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Abstract

Large language models (LLMs) often exhibit
Context Faithfulness Hallucinations, where out-
puts deviate from retrieved information due to
incomplete context integration. Our analysis re-
veals a strong correlation between token-level
uncertainty and hallucinations. We hypothe-
size that attention mechanisms inherently en-
code context utilization signals, supported by
probing analysis. Based on these insights, we
propose Dynamic Attention-Guided Context
Decoding (DAGCD), a lightweight framework
that leverages attention distributions and uncer-
tainty signals in a single-pass decoding. Exper-
iments on open-book QA datasets demonstrate
DAGCD’s effectiveness, yielding significant
improvements in faithfulness and robustness
while preserving computational efficiency.1

1 Introduction

Large Language Models (LLMs) (Brown et al.,
2020; Achiam et al., 2023; Touvron et al., 2023)
excel in generating fluent and contextually rele-
vant responses. However, they often struggle with
factual accuracy, especially when relying on ex-
ternal information. (Vu et al., 2023). Retrieval-
Augmented Generation (RAG) (Lewis et al., 2020;
Guu et al., 2020) mitigates this by grounding out-
puts in retrieved context, making it effective for
tasks like question answering and reasoning (Gao
et al., 2023; Fan et al., 2024). However, models
often fail to faithfully utilize retrieved context, re-
sulting in Context Faithfulness Hallucinations,
where outputs deviate from the retrieved context
(Huang et al., 2023a; Ji et al., 2023).

These hallucinations undermine the reliability
of RAG systems, particularly in critical domains
where factual accuracy is paramount(Chuang et al.,
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1Our code is available at uestc-huangyw/DAGCD.

Figure 1: Analysis of the token-level probability distri-
bution after context concatenation: (a1, a2) the model’s
uncertainty when generating correct versus wrong an-
swers, measured by NE and MSP; (b) for wrong an-
swers, the ranking of the golden answer token within
the token-level probability distribution.

2024a). Existing methods, such as CAD (Shi et al.,
2024b) and COIECD (Yuan et al., 2024), attempt to
mitigate context faithfulness hallucinations by dy-
namically adjusting decoding distributions through
token-level probability distribution comparisons or
token-level uncertainty signals. While effective to
some extent, these methods face several key lim-
itations: limited interpretability, degraded perfor-
mance when context-agnostic and context-aware
outputs differ significantly, and computational com-
plexity due to multiple decoding passes.

To better understand context faithfulness halluci-
nations and explore potential solutions, we take
an internally-driven approach, analyzing intrin-
sic model signals that may explain why retrieval-
augmented large language models struggle to uti-
lize retrieved context faithfully (Liang et al., 2024).
Motivated by prior research linking token-level un-
certainty to factual hallucinations (Chuang et al.,
2024b; Das et al., 2025), we examine whether
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token-level probability distribution entropy corre-
lates with context faithfulness hallucinations.

Our analysis reveals a strong correlation between
higher uncertainty and context faithfulness hallu-
cinations. Specifically, as shown in Figure 1 (a1),
wrong answers exhibit higher entropy in the token-
level probability distribution, indicating greater un-
certainty in generation. Even for correct answers
(Figure 1 (a2)), it often assigns low confidence to
the highest-ranked token, suggesting incomplete in-
tegration of retrieved context. Notably, in incorrect
responses, most gold answer tokens appear in the
top 10 in the token-level probability distribution,
but are not assigned the highest probability (Figure
1 (b)), implying that the model identifies relevant
context but fails to prioritize it effectively.

These findings indicate that while models re-
trieve relevant context, they struggle to integrate
and prioritize it during generation. Since most gold
answer tokens appear within the top 10, an effective
strategy to mitigate context faithfulness hallucina-
tions is to dynamically identify and prioritize these
tokens during generation. This requires detecting
reliable signals that indicate how retrieved context
influences the model’s predictions. Attention mech-
anisms in Transformer models naturally emerge as
a key source of such signals, since they facilitate in-
formation flow between tokens (Olsson et al., 2022;
Meng et al., 2022; Geva et al., 2023). We hypoth-
esize that attention distributions encode intrinsic
indicators of context utilization.

To validate our hypothesis, we trained a probing
classifier using Logistic Regression on attention
distributions, achieving over 0.99 AUC in distin-
guishing contextually relevant tokens. Even with
just 100 training samples, the classifier demon-
strated strong generalization across in-domain and
cross-domain test sets, indicating that attention dis-
tributions inherently encode context utilization sig-
nals. These results support attention-based context
utilization as a fundamental mechanism in LLMs.
By leveraging these intrinsic signals, attention dis-
tributions provide a lightweight and interpretable
means to assess how models integrate retrieved
context into their predictions.

Motivated by these findings, we propose
Dynamic Attention-Guided Context Decoding
(DAGCD), a novel method to mitigate context
faithfulness hallucinations. Inspired by the copy-
generator framework (See et al., 2017; Xu et al.,
2020), DAGCD integrates attention weights to esti-
mate the relevance of tokens in the retrieved con-

text, dynamically adjusting output probabilities.
Additionally, token-level uncertainty guides these
adjustments by emphasizing underconfident yet
contextually relevant tokens. By combining these
strategies, DAGCD ensures output alignment with
the retrieval context and maintains efficiency.
Our contributions are as follows:

1. Comprehensive analysis of context faithful-
ness hallucinations: We identify a strong cor-
relation between token-level uncertainty and
context faithfulness hallucinations, showing
that incorrect responses exhibit higher entropy
and retrieved context is often recognized but
not effectively prioritized.

2. Attention-driven interpretability frame-
work: We propose Dynamic Attention-
Guided Context Decoding (DAGCD), lever-
aging attention distributions to amplify con-
textually relevant tokens and ensure faithful
utilization of retrieved context.

3. Lightweight and efficient decoding:
DAGCD operates in a single decoding pass,
integrating attention signals and uncertainty
measures without additional overhead,
improving efficiency.

4. Extensive validation across datasets and
models: DAGCD outperforms greedy decod-
ing across multiple QA datasets, improving
EM by 17.67% on pretrained models and
2.25% on instruction-tuned models, demon-
strating robustness and scalability.

2 Why Can’t Generate Faithful Answers?

Token-level uncertainty is closely related to fac-
tual hallucinations, as models often exhibit higher
entropy in the token-level probability distribu-
tion when generating factually incorrect out-
puts (Chuang et al., 2024b; Das et al., 2025). While
uncertainty measures help detect hallucination-
prone predictions, most studies focus on factual
hallucinations, where responses are incorrect with-
out retrieved context. In contrast, context faith-
fulness hallucinations arise when models rely on
retrieved information but generate misaligned or
contradictory outputs. Despite their significance in
RAG, their relationship with uncertainty remains
unclear. Inspired by prior research, we investigate
whether unfaithful responses in RAG exhibit higher
entropy and whether contextually relevant tokens
are recognized but assigned insufficient confidence.

2.1 Uncertainty Leads to Unfaithful Answers
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Experimental Setup To assess the relationship
between uncertainty and response faithfulness, we
use two common metrics: Normalized Entropy
(NE), which measures the overall uncertainty in
the token-level probability distribution (Huang
et al., 2023b), and Maximum Softmax Probabil-
ity (MSP), which quantifies the model’s confidence
in the highest probability within the token-level
probability distribution (Hendrycks and Gimpel,
2017). Higher NE indicates greater uncertainty,
while higher MSP corresponds to greater confi-
dence in the predictions of the model. For detailed
experimental descriptions, see Appendix A.

Results and Analysis Figure 1 (a1) and (a2) il-
lustrates the Normalized Entropy and Maximum
Softmax Probability of the token-level probabil-
ity distribution when the model produces correct
and wrong answers. The model exhibits higher
uncertainty for wrong answers, with an average
NE of 0.36 compared to 0.29 for correct cases, and
a lower average MSP of 0.25 compared to 0.41.
Notably, there is a substantial overlap between the
correct (blue) and wrong (red) cases in the figure,
indicating that even correct answers often exhibit
high uncertainty. We also analyzed the correla-
tion between prediction accuracy and uncertainty,
and the results demonstrate a significant negative
correlation, further confirming that token-level un-
certainty is strongly associated with unfaithful
answers. For detailed results see Appendix A.4.

2.2 LLM is Actually Utilizing Context

Our previous analysis links token-level uncertainty
to unfaithful responses, showing that incorrect out-
puts often have higher entropy and lower confi-
dence. However, this does not mean the model
ignores retrieved context. A key question remains:
Do incorrect responses imply that LLMs have
failed to leverage the retrieved context?

To investigate this, we examine the ranking of
gold answer tokens in the token-level probability
distribution for incorrect responses. If these to-
kens frequently rank high but are not assigned the
highest probability, it suggests the model identifies
relevant context but fails to prioritize it effectively.

Experimental Setup We analyze incorrect re-
sponses from §2.1 by examining the ranking dis-
tribution of gold answer tokens in the token-level
probability distribution of the first generated token
after context concatenation. The ranks are grouped

into intervals, and we compute the proportion of
gold answer tokens within each rank interval.

Results and Analysis As shown in Figure 1 (sub-
plot b), when the model generates incorrect re-
sponses, 66% of cases have the gold answer to-
ken ranked within the top 10 based on the token-
level probability distribution, compared to only
26% when context is absent. Moreover, as shown
in Figure 6, the average probability gap between
the gold answer token and the highest-probability
token remains relatively small: 0.14 for ranks be-
tween 2 and 4, and 0.24 for ranks beyond 30.

These findings indicate that in context faithful-
ness hallucination scenarios, the model recog-
nizes relevant context tokens but fails to priori-
tize them effectively, limiting their impact on the
generated output. This highlights an incomplete
integration of retrieved context, emphasizing the
need for improved context incorporation strategies
to enhance faithfulness and mitigate hallucinations.

3 Context Utilization Signal in Attention

Our analysis in Section 2 highlights that while mod-
els often identify relevant context tokens, they fail
to assign them sufficient confidence, leading to
context faithfulness hallucinations. To better un-
derstand this phenomenon, we seek reliable signals
that indicate which retrieved context tokens are
effectively utilized by the model during generation.

Due to their role in integrating and propagating
information across tokens, attention mechanisms
naturally emerge as a key candidate for capturing
such signals (Olsson et al., 2022; Meng et al., 2022;
Geva et al., 2023). We hypothesize that attention
distributions encode intrinsic indicators of con-
text utilization, providing a lightweight and inter-
pretable means to assess how models incorporate
retrieved context into their outputs.

3.1 Attention Ratio

A key challenge in analyzing attention weights is
the noise from non-context tokens (e.g., delimiters)
caused by attention sink effects (Bondarenko et al.,
2021; Xiao et al., 2024). Additionally, attention
magnitudes vary across heads and layers, compli-
cating feature comparison (Jain and Wallace, 2019;
Vig and Belinkov, 2019). To address these issues,
we introduce the attention ratio, a normalized mea-
sure that captures how much attention a retrieved
context token receives relative to the total attention
assigned within the context. For a given token j
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Figure 2: Cross Domain Validation. One dataset as the
training set (X-axis) and the remaining datasets as the
test sets, showing the AUC on the test sets (Y-axis).

in the retrieved context C, the attention ratio at the
h-th head in the l-th layer is defined as:

rjl,h =
ajl,h∑
j∈C ajl,h

(1)

where ajl,h denotes the raw attention weight as-
signed to token j. This ratio quantifies the relative
importance of j within the retrieved context for a
specific attention head.

To construct token-level features, we aggregate
attention ratios across all heads:

vj =
[
rj1,1, . . . , r

j
num_layers,num_heads

]
(2)

This feature vector represents the distribution of
attention across layers and heads, enabling a struc-
tured assessment of context token importance.

3.2 Experimental Setup
To validate our hypothesis and investigate whether
this mechanism generalizes across different
datasets, training sizes, and prompt templates, we
conduct the following experiments.
Data Construction We constructed the dataset by
randomly selecting samples from the MrQA train-
ing set dataset (contains six open-book QA datasets
in different domains) (Fisch et al., 2019), focus-
ing on cases where the model’s output changed
from incorrect to correct after context concatena-
tion (Meng et al., 2022). These cases indicate that
the model successfully leveraged the retrieved con-
text to produce the correct answer. Context tokens
were labeled as positive (utilized) if they corre-
sponded to the gold answer, and negative (non-
utilized) otherwise. Using these labels, we ex-
tracted attention ratio feature vectors vj to train
a Logistic Regression (LR) classifier.

3.3 Results

Cross Domain Validation We tested the clas-
sifier on six sub-datasets from different domains.
Specifically, we selected one dataset as the training
set and tested the performance on the remaining

Figure 3: Training Data Size Validation. Training sets
of varying sizes were constructed from a single dataset
(HotpotQA), and evaluate on remain datasets.

datasets (each sub-dataset construct 500 samples,
contains 250 positive and 250 negative samples).

As shown in Figure 2, the classifier achieves an
average AUC above 0.99 across all datasets and
LLMs. The results indicate that the context utiliza-
tion signal in attention is data-independent.

Training Data Size Validation Building on the
cross domain experiment, we further tested the im-
pact of training set size on classifier performance.
Specifically, we trained the model using data con-
structed from one sub-dataset and evaluated its per-
formance on the remaining sub-datasets.

Figure 3 shows the variation in model AUC with
different training data sizes (where "Train size =
100" refers to a training set constructed with 50 pos-
itive and 50 negative samples). The results indicate
that even with only 100 samples, the model’s AUC
exceeds 0.96, and the performance improvement
becomes limited as the data size increases. This
demonstrates that the LR classifier trained using
the attention ratio exhibits strong data-efficiency.

Additional Results We then examined the im-
pact of different prompt templates, and the results
indicate that the classifier consistently maintains
high performance regardless of the prompt tem-
plate used. For Details, see Appendix B.

To better apply the classifier to practical tasks,
we conducted a detailed analysis of the importance
of different features and the relationships between
them. The results show that the classifier using
the top-K features outperforms the one using
the full feature set. Furthermore, the attention
heads exhibit Concentration and Complementarity
features. For Details, see Appendix C.

Conclusion: A Fundamental Mechanism in
Transformer-based LLMs The consistent gen-
eralization of attention-based context utilization
across datasets, data sizes, and prompts reinforces
its role as a fundamental mechanism in LLMs. Our
findings show that attention heads encode robust
context integration signals, providing a lightweight
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and interpretable way to assess how models incor-
porate retrieved context.

4 Method
Inspired by the copy-generation mechanism (See
et al., 2017; Xu et al., 2020), we propose Dynamic
Attention-Guided Context Decoding (DAGCD)
to mitigate context faithfulness hallucinations.
DAGCD leverages utilization signals to dynami-
cally guide the generation process, focusing on
relevant contextual tokens. It integrates three steps:
detecting utilized context tokens during inference
(§4.1), constructing a utilization distribution (§4.2),
and adjusting the token-level probability distribu-
tion to enhance contextual utilization (§4.3).

4.1 Context Utilization Detection

Context Utilization Detector To identify contex-
tually relevant tokens during inference, we utilize
a Logistic Regression (LR) classifier trained on
attention-based utilization signals. Our analysis in
Section 3.3 shows that selecting the most informa-
tive attention heads improves generalization. Thus,
we construct the Context Utilization Detector based
on the top-K most important attention heads.
Feature Data Collection To obtain feature vectors,
we extract attention distributions at the current de-
coding step, as illustrated in Figure 4. Specifically,
we take the last row of the attention map for each se-
lected head hk ∈ H (H is the set of top-K attention
heads). To ensure focus on relevant information,
we filter out non-contextual tokens, such as query
tokens and placeholder tokens in templates.

The top-K feature vector for each contextual
token j is then constructed as:

v
(K)
j = [rjh1

, rjh2
, . . . , rjhK

] (3)

where rjhk
represents the normalized attention

ratio of token j in attention head hk.
Finally, the feature vector v(K)

j is fed into the
detector, which identifies the set of context tokens
actively utilized at the current decoding step.

4.2 Utilization Distribution Construction

The context utilization detector identifies which to-
kens are utilized but does not quantify the degree
of utilization for each token. To address this, we
compute a utilization score sj for each token j by
aggregating attention ratios from selected attention
heads, weighted by their normalized feature co-
efficients wk. Tokens classified as unused by the

detector are directly assigned a score of zero.

sj =
K∑

k=1

(rjhk
× wk), wk =

ck∑K
k=1 ck

(4)

where rjhk
is the normalized attention ratio of token

j in attention head hk, and wk is the importance
weight assigned to head hk. The coefficient ck
is learned from the LR classifier, representing the
contribution of each head to context utilization.

The utilization distribution U represents a prob-
ability distribution over context tokens, normalized
based on their utilization scores:

U = [u1, u2, . . . , uN ], ui =
si∑N
j=1 sj

(5)

where ui denotes the utilization probability of
token i, N is the vocabulary size. Tokens either
absent from the context or classified as non-utilized
by the detector (si = 0) are assigned ui = 0.

Top-Rank Constraint To enhance the reliability
of generation adjustments, our approach applies
a top-rank restriction, ensuring modifications fo-
cus on plausible tokens. Specifically, we define
Utop as the subset of the utilization distribution U
corresponding to tokens ranked within the top-R
positions of the generation distribution.

This design builds on prior work (Li et al., 2023;
Chuang et al., 2024b), addressing context faith-
fulness hallucination challenges while leveraging
our observation that correct context tokens usually
appear within the top-ranked positions in the token-
level probability distribution, even when the model
generates incorrect answers. Through this con-
straint, we reduce the risk of amplifying irrelevant
or nonsensical tokens, preserving output integrity.

4.3 Generating More Faithful Answers
DAGCD adjusts token probabilities based on token-
level uncertainty, measured using the normalized
entropy Hnorm(P ) of the token-level probability
distribution. High entropy indicates greater uncer-
tainty and a higher risk of generating contextually
inconsistent responses. Since entropy correlates
with uncertainty but lacks a fixed numerical rela-
tionship, we introduce a scaling factor α to com-
pensate for model-specific entropy variations.

Adjustments are applied only when utilized to-
kens in Utop overlap with the top-ranked tokens in
the token-level probability distribution. The ad-
justed generation distribution P ′ is computed as:

P ′ = P + αHnorm(P ) · Utop (6)
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Figure 4: The illustration of the generation process of our proposed DAGCD method.

where P represents the original token-level prob-
ability distribution, and αHnorm(P ) dynamically
scales the adjustment based on model uncertainty.

5 Experiments

5.1 Experimental Setup

Datasets We evaluate context faithfulness on
Open-Book Question-Answering (QA) datasets,
where each question is paired with external con-
text containing the correct answer. This setup
ensures that only context-grounded answers are
considered valid, allowing for the assessment of
whether the model generates context-faithful hallu-
cinations based on answer accuracy. Specifically,
We conducted experiments on seven open-book QA
datasets. For further details, refer to Appendix D.1.

Implementation Details We used 100 samples
constructed from a single dataset (HotpotQA) as
the training set to train the Context Utilization
Detector. The scaling factor α is set to 2 for pre-
trained models and 4 for instruction-tuned models
to account for entropy variations. The logistic re-
gression classifier and utilization distribution are
computed using the top-10 attention heads, with
adjustments restricted to the top-10 ranked tokens
(Utop). Further detailed settings see Appendix D.2.

Metrics Consistent with prior work(Jin et al.,
2024a; Yuan et al., 2024; Wang et al., 2024), we
use EM and F1 score metrics to evaluate the perfor-
mance of the models on open-book QA datasets.

The LLMs used in our experiments and the base-
lines are detailed in Appendix D.3 and D.4.

5.2 Model Performance Comparison
Table 1 shows DAGCD’s effectiveness across di-
verse QA datasets and models. We also tested

DAGCD on summarization tasks, yielding im-
provements. For details see Appendix D.5.

5.2.1 Dataset-Level Observations
DAGCD achieves consistent improvements across
diverse QA tasks, including multi-hop reasoning,
long-form retrieval, and document-level QA.

HotpotQA, TriviaQA, SearchQA: DAGCD ex-
cels in multi-paragraph reasoning and long-form
retrieval tasks. It achieves the highest gains on
HotpotQA with a 18.80% EM and 14.81% F1
improvement on Mistral-7B. DAGCD also outper-
forms baselines on TriviaQA and SearchQA, show-
ing significant improvements across models.

SQuAD, NewsQA, NQ: DAGCD demonstrates
robust performance in single-paragraph and
document-level tasks. On NQ, it achieves a 71.46%
EM and 39.10% F1 improvement on Mistral-7B
over greedy decoding, while delivering consistent
gains across SQuAD and NewsQA datasets.

NQ-Swap: In adversarial scenarios simulated by
NQ-Swap, DAGCD shows notable improvements,
including 74.52% EM and 51.74% F1 gains on
Mistral-7B, highlighting its robustness.

5.2.2 Model-Level Observations
DAGCD demonstrates broad applicability across
different model families, sizes, and tuning variants.

Model Families: DAGCD enhances perfor-
mance across LLaMA and Mistral families. On
Mistral-7B, DAGCD improves EM by 27.86% on
Mistral-7B and 14.33% on LLaMA2-7B compared
to greedy decoding.

Model Sizes: DAGCD improves performance
across models of varying model sizes, achieving
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Dataset Decoding HotpotQA TriviaQA SearchQA SQuAD NewsQA NQ NQ-swap Average
EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

LLaMA2-7B

Greedy 44.74 54.71 55.28 68.01 54.21 59.24 39.90 52.61 32.93 45.46 38.85 50.59 36.03 36.62 43.13 52.46
CAD 44.13 54.49 55.26 68.04 54.14 59.21 38.35 51.12 31.74 43.70 38.14 48.58 36.11 36.69 42.55 51.69

COIECD 42.03 51.48 57.04 70.06 57.03 63.14 40.93 54.78 34.40 48.48 38.79 51.69 34.98 35.63 43.60 53.61
OURs 47.35 57.43 58.12 70.97 54.35 59.70 48.02 60.02 36.51 49.06 47.74 60.23 53.12 53.63 49.32 58.72

LLaMA2-7B
-Chat

Greedy 53.33 67.41 71.72 76.83 54.19 58.11 67.69 78.70 39.41 53.90 50.47 65.48 67.98 68.78 57.83 67.03
CAD 52.86 67.16 71.70 76.83 54.16 58.11 65.89 77.91 38.46 53.26 48.89 65.00 68.04 68.85 57.14 66.73

COIECD 53.14 67.03 72.26 77.33 55.04 58.98 68.32 79.56 40.00 54.55 52.39 66.84 69.48 70.13 58.66 67.77
OURs 55.31 68.61 69.21 75.95 54.25 58.13 68.49 79.76 40.53 54.81 51.69 66.92 69.50 70.30 58.43 67.78

LLaMA2-13B

Greedy 52.36 63.40 58.25 69.95 63.22 68.33 51.64 64.57 30.84 40.11 42.26 54.08 49.02 49.59 49.66 58.58
CAD 51.53 63.11 58.25 69.92 63.13 68.32 49.94 63.44 29.94 39.04 41.40 52.27 49.07 49.63 49.04 57.96

COIECD 50.21 60.96 59.19 71.49 65.97 71.00 52.73 65.93 35.66 50.58 42.35 54.37 48.35 48.84 50.64 60.45
OURs 53.13 64.21 59.65 72.07 61.41 67.08 56.54 68.56 33.26 42.20 55.34 71.23 65.86 66.19 55.03 64.51

LLaMA2-13B
-Chat

Greedy 55.01 69.92 74.58 79.35 67.08 71.96 68.26 79.45 40.20 55.11 53.49 69.18 60.69 61.77 59.90 69.53
CAD 54.44 69.66 74.58 79.37 67.01 71.95 66.77 78.70 39.44 54.44 52.89 68.63 60.83 61.92 59.42 69.24

COIECD 56.15 70.43 73.87 78.96 67.28 71.93 68.49 80.39 40.75 56.16 53.69 69.81 62.47 63.21 60.39 70.13
OURs 57.76 71.69 73.04 78.77 68.19 72.73 69.66 80.76 40.78 56.24 55.36 71.31 64.03 65.20 61.26 70.96

Mistral-7B

Greedy 53.41 64.36 59.45 68.39 63.79 67.77 44.19 56.11 31.51 38.94 33.74 51.18 39.80 46.04 46.56 56.11
CAD 41.57 56.01 57.88 67.48 63.64 68.65 34.08 47.55 25.78 35.37 23.18 41.46 26.96 35.97 39.01 50.36

COIECD 46.43 58.32 44.30 51.77 54.82 59.17 50.50 60.98 40.05 52.78 42.12 56.58 59.53 61.89 48.25 57.36
OURs 63.45 73.89 56.76 71.86 64.49 69.88 63.04 73.75 41.62 55.13 57.85 71.19 69.46 69.86 59.52 69.37

Mistral-7B
-Instruct

Greedy 58.70 72.18 69.64 75.61 44.42 49.63 67.28 79.37 39.79 54.72 52.29 66.93 66.90 67.83 57.00 66.61
CAD 49.30 64.81 70.23 75.95 45.42 50.96 59.97 72.92 34.97 51.90 42.63 58.49 52.04 53.75 50.65 61.25

COIECD 59.74 72.59 64.92 72.15 37.09 42.66 68.45 81.03 40.84 55.96 53.54 68.72 72.81 73.81 56.77 66.70
OURs 60.55 73.49 69.70 75.96 47.17 52.65 68.30 80.62 40.85 56.23 54.78 69.72 71.38 72.12 58.96 68.68

Table 1: Performance comparison of different decoding methods. All baselines are reproduced under the same
settings. Bold indicates the best performance, and underlined indicates the second-best performance.
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Figure 5: Ablation Study for DAGCD. Left Part: Ablation 1 Detector Training Data Sizes, Center Part: Ablation
2 Top-Rank Constraint, Right Part: Ablation 3 Scaling Factor α.

an average EM and F1 increase of 14.33% and
11.93% on LLaMA2-7B, and 10.82% and 10.12%
on LLaMA2-13B, respectively.

Instruction-Tuned Models: Instruction-tuned
models, after fine-tuning, show reduced uncertainty
in generation probabilities, limiting our method’s
improvement margin. However, DAGCD still sur-
passes all baselines with the highest performance.

5.3 Ablation Study

We conducted three ablation experiments to eval-
uate the impact of variations in different modules
on performance. Specifically, in each ablation ex-
periment, the ablation module is adjusted while the
other two modules are kept at their default settings.

Ablation 1: Detector Training Data Sizes We
tested the impact of detectors trained on different
data sizes on actual inference performance. The
results, shown in Figure 5 (left), demonstrate that
our method consistently maintains strong perfor-
mance across various training data sizes, achieving
notable results even with just 100 training samples.

Ablation 2: Top-Rank Constraint We evalu-
ated various top-rank constraints on HotpotQA.
Figure 5 (center), top-rank filtering reduces false
positives, with F1 score initially improving as con-
straints loosen, then declining when overly relaxed.

Ablation 3: Scaling Factor α We evaluated
the impact of different scaling factor α on model
performance. The results, presented in Figure 5
(right), indicate that α determines the adjustment
intensity applied to the original generation distribu-
tion. For pretrained models, optimal performance
is achieved at α = 2, whereas for Chat models, the
best performance is observed at α = 4.

Additional results and performance variations
under different prompt templates see Appendix E.

6 Discussion and Analysis
6.1 Dynamic Decoding: Real-Time Efficiency

Without Post-Generation Correction
Post-generation correction methods, such as
CAD (Shi et al., 2024b) and COIECD (Yuan et al.,
2024), improve contextual alignment but rely on
multi-step processes, causing significant computa-
tional overhead. In contrast, DAGCD incorporates
context adjustments during generation, ensuring
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both efficiency and real-time optimization.
Lightweight Context Utilization Detector Using
a logistic regression-based Context Utilization De-
tector, our method enables real-time adjustments
with minimal computational cost. This detector is
more efficient than resource-heavy methods like in-
tegrated gradients or attention head manipulation.
Single-Pass Decoding with Real-Time Faithful-
ness Optimization By integrating the Context Uti-
lization Detector directly into the decoding process,
our method removes redundant steps like output
comparisons or external consistency checks. Dur-
ing generation, attention-based context utilization
signals are leveraged in real time to proactively
enhance faithfulness. This single-step strategy en-
sures that the output aligns with the input context
without extra post-processing, while maintaining
the theoretical time complexity of greedy decoding.

6.2 Interpretability Through Attention:
Insights into Context Utilization

By systematically analyzing attention mechanisms,
our approach uncovers how retrieved context in-
fluences the generation process and provides inter-
pretable insights into the behavior of the model.
Feature-Based Attention Analysis Using natural
cases, such as failure in closed-book settings but
success in open-book settings, we isolate attention
patterns that are indicative of context utilization. A
logistic regression classifier trained on these pat-
terns identifies the relevant attention heads with
high accuracy, quantifying their contributions.
Transparent Decision-Making The feature coef-
ficients of the logistic regression model directly
map to the importance of specific attention heads.
This transparency allows for intuitive interpreta-
tion, clarifying which heads are most responsible
for leveraging context tokens during generation.

7 Related Work
7.1 Context Faithfulness Hallucination

Current solutions to context faithfulness hallucina-
tion primarily focus on detection and mitigation.
For detection, Lei et al. (Lei et al., 2023) proposed
a post-generation editing strategy using natural lan-
guage inference to classify and revise hallucinated
segments. Choi et al. (Choi et al., 2023) intro-
duced Knowledge-Constrained Decoding, detect-
ing hallucinations during generation and reweight-
ing token distributions to guide output. Chuang
et al. (Chuang et al., 2024a) proposed Lookback
Lens Guided Decoding, selecting the most faithful

output among candidates to improve consistency.
For mitigation, CAD (Shi et al., 2024b) com-

pares outputs with and without concatenated
context to enhance contextual adherence, while
COIECD (Yuan et al., 2024) improves upon CAD
by incorporating entropy-based constraints to bal-
ance context usage. Wang et al. (Wang et al., 2024)
further introduced ADACAD, which dynamically
adjusts token-level adherence using divergence be-
tween contextual and non-contextual outputs.

While effective, most existing methods face lim-
itations such as high computational overhead and
reliance on multiple decoding passes. In this work,
we propose a real-time solution that integrates con-
text utilization signals directly into the decoding
process, achieving efficient and faithful generation,
without the need for additional processing steps.

7.2 Attention and Interpretability
The attention mechanism provides valuable in-
sights into how models prioritize different parts
of an input sequence (Clark et al., 2019; Geva et al.,
2023) and has become central to understanding
Transformer-based LLMs (Vashishth et al., 2019;
Hao et al., 2021; Zhao et al., 2024). In LLMs, at-
tention heads often perform distinct roles, such as
capturing syntactic dependencies or aligning se-
mantic relationships (Olsson et al., 2022; Zheng
et al., 2024; Jin et al., 2024b).

Recent studies have also explored the collabora-
tive behavior of attention heads. For instance, the
retrieval head framework (Wu et al., 2024) identi-
fies heads that collectively retrieve relevant tokens,
while cutting-off-heads (Jin et al., 2024b) high-
lights critical heads through systematic ablation.
Gradient-based methods like IRCAN (Shi et al.,
2024a) further investigate the contributions of at-
tention scores and neurons to model outputs.

Unlike previous work, which focused on indi-
vidual heads, our study examines the collaborative
patterns of multiple attention heads. By analyzing
how attention mechanisms collectively utilize con-
textual tokens, we provide a holistic view of their
role in aligning outputs with user-provided context.

8 Conclusion
In this paper, we mitigate context faithfulness
hallucinations in LLMs by proposing Dynamic
Attention-Guided Context Decoding, a lightweight
framework that integrates attention distributions
and entropy-based uncertainty signals to amplify
contextually relevant tokens during generation. Our
analysis revealed a strong correlation between high
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uncertainty and hallucinations, and probing experi-
ments validated that attention mechanisms encode
signals indicative of contextual utilization, and fur-
ther demonstrated that this signal is a fundamen-
tal mechanism in Transformer-based LLMs. Ex-
periments across multiple open-book QA datasets
demonstrated that DAGCD achieves consistent
improvements in context faithfulness, robustness,
and scalability, providing an effective solution for
context-sensitive generation tasks.

Limitations

Dependency on Classifier Accuracy and Robust-
ness to Noisy Contexts DAGCD relies on an
attention-ratio based classifier to assess the rele-
vance of context tokens during generation. While
the classifier demonstrates high accuracy across
datasets and models, its performance may degrade
in scenarios with extremely long contexts, com-
plex dialogues, or noisy inputs. Misclassifications
in these cases could lead to incorrect adjustments,
potentially amplifying irrelevant tokens or dimin-
ishing the contribution of critical ones. Similarly,
the method’s robustness to adversarial or noisy con-
texts with misleading or irrelevant information re-
mains an open challenge. Enhancing the classi-
fier’s resilience and incorporating mechanisms to
filter or downweight adversarial noise could further
strengthen DAGCD’s applicability in real-world
scenarios.

Scaling Factor Adjustment for Model Char-
acteristics The scaling factor α introduced in
DAGCD needs to be adjusted based on the charac-
teristics of different models. Although our study
shows a strong correlation between entropy-guided
uncertainty measures and the model’s uncertainty
during generation, it does not establish a precise
quantitative relationship. This limitation necessi-
tates empirical calibration of the scaling factor for
each model to ensure effective adjustments. Such
calibration ensures that the method compensates
for model-specific entropy variations, but it may in-
troduce additional computational overhead during
deployment.

Generalization Across Tasks and Domains Our
evaluation primarily focuses on QA tasks, leav-
ing the generalization of DAGCD to other tasks,
such as summarization or dialogue generation, un-
explored. The attention-ratio based classifier, op-
timized for QA datasets, may require additional

fine-tuning or redesign to handle different output
structures and task-specific challenges. Extending
the method to diverse domains and tasks could fur-
ther validate its robustness and scalability.
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A Details of Experiment "2.1 Uncertainty
Leads to Unfaithful Answers"

A.1 Dataset Used for Analysis
We randomly sampled 6,000 instances from the
MrQA training set (Fisch et al., 2019), which
consolidates six open-domain question answering
datasets. Specifically, we selected 500 correctly
answered and 500 incorrectly answered instances
from each sub-dataset. An answer was considered
correct if it achieved an Exact Match (EM) with
the reference answer.

A.2 Model Used for Analysis, Prompts, and
Decoding Method

We conduct our analysis using LLaMA2-7B (Tou-
vron et al., 2023) as the target model. The answers
are generated using the following prompt:

"Given the following information:
{context} Answer the following question
based on the given information with one
or a few words: {question} Answer:"

To ensure deterministic outputs, we employ
greedy decoding.

A.3 Computation Process
For each sample, we calculated two metrics to quan-
tify uncertainty and confidence. First, the Nor-
malized Entropy (NE) measures the dispersion of
probabilities across the vocabulary, providing an
overall view of the model’s uncertainty. And NE is
defined as:

Hnorm(P ) = −
∑N

i=1 Pi logPi

logN
, (7)

where P represents the token-level probability
distribution, and N denotes the vocabulary size.

Second, the Maximum Softmax Probability
(MSP) represents the likelihood of the most proba-
ble token, offering a complementary perspective on
the model’s prediction confidence. These metrics
focus on the initial generated token distribution to
analyze how uncertainty affects response faithful-
ness.

A.4 Spearman Correlation Analysis
To further investigate the relationship between un-
certainty and model errors (i.e., the inability to
faithfully respond to the input context), we con-
ducted a Spearman correlation analysis. Specifi-
cally, we used the normalized entropy of the to-
ken level probability distribution to measure the

Model w/o context w/ context
LLaMA2-7B -0.43 -0.53

LLaMA2-7B-Chat -0.27 -0.33
LLaMA2-13B -0.30 -0.51

LLaMA2-13B-Chat -0.26 -0.32
Mistral-7B -0.23 -0.22

Mistral-7B-Instruct -0.30 -0.33

Table 2: Spearman correlation analysis. We examine the
relationship between F1 scores (pred-ans vs. gold-ans)
and norm-entropy (generation distribution) under both
w/o and w/ context settings (p ≪ 0.05 for all models).
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Figure 6: Probability Gap. For incorrect responses, the
probability gap between the gold answer token and the
highest-probability token.

model’s token-level uncertainty, and evaluated an-
swer accuracy using the F1 score. We then ana-
lyzed the correlation between answer accuracy and
uncertainty during answer generation, with results
presented in Table 2. Our findings reveal a signif-
icant negative correlation, which becomes more
pronounced after concatenating the context—i.e.,
higher uncertainty corresponds to lower answer ac-
curacy (in open-book QA tasks, lower accuracy in-
dicates that the model’s response deviates from the
provided context). This analysis further suggests
that token-level uncertainty is strongly associ-
ated with unfaithful answers.

A.5 Probability Gap Between The Golden
Answer Token and The Ranked Top-1
Token

As shown in Figure 6, we analyze the wrong an-
swer samples from A.1 by calculating the average
probability gap between the gold answer token and
the highest-probability token.

B Details of "3 Context Utilization Signal
in Attention"

B.1 LR Classifier Training and Evaluation

We trained a Logistic Regression (LR) classifier us-
ing 5-fold cross-validation. L2 regularization was
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Prompt LLaMA2-7B Mistral-7B
ACC AUC ACC AUC

Prompt2 0.9797 0.9932 0.9762 0.9902
Prompt3 0.9768 0.9926 0.9763 0.9889
Prompt4 0.9794 0.9946 0.9771 0.9927

Table 3: Performance testing under different prompts.
Training data: attention ratio feature vector under
Prompt 1. Test data: attention ratio feature vector under
Prompts 2, 3, and 4.

applied to prevent overfitting. The classifier was
evaluated across Transformer-based LLMs, includ-
ing:

• LLaMA2: 7B, 13B, 7B-Chat, 13B-Chat

• Mistral: 7B, 7B-Instruct

B.2 Cross Prompt Templates Testing

To evaluate the robustness of the classifier under
different prompts, we reconstructed the attention
ratio feature vectors using Prompts 2, 3, and 4.
These prompts differ in structure and phrasing but
are consistent in task objectives. The classifier,
trained using Prompt 1, was then tested on these
alternative prompts. (Templates shown in Figure
15)

The results, shown in Table 3, demonstrate that
the classifier maintains an ACC exceeding 97% and
AUC above 0.99 across all prompts. This indicates
that the attention ratio signal is prompt-agnostic
and generalizes well across different input struc-
tures.

C Analyzing Context Utilization Signal
Contribution Across Heads

To further explore the role of attention heads in en-
coding contextual utilization signals, we conducted
a detailed analysis to examine the strength and
distribution of signals across heads. This section
presents insights into the concentration of strong
signals in certain heads, the independent utility
of individual heads, and the complementarity of
weaker heads.

C.1 Analysis of the Importance of Different
Features

In analyzing the LR classifier trained with atten-
tion values from all attention heads as features, we
found that most feature coefficients had small abso-
lute values. This indicates that only a few attention
heads are crucial for utilization detection.

To explore their impact, we selected the top-
K and bottom-K features based on the absolute
values of their coefficients and trained LR mod-
els using these subsets. Figure 7: subplots (a1)
and (a2) shows how classification accuracy (ACC)
changes with K. Using top-K features, the model
achieves over 0.95 accuracy for all LLMs with
K=10, matching the performance of using all fea-
tures. In contrast, models with bottom-K features
perform poorly, failing to reach 0.95 even with
K=100. The AUC curves in Figure 7: subplots
(b1) and (b2) for different K further confirm this.
Models with top-K features maintain high accuracy
and robustness, while those with bottom-K fea-
tures show significantly worse performance. These
results emphasize that a small number of key at-
tention heads are enough for effective detection,
while irrelevant features add little value and may
introduce noise.

We also compared the performance of LR classi-
fiers trained with all features versus only the top-10
features on out-of-domain data. As shown in Fig-
ure 8, the LR trained with only the top-10 features
achieved better ACC and AUC on out-of-domain
data.

Based on the ACC and AUC results, we find
that the LR classifier trained with the Top-10
features achieves good accuracy and robustness
while using the minimum number of features.
Therefore, all subsequent inference employs LR
classifiers trained with the Top-10 features.

C.2 Signal Strength and Concentration in
Heads

To identify influential heads, we visualized the co-
efficients of the trained Logistic Regression (LR)
classifier, which were derived from the attention
ratio features of all heads. Approximately 5% of
the heads exhibited significantly high coefficients,
suggesting that these heads dominate the classifica-
tion task (Figure 9). Repeating this analysis across
100 random seeds revealed consistent selection of
these top heads, indicating their robustness as key
signal carriers.

To evaluate the standalone utility of these heads,
we trained LR classifiers using the attention ratio
from a single head as the feature. The results in
Figure 10 show that About 5% to 10% of the heads
achieved classification accuracies (ACC) above 0.8,
highlighting their ability to independently encode
contextual utilization signals. However, the ma-
jority of heads performed poorly in isolation, with
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Figure 7: Performance of the LR classifier with Top-K and Bottom-K features. Based on the absolute values of
feature coefficients, the Top-K and Bottom-K features were selected to train an LR classifier with sparse features.
The figure shows the ACC and AUC performance of the classifier on the test set for different values of K.

Figure 8: Out-of-domain performance of the LR classifier trained with full features and Top-10 features. Performance
variations on out-of-domain data for LR classifiers trained using all features versus the top-10 features.

ACCs below 0.8. This disparity emphasizes the
varying degrees of utility across heads, with a small
subset contributing disproportionately strong sig-
nals.

Additionally, we also observed that on the Mis-
tral model, the vast majority of heads perform well
when acting individually. This indicates the pres-
ence of more high-performing heads in the Mis-
tral model, which may explain why our method
achieves greater improvements on Mistral com-
pared to other models.

C.3 Complementary Contributions of Weaker
Heads

Although most attention heads have limited stan-
dalone utility, we observe that combining weaker

heads into subsets significantly improves classi-
fication performance. Figure 11 illustrates that
we selected the bottom-K features, based on the
classification accuracy of individual heads, to train
the classifier and analyze the performance gain
from combining weaker heads. The results show
that when the number of bottom-K heads reaches
500, the classification accuracy stabilizes at ap-
proximately 90%. This finding highlights the com-
plementarity of weaker heads, as their aggregated
signals collectively achieve robust token classifica-
tion.

Summary of Findings Our analysis reveals three
key characteristics of attention heads in encoding
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Figure 9: Heatmap of feature coefficients for LR. The heatmap of feature coefficients for LR classifiers trained
using attention ratios from different LLMs as features.

Figure 10: Performance distribution of LR with single features. An LR classifier is trained using the attention ratio
from a single head as features. The figure shows the ACC distribution of LR classifiers trained with attention ratios
from different heads on the test set.
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Figure 11: Performance of the LR classifier trained with
Bottom-K features. Based on the ACC of LR classifiers
trained using the attention ratio from a single head as
features, the Bottom-K heads with the lowest ACC are
selected. The LR classifier is then retrained using the
attention ratios of these Bottom-K heads as features,
and its performance on the test set is presented.

contextual utilization signals:

1. Concentration: A small subset of heads con-
sistently contributes strong independent sig-
nals, dominating the classification task.

2. Complementarity: Weaker heads collec-
tively provide complementary signals, en-
abling robust classification when aggregated.

These findings highlight the nuanced roles of at-
tention heads in contextual token utilization and
provide a foundation for further exploration of their
properties and applications.

D Experimental Details

D.1 Dataset Details

We conducted experiments on seven open-book
question-answering (QA) datasets, representing a
variety of QA tasks. These include multi-hop rea-
soning datasets (HotpotQA (Yang et al., 2018)),
long-form retrieval-based QA datasets (TriviaQA
(Joshi et al., 2017) and SearchQA (Dunn et al.,
2017)), single-paragraph extraction tasks (SQuAD
(Rajpurkar et al., 2016) and NewsQA (Trischler
et al., 2017)), and document-level QA datasets
(NQ (Kwiatkowski et al., 2019)). All datasets are
formatted in the unified schema provided by the
MrQA repository (Fisch et al., 2019). Addition-
ally, we used the artificially constructed NQ-swap
dataset (Longpre et al., 2021), designed to simulate
conflicting or ambiguous scenarios by replacing
entities.

D.1.1 Dataset Categories and Statistics
The datasets used in this study include seven open-
book question-answering (QA) datasets, grouped
into three categories based on their QA task charac-
teristics: multi-hop reasoning, long-form retrieval-
based QA, and single-paragraph extraction tasks.
Additionally, an adversarial dataset is included for
evaluating the robustness of the proposed method.
Detailed descriptions and dataset statistics are pro-
vided below.

Multi-Hop Reasoning (HotpotQA). HotpotQA
(Yang et al., 2018) is a benchmark dataset for multi-
hop reasoning, requiring models to synthesize infor-
mation across multiple paragraphs to generate an
answer. This dataset emphasizes complex reason-
ing over distributed evidence, making it a critical
benchmark for evaluating context utilization.

Long-Form Retrieval-Based QA (TriviaQA,
SearchQA). TriviaQA (Joshi et al., 2017) and
SearchQA (Dunn et al., 2017) require reason-
ing over longer contexts, with answers scattered
across retrieved documents. These datasets test
the model’s ability to focus on relevant content in
lengthy contexts and generate precise answers.

Single-Paragraph Extraction (SQuAD,
NewsQA). SQuAD (Rajpurkar et al., 2016), and
NewsQA (Trischler et al., 2017) are standard ex-
tractive QA datasets where the answer is typically
located within a single paragraph. These datasets
are widely used for evaluating the span-extraction
capabilities of QA systems.

Document-Level QA (NQ). NQ (Kwiatkowski
et al., 2019) is a document-level open-domain ques-
tion answering dataset driven by real user queries.
It requires systems to extract long answers from
entire Wikipedia documents and generate specific
short answers, evaluating document-level informa-
tion retrieval and natural language understanding
capabilities.

Simulated Conflict Scenarios (NQ-Swap). NQ-
Swap (Longpre et al., 2021) is an artificially con-
structed dataset that introduces adversarial entity
swaps into NQ to create ambiguous or conflicting
contexts. It evaluates the model’s ability to resolve
conflicts and faithfully utilize context.

D.1.2 Dataset Sources and Formats
All datasets are standardized in the unified schema
provided by the MrQA repository (Huggingface
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Dataset Number of Samples
HotpotQA (Multi-Hop) 5904

TriviaQA (Long-Form Retrieval) 7785
SearchQA (Long-Form Retrieval) 16980

SQuAD (Single-Paragraph) 10507
NewsQA (Single-Paragraph) 4212

NQ (Document-Level) 12836
NQ-Swap (Simulated Conflicts) 4746

Table 4: Dataset statistics. A summary of the dataset
sizes used for evaluation across different datasets.

ID: mrqa-workshop/mrqa), except for NQ-Swap,
which is sourced from a separate repository (Hug-
gingface ID: pminervini/NQ-Swap). The datasets
used for training the logistic regression model (§
2) and attention analysis (§ 3) are drawn from the
training sets of the MrQA repository. Model perfor-
mance evaluation is conducted using the validation
sets from the same repository. All datasets have
been preprocessed to ensure compatibility with our
experimental framework.

D.1.3 Dataset Statistics
Table 4 presents the size of the datasets used in this
study to evaluate model performance.

D.2 Implementation Details
At each decoding step, DAGCD determines
whether utilized tokens are detected by the Context
Utilization Detector. If detected, their probabilities
are amplified; otherwise, or if a termination condi-
tion is met (e.g., the top-1 token is “\n”), probabil-
ities remain unchanged. All experiments utilized
a unified prompt template (Prompt 1, as shown
in Figure F) to ensure consistency across meth-
ods. The prompt format is detailed in Appendix F.
For decoding, greedy decoding was employed to
produce deterministic outputs and facilitate direct
comparisons across methods. All models run on
NVIDIA A100 GPUs.

D.3 Model Details
The LLMs used in this work, along with its Hug-
gingFace ID, is as follows:

• LLaMA2-7B: meta-llama/Llama-2-7b-hf

• LLaMA2-7B-Chat: meta-llama/Llama-2-7b-
chat-hf

• LLaMA2-13B: meta-llama/Llama-2-13b-hf

• LLaMA2-13B-Chat: meta-llama/Llama-2-
13b-chat-hf

• Mistral-7B: mistralai/Mistral-7B-v0.1

• Mistral-7B-Instruct: mistralai/Mistral-7B-
Instruct-v0.1

D.4 Baseline Configurations
We compare the proposed method DAGCD with
three decoding strategies: Greedy Decoding,
CAD (Shi et al., 2024b), and COIECD (Yuan et al.,
2024). CAD and COIECD are specifically de-
signed to mitigate context faithfulness hallucina-
tion. We implemented the baseline methods with
their recommended hyperparameter settings for fair
comparisons:

• CAD (Shi et al., 2024b): The contrastive adjust-
ment factor α was set to 1.

• COIECD (Yuan et al., 2024): The entropy reg-
ularization parameter λ was set to 0.25, and the
contrastive adjustment factor α was set to 1.

D.5 Results on Summarization Tasks
To validate the performance of our approach on
long-form answer generation tasks, we conducted
experimental evaluations on the CNN_DM (See
et al., 2017) summarization dataset (we randomly
sampled 500 instances from the dataset for evalu-
ation). Similar to prior work (Shi et al., 2024b),
we adopted ROUGE-L (Lin, 2004), factKB (Feng
et al., 2023), and BERTScore (Zhang et al., 2020)
as comprehensive evaluation metrics to assess both
the accuracy and factual consistency of the gener-
ated content. The experimental results, as shown
in Table 5, demonstrate that our method achieves
significant improvements on both the pretrained
and chat versions of LLaMA2.

E Detailed Results of "5.3 Ablation
Study"

E.1 Additional Results of "Ablation 1:
Detector Training Data Sizes"

Table 12 shows the performance variations of all
LLMs used in this study when trained with detec-
tors on different amounts of data. As observed, our
method maintains consistent performance across
various data sizes for all LLMs.

E.2 Additional Results of "Ablation 3:
Scaling Factor α"

We additionally evaluated the performance varia-
tions of our method on Mistral-7B and Mistral-7B-
Instruct under different scaling factors α. Figure
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Model Decoding ROUGE-L factKB BERT-P BERT-R BERT-F1

LLaMA2-7B

Greedy 0.2081 0.9932 0.9000 0.7997 0.8465
CAD 0.2361 0.9786 0.9054 0.8016 0.8514

COIECD 0.2089 0.9845 0.9152 0.8014 0.8543
OURs 0.2134 0.9856 0.9210 0.8026 0.8576

LLaMA2-7B-Chat

Greedy 0.2368 0.9846 0.9056 0.8035 0.8515
CAD 0.2082 0.9417 0.9001 0.7997 0.8466

COIECD 0.2371 0.9807 0.9055 0.8034 0.8513
OURs 0.2426 0.9866 0.9104 0.8036 0.8536

Table 5: Comparison of evaluation results on CNN/DailyMail. The table compares the evaluation results between
greedy decoding and our proposed method on the CNN/DailyMail dataset. Bold denotes the best performance,
while underlined indicates the second-best performance.

Figure 12: Detector Training Data Size Validation. The
variation in inference performance across different mod-
els when using detectors trained on varying amounts of
data.

13 illustrates the performance changes on the Hot-
potQA dataset. For Mistral-7B, the optimal per-
formance is achieved at α = 5. In contrast, for
Mistral-7B-Instruct, the performance only stabi-
lizes after α = 13. This indicates that different
models may require different optimal scaling fac-
tors for the best performance.

E.3 Impact of Different Prompts

To assess robustness to prompt variations, we tested
multiple prompts from prior studies (Zhou et al.,
2023; Yuan et al., 2024; Wang et al., 2024) (tem-
plates in Figure 15). Figure 14 illustrates the varia-
tions in F1 scores for LLaMA2-7B and Mistral-7B
on the HotpotQA and NewsQA datasets under dif-
ferent prompt templates. The results show that
DAGCD consistently outperforms baselines across
all tested prompts, demonstrating its adaptability
to diverse input formats and reliability across QA
tasks.

Figure 13: The performance on HotpotQA for DAGCD
under different scaling factors.

F Prompt Templates

Figure 15 shows the prompt templates used in this
paper.
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Figure 14: Performance variations across different prompt templates. The figure shows F1 score variations on the
HotpotQA and NewsQA datasets for Greedy Decoding and OURs (DAGCD) under different prompt templates.

Prompt 2

Given the following context, answer the question

below:

Context: {context}

Question: {question}

Answer:

Prompt 3

Read the given information and answer the

corresponding question. {context}

Question: {question}

Answer:

Prompt 4

{context}

Using only the references listed above, answer the

following question:

Question: {question}

Answer:

Prompt 1

With Context:

Given the following information: {context}

Answer the following question based on the given

information with one or few words: {question}

Answer:

Without Context: (for CAD and COIECD)

Answer the following question based on your

internal knowledge with one or few words:{question}

Answer:

Figure 15: Prompt templates used in this paper.
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