
Findings of the Association for Computational Linguistics: ACL 2025, pages 5050–5064
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

A Self-Distillation Recipe for Neural Machine Translation

Hongfei Xu1, Zhuofei Liang1, Qiuhui Liu2, Lingling Mu1

1Zhengzhou University, Henan, China, 2China Mobile Online Services, Henan, China
{hfxunlp, zfliangnlp, liuqhano}@foxmail.com

Correspondence: Lingling Mu iellmu@zzu.edu.cn

Abstract
Self-distillation distills the deeper sub-
networks to the shallower sub-networks
without using an extra teacher model, and
has been proven effective in improving
the performance of a series of computer
vision tasks. In this paper, we study the
representation-based self-distillation methods
for Neural Machine Translation (NMT) to
avoid the efficiency issue of probability
distribution based Knowledge Distillation
(KD) with a large vocabulary. We present a
rank-order augmented Pearson correlation loss
and an iterative distillation method to prevent
the discrepancy of predictions between the
student and a stronger teacher from disturbing
the training. To prevent the teacher from
misleading the student’s learning, we utilize
a warm-up strategy and present a gradient
adaption method to scale down or zero the
knowledge distillation gradients which are
opposite to the translation. Experiments
on the low-resource IWSLT 14 German to
English, middle-resource WMT 14 English to
German, and high-resource WMT 15 Czech to
English and WMT 14 English to French tasks
show that our method can lead to significant
improvements over the strong Transformer
baselines, obtaining comparable performance
to previous machine translation knowledge
distillation studies without pre-training a
teacher. Experiments with shallower/deeper
Transformers show that our method can lead to
comparable or better performance efficiently
with fewer layers. Our method is also effective
in the multilingual setting or with recurrent
decoder.

1 Introduction

The Transformer translation model (Vaswani et al.,
2017) has greatly improved the performance of
Neural Machine Translation (NMT) (Sutskever
et al., 2014; Bahdanau et al., 2015; Gehring et al.,
2017), especially when empowered by deeper struc-
tures (Zhou et al., 2016; Wang et al., 2017; Bapna

et al., 2018; Wang et al., 2019; Wu et al., 2019;
Zhang et al., 2019a; Wei et al., 2020; Xu et al.,
2020a, 2021c; Kasai et al., 2021; Li et al., 2022;
Hao et al., 2022; Xu et al., 2024). Knowledge Dis-
tillation (KD) (Hinton et al., 2015) that first trains
a teacher model and then transfers the teacher’s
knowledge to the student network by mimicking
the output of the teacher, is among the most promis-
ing solutions to ensure the efficiency and to im-
prove the performance of machine translation (Kim
and Rush, 2016; Wu et al., 2020; Wang et al., 2021;
Jafari et al., 2021; Liang et al., 2022; Miao et al.,
2022, 2023; Zhang et al., 2023).

Self-distillation (Zhang et al., 2019c, 2022) per-
forms knowledge distillation inside the same neural
network, normally distilling deeper sub-networks
to shallower ones. It only requires one-stage train-
ing and does not need to search for the most proper
teacher model for knowledge distillation, thus can
significantly reduce training overhead and facilitate
efficient and effective knowledge distillation for
computer vision tasks. Zhang et al. (2019c, 2022)
show that self-distillation can lead to strong results
without an additional teacher model on a number
of computer vision tasks.

In this paper, we study self-distillation methods
for neural machine translation. To address the ef-
ficiency issue with a large vocabulary in neural
machine translation, we distill deeper representa-
tions to shallower layers. We present a rank-order
augmented Pearson correlation loss and an itera-
tive distillation method to prevent potential training
disturbance due to the performance discrepancy be-
tween the students and the stronger teacher (Cho
and Hariharan, 2019; Mirzadeh et al., 2020; Son
et al., 2021; Huang et al., 2022b), and a gradient
adaptation method together with a warm-up strat-
egy to avoid possible misleading during knowledge
distillation.

Our main contributions are as follows:
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Figure 1: (a) deep-to-shallow distillation, (b) iterative
distillation. Solid and dashed arrows indicate the direc-
tions for forward propagation and knowledge distillation
respectively.

• We study efficient self-distillation methods for
neural machine translation, present an itera-
tive distillation method to reduce the capac-
ity gap between teachers and students, pro-
pose a gradient adaptation method and adopt
a warm-up strategy to prevent potential nega-
tive impacts of knowledge distillation on ma-
chine translation, and present a rank-order
augmented Pearson correlation loss to fur-
ther ensure the effectiveness of representation-
based knowledge distillation.

• Experiments on low/middle/high-resource
tasks and the OPUS-100 massively multilin-
gual translation task show that our method can
lead to significant improvements over strong
baselines, obtain comparable BLEU scores to
previous machine translation knowledge distil-
lation methods efficiently without pre-training
a teacher, and achieve comparable or better
performance efficiently with fewer layers.

2 Our Method

As NMT usually has a large vocabulary size, which
leads to high computation and memory costs to
distill between prediction probability distributions,
we study efficient self-distillation based on the hid-
den representations produced during the forward
propagation of the model.

Since both the teachers and students are trained
together from random initialization with self-
distillation, the teachers may be less likely to pro-
vide reliable guidance for the training of students
at the initial stage. We adopt a warm-up strategy
disabling the knowledge distillation and to train
only with the MT loss at the beginning.

2.1 Iterative Self-Distillation

Zhang et al. (2019c, 2022) distill the output pre-
dictions of the deepest layer to shallow layers by
default, under the expectation that the deepest layer
may generally offer the best performance than shal-
lower layers, as shown in Figure 1 (a).

But as pointed out by Cho and Hariharan (2019);
Mirzadeh et al. (2020), stronger teachers do not
always lead to better distillation performance, and
knowledge distillation can even adversely affect
the training of the student if there is a large gap
between teacher and student in capacity. The stu-
dent may not have sufficient capacity to minimize
both the training loss and the knowledge distillation
loss in challenging settings, and might end up min-
imizing one loss (knowledge distillation loss) at
the expense of the other (classification loss). This
unfortunately may also apply to neural machine
translation with self-distillation when distilling the
deepest layer to some shallower layers.

To address the training issue due to the disparity
between teachers and students in capacity, we pro-
pose to perform self-distillation iteratively. Instead
of distilling the deepest layer to all shallow lay-
ers, we distill the output of layer k to the output of
layer k−1, as shown in Figure 1 (b). With iterative
self-distillation, the capacity differences between
teachers and students are minimized to prevent the
distillation from disturbing the training.

Iterative distillation is identical to transitive dis-
tillation in Zhang et al. (2022), but they obtain
better performance by distilling with a subset of
shallow layers, while the all-layer iterative distil-
lation setting leads to better performance in our
experiments (Table 7). This may be due to the
utilization of the other strategies like gradient adap-
tation. Zhang et al. (2022) also do not take the
capacity gap as motivation.

2.2 Gradient Adaptation for Knowledge
Distillation

In self-distillation, the model is randomly initial-
ized and the teacher sub-networks and student
sub-networks are trained together within the same
model. As a result, the teachers may not always
be better than students and may mislead the stu-
dents. Knowledge distillation may also disturb the
students training in case a student sub-network’s
capacity is far from matching its teacher.

We present a gradient adaptation method to pre-
vent the student sub-network’s training from po-
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Figure 2: Rank-order based distillation loss.

tential interference due to knowledge distillation.
Specifically, the output vector of the student sub-
network os receives two gradient vectors during
backpropagation: one (∂lossmt

∂os
) back-propagated

from the classifier with the machine translation
loss (lossmt), another (∂losskd∂os

) back-propagated
from the knowledge distillation loss (losskd) which
mimics the output vectors of the student and its cor-
responding teacher. We first compute the cosine
similarity s between the gradient vectors from the
translation loss and the distillation loss.

s = cos(
∂lossmt

∂os
,
∂losskd
∂os

) (1)

Next, we zero negative similarity and use the
result as the weight to aggregate the translation and
knowledge distillation gradient vectors to obtain
the final gradient for the student’s output vector o
for follow-up back-propagation.

∂loss

∂os
=

∂lossmt

∂os
+max(0, s) ∗ ∂losskd

∂os
(2)

In this way, the distillation gradient with a higher
similarity is preferred with a higher weight during
gradient aggregation, and the distillation gradient
in contrast to the translation gradient is removed.

2.3 Rank-Order Augmented Distillation Loss
Huang et al. (2022b) find that when the teacher
and student models are trained with a stronger strat-
egy (e.g., exact match), the discrepancy between
teacher and student would be fairly larger, and an
exact recovery could be challenging and lead to

the failure of knowledge distillation. They suggest
that preserving the relation of predictions between
teacher and student is sufficient and effective, and
propose to leverage the Pearson correlation coef-
ficient for the knowledge distillation between stu-
dents and stronger teachers.

However, the Pearson correlation coefficient
does not treat each dimension of the input vec-
tors equivalently. It may be trivial to optimize
when self-distillation with hidden vectors instead of
probabilities, when the teachers are also updated to-
gether with the students but not fixed. For example,
the students could learn to generate comparably
large scalars in a few dimensions of the vector and
affect the teachers’ outputs to be also large at these
dimensions via residual connections. These dimen-
sions could have a huge impact on the coefficient
and easily lead to a high correlation.

To ensure all vector dimensions are not neglected
during knowledge distillation, we augment the
Pearson correlation loss with another loss based on
the inconsistency between rank orders of the scalars
inside the teacher and student vectors. Specifically,
we first sort scalars in the teacher vector in the as-
cending order, then reorder scalars in the student
vector in exactly the same way as the reordering
of the teacher vector during sort. The rank-order
based distillation loss is the sum of non-negative
subtraction results between each scalar and its sub-
sequent scalar in the reordered student vector, as
illustrated in Figure 2.

The rank-order based distillation loss gets the
scalar orders by sorting and reordering, and tries to
ensure the consistency of scalar orders between
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the teacher and student vectors. The loss sub-
tracts scalars in the student vector with inconsistent
orders compared to corresponding scalars in the
teacher vector, and leads to decent and consistent
gradient values of 1 and −1 respectively for the
scalars in the reverse order regardless of their val-
ues.

The rank-order based loss is added to the neg-
ative Pearson correlation coefficient as the final
knowledge distillation loss.

2.4 Efficiency Discussion

Despite we leverage several strategies to facilitate
effective self-distillation for neural machine trans-
lation, the warm-up strategy simply disables self-
distillation at the initial stage of training, and all the
other strategies only involve light-weight element-
wise dense vector computations. We also distill
with hidden vectors instead of probabilities for ef-
ficiency with the large NMT vocabulary, without
attaching classifiers for shallow layers and using
high-dimensional prediction logits for knowledge
distillation. As a result, our method only takes 6%
more training time and performs better than previ-
ous studies without pre-training a teacher (Table 1).

The inference of the self-distillation model is
the same as the baseline model, using all lay-
ers. Our method does not support dynamic infer-
ence with shallow layers as Zhang et al. (2022)
for we do not attach classifiers to shallow layers.
Unlike conventional machine translation knowl-
edge distillation methods which improves the infer-
ence efficiency by distilling a larger/deeper teacher
model to a smaller/shallower student network, our
method directly trains the shallow network via self-
distillation, and the inference efficiency is achieved
by obtaining comparable performance with shal-
lower models (Table 4).

3 Experiments

3.1 Settings

Datasets Our experiments covered the low-
resource IWSLT 14 German (De) to English (En),
middle-resource WMT 14 English to German, and
high-resource WMT 15 Czech (Cs) to English and
WMT 14 English to French (Fr) tasks to show the
effectiveness of our approach, comprising around
174k, 4.5M , 15M and 33M sentence pairs respec-
tively. We applied joint Byte-Pair Encoding (BPE)
(Sennrich et al., 2016) with 16k merge operations
for the low-resource IWSLT 14 De-En task, and

Model BLEU

Transformer (Vaswani et al., 2017) 27.54

Word KD (Kim and Rush, 2016) 28.03
Seq KD (Kim and Rush, 2016) 28.22
BERT KD (Chen et al., 2020) 27.53
Seer Forcing (Feng et al., 2021) 27.56
Annealing KD (Jafari et al., 2021) 27.91
Selective KD (Wang et al., 2021) 28.24
CBBGCA (Zhou et al., 2022) 28.36
TIE KD (Zhang et al., 2023) 28.46
AIO KD (Miao et al., 2023) 28.75

Self KD (Ours) 29.21

Table 1: Main results on the WMT 14 En-De task.

32k merge operations for the other tasks to address
the unknown word issue. We only kept sentences
with no more than 256 tokens for training.

Hyper-parameters The hyper-parameters de-
rived from the baselines are detailed in Appendix A.
The number of knowledge distillation warm-up
steps is twice as the number of learning rate warm
up steps (8k). We simply summed up individ-
ual losses, because this is more friendly for prac-
tice than tuning hyper-parameters for each specific
task. The results with tuned loss aggregation hyper-
parameters are provided in Appendix B.

Evaluation We used a beam size of 4 for decod-
ing with the averaged model of the last 5 check-
points saved with an interval of 1500 training steps.
We evaluated with BLEU and chrF implemented
by the sacreBLEU toolkit (Post, 2018) and the
COMET score (Rei et al., 2020). We also con-
ducted significance tests (Koehn, 2004).

3.2 Main Results

We first compare our approach with previous MT
KD studies on the widely used WMT 14 En-De task
with 6-layer Transformer Base setting for students.
Results are shown in Table 1.

Table 1 shows that: 1) our method can lead to
+1.67 BLEU improvements over the strong Trans-
former baseline on the WMT 14 En-De task, and 2)
our method can effectively lead to slightly higher
BLEU scores than previous machine translation
knowledge distillation baselines efficiently without
the necessity to explicitly pre-train a teacher model
beforehand.

3.3 Generality on Translation Tasks

To test the effectiveness of our approach with
varying training set sizes and across different lan-
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Metric Model IWSLT 14 De-En WMT 14 En-De WMT 15 Cs-En WMT 14 En-Fr

BLEU Transformer 31.41 27.54 29.13 39.87
+ Self KD (Ours) 32.10† 29.21† 30.25† 41.78†

chrF Transformer 53.84 57.19 54.93 63.34
+ Self KD (Ours) 54.42† 58.04† 55.62† 64.57†

COMET Transformer 79.39 82.40 81.90 82.81
+ Self KD (Ours) 79.86† 83.65† 82.62† 84.60†

Table 2: Results with varying training set sizes. † indicates p < 0.01 in the significance test.

ID Models #Para Direction BLEU94 WR BLEU4

1 Transformer 110M En→xx 18.75 - 14.73
xx→En 27.02 22.50

2 1 + LALN + LALT (Zhang et al., 2020) 133M En→xx 20.81 - 17.45
xx→En 27.22 23.30

3 2 + depth-wise LSTM (Xu et al., 2024) 148M En→xx 23.38 ref 20.47
xx→En 28.41 26.68

4 2 + Self KD (Ours) 133M En→xx 24.11 82.98 21.01
xx→En 29.03 80.85 27.78

Table 3: Multilingual translation results on the OPUS-100 dataset.

guage pairs, we conducted experiments on the
low-resource IWSLT 14 De-En, middle-resource
WMT 14 En-De, and high-resource WMT 15 Cs-
En and WMT 14 En-Fr tasks. Results evaluated
with BLEU, chrF and COMET scores are shown in
Table 2.

Table 2 shows that our method can improve the
performance of the low-resource IWSLT 14 De-
En task by +0.69 BLEU, +0.58 chrF, and +0.47
COMET scores, the middle-resource WMT 14 En-
De task by +1.67 BLEU, +0.85 chrF, and +1.25
COMET scores, the high-resource WMT 15 Cs-En
and WMT 14 En-Fr tasks by +1.12 and +1.91
BLEU, +0.69 and +1.23 chrF, and +0.72 and
+1.79 COMET scores respectively, showing the
effectiveness of our approach in low/middle/high-
resource scenarios.

Despite the improvements with our self-
distillation method on the low-resource IWSLT
14 De-En task is smaller than on the middle and
high-resource tasks, the improvements are still sig-
nificant in all metrics. The smaller improvements
on the low-resource task might be because that
knowledge distillation is to make better use of the
model capacity, while the training set of the low-
resource task may have difficulty in providing suf-
ficient knowledge to benefit from this.

3.4 Effectiveness for Multilingual Translation

Multilingual translation uses a single model to
translate between multiple language pairs (Firat

et al., 2016; Johnson et al., 2017; Aharoni et al.,
2019). Model capacity has been found crucial
for massively multilingual NMT to support lan-
guage pairs with varying typological characteristics
(Zhang et al., 2020; Xu et al., 2021a). Effective
model capacity utilization with our self-distillation
method is likely to benefit multilingual NMT.

To test the effectiveness of our self-distillation
method in the multilingual setting, we conducted
experiments on the challenging massively many-
to-many translation task on the OPUS-100 corpus
(Tiedemann, 2012; Aharoni et al., 2019; Zhang
et al., 2020). We tested the performance of 6-layer
models following the experiment settings of Zhang
et al. (2020) for fair comparison. We adopted
BLEU (Papineni et al., 2002) for translation evalu-
ation with the SacreBLEU toolkit (Post, 2018). 1

We report average BLEU over 94 language pairs
BLEU94, win ratio WR (%) compared to a strong
baseline which effectively improves the model ca-
pacity through the use of depth-wise LSTMs (Xu
et al., 2024), average BLEU over 4 typologically
different target languages with varied training data
sizes (de, zh, br and te) BLEU4 selected by Zhang
et al. (2020). Results are shown in Table 3.

Table 3 shows that: 1) our approach can improve
the backbone model from Zhang et al. (2020) by
+3.30 and +1.81 BLEU on average in the En→xx
and xx→En directions respectively in the evalu-

1BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a
+version.1.4.1

5054



Depth Transformer Self KD (Ours)Encoder Decoder

3 26.51 27.73
6

6
27.54 29.21

12 28.62 30.00
18 29.00 30.49

Table 4: Results of Transformers with varying depths
on the WMT 14 En-De task.

ation over 94 different languages. The one-to-
many translation task can be regarded as multi-task
learning and its performance is likely to be con-
strained by the model capacity, while the many-
to-one translation task can be regarded as joint
training and is likely to benefit from knowledge
transfer (Arivazhagan et al., 2019). The larger aver-
age BLEU94 improvements in the En→xx direction
(+3.30) than in the xx→En direction (+1.81) over
Zhang et al. (2020) demonstrate the effectiveness
of our approach in utilizing the model capacity. 2)
compared to improving the capacity using depth-
wise LSTMs, our self-distillation method leads to
+0.73 and +0.62 BLEU improvements over Xu
et al. (2024) on average when translating English
to 94 languages and translating them into English
respectively, and obtains win ratios of 82.98% and
80.85% in the En→xx and xx→En directions re-
spectively without introducing additional parame-
ters.

3.5 Effectiveness with Varying Depths

We tested the effectiveness of our method in more
challenging settings on the WMT 14 En-De task by
increasing the encoder depth to 12 and 18 layers.
We also evaluated the performance of a shallower
Transformer model with 3 encoder and decoder
layers to test the efficiency and effectiveness of our
approach with smaller models. Results are shown
in Table 4.

Table 4 shows that: 1) our method can obtain
consistent improvements with both shallower and
deeper models, and 2) the 3-layer Transformer with
our method efficiently obtains a higher BLEU score
(27.73) than the 6-layer baseline (27.54), the 6-
layer model with self-distillation (29.21) already
outperforms the baseline with 18 encoder layers
(29.00), and our method can obtain comparable or
higher BLEU scores efficiently with fewer layers.

3.6 Effectiveness with Recurrent Decoder

Chen et al. (2018); Xu et al. (2021b) show that en-

ID Model En-De En-Fr

1 Transformer 27.54 39.87
2 1 + MHPLSTM Decoder 28.37 40.31
3 2 + Self KD Dec 29.11 41.64
4 2 + Self KD Full 29.81 42.14

Table 5: BLEU scores with MHPLSTM decoder on the
WMT 14 tasks.

ID Model dev test

1 Transformer 25.42 27.54
2 1 + Self KD (Pearson loss) 25.58 27.79
3 2 + warm up 25.71 28.00
4 3 + iterative KD 25.84 28.32
5 4 + gradient adaptation 26.19 28.84
6 5 + rank-order loss 26.48 29.21

Table 6: Ablation study on the WMT 14 En-De task.

hanced recurrent decoders may lead to improved
translation quality while being faster in decoding
than the Transformer decoder due to the O(n) com-
plexity of the recurrent decoder. We tested the
performance of our approach with the MHPLSTM
decoder (Xu et al., 2021b) on the WMT 14 En-De
and En-Fr tasks. We adopted the same settings as
the Transformer Base model but replaced the Trans-
former decoder by a 6-layer MHPLSTM decoder.
Results are shown in Table 5.

Table 5 shows that: 1) applying our self-
distillation method to the MHPLSTM decoder only
can also lead to consistent improvements over the
stronger baseline, and 2) applying self-distillation
to both the encoder and the decoder brings about
better performance than to the MHPLSTM decoder
only, suggesting that self-distillation is still effec-
tive for the self-attentional Transformer encoder
when using the recurrent MHPLSTM decoder.

4 Analysis

Most of our analyses were conducted on the WMT
14 En-De task, with newstest 2013 and 2014 as the
development set and test set respectively.

4.1 Ablation Study

We tested the effectiveness of individual methods
on the WMT 14 En-De task. Results are shown in
Table 6.

Table 6 shows that: 1) distilling the deepest layer
to all shallow layers with the negative Pearson cor-
relation loss can obtain slight improvements, 2) the
warm-up strategy and iterative knowledge distilla-
tion method can lead to further improvements over
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Layer(s) without Self KD dev test
BLEU ∆ BLEU ∆

All (Baseline) 25.42 0.00 27.54 0.00
None (Ours Full) 26.48 1.06 29.21 1.67

Encoder

1 26.27 0.85 28.72 1.18
2 26.28 0.86 28.81 1.27
3 26.18 0.76 28.76 1.22
4 26.15 0.73 28.81 1.27
5 26.31 0.89 28.85 1.31

Decoder

1 26.40 0.99 29.03 1.49
2 26.36 0.95 28.89 1.36
3 26.20 0.78 28.68 1.14
4 26.24 0.82 28.72 1.18
5 26.18 0.76 28.81 1.27

Table 7: Results of removing individual layers from self-
distillation on the WMT 14 En-De task. ∆ indicates the
improvements over the baseline in BLEU.

vanilla self-distillation with the Pearson loss, 3)
gradient adaptation and rank-order loss bring about
more improvements than the other methods, and
4) all our methods can consistently lead to further
improvements on both the validation and test sets
and all methods together lead to +1.06 and +1.67
BLEU improvements on the development set and
test set of the WMT 14 En-De task respectively.

4.2 Effects of each Layer in Self-Distillation

We studied the contribution of self-distillation to
each encoder/decoder layer on performance on the
WMT 14 En-De task. If the kth layer did not in-
volve in self-distillation, the iterative mechanism
would distill the output of layer k + 1 to that of
layer k − 1. Results are shown in Table 7.

Table 7 shows that removing each en-
coder/decoder layer from self-distillation leads to
worse performance than distilling to all encoder
and decoder layers. This on one hand shows the
usefulness of individual encoder/decoder layers in
self-distillation, on the other hand suggests that
our method can simply distill to all layers without
the requirement to search for an optimal subset of
shallower sub-networks for self-distillation.

The effects of independently applying self-
distillation to the encoder/decoder are studied in
Appendix C.

4.3 Effects on Word Translation Accuracy

To analyze the effects of self-distillation training
on the evolution of token translations across Trans-
former layers, we adopted the probing method of
Xu et al. (2021c). Specifically, we frozen the pa-
rameters of the Transformer models trained on the

Layer Transformer + Self KD
Encoder Decoder Encoder Decoder

1 42.26 23.50 42.87 24.50
2 43.85 34.36 45.08 35.04
3 45.20 44.08 46.58 51.50
4 46.26 61.17 47.41 62.78
5 47.29 68.03 48.14 68.18
6 47.44 70.39 48.59 71.66

Table 8: Word translation accuracy on the WMT 14
En-De test set.
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Figure 3: BLEU scores w.r.t. various input sentence
length in tokens on the WMT 14 En-De test set.

WMT 14 En-De task, and projected the represen-
tations of the tested layer to the frozen trained de-
coder classifier with a linear layer to measure word
translation accuracy. The linear layer for projec-
tion is randomly initialized and trained again on
the training set with the other model parameters
frozen. When testing encoder layers, the alignment
matrices from decoder cross-attention layers are
aggregated into a single alignment matrix with a
softmax-normalized weight parameter vector. The
aggregated alignment matrix is used to transform
the source encoding representation to align with
the target sequence through matrix multiplication,
and the weight parameter vector is trained together
with the linear projection layer. The word trans-
lation accuracy is measured on the test set of the
WMT 14 En-De task. Results are shown in Table 8.

Table 8 shows that training with self-distillation
improves the word translation accuracy of all en-
coder and decoder layers, including not only all
shallow layers acting as students sub-networks in
the self-distillation but also the last layer serving as
only the teacher. This suggests that self-distillation
not only improves the student sub-networks (shal-
low layers), but also assists the last layer which
only serves as a teacher to obtain better perfor-
mance based on the improved representations from
shallow layers.
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Figure 4: Subject-verb agreement accuracy on the
Lingeval97 dataset. X-axis and y-axis represent subject-
verb distance in words and accuracy respectively.

4.4 Length Analysis

We tested the impacts of self-distillation on the
translation performance with various input lengths.

We first grouped sentences of similar lengths to-
gether and computed BLEU scores for each length
group on the WMT 14 En-De test set following
Bahdanau et al. (2015); Tu et al. (2016); Xu et al.
(2020b, 2021b). Results are shown in Figure 3.

Figure 3 shows that: 1) self-distillation improves
the performance for all length groups, 2) the per-
formance on shorter sentences (<15 source input
tokens) gets more improvements (+2.04 BLEU)
with self-distillation, and 3) unlike the Transformer
baseline which obtains lower BLEU scores on the
length group with ≥45 source input tokens than the
[30, 45) length group, the BLEU scores on the ≥45
length group is slightly higher than the [30, 45)
length group with self-distillation.

We also measured the effects of self-distillation
on capturing dependencies of various distances
with the linguistically-informed verb-subject agree-
ment analysis on the Lingeval97 dataset (Sennrich,
2017). In German, subjects and verbs must agree
with one another in grammatical number and per-
son. In Lingeval97, each contrastive translation
pair consists of a correct reference translation, and
a contrastive example that has been minimally mod-
ified to introduce one translation error. The accu-
racy of a model is the number of times it assigns
a higher score to the reference translation than to
the contrastive one, relative to the total number of
predictions. We used the models trained on the
WMT 14 En-De task for evaluation. Results are
shown in Figure 4.

Figure 4 shows similar accuracy curve trends for
the baseline and the self-distillation method, but
the accuracies with self-distillation are generally
higher than the Transformer baseline and larger
accuracy gains are obtained on both some short

distances (3 and 4) and long distances (11, 13 and
14).

5 Related Work

Knowledge Distillation for Efficient Machine
Translation Kim and Rush (2016) show that stan-
dard knowledge distillation applied to word-level
prediction can be effective for neural machine trans-
lation, and also introduce sequence-level knowl-
edge distillation that further improve performance.
Wu et al. (2020) inject layer-level supervision from
the teacher model to the student model. Wang et al.
(2021) analyze the different impacts of samples and
present batch-level and global-level selection meth-
ods to pick suitable samples for distillation. Jafari
et al. (2021) propose an improved knowledge distil-
lation method by feeding the rich information pro-
vided by teacher’s soft-targets incrementally and
more efficiently. Liang et al. (2022) efficiently
obtain multiple teachers via sub-layer reordering,
layer-drop, and dropout variants for multi-teacher
knowledge distillation. Zhang et al. (2023) show
that the knowledge comes from the top-1 predic-
tions of teachers and design a hierarchical ranking
loss to enforce the learning of the top-1 informa-
tion from the teacher. Miao et al. (2023) randomly
extract fewer-layer sub-networks from the teacher
and jointly optimize the teacher and these students
enhanced by mutual learning.

Translation Knowledge Transfer via Knowledge
Distillation Zeng et al. (2019) iteratively per-
form translation knowledge transfer between in-
domain and out-of-domain models via knowledge
distillation. Wei et al. (2019) generate a teacher
model from checkpoints to guide the training pro-
cess. Zhang et al. (2019b) propose a future-aware
knowledge distillation framework to distill future
knowledge from a backward neural language model
to future-aware vectors which are incorporated into
the attention layer of the decoder. Chen et al. (2020)
utilize extra supervision from BERT to improve
the conventional sequence-to-sequence translation
model. Baziotis et al. (2020) transfer the target
language knowledge from the language model to
the low-resource neural machine translation mod-
els. Liang et al. (2021) design latent variational
modules to learn the distributions of bilingual con-
versational characteristics and incorporate into the
translation model via knowledge distillation. Feng
et al. (2021) introduce a seer decoder involving fu-
ture information in target predictions and force the
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conventional decoder to simulate the behaviors of
the seer decoder via knowledge distillation. Zhou
et al. (2022) first jointly train the NMT model with
an auxiliary conditional masked language model
and then incorporate bidirectional global context
to the NMT model on less confident predictions
via knowledge distillation. Lu et al. (2022) ex-
plore multi-stage information interactions for multi-
source NMT at the encoding stage. Yang et al.
(2022) distill knowledge retrieved by kNN to en-
courage the NMT model to take more reasonable
target tokens into consideration. Wang et al. (2024)
propose a domain-aware kNN-KD method to fil-
ter out domain-relevant neighborhood knowledge
for learning in the distillation process. Li et al.
(2024) transfer knowledge from LLMs to exist-
ing MT models in a selective, comprehensive and
proactive manner.

Knowledge Distillation for Multilingual Neu-
ral Machine Translation Tan et al. (2019) train
the multilingual model to fit the training data and
match the outputs of individual models simultane-
ously through knowledge distillation. Huang et al.
(2022c) pick up language-specific best checkpoints
for each language pair to teach the current model
on the fly. Huang et al. (2023) collaboratively
train two Pareto optimal solutions that favor dif-
ferent languages and allows them to learn from the
strengths of each other via knowledge distillation.
Do and Lee (2023) introduce a language-family-
based approach to select appropriate knowledge for
each language pair, and use target-oriented knowl-
edge distillation which intensively focuses on the
ground-truth target of knowledge with a penalty
strategy.

Knowledge Distillation for Non-Autoregressive
Translation Sequence-level knowledge distilla-
tion helps produce more deterministic training sets
for non-autoregressive translation (Gu et al., 2018,
2019; Qian et al., 2021; Wang et al., 2023). Zhou
et al. (2020) find that knowledge distillation can
reduce the complexity of data sets and help NAT to
model the variations in the output data. Huang
et al. (2022a) augment the training of the non-
autoregressive Transformer with deep supervision
and additional layer-wise predictions. Liu et al.
(2023) introduce selective knowledge distillation
by introducing an NAT evaluator to select NAT-
friendly targets that are of high quality and easy to
learn.

Knowledge Distillation for Unsupervised Trans-
lation Sun et al. (2020) leverage knowledge dis-
tillation methods to further enhance multilingual
unsupervised neural machine translation. Nguyen
et al. (2021) present cross-model back-translated
distillation to induce another level of data diversifi-
cation.

Compared to previous studies on efficient neu-
ral machine translation with knowledge distillation,
our study does not require to explicitly train or
leverage a teacher model, and can also obtain sig-
nificant improvements (Table 1).

6 Conclusion

In this paper, we study efficient representation-
based self-distillation methods for neural machine
translation. We present an iterative distillation
method to prevent potential adverse impacts of
knowledge distillation due to the capacity gap be-
tween teachers and students, propose a gradient
adaptation method and adopt a warm-up strategy
to ensure that the knowledge distillation gradients
are consistent with the machine translation gradi-
ents, and present a rank-order augmented Pearson
correlation loss to further ensure the effectiveness
of representation-based knowledge distillation.

Experiments on low/middle/high-resource tasks
show that our method can lead to significant im-
provements over the strong baselines, obtaining
comparable performance to previous machine trans-
lation knowledge distillation studies without pre-
training a teacher model. Experiments with shal-
lower and deeper Transformers show that our
method can obtain better performance efficiently
with fewer layers. Our method is also effective in
the challenging multilingual translation setting or
with recurrent decoder.

Limitations

We only apply our method to the encoder and de-
coder stacks independently, without taking inter-
actions between the encoder and the decoder (e.g.,
distilling decoder layers to encoder layers or vice
versa) and mutual learning into consideration.

Due to resource limitation, we did not apply our
method to large-scale pre-training, LLM translation
or evaluate on the other natural language processing
tasks.
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α β dev test

0.5

1.0

26.28 28.97
0.7 26.32 29.11
0.9 26.51 29.25
1.0 26.48 29.21
1.1 26.40 29.08
1.3 26.31 29.04
1.5 26.21 29.00

1.0

0.7 26.35 29.20
0.8 26.46 29.22
0.9 26.57 29.44
1.0 26.48 29.21
1.1 26.28 29.11
1.2 26.22 29.10
1.3 26.16 29.03

Table 9: Results of different hyper-parameters on the
WMT 14 En-De task.

A Hyper-parameters

For the middle-resource and high-resource trans-
lation tasks, we followed the Transformer Base
settings of Vaswani et al. (2017) except for 200k
training steps for all experiments (including all
baselines) following Zhang et al. (2023). Specif-
ically, we used 6 encoder and decoder layers, an
embedding size of 512, a feed-forward layer of
2048 hidden units, a dropout of 0.1. The dimen-
sion of each head was 64 and each attention layer
had 8 attention heads. We used a shared vocabulary
for each task and tied the encoder-decoder embed-
dings. We employed a label smoothing (Szegedy
et al., 2016) value of 0.1. We used the Adam opti-
mizer (Kingma and Ba, 2015) with 0.9, 0.98 and
10−9 as β1, β2 and ϵ. For the low-resource IWSLT
14 De-En task, we followed the experiment settings
of Araabi and Monz (2020) which lead to a strong
baseline for the low-resource setting.

B Effects of Hyper-Parameters for Loss
Accumulation

In all our other experiments, we simply sum up
individual losses rather than carefully tuning the
hyper-parameters for the accumulation of knowl-
edge distillation losses and the translation loss, be-
cause this is more friendly for practice than tun-
ing hyper-parameters for each specific task. But
carefully tuning the hyper-parameters for loss ag-
gregation may lead to better performance. In such
case, the final loss (loss) for optimization is the
weighted sum of the translation loss (lossmt) and
the knowledge distillation loss (losskd) with α as
the weight for losskd.

5063

https://doi.org/10.18653/v1/D19-1083
https://doi.org/10.18653/v1/D19-1083
https://doi.org/10.18653/v1/2020.acl-main.148
https://doi.org/10.18653/v1/2020.acl-main.148
https://doi.org/10.1109/TASLP.2019.2946480
https://doi.org/10.1109/TASLP.2019.2946480
https://doi.org/10.1109/TPAMI.2021.3067100
https://doi.org/10.1109/TPAMI.2021.3067100
https://doi.org/10.18653/v1/2023.acl-long.448
https://doi.org/10.18653/v1/2023.acl-long.448
https://doi.org/10.18653/v1/2022.acl-long.206
https://doi.org/10.18653/v1/2022.acl-long.206
https://doi.org/10.18653/v1/2022.acl-long.206
https://openreview.net/forum?id=BygFVAEKDH
https://openreview.net/forum?id=BygFVAEKDH
https://doi.org/10.1162/tacl_a_00105
https://doi.org/10.1162/tacl_a_00105


ID Model dev test

1 Transformer 25.42 27.54
2 1 + Self KD Enc 26.26 28.72
3 1 + Self KD Dec 25.93 28.40
4 1 + Self KD Full 26.48 29.21

Table 10: Effects of encoder/decoder self-KD on the
WMT 14 En-De task.

loss = lossmt + α ∗ losskd (3)

The knowledge distillation loss (losskd) is the
weighted sum of the Pearson coefficient loss
(lossPearson) and the rank-order based distillation
loss (lossrank) with β as the weight for lossrank.

losskd = lossPearson + β ∗ lossrank (4)

We tested the performance of various α and β
values. Results are shown in Table 9.

Table 9 shows that carefully tuning the hyper-
parameters can lead to better performance than
simply summing up all losses, but the performance
gap between different settings is limited, and a wide
range of hyper-parameter selections lead to good
performance. This may partially be because the
gradient adaption mechanism zero the knowledge
distillation gradients which are in contradiction
with machine translation. In such case, we suggest
that simply summing up the losses is a reasonable
choice for our method for the ease of practice.

C Effects of Encoder and Decoder

We tested the effects of separately applying our self-
distillation method to the encoder and the decoder
on the WMT 14 En-De task. Results are shown in
Table 10.

Table 10 shows that: 1) the encoder leads to
more improvements (+0.84 and +1.18 BLEU on
the development set and the test set respectively)
than the decoder (+0.51 and +0.86 BLEU corre-
spondingly) with our method, and 2) applying our
method to both the encoder and the decoder obtains
better performance than only applying the method
to either the encoder or the decoder, this suggests
that the effectiveness of our method on the encoder
and the decoder are complementary.
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