.999 | - 1.000 | 1.000 | 0.923
gatortron-base (5) | 0.713 | 0.107 1.000 | 1.000 | 1.000 | 1.000 | - 0.987 | 0.990
biogpt (6) | 0.723 | 0.100 0.941 | 0.999 | 0.973 | 1.000 | 0.987 | - 0.701

Bio_ClinicalBERT (7) | 0.705 | 0.111 0.999 | 0.943 | 0.996 | 0.923 | 0.990 | 0.701 | -
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Table 9: t-test results for scorer grouped by test - train AUROC.

Selection Hyperparameters

Test - Train AUROC

Classifier [ Scorer 1B [ LS [ A [ P
All of Us
All STS —0.085 [ 0.091 [ 5.9-107%°
F-Score & STS —0.057 | 0.120 | 5.9-107°°
All MI & STS —0.176 | —0.087 | 0.089 | 8.0-107°7
Pearson’s r & STS —-0.105 | 0.072 | 2.6-107%
STS —0.081 | 0.095 | 1.5-107°7
Al STS —0.067 | 0.071 | 0.025
F-Score & STS —0.011 | 0.127 | 3.0-107°%
Linear SVM | MI & STS —0.137 | —0.074 | 0.064 0.183
Pearson’s » & STS —0.098 0.039 0.645
STS —0.066 | 0.072 0.085
Al STS —0.120 | 0.106 | 0.009
F-Score & STS —0.087 | 0.139 | 0.004
MLP MI & STS —0.226 | —0.119 | 0.107 | 0.025
Pearson’s » & STS —0.150 0.076 0.196
STS —0.114 | 0.112 | 0.019
AIISTS —0.057 | 0.066 | 0.003
F-Score & STS —0.040 0.084 0.077
Gaussian NB | MI & STS —0.123 | —0.059 | 0.064 | 0.009
Pearson’s r & STS —0.055 | 0.068 0.027
STS —0.062 | 0.061 | 0.013
All STS —0.095 | 0.119 | 4.2-107%%
F-Score & STS —0.081 | 0.133 | 0.003
k-NN MI & STS —0.214 | —0.095 | 0.119 | 0.003
Pearson’s r & STS —0.115 | 0.099 0.009
STS —0.083 | 0.131 | 0.002
PPSP
Al STS —0.070 | 0.038 0.569
F-Score & STS —0.091 | 0.016 1.000
All MI & STS —0.108 | —0.085 | 0.022 1.000
Pearson’s r & STS —0.056 0.051 0.171
STS —0.046 | 0.062 0.066
Al STS 0.008 0.039 0.187
F-Score & STS —0.010 | 0.021 1.000
Linear SVM | MI & STS —0.031 | —0.012 | 0.019 1.000
Pearson’s » & STS 0.022 0.053 0.108
STS 0.032 0.063 | 0.017
Al STS —0.074 | 0.017 1.000
F-Score & STS —0.121 —0.030 | 1.000
MLP MI & STS —0.091 | —0.113 | —0.021 | 1.000
Pearson’s r & STS —0.056 0.036 1.000
STS —0.005 | 0.086 0.053
All STS 0.060 0.085 | 7.0-107 %8
F-Score & STS 0.065 0.089 | 1.5-107°°
Gaussian NB | MI & STS —0.024 | 0.050 0.074 | 9.6-107°
Pearson’s r & STS 0.066 0.090 | 4.6-1079¢
STS 0.060 0.084 | 7.3-107°¢
Al STS —0.273 | 0.011 1.000
F-Score & STS —0.299 | —0.015 | 1.000
k-NN MI & STS —0.284 | —0.267 | 0.017 1.000
Pearson’s » & STS —0.257 0.027 1.000
STS —0.269 | 0.014 1.000
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Table 10: t-test results for feature selector grouped by test AUROC.

Selection Hyperparameters Test AUROC
Classifier | Scorer ps | ps [ A [p
All of Us
All STS 0.586 —0.009 1.000
F-Score & STS 0.589 —0.006 1.000
All MI & STS 0.595 | 0.581 —0.014 1.000
Pearson’s r & STS 0.598 0.003 1.000
STS 0.579 —0.016 1.000
All STS 0.648 —0.005 1.000
F-Score & STS 0.627 | —0.026 1.000
Linear SVM | MI & STS 0.653 | 0.648 —0.005 1.000
Pearson’s & STS 0.663 | 0.010 1.000
STS 0.647 | —0.006 1.000
All STS 0.615 | 0.006 1.000
F-Score & STS 0.576 —0.033 1.000
MLP MI & STS 0.609 | 0.622 | 0.013 1.000
Pearson’s & STS 0.631 0.022 1.000
STS 0.618 | 0.009 1.000
All STS 0.578 —0.050 | 0.852
F-Score & STS 0.705 | 0.078 0.234
Gaussian NB | MI & STS 0.628 | 0.551 | —0.076 | 0.002
Pearson’s r & STS 0.592 —0.035 1.000
STS 0.548 | —0.080 | 0.002
All STS 0.504 | 0.010 1.000
F-Score & STS 0.506 0.012 1.000
k-NN MI & STS 0.494 | 0.504 | 0.010 1.000
Pearson’s r & STS 0.506 0.012 1.000
STS 0.503 | 0.009 1.000
PPSP
All STS 0.714 | 0.026 0.773
F-Score & STS 0.703 | 0.015 1.000
All MI & STS 0.688 | 0.700 | 0.012 1.000
Pearson’s r & STS 0.730 | 0.042 0.160
STS 0.722 | 0.035 0.261
All STS 0.710 —0.019 1.000
F-Score & STS 0.718 —0.011 1.000
Linear SVM | MI & STS 0.729 | 0.689 —0.040 | 0.261
Pearson’s » & STS 0.726 —0.003 1.000
STS 0.706 —0.023 1.000
All STS 0.658 —0.001 1.000
F-Score & STS 0.638 —0.021 1.000
MLP MI & STS 0.659 | 0.645 —0.014 1.000
Pearson’s r & STS 0.668 0.009 1.000
STS 0.680 | 0.020 1.000
Al STS 0.840 | 0.098 8.7-10 %
F-Score & STS 0.839 | 0.097 0.024
Gaussian NB | MI & STS 0.742 | 0.816 0.074 0.261
Pearson’s 7 & STS 0.857 | 0.115 1.7-107%
STS 0.849 | 0.107 1.8.107°¢
All STS 0.647 | 0.027 1.000
F-Score & STS 0.616 —0.004 1.000
k-NN MI & STS 0.620 | 0.649 | 0.029 1.000
Pearson’s r & STS 0.667 | 0.047 0.463
STS 0.655 | 0.035 1.000

516



Table 11: t-test results for scorer grouped by test - train AUPRC.

Selection Hyperparameters

Test - Train AUPRC

Classifier | Scorer UB [ s [ A [ p
All of Us
All STS —0.076 [ 0.107 [ 1.2-10°%®
F-Score & STS —0.083 | 0.100 | 1.3-107%¢
All MI & STS —0.183 | —0.061 | 0.122 | 1.6-107°8
Pearson’s » & STS —0.105 | 0.078 0.002
STS —-0.058 | 0.125 | 1.2-107°®
AIl STS —0.106 | 0.123 | 0.002
F-Score & STS —0.094 | 0.134 | 0.009
Linear SVM | MI & STS —0.228 | —0.084 | 0.145 | 0.002
Pearson’s r & STS —0.160 0.069 0.328
STS —0.082 | 0.147 | 0.002
All STS —0.141 | 0.205 | 35-107%°
F-Score & STS —0.136 | 0.209 | 0.002
MLP MI & STS —0.345 | —0.121 | 0.224 | 1.3-107%4
Pearson’s r & STS —0.190 | 0.155 0.010
STS —-0.113 | 0.232 | 9.2-1079%
All STS —0.011 | 0.025 | 4.0-107%
F-Score & STS —0.026 0.010 0.972
Gaussian NB | MI & STS —0.036 | —0.007 | 0.029 | 7.3-107°8
Pearson’s » & STS —-0.012 | 0.023 0.039
STS —0.007 | 0.028 | 7.3-107°8
All STS —0.041 | 0.069 | 35-10"%°
F-Score & STS —0.047 | 0.063 | 0.037
k-NN MI & STS —0.110 | —0.030 | 0.080 | 8.1-107°¢
Pearson’s » & STS —0.059 | 0.051 0.039
STS —0.029 | 0.081 | 9.1-107°¢
PPSP
Al STS —0.051 | 0.045 0.250
F-Score & STS —0.075 0.022 1.000
All MI & STS —0.097 | —0.064 | 0.032 0.941
Pearson’s r & STS —0.037 | 0.060 0.096
STS —0.030 | 0.067 | 0.030
Al STS 0.011 0.052 | 0.023
F-Score & STS —0.016 | 0.024 1.000
Linear SVM | MI & STS —0.041 | 0.006 0.047 0.297
Pearson’s r & STS 0.027 0.068 0.035
STS 0.029 0.070 | 0.021
Al STS —0.087 | 0.067 0.458
F-Score & STS —0.132 | 0.022 1.000
MLP MI & STS —0.154 | —0.135 | 0.019 1.000
Pearson’s r & STS —0.059 | 0.095 0.264
STS —0.023 | 0.131 | 0.021
Al STS 0.102 0.065 | 0.002
F-Score & STS 0.106 0.069 | 0.012
Gaussian NB | MI & STS 0.037 0.087 0.050 0.065
Pearson’s r & STS 0.115 0.078 | 2.9-107%
STS 0.100 0.063 | 0.003
All STS —0.232 | —0.003 | 1.000
F-Score & STS —0.256 | —0.026 | 0.627
k-NN MI & STS —0.229 | —0.215 | 0.014 1.000
Pearson’s » & STS —0.232 —0.003 | 1.000
STS —0.224 | 0.005 1.000
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Table 12: t-test results for scorer grouped by test AUPRC.

Selection Hyperparameters Test AUPRC
Classifier [ Scorer ps | ps [ A [ p
All of Us
All STS 0.034 —0.001 1.000
F-Score & STS 0.034 —0.002 1.000
All MI & STS 0.036 | 0.033 —0.002 1.000
Pearson’s r & STS 0.037 0.002 1.000
STS 0.033 —0.002 1.000
All STS 0.045 —0.004 1.000
F-Score & STS 0.038 —0.011 1.000
Linear SVM | MI & STS 0.049 | 0.046 —0.003 1.000
Pearson’s & STS 0.050 | 0.001 1.000
STS 0.044 —0.005 1.000
All STS 0.040 | 0.001 1.000
F-Score & STS 0.035 —0.004 1.000
MLP MI & STS 0.039 | 0.040 | 0.001 1.000
Pearson’s » & STS 0.043 0.004 1.000
STS 0.042 | 0.003 1.000
All STS 0.027 | —0.006 1.000
F-Score & STS 0.046 | 0.013 0.173
Gaussian NB | MI & STS 0.033 | 0.023 | —0.010 | 1.9-107°°¢
Pearson’s & STS 0.030 —0.003 1.000
STS 0.023 | —0.010 | 1.9-107°¢
All STS 0.025 | 0.003 1.000
F-Score & STS 0.022 | 0.001 1.000
k-NN MI & STS 0.021 | 0.024 | 0.003 1.000
Pearson’s r & STS 0.027 0.005 1.000
STS 0.025 | 0.004 1.000
PPSP
All STS 0.273 | 0.027 0.673
F-Score & STS 0.253 | 0.007 1.000
All MI & STS 0.246 | 0.267 | 0.021 1.000
Pearson’s r & STS 0.287 | 0.041 0.190
STS 0.285 | 0.039 0.190
All STS 0.252 —0.019 | 0.838
F-Score & STS 0.245 —0.026 | 0.695
Linear SVM | MI & STS 0.271 | 0.244 —0.027 | 0.673
Pearson’s & STS 0.271 —0.000 1.000
STS 0.247 | —0.024 | 0.695
All STS 0.214 —0.021 0.915
F-Score & STS 0.191 —0.045 | 0.134
MLP MI & STS 0.236 | 0.209 —0.027 | 0.673
Pearson’s r & STS 0.228 —0.008 1.000
STS 0.230 —0.006 1.000
Al STS 0.423 | 0.126 43.-107%
F-Score & STS 0.410 0.114 0.056
Gaussian NB | MI & STS 0.296 | 0.406 | 0.110 0.056
Pearson’s 7 & STS 0.440 | 0.143 1.9.107%
STS 0.435 | 0.138 3.5.107°°
All STS 0.204 | 0.023 1.000
F-Score & STS 0.167 | —0.015 1.000
k-NN MI & STS 0.182 | 0.211 0.029 0.954
Pearson’s r & STS 0.211 0.030 0.673
STS 0.229 | 0.047 0.673
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Table 13: Results for Gaussian NB with baseline feature selection methods and using UFNLP/gatortron-base to
score features for the All of Us dataset. * is best test AUROC for given feature selector among ours. t is smallest
test-train AUROC difference for given feature selector among ours.

Selection Hyperparameters AUROC AUPRC

Feature Selector | Scorer | FT Dataset Test [ Train | A Test [ Train [ A
mRMR Pearson’s r & STS | General Pairs 0.823 | 0.761 | 0.062 0.076 | 0.093 | -0.017
Top NT Pearson’s r & STS | General Pairs 0.580 | 0.591 | -0.011 | 0.024 | 0.028 | -0.004
Top N Pearson’s r & STS | Combined Pairs | 0.628 | 0.718 | -0.090 | 0.031 | 0.071 | -0.040
mRMR Pearson’s r & STS | Combined Pairs | 0.540 | 0.556 | -0.016 | 0.022 | 0.026 | -0.004
Std. Dev. Pearson’s r & STS | Clinical Pairs 0.613 | 0.711 | -0.099 | 0.027 | 0.039 | -0.013
Std. Dev.t MI & STS Clinical Pairs 0.568 | 0.664 | -0.096 | 0.024 | 0.034 | -0.010
Std. Dev. STS Clinical Pairs 0.568 | 0.664 | -0.096 | 0.024 | 0.034 | -0.010
mRMR Pearson’s r - 0.745 | 0.743 | 0.003 | 0.045 | 0.068 | -0.023
Top N MI - 0.689 | 0.647 | 0.042 | 0.034 | 0.036 | -0.002
Std. Dev. MI - 0.685 | 0.688 | -0.003 | 0.033 | 0.038 | -0.004
mRMR MI - 0.670 | 0.748 | -0.079 | 0.042 | 0.067 | -0.026
SFM-XGBoost - - 0.654 | 0.800 | -0.147 | 0.056 | 0.165 | -0.108
Top N Pearson’s r - 0.648 | 0.759 | -0.111 | 0.029 | 0.086 | -0.056
Identity - - 0.602 | 0.790 | -0.188 | 0.026 | 0.053 | -0.027
RFE - - 0.574 | 0.830 | -0.256 | 0.026 | 0.085 | -0.059
mRMR F-statistic - 0.552 | 0.758 | -0.206 | 0.027 | 0.067 | -0.041
SFM-LinearSVM | - - 0.547 | 0.775 | -0.228 | 0.023 | 0.052 | -0.029
Std. Dev. Pearson’s r - 0.536 | 0.720 | -0.183 | 0.022 | 0.040 | -0.018

Table 14: Results for Gaussian NB with baseline feature selection methods and using emilyalsentzer/Bio_Clinical-
BERT to score features for the PPSP dataset.

Selection Hyperparameters AUROC AUPRC

Feature Selector [ Scorer | FT Dataset Test [ Train [ A Test [ Train [ A
Std. Dev. F-statistic & STS General Pairs 0.914 | 0.828 | 0.085 | 0.499 | 0.309 | 0.190
Std. Dev.f STS General Pairs 0.840 | 0.811 | 0.029 | 0.458 | 0.329 | 0.129
mRMR F-statistic & STS General Pairs 0.615 | 0.616 | -0.001 | 0.140 | 0.117 | 0.022
Top N Pearson’s r & STS | Combined Pairs | 0.906 | 0.798 | 0.109 | 0.495 | 0.373 | 0.122
Top Nt MI & STS Clinical Pairs 0.852 | 0.776 | 0.076 | 0.443 | 0.339 | 0.104
mRMR Pearson’s r & STS | Clinical Pairs 0.841 | 0.793 | 0.048 | 0.333 | 0.269 | 0.064
Top N F-statistic - 0.907 | 0.814 | 0.093 | 0.482 | 0.324 | 0.157
Top N Pearson’s r - 0.907 | 0.814 | 0.093 | 0.482 | 0.324 | 0.157
Std. Deyv. Pearson’s r - 0.845 | 0.764 | 0.080 | 0.291 | 0.196 | 0.095
SFM-XGBoost - - 0.817 | 0.828 | -0.011 | 0.434 | 0.391 | 0.043
mRMR F-statistic - 0.790 | 0.852 | -0.062 | 0.393 | 0.415 | -0.022
mRMR Pearson’s r - 0.770 | 0.753 | 0.017 | 0.220 | 0.178 | 0.043
Top N MI - 0.738 | 0.879 | -0.140 | 0.384 | 0.396 | -0.012
Std. Dev. MI - 0.737 | 0.879 | -0.142 | 0.383 | 0.391 | -0.008
mRMR MI - 0.719 | 0.736 | -0.017 | 0.219 | 0.190 | 0.029
RFE - - 0.622 | 0.623 | -0.002 | 0.142 | 0.119 | 0.022
Std. Dev. F-statistic - 0.615 | 0.616 | -0.002 | 0.140 | 0.117 | 0.022
SFM-LinearSVM | - - 0.598 | 0.758 | -0.160 | 0.153 | 0.203 | -0.050
Identity - - 0.583 | 0.645 | -0.062 | 0.130 | 0.126 | 0.005
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(a) Pearson’s r from the PPSP dataset.
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(b) F-statistic from the PPSP dataset.

Figure 6: Feature-feature and feature-target pairings from the PPSP.
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(a) Pearson’s r from the All of Us dataset.
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(b) F-statistic from the All of Us dataset.

Figure 7: Feature-feature and feature-target pairings from the A/l of Us dataset.
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