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Abstract

Packing, initially utilized in the pre-training
phase, is an optimization technique designed
to maximize hardware resource efficiency by
combining different training sequences to fit
the model’s maximum input length. Although
it has demonstrated effectiveness during pre-
training, there remains a lack of comprehensive
analysis for the supervised fine-tuning (SFT)
stage on the following points: (1) whether pack-
ing can effectively enhance training efficiency
while maintaining performance, (2) the suitable
size of the model and dataset for fine-tuning
with the packing method, and (3) whether pack-
ing unrelated or related training samples might
cause the model to either excessively disregard
or over-rely on the context.

In this paper, we perform extensive compar-
isons between SFT methods using padding and
packing, covering SFT datasets ranging from
69K to 1.2M and models from 8B to 70B. This
provides the first comprehensive analysis of
the advantages and limitations of packing ver-
sus padding, as well as practical considerations
for implementing packing in various training
scenarios. Our analysis covers various bench-
marks, including knowledge, reasoning, and
coding, as well as GPT-based evaluations, time
efficiency, and other fine-tuning parameters.
We also open-source our code for fine-tuning
and evaluation and provide checkpoints fine-
tuned on datasets of different sizes, aiming to
advance future research on packing methods.

1 Introduction

Supervised fine-tuning (SFT) refers to adapting a
pre-trained model to perform specific tasks by train-
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ing it on a labeled conversation dataset consisting
of (instruction, answer) pairs (Wang et al., 2022a;
Taori et al., 2023; Chiang et al., 2023; Almazrouei
et al., 2023; Wang et al., 2023b; Bai et al., 2023;
Wang et al., 2023a; Cai et al., 2024; Young et al.,
2024). As models and datasets grow, the cost of
fine-tuning rises. Identifying cost-effective meth-
ods, optimizing resource utilization, and alleviating
the financial burden of large-scale training present
new challenges in the SFT process (Hu et al., 2021;
Zhang et al., 2023a; Dettmers et al., 2024).

Packing addresses these challenges by combin-
ing multiple training samples into a single sample.
Originally used during the pre-training phase, pack-
ing extends each training sequence to the model’s
maximum input length, optimizing hardware re-
source usage, such as GPUs, and improving train-
ing efficiency (Brown et al., 2020; Rae et al., 2021;
Chowdhery et al., 2022; OpenAl, 2023; Touvron
et al., 2023; Dubey et al., 2024). Despite its proven
effectiveness during the pre-training phase, for SFT,
a thorough analysis is still lacking on: (1) whether
packing can effectively enhance training efficiency
while maintaining performance, (2) the suitable
size of the model and dataset for fine-tuning with
packing, and (3) whether packing unrelated or re-
lated training samples might cause model to either
excessively disregard or over-rely on the context.

To address these concerns, this paper provides a
thorough analysis of packing during the supervised
fine-tuning (SFT) stage. Specifically, we perform
extensive comparisons between SFT methods us-
ing padding and packing, covering SFT datasets
ranging from 69K to 1.2M and models from 8B
to 70B. Our comparisons include various bench-
marks, such as knowledge, reasoning, and coding,
GPT-based evaluations, time efficiency, and other
fine-tuning parameters, concluding that:

* Models using packing generally perform bet-
ter on average compared to those using
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padding across various benchmarks.

* As the model size grows, the performance gap
between padding and packing-based models
on the benchmark increases.

* Tailoring the packing of specific training sam-
ples may result in desired performance.

e Compared to padding, the packing method
greatly reduces training time, making it possi-
ble to fine-tune large models on large datasets.

» Using longer training samples increases the
time required for the packing method to pro-
cess each sample, making it less suitable for
training on particularly small datasets.

* In packing mode, the batch size is no longer
directly proportional to the learning rate.

» Applying packing to datasets with only single-
turn conversations may lead to substantial de-
cline in performance on few-shot benchmarks.

Building on these findings, we provide the first
comprehensive analysis of the advantages and lim-
itations of packing compared to padding, as well
as practical considerations for implementing pack-
ing in various training scenarios. Additionally, we
have open-sourced our code for fine-tuning and
evaluation and released checkpoints fine-tuned on
datasets of varying sizes, contributing to future re-
search on packing methods.

2 Related Work

Supervised fine-tuning (SFT) in large language
models (LLMs) involves additional training on
a dataset of (instruction, answer) pairs. This ap-
proach helps align the LLMs’ training goal of pre-
dicting the next word with users’ expectations for
the models to follow human instructions more accu-
rately (Mishra et al., 2021; Wei et al., 2021; Rosen-
baum et al., 2022; Ouyang et al., 2022; Wang et al.,
2022b; Dwivedi-Yu et al., 2022; Longpre et al.,
2023; Zhang et al., 2023b; Qi et al., 2023; Chung
et al., 2024; Liu et al., 2024).

The initial step in SFT is to create annotated
data, but current SFT datasets are often constrained
by their limited quantity, diversity, and creativity
(Mukherjee et al., 2023; Xu et al., 2023; Lu et al.,
2023; Song et al., 2024; Wang et al., 2023b; Zhou
et al., 2024). To address this issue and rich re-
sources for research, in one line, researchers dis-
tilled data from powerful large models (e.g., GPT-4
(OpenAl, 2023)) (Chiang et al., 2023; Ding et al.,
2023; Zhao et al., 2024). On the other line, some

researchers are working on methods to enable pre-
trained models to self-generate useful SFT data
(Wang et al., 2022a; Sun et al., 2024). Once high-
quality SFT datasets are created, the next step is to
use them for fine-tuning pre-trained models. Many
studies are dedicated to minimizing the costs of
fine-tuning, including GPU usage and time, while
maintaining performance, such as light-weight fine-
tuning (Hu et al., 2021; Dettmers et al., 2024),
speeding up attention algorithm for transformer-
based LLMs (Dao et al., 2022), and efficient dis-
tributed fine-tuning (Rajbhandari et al., 2020)2.

In this paper, we are analyzing one of the effi-
cient fine-tuning techniques: packing, which packs
multiple training samples into a single sample to
maximize the utilization of hardware resources and
enhance fine-tuning efficiency, providing a com-
prehensive understanding of its effectiveness and
potential risks. Below, we will thoroughly analyze
its effectiveness and potential risks.

3 Methods: Padding and Packing

Padding and packing are two distinct methods to
organize training samples, shown in Figure 1. In
this section, we first define a set of mathematical
symbols, followed by a detailed explanation of one
padding method and two packing methods: random
packing and greedy packing.

We assume that {C} = {c!,...,cV} de-
notes the training conversations, where N is
the size of the training conversation, and ¢ =
{(zt,9), ..., (z1,,95)},m > 1 denotes an in-
struction = and answer y pair of length m. In this
paper, we also use the terms "single-turn conversa-
tion" and "multi-turn conversation" to distinguish
between training conversations that consist of a
single instruction and answer pair (m = 1) and
those that include multiple contextual instruction
and answer pairs (m > 2).

3.1 Padding

Padding refers to extending the length of training
conversations to a consistent size to match the input
requirements of the pre-trained LLM, following are
its detailed process, strengths, and weaknesses:

3.1.1 Process of Padding

Specifically, for a
prising m-turn (m >

training sample com-
1) conversations

2https://github.com/microsoft/DeepSpeed
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Notes: (a) Different colors indicate different (single/multi-turn) conversation data. (b) Only one training sample is shown for each method.

Figure 1: An example for the process of padding and packing methods: (1) Padding: Each training sample is
appended with the special token “[PAD]” to meet the requirement of the model’s input length; (2) Random Packing:
Each training sample is packed together as much as possible according to its length; and (3) Greedy Packing:
firstly, all training samples are packed into one single sample, and then the single sample is cut into several short
training samples according to the maximum input length of the model.

Model WildChat (GPT-4), 69K TULU, 326K WildChat, 652K Open-source 1M, 1.2M
padding 28.86 19.11 21.06 18.38
LLaMA-3-8B | random packing 27.89(-0.97) 20.84(+1.73) 20.73(-0.33) 20.42(+2.04)
greedy packing 29.81(+0.95) 20.73(+1.62) 21.34(+0.28) 21.9(+3.52)
padding 37.0 22.84 30.69 34.95
LLaMA-3-70B | random packing 39.92(+2.92) 23.93(+1.09) 30.76(+0.07) 35.21(+0.26)
greedy packing 41.09(+4.09) 24.46(+1.62) 31.26(+0.57) 35.81(+0.86)

Table 1: Results of different size models and datasets on the WildBench benchmark. We highlight the highest score
in bold and use blue and red to indicate whether the score has increased or decreased compared to the padding
method. Note that the WildChat (GPT-4) dataset is composed entirely of real user interactions with GPT-4, and its
internal data is the foundation of WilBench research. Therefore, it is reasonable for a model trained on the WildChat
dataset to achieve a high score.

{(x1,y1)s--, (Tm,ym)}, we start by con- we must ensure that all sequences in this batch

catenating each turn of the conversation into a
single sequence, using the special token [EOS] to
separate each instruction x and response y:

211 [EOS|x2y2[EOS] - - - Xiym [EOS]

wWiwWs - - - [EOS]wtwt+l tee 'U)T[EOS]

where w;,1 < ¢ < T denotes the word of the
concatenated sequence, and 7' denotes the number
of words in this sequence.

During the training stage, LL.Ms often process
data in batches, and each batch must consist of
input sequences of equal length. This uniformity
is essential because the fundamental mathematical
operations required, such as matrix multiplications,
necessitate tensors of consistent sizes. In this condi-
tion, for one batch with [ concatenated sequences,

are limited to the minimum of the maximum input
length of the pre-trained model (for example, 8192
for LLaMA-3-8B-base (Dubey et al., 2024)) and
the length of the longest sequence within the batch:
T = min(Maximum Input Length, arg max T;)
1<i<l

For sequences that exceeding length 7', we trun-
cate them, and for those shorter than 7', we fill them
up with non-informative special token [PAD]:

wiwy - [BOS|w}, -+ [EOS] - - - wi[EOS]
w?ws - - - [EOS|w%_, [PAD][PAD][EOS]

whwh - [EOSJu, -
3.1.2 Weaknesses of Padding

While straightforward to implement, excessive
padding can lead to inefficiencies. If there are too

[PAD][EOS]
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Model MMLU GSMSK MATH BBH IFEval HumanEval
Exact Match Exact Match Exact Match Exact Match (prompt-loose-accuracy) pass@1 Avg
(5-shot) (4-shot) (4-shot) (3-shot) (0-shot) (0-shot)
WildChat (GPT-4) Dataset, Size: 69K
LLaMA-3-8B
Padding 63.99 58.76 14.72 60.71 56.01 43.29 49.58
Random Packing ~ 63.5(-0.44)  61.18(+2.42) 15.58(+0.86) 61.04(+0.33) 51.57(-4.44) 43.9 (+0.61)  49.46(-0.12)
Greedy Packing  64.71(+0.72)  60.88(+2.12)  15.6(+0.88)  62.59(+1.88) 57.12(+1.11) 42.68(-0.61)  50.6(+1.02)
S LLaMA-3-70B
Padding 73.47 79.3 28.8 78.33 51.76 57.32 61.50
Random Packing  75.16(+1.69)  82.38(+3.08) 31.46(+2.66)  79.94(+1.61) 61.00(+9.24) 65.85(+8.53) 65.97(+4.47)
Greedy Packing 74.77(+1.3)  81.61(+2.31) 32.84(+4.04) 80.98(+2.65) 64.33(+12.57) 60.98(+3.66)  65.92(+4.42)
TULU Dataset, Size: 326K
LLaMA-3-8B
Padding 62.26 57.32 14.6 60.14 41.77 44.24 46.72
Random Packing  63.94(+1.68) 58.83(+1.51)  13.94(-0.66)  61.11(+0.97) 42.51(+0.74) 45.61(+1.37) 47.66(+0.94)
Greedy Packing ~ 62.14(-0.12)  60.8(+3.48) 14.74(+0.14) 61.26(+1.12) 46.40(+4.63) 44.51(+0.27) 48.31(+1.59)
" LLaMA-3-70B
Padding 73.2 81.18 29.02 78.06 47.32 62.95 61.96
Random Packing  73.48(+0.28) 81.73(+0.55)  29.42(+0.4)  78.35(+0.29) 47.29(-0.03) 60.37(-2.58)  61.77(-0.19)
Greedy Packing ~ 73.43(+0.23)  81.2(+0.02) 30(+0.18) 77.54(-0.52) 53.05(+5.73) 68.9(+5.95)  64.02(+2.06)
WildChat Dataset, Size: 652K
LLaMA-3-8B
Padding 64.52 61.83 14.21 61.88 51.36 40.12 48.99
Random Packing  64.46(-0.06)  62.77(+0.94)  14.44(+0.23) 62(+0.12) 50.28(-1.08) 40.24(+0.12)  49.03(+0.04)
Greedy Packing  65.07(+0.55) 61.41(-0.42)  15.08(+0.87) 62.83(+0.95) 52.68(+1.32) 48.17(+8.05) 50.87(+1.88)
" LLaMA-3-70B
Padding 74.82 79.26 29.44 76.31 52.19 63.7 62.62
Random Packing  75.67(+0.85)  80.1(+0.84)  30.37(+0.93)  76.74(+0.43) 52.43(+0.24) 65.26(+1.56) 63.43(+0.81)
Greedy Packing ~ 75.36(+0.46)  79.45(+0.19) 31.28(+1.84) 77.47(+1.16) 53.60(+1.41) 64.02(+0.32)  63.53(+0.91)
Open-source 1M Dataset, Size: 1.2M
LLaMA-3-8B
Padding 63.7 77.08 27.96 63.45 48.39 45.22 54.3
Random Packing  63.96(0.26)  77.26(+0.16)  28.4(+0.44)  64.83(+1.38) 49.54(+1.15) 45.73(+0.51)  54.95(+0.65)
Greedy Packing  63.63(-0.07)  77.48(+0.4) 28.26(+0.3)  63.01(-0.44) 51.57(+3.28) 46.34(+1.12)  55.05(+0.75)
7777777777777777777777777777777777777 LLaMA-3-70B
Padding 74.97 85.23 41.82 78.65 54.33 61.74 66.12
Random Packing  76.38(+1.41)  86.14(+0.91) 42.73(+0.91)  79.42(+0.77) 55.9(+1.57) 62.98(+1.24) 67.26(+1.14)
Greedy Packing ~ 75.69(+0.72)  86.88(+1.65)  42.92(+1.1)  79.94(+1.29) 56.82(+2.49) 62.98(+1.24) 67.54(+1.42)

Table 2: Results of different size models and datasets on various benchmarks. We highlight the highest score in bold
and use blue and red to indicate whether the score has increased or decreased compared to the padding method.

many padding tokens relative to actual data, it can
lead to increased computation without correspond-
ing benefits in learning. In order to alleviate this
weakness, below, we introduce two packing-based
methods: Random Packing and Greedy Packing.

3.2 Random Packing

Unlike the padding method, which extends shorter
sequences with the special token [P AD], random
packing combines multiple training conversations
into a single sequence randomly, to maximize the
model’s learning efficiency and effectiveness:

3.2.1 Process of Random Packing

Firstly, we concatenate all training conversations
{C} = {c,...,c"} into one single sequence with
the special token [EOS] to separate each instruc-
tion = and response y:

c1[EOS]ea[EOS] - - - [EOS]en[EOS]

wiwsy - - - [EOSJwiwgy1 - - wi [EOS]

where n represents the total number of training
instructions x and responses y, w; denotes each
word in the concatenated sequence, and m signifies
the total number of words in that sequence.

Secondly, assuming that the maximum input
length for the pre-trained model is T', we adjust
to this limit by dividing the concatenated sequence
into M subsequences, each with a length of 7. In
the end, we randomly pack these sequences into
batches with each size of [, forming like:

whuh -+ [EOSJwluly, - wh[EOS)

whuwh - [EOSJutul, - wh[EOS)
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Model Epoch Total Steps Total Training Time (s)/ Steps per Second! Samples per Second
WildChat (GPT-4) Dataset, Size: 69K
LLaMA-3-8B
Padding 4 1964 1188.8449 0.165 21.13
Random Packing 4 728 445.28773(-743.55717) 0.163(-0.002) 20.934(-0.196)
Greedy Packing 4 492 308.33346(-880.51144) 0.16(-0.005) 20.48(-0.65)
- LLaMA-3-70B
Padding 3 2943 9533.42936 0.031 1.976
Random Packing 3 1092 3749.3016(-5784.12776) 0.029(-0.002) 1.865(-0.111)
Greedy Packing 3 741 2573.34781(-6960.08155) 0.029(-0.002) 1.84(-0.136)
TULU Dataset, Size: 326K
LLaMA-3-8B
Padding 4 9183 4906.59014 0.165 21.084
Random Packing 4 1928 1175.43583(-3731.15431) 0.164(-0.001) 20.977(-0.107)
Greedy Packing 4 1956 1328.12592(-3578.46422) 0.147(-0.018) 18.841(-2.243)
- LLaMA-3-70B
Padding 3 13761 40735.40051 0.034 2.162
Random Packing 3 2889 9758.68127(-30976.71924) 0.03(-0.004) 1.895(-0.267)
Greedy Packing 3 2931 10313.89593(-30421.50458) 0.028(-0.006) 1.82(-0.342)
WildChat Dataset, Size: 652K
LLaMA-3-8B
Padding 4 18340 11738.48881 0.156 20.183
Random Packing 4 5348 3422.97918(-8315.50963) 0.156 20.006(-0.177)
Greedy Packing 4 4780 3124.28736(-8614.20145) 0.153(-0.003) 19.58(-0.603)
- LLaMA-3-70B
Padding 3 27510 97893.95669 0.034 2.261
Random Packing 3 8025 28904.78592(-68989.17077) 0.030(-0.004) 2.083(-0.178)
Greedy Packing 3 7170 25124.6234(-72769.33329) 0.029(-0.005) 1.826(-0.435)
Open-source 1M Dataset, Size: 1.2M
LLaMA-3-8B
Padding 4 33064 19918.48664 0.168 21.413
Random Packing 4 5400 3253.07972(-16665.40692) 0.166(-0.002) 21.255(-0.158)
Greedy Packing 4 5104 3175.09395(-16743.39269) 0.161(-0.007) 20.571(-0.842)
- LLaMA-3-70B
Padding 3 49596 184709.04470 0.031 2.306
Random Packing 3 8103 29893.65963(-154815.38507) 0.03(-0.001) 2.193(-0.113)
Greedy Packing 3 7653 27426.66515(-157282.37955) 0.028(-0.003) 1.786(-0.52)

Table 3: The training time of models across various datasets, with blue indicating an improvement over the padding
method, while red represents a decrease in performance compared to the padding method.

3.2.2 Strengths of Random Packing

Compared to padding, random packing enhances
computational efficiency by densely packing each
training batch, minimizing unused space and op-
timizing the use of the model’s capacity. Further-
more, this approach potentially boosts the model’s
ability to generalize by exposing it to a broader
range of contextual combinations in each training
sample, thereby providing more diverse scenarios.

3.2.3 Weaknesses of Random Packing

There are two potential weaknesses of random
packing, one is that it can lead to the concatena-
tion of two distinct or similar samples, which may
cause the model to either excessively ignore or rely

on the context. We have put more analyses about
this issue in Section 5. The other potential issue is
that combining all training conversations and then
dividing them into sequences could result in a sin-
gle conversation being split across two different
sequences. For example, the instruction might end
up at the tail end of one sequence, while the corre-
sponding answer starts at the beginning of the next
sequence, which is shown at the bottom of Figure 1.
To alleviate this issue, below, we turn to the other
packing-based method: Greedy Packing.

3.3 Greedy Packing

Instead of random packing that might result in a
single conversation being split across two different
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sequences, greedy packing starts by sorting and se-
lecting training conversations based on their length:

3.3.1 Process of Greedy Packing

Formally, for a m-turn (m > 1) training conver-
sation {(z1,41),- -, (Tm,Ym)}, we first use the
special token [EO.S] to concatenate all instructions
x and answers y into one single sequence s:

wiws -+ - [EOS|wywyyq - - - wrp[EOS]

where w;,1 < ¢ < T denotes the word of the
concatenated sequence, and 7' denotes the number
of words in this sequence.

Then, we sort all of the concatenated sequences
s, iterating from the longest sequence, and, in a
greedy way, we pack as many sequences as possi-
ble without exceeding the maximum input length
allowed by the pre-trained model. The full pro-
cess is present in Appendix 1, which results in M
packed sequences S

w%w% e [EOS]wtllwtllH e w}l [EOS]

wMwdl ... [EOS]w%wyMH e w%w [EOS]|

Finally, similar to the padding method, we trun-
cate packed sequences that exceed the maximum
length allowed by the pre-trained model and pad
shorter sequences with the special token [P AD] to
randomly batch the packed sequences.

3.3.2 Strengths of Greedy Packing

Greedy packing mainly serves as a modification
of random packing, designed to reduce the risk of
dividing relevant contexts across different batches.
Simultaneously, it preserves the benefits of pack-
ing: enhancing the model’s generalization capabili-
ties by exposing it to a wider variety of contextual
combinations within each training sample, thus en-
compassing a more diverse set of scenarios.

3.3.3 Weaknesses of Greedy Packing

In addition to the issue associated with the packing
method: it may cause the model to either exces-
sively ignore or rely on the context by packing
two distinct or similar training samples into one
sequence. Another potential concern is the break in
the random sampling of training data. Since greedy

packing entails sorting and organizing data prior to
batching, it naturally diminishes the randomness in
the distribution of sequences across batches. This
can affect the diversity of data within each batch,
as it is not entirely random but instead guided by
the specific criteria (sequence length), for pack-
ing. However, despite these concerns in subjective
analysis, our analysis and a series of experimental
results in Section 5 have shown that using models
trained with the greedy packing method does not
result in any performance loss across various down-
stream benchmarks and GPT-based evaluations.

4 Experimental Setups

In this section, we sequentially describe our “Train-
ing Setups” in 4.1 and “Evaluation Setups” in 4.2.

4.1 Training Setups
4.1.1 Training Datasets

The development of packing was primarily aimed
at maximizing hardware resource utilization and
minimizing training duration. To demonstrate these
training differences between packing and padding,
we analyze four SFT datasets with different sizes:
(1) WildChat-GPT-4 (~69k) (Zhao et al., 2024), (2)
TULU (~326k) (Wang et al., 2023b), (3) WildChat
(~652Kk) (Zhao et al., 2024), and (4) Open-source
IM (~1.2M). Due to the page limit, we put more
details about these four datasets on Appendix B.1.

4.1.2 Model Training Details

Pre-trained Models. In this paper, our experi-
ments utilize the LLaMA-3-8B and LLaMA-3-70B
(Dubey et al., 2024) models, which are among the
largest and most advanced pre-trained models cur-
rently accessible to the research community.

Chat Template. Following Dubey et al. (2024),
we format all datasets to follow a chat template to
unify the varied styles and formats of instruction-
answer, which details are put in Appendix C.

Training Details. During the training stage, we
follow the default settings in Wang et al. (2023b)
masking loss belonging to the input (instruction),
and only computing the loss after the special token
“<lIstart_header_idl>assistant<lend_header_idI>".

All experiments were deployed the cluster with
4 nodes, each node containing 8 NVIDIA A800
80GB GPUs. For parameters, shown in Appendix
5, we keep the same between padding and packing.
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4.2 Evaluation Setups

Following Wang et al. (2023b) that general-purpose
models should be able to perform some core tasks
before they can generalize to satisfy various prac-
tical needs, we first assess the core capabilities
of our fine-tuned models using specific bench-
marks: MMLU (Hendrycks et al., 2020), MATH
(Hendrycks et al., 2021), GSM8K (Cobbe et al.,
2021), BBH (Suzgun et al., 2022), HumanEval
(Chen et al., 2021) and IFEval (Zhou et al., 2023).
Subsequently, we employ evaluations based on
GPT-4 (WildBench (Lin et al., 2024)) to gauge their
proficiency in following instructions and aligning
with human preferences. Due to the page limit, we
put details of these benchmarks on Appendix C.2.

5 Results and Analysis

In this section, we provide our experimental results
as well as analysis based on them.

5.1 Analysis on Various Benchmarks

Table 2 and Table 1 show results of different size
models and datasets on various benchmarks, from
that we can observe that:

(1) Models using packing generally perform
better on average compared to those using
padding across various benchmarks. Compared
to the padding method, the packing method exposes
models to a wider variety of contextual combina-
tions within each training sample, offering a more
diverse set of scenarios and enhancing the models’
ability to generalize. For example, 61.50 (Padding)
v.s. 65.97 (Random Packing) on the LLaMA-3-
70B for the WildChat (GPT-4) dataset.

(2) As the model size grows, the performance
gap between padding and packing-based mod-
els on the benchmark increases. This is due
to enhanced contextual efficiency. As the model
size increases, its ability to effectively utilize ex-
tended contexts improves, thereby magnifying the
advantages of the diverse contextual combinations
brought by packing. For example, on the Wild-
Chat (GPT-4) dataset, the average score is 49.58
(Padding) v.s. 50.6 (Greedy Packing) on the 8B
model, while on the 70B model, it is amplified to
61.50 (Padding) v.s. 65.92 (Greedy Packing).

(3) Models that use greedy packing generally
perform better than those employing random
packing across most benchmarks, with partic-
ularly strong results on the IFEVal and Wild-
Bench, which assess instruction-following capa-

bilities. This advantage of the greedy packing lies
in its ability to maintain the coherence of multi-turn
conversations, unlike random packing which may
split such conversations across different training
samples. By preserving the integrity of multi-turn
conversations, greedy packing helps models better
learn when to use prior context effectively. This
improves the model’s ability to selectively access
relevant information in instructions, resulting in en-
hanced performance on benchmarks such as IFEVal
and WildBench that evaluate instruction-following
capabilities, for example, the IFEval score im-
proved from 49.54 to 51.57 for the Open-source
IM dataset based on the model LLaMA-3-8B. This
interesting observation also suggests a new direc-
tion: tailoring the packing of specific training
samples to achieve desired performance, where
we will put more efforts in the future.
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Figure 2: The results of fine-tuning the LLaMA-3-8B
model on the TULU dataset using different linear com-
binations of batch size and learning rate.

5.2 Analysis on Training Time

Table 3 shows the training time of different size
models on various training datasets, from that:

(1) Compared to padding, packing greatly
reduces training time, making it possible to
fine-tune large models on large datasets. The
packing method significantly decreases training
time by efficiently utilizing the available computa-
tional resources, for example, 40735s (Padding) v.s.
9758s (Random Packing) on the model LLaMA-
3-70B for the TULU dataset. This reduction is
particularly beneficial for scaling up model train-
ing and enables the effective handling of larger
models and more extensive datasets, for example,
from 184709s (Padding) significantly dropping to

4959



MATH Score

—Padding Random Packing Greedy Packing

0 1/200 1/40 1/20
Multi-turn : Single-turn

Figure 3: The results of fine-tuning the LLaMA-3-8B
model by varying the ratio of multi-turn conversations
and single-turn conversations.

27426s (Greedy Packing) on the LLaMA-3-70B
for the Open-source 1M dataset, thus enhancing the
overall training throughput and allowing for more
complex and comprehensive model fine-tuning.

(2) Using longer training samples increases
the time required for the packing method to
process each sample, making it less suitable for
training on particularly small datasets. Com-
pared to padding, the packing method results in a
lower number of samples processed per second,
for example, 2.162 (Padding) v.s. 1.895 (Ran-
dom Packing) for the TULU dataset based on the
model LLaMA-3-70B. Therefore, if your goal is to
fine-tune a small model (e.g., 6B, 8B, or 9B) on a
small dataset (e.g., 20K or 30K), using the padding
method might be more time-efficient.

5.3 Other Analysis

In addition to the analysis provided, we conducted
additional experiments and concluded that:

(1) In packing mode, the batch size is no
longer directly proportional to the learning rate.
Previous research indicates that when increasing
the batch size by a factor of k, the learning rate
should also be multiplied by k£ to maintain a con-
stant variance in the gradient expectation (Goyal,
2017). This raises the question of whether the lin-
ear relationship between batch size and learning
rate still holds when using the packing method. To
determine this, we compare the padding method
and the random packing method by separately
fine-tuning the LLaMA-3-8B model on the TULU
dataset using different linear combinations of batch
size and learning rate. Results are shown in Figure

2, where the IFEval (Zhou et al., 2023) score is the
primary evaluation metric. The results reveal that
while the batch size and learning rate adhere to a
linear relationship in the padding method, this is
not the case with the packing method. This dis-
crepancy is due to the nature of packing: it does
not ensure that each training sample consistently
contains the same number of training conversations.
Consequently, when the batch size is increased by
a factor of k£, the actual number of training con-
versations is not necessarily scaled up by the same
factor, disrupting the linear relationship between
batch size and learning rate.

(2) Applying packing to datasets with only
single-turn conversations may lead to a signifi-
cant decrease in performance on few-shot bench-
marks. In packing methods, training samples that
lack contextual connections may be combined to
create what could be considered "fake" multi-turn
conversations. When the training dataset includes
multi-turn conversations, this approach allows the
model to learn when to consider the context and
when not to. However, if the training dataset only
consists of single-turn conversations, there’s a risk
that the model might become less effective at utiliz-
ing context, potentially leading to a decline in per-
formance on few-shot benchmarks. To investigate
this, we fine-tuned the LLaMA-3-8B model sepa-
rately using the packing and padding methods on
the filtered 200K OpenHermes 2.5 dataset®, which
only consists of single-turn conversations. The re-
sults, shown in Figure 3, reveal a significant drop in
performance on the MATH (Hendrycks et al., 2021)
benchmark. Then, when we added multi-turn con-
versations into the fine-tuning dataset, scaling from
1/40 to 1/20 of multi-turn conversations was suffi-
cient to restore performance to normal levels.

Interestingly, our recent experiments with our
internal 200K high-quality single-turn dataset did
not show any decline in performance on few-shot
benchmarks. We attribute this to differences in data
quality and plan to conduct further analysis.

6 Conclusion

In this paper, we conduct a thorough comparison of
SFT methods using padding and packing, analyz-
ing datasets from 69K to 1.2M and models ranging
from 8B to 70B. This provides the first detailed
examination of the advantages and limitations of

3https://huggingface.co/datasets/teknium/
OpenHermes-2.5
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packing versus padding, as well as practical con-
siderations for implementing packing in various
training scenarios. Our evaluation spans a range
of benchmarks, including knowledge, reasoning,
and coding, and includes GPT-based assessments,
time efficiency, and other fine-tuning factors. We
also open-source our code, along with checkpoints
fine-tuned on datasets of varying sizes, to support
future research into packing techniques.

7 Limitations

The main limitations of this paper can be summa-
rized in two aspects:

(1) Exploration of Additional Packing Methods.
Due to page constraints, this paper does not cover
a wider range of packing strategies that could po-
tentially enhance model performance. For instance,
we did not explore methods such as grouping simi-
lar samples together into a single packed instance
or deliberately combining highly dissimilar sam-
ples to examine their effects on training dynamics.
These alternative packing approaches may yield
different trade-offs in terms of generalization, sta-
bility, and computational efficiency. In future work,
we intend to systematically investigate these and
other advanced packing techniques to identify the
most effective strategies for different learning sce-
narios.

(2) In-Depth Analysis of Packing and Data Qual-
ity. While we demonstrate the effectiveness of
certain packing techniques, we do not conduct a
detailed investigation into key aspects that could
further refine our approach. Specifically, we did
not explore how tailoring the packing strategy to
specific types of training samples can optimize per-
formance for different tasks. Additionally, the im-
pact of data quality in padding and packing remains
an open question—understanding how variations
in data quality influence training outcomes could
lead to more robust and adaptive packing strategies.
Future research will focus on these aspects, aiming
to develop a more nuanced understanding of how
different packing methods interact with data quality
and task-specific requirements.
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A Algorithm For Greedy Packing
B Experimental Setups

B.1 Training Datasets

The development of packing methods was primar-
ily aimed at maximizing hardware resource utiliza-
tion and minimizing training duration. To demon-
strate these training differences between packing
and padding, we analyze four SFT datasets with
different sizes:

WildChat (GPT-4). WildChat (Zhao et al., 2024)
is a corpus comprising roughly 652k real-world in-
teractions between users and ChatGPT, noted for
its variety of languages and diverse user prompts.
This dataset was created by providing users free
access to ChatGPT and GPT-4 in return for their
consent to collect chat histories. WildChat (GPT-4)
is the smallest dataset in our experiments consisting
of approximately 69k real-world interactions, se-
lected specifically to include interactions between
users and the GPT-4 model.

Algorithm 1: Greedy Packing Training Se-
quences.

1

2

3
4

10

11
12

13
14
15
16
17

Data: sq,..., sy

% Concatenated training sequences

Result: Sq,..., S5y

% Packed sequences

% Sort training sequences based on
their lengths

SORT (s1,...,8N)

% Initialize the max input length
of the pre-trained model

MaxLength < The max input length of

the pre-trained model

% Initialize the index of the
packed sequence S;

j+1

fori=N,...,1do

% Skip the training sequence
that has been visited

if ¢ has not been visited then

if length of

(Sj + si) < MaxLength then

% Pack the training
sequence s; into §j

Sj — Sj + S;

% Mark the training
sequence ¢ as the
visited state

Visited ¢

else

if length of S; # 0 then

% Skip the packed
sequence that is
longer than the max
input length of the
pre-trained model

j+—j+1

end

% Initialize the packed
sequence S; with the
training sequence s;

Sj — S

Visited ¢

end

end
end
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TULU. TULU (Wang et al., 2023b) is a dataset
consisting of around 326k conversations, sourced
both from real-world interactions between users
and open large LLMs as well as from manually
annotated dialogues. As a synthetic dataset, TULU
(Wang et al., 2023b) aims to combine the benefits of
various open resources, enhancing the performance
of models fine-tuned on it to deliver the highest
general performance.

WildChat (Full). WildChat (Full) includes the
entire 652k training conversations from the Wild-
Chat (Zhao et al., 2024) corpus. Utilizing such a
large dataset allows us to confirm that the perfor-
mance differences between padding and packing
methods are statistically significant and not merely
random fluctuations. Additionally, it provides an
opportunity to assess the scalability and consis-
tency of the padding and packing methods as the
dataset is processed over time.

Open-source 1M. The larger the dataset, the
more reliable the conclusions that can be drawn
from the experiments, particularly in terms of how
each method handles memory and computational
resources at varying scales. To facilitate this anal-
ysis, we create a large data mixture named "open-
source 1M", which consists of approximately 1.2M
conversations collected from several high-quality
open resources such as ShareGPT (Chiang et al.,
2023), FLAN V2 (Longpre et al., 2023), Alpaca
(Taori et al., 2023), among others. A complete list
of these resources is detailed in Table 4.

C Chat Template.

Following Dubey et al. (2024), we format all
datasets to follow a chat template to unify the var-
ied styles and formats of the instruction datasets:

As highlighted in red, we add special tokens
“<lIstart_header_idlI>user<lend_header_idl>” and
“<|start_header_idl>assistant<lend_header_idl>"
before instructions and answers separately, and an
end flag “<leot_idI>" at the end of each instruction
and answer, which at inference time, will guide the
model to stop generating responses.

<|start_header_id|>user<|end_header_id|>

g Resistance is due to collision with protons, and pretty much
P everything contains protons. So technically is everything a
resistor? (Or at least, can anything be a resistor?) <|eot_id|>

<|start_header_id | >assistant<|end_header_id|>

Actually, there are lots of materials which don't contain
protons outside of atomic nuclei — e.g. steel, glass, oxygen —
but all these do have resistance. Dominant factors determining
resistance vary from material to material: these can be
scattering of electrons/holes by motion of atomic nuclei (i.e. by
phonons), by point-like defects in the crystals, etc. Scattering
by protons you mention is a very specific case of scattering by
impurities (crystal defects).) <|eot_id|>

<|start_header_id |>user<|end_header_id|>

)
\) Does this then also mean that everything is a conductor - just
depending on environment and voltage? <|eot_id|>

<|start_header_id|>assistant<|end_header_id|>
Apply a voltage (doesn't have to be high), and elecrtricity will

move through most materials. Admittedly very slowly through
some, but still.) <|eot_id|>

C.1 Training Details

LLaMA-3-8B LLaMA-3-70B

padding packing padding packing
Batch (per GPU) 2 2 1 1
Gradient Acc 2 2 2 2
Learning Rate le-5 le-5 le-5 le-5
Deepspeed Stage-3  Stage-3  Stage-3  Stage-3
Max Seq Length 4096 4096 4096 4096
Warmup Ratio 0.2 0.2 0.2 0.2
Epochs 4 4 3 3
Offload Optimation No No Yes Yes
Flash-Attention Yes Yes Yes Yes

(Dao et al., 2022)

Table 5: Training parameters for our experiments.

C.2 Evaluation Setups

Following the argument in (Wang et al., 2023b)
that general-purpose models should be able to per-
form some core tasks before they can generalize
to satisfy various practical needs, we first assess
the core capabilities of our fine-tuned models using
a set of specific benchmarks. Subsequently, we
employ evaluations based on GPT-4 to gauge their
proficiency in following instructions and aligning
with human preferences.

C.2.1 Specific Benchmarks

We evaluate our models on the following bench-
marks:
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Dataset # Instance # Generator

Aya (Singh et al., 2024) 202K Human
ChatArena (Zheng et al., 2024) 33K Open LLMs
LIMA (Zhou et al., 2024) 1K Human
MetaMathQA (Yu et al., 2023) 395K GPT

No Robots (Rajani et al., 2023) 9.5K Human
ShareGPT (Chiang et al., 2023) 114K GPT
UltraChat 200K (Ding et al., 2023) 200K GPT and Human
WildChat (GPT-4) (Zhao et al., 2024) 69k GPT
Evol-Instruct (Xu et al., 2023) 143K GPT

FLAN (Longpre et al., 2023) 100K Human-LLMs Mixtures
Alpaca GPT-4 (Peng et al., 2023) 20K GPT

Code Alpaca (Chaudhary, 2023) 20K Model Self-generation
OpenOrca (Lian et al., 2023) 30K GPT-4
Open-source 1M 1.3M Mixture

Table 4: Details of the collected Open-source 1M dataset.

MMLU. Massive Multitask Language Under-
standing (MMLU) (Hendrycks et al., 2020) con-
sists of 14079 questions covering 57 tasks includ-
ing elementary mathematics, US history, computer
science, law, and more. The wide range of subjects
and complex questions make MMLU suitable for
testing the model’s language comprehension and
decision-making capabilities.

MATH and GSM8K. MATH (Hendrycks et al.,
2021) and GSMS8K (Cobbe et al., 2021) are two dis-
tinct mathematical datasets utilized for evaluating
different aspects of model capabilities. The MATH
(Hendrycks et al., 2021) dataset comprises 12,500
complex competition-level mathematics problems,
primarily designed to assess the ability of mod-
els to tackle challenging and advanced mathemat-
ical questions typically encountered at the col-
lege level. Conversely, the GSM8K (Cobbe et al.,
2021) dataset contains 8,500 high-quality elemen-
tary school math problems, aimed at testing the
basic mathematical reasoning abilities of models.

BBH. BBH, short for BIG-Bench Hard (Suzgun
et al., 2022), is a subset of the BIG-Bench (Srivas-
tava et al., 2022) dataset comprising 23 challeng-
ing tasks. These tasks were selected because they
consistently proved too difficult for current large
language models to handle effectively. Requiring
complex, multi-step reasoning, the BBH dataset
is primarily utilized to assess the general reason-
ing capabilities of models, testing their ability to

navigate and solve intricate problems.

HumanEval. HumanEval (Chen et al., 2021)
consists of 164 programming problems, including
language comprehension, algorithms, and simple
mathematics, with some comparable to simple soft-
ware interview questions. The primary purpose
of this dataset is to assess the ability of models
to generate correct programs based on provided
docstrings.

IFEval. IFEval (Zhou et al., 2023) consists of
500 prompts, each containing specific instructions
like "write an article with more than 800 words" or
"enclose your response in double quotation marks."
This dataset is used to test the ability of large lan-
guage models to accurately follow given instruc-
tions.

C.2.2 Evaluations Based on GPT-4

While human-based evaluation provides important
insights into user preferences, it suffers from sig-
nificant drawbacks like high labor costs and lack
of real-time feedback. To address these limitations,
we employ WildBench (Lin et al., 2024), an au-
tomated evaluation framework based on GPT-4.
WildBench consists of 1,024 tasks manually se-
lected from over one million human-chatbot con-
versation logs. It employs advanced LLMs (e.g.,
GPT-4-turbo) alongside specifically tailored check-
lists to systematically evaluate models’ outputs and
provide structured explanations supporting scoring
and comparisons.
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For settings, we use WildBench-v2* as the test
set and gpt-40-2024-05-13° as the annotator. We
use the OpenCompass toolkit (Contributors, 2023),
which is a one-stop platform for large model evalua-
tions, and official prompts to make sure our results
can be comparable to those on the open leader-
board®.

*To safeguard against the leakage of test data, WildBench
periodically releases new versions of its test set. WildBench-
v2 is the version in: https://huggingface.co/datasets/
WildEval/WildBench-V2

SMost advanced GPT-4 model, which can be found in:
https://platform.openai.com/docs/models/gpt-4o0

6https ://huggingface.co/spaces/allenai/
WildBench
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