
Findings of the Association for Computational Linguistics: ACL 2025, pages 4878–4894
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

SYNFIX: Dependency-Aware Program Repair via RelationGraph Analysis

Xunzhu Tang∗1, Jiechao Gao∗2, Jin Xu∗3, Tiezhu Sun1, Yewei Song1, Saad Ezzini4,
Wendkûuni C. Ouédraogo1, Jacques Klein1, and Tegawendé F. Bissyandé1

1University of Luxembourg
2Center for SDGC, Stanford University

3Jilin University
4King Fahd University of Petroleum and Minerals

Abstract

Recently, software development automation has
been significantly improved by large language
model (LLM) advancements, including bug
localization, code synthesis, program repair,
and test generation. However, most prior work
on program repair focuses on isolated elements,
such as classes or functions, neglecting their
interdependencies, which limits repair accuracy.
We present SYNFIX, a RelationGraph-based
approach that integrates LLMs with structural
search and synchronization techniques for coor-
dinated program repair across codebases. SYN-
FIX constructs a RelationGraph to capture re-
lationships among classes, functions, variables,
and their interactions (e.g., imports, inheritance,
dependencies). Each RelationGraph node in-
cludes detailed code descriptions to help LLMs
understand root causes and retrieve relevant con-
texts. By analyzing one-hop nodes in the Rela-
tionGraph, SYNFIX ensures repairs account for
dependent updates across components. Patch
validation is conducted using regression tests
from the SWE-bench benchmark suite. Evalu-
ated on SWE-bench datasets, SYNFIX resolves
52.33% of issues in SWE-bench-lite (300
GitHub issues), 55.8% in SWE-bench-verified
(500 issues), and 29.86% in SWE-bench-full
(2,294 issues), outperforming baselines such
as Swe-Agent, Agentless and AutoCodeRover.
The codebase is available at https:
//github.com/Daniel4SE/SynFixCode.

1 Introduction

Large language models (LLMs) have reshaped soft-
ware engineering by automating diverse tasks such
as bug localization, program repair, and test gener-
ation (Chen et al., 2021; Austin et al., 2021; Li et al.,
2023; Wei et al., 2023). However, applying LLMs to
repository-level debugging still presents significant
challenges. Although existing methods do well at
resolving isolated issues, they often fail to capture

∗Equal contribution.

the broader context of repository-wide dependen-
cies between files, classes, and functions (Zhou
et al., 2012; Austin et al., 2021). Repository-level
tasks are inherently difficult as they involve
complex interactions across components that
require a holistic understanding of the codebase.
Traditional approaches struggle to address these
challenges, often leading to partial or suboptimal
fixes. Consequently, there is a pressing need for
solutions that can effectively model and address the
interconnected nature of large-scale codebases.

To bridge this gap, benchmarks like SWE-bench
and its subset swebenchlite (Jimenez et al., 2024a;
swe, 2024) evaluate real-world software devel-
opment tasks. SWE-bench includes issues from
open-source repositories, testing tools on challenges
such as multi-file dependencies, parameter syn-
chronization, and regression testing. SWE-bench
Lite focuses on bug-fixing in a controlled setting.
These benchmarks reveal current limitations and
help develop scalable debugging solutions.

Agent-based systems have been proposed
to address these repository-level challenges by
equipping LLMs with toolsets for iterative decision-
making (Zhang et al., 2024a; Yang et al., 2024b).
These systems enable LLMs to autonomously de-
cide on actions, perform operations like file edits or
test executions, and iteratively refine their solutions
based on feedback. While promising in theory,
agent-based approaches face key limitations in prac-
tice; for example, the complexity of tool usage often
introduces abstraction layers that are prone to errors,
especially when mapping actions to APIs (Liu
et al., 2024a). Moreover, the lack of robust planning
mechanisms means that agents frequently make
suboptimal decisions, leading to inefficiencies and
unnecessary costs (Xia et al., 2024). The iterative,
multi-turn nature of these methods exacerbates
these issues, as incorrect decisions in early stages
can cascade into larger problems, significantly
hindering performance (Olausson et al., 2023; Shi

4878

https://github.com/Daniel4SE/SynFixCode
https://github.com/Daniel4SE/SynFixCode

et al., 2023). Furthermore, their limited ability to
self-reflect and filter irrelevant or incorrect feedback
amplifies these challenges, making agent-based sys-
tems less reliable for large-scale debugging tasks.

To address these limitations, we propose SYN-
FIX, including four-phase modules: RelationGraph,
Localization, Synchrony, and Patch Validation.
SYNFIX shifts the focus from iterative exploration
to structured, deterministic processes that explicitly
model the structural relationships within a codebase.
Central to SYNFIX is the RelationGraph, which
captures dependencies among files 1, functions,
variables, and classes, enabling a comprehensive
understanding of the codebase. This representation
ensures that fixes in one part of the codebase are
propagated correctly across related components,
maintaining repository-wide consistency. By lever-
aging the RelationGraph, SYNFIX systematically
localizes issues, identifies affected contexts, and
synchronizes repairs to address interdependencies
effectively. Unlike agent-based systems, SYNFIX

avoids uncontrolled exploration, ensuring that each
repair step is precise and well-informed.

In the RelationGraph phase, SYNFIX models the
structural dependencies in the codebase. During
the Localization phase, it uses this framework to
identify suspicious files, classes, and specific lines
of code. Synchrony ensures that fixes propagate
correctly across interconnected components, while
Paired Patch Validation rigorously tests the patches
using regression suites to ensure correctness and
compatibility with existing functionality. This deter-
ministic and interpretable design eliminates the in-
efficiencies of agent-based systems, offering a cost-
effective solution for real-world software debugging.
SYNFIX has demonstrated exceptional performance
on SWE-bench benchmarks (swe, 2024), achieving
state-of-the-art results while maintaining scalability
and reliability. Its success highlights the potential
of structured, agentless approaches to set new stan-
dards for efficient, repository-level program repair.

Contributions

• RelationGraph-Driven Framework: SYN-
FIX introduces a novel RelationGraph-based
approach that systematically models dependency
relationships within a repository. Our approach
enables precise localization and coordinated
synchronization of fixes.

1Why file name or folder name is considered as a kind of
node: Some files they could have the function with the same
name but in different features.

• Enhanced Localization and Synchronization:
SYNFIX employs a hierarchical localization
strategy to pinpoint issues with high precision
and ensures that the fixes propagate correctly
across interconnected components through its
synchrony phase.

• Efficient Validation Mechanism: Through
Patch Validation, SYNFIX rigorously tests pro-
posed patches using regression suites, ensuring
correctness and compatibility while minimizing
the risk of introducing new errors.

• State-of-the-Art Performance: SYNFIX

achieves superior results on SWE-bench bench-
marks, outperforming agent-based baselines in
resolution rates, scalability, and cost-efficiency.

2 Methodology

Figure 2 presents an overview of SYNFIX, which
operates in four main phases: RelationGraph (1),
Localization (2), Synchrony (3), and Patch
Validation (4 , 5 , 6 , 7 , and 8).

Given a problem statement and an existing
codebase as inputs, SYNFIX proceeds as follows. 1

First, SYNFIX constructs a RelationGraph from the
input codebase, capturing its hierarchical structure,
variables, classes, functions, and their calling rela-
tionships. 2 Next, using both the RelationGraph
and the problem statement, SYNFIX prompts a
low-cost LLM (e.g., GPT-3.5) to identify and rank
the top N most suspicious nodes that may require
edits to address the issue. These nodes are presented
with their surrounding context—such as the
corresponding function, class, or code variable line.

3 To account for synchronous changes, SYNFIX

then identifies the one-hop neighbors of the suspi-
cious nodes, extracting these neighbors along with
their corresponding lines, functions, and classes.
These extracted contexts serve two purposes: (1)
as additional input for the LLM, they help evaluate
and refine the understanding of issues in the target
suspicious nodes, ultimately facilitating more
accurate modifications; and (2) after addressing the
primary target nodes, the LLM evaluates whether
corresponding updates are necessary for these one-
hop neighbors, especially in cases where changes
to parameters or related structures in the primary
nodes propagate to their neighbors. The first
purpose is discussed in detail in the main text, while
the second is elaborated upon in the Appendix.

4 With this preliminary set of suspicious nodes
identified, SYNFIX provides their full code contexts

4879

to the LLM. The model refines and narrows down
the potential edit locations (e.g., specific lines) for
both dynamic and static process. This step ensures
that the final chosen edit points are as accurate as
possible. 5 In the repair phase, SYNFIX presents
the problem statement and the identified edit
locations to the LLM. The model is then prompted
to propose patches aimed at resolving the identified
issues. 6 Once patches are generated, SYNFIX

attempts to apply them to the original codebase.
If a patch cannot be cleanly applied, the process
returns to the previous step 4 , repeating for a
preconfigured number of iterations. 7 If the patch
application is successful, SYNFIX validates the
updated codebase by running regression tests. If
these tests pass, the patch is considered successful.

8 Finally, SYNFIX updates the RelationGraph
to reflect the changes in the codebase, ensuring that
subsequent iterations start from an accurate and up-
to-date state. The following sections provide a more
detailed explanation of each phase within SYNFIX.

2.1 RelationGraph Building
The RelationGraph is a directed graph where
each node represents a code entity, and edges
capture hierarchical or dependency relationships
between these entities. On average, per 10,000
lines of code, the RelationGraph comprises roughly
1,335 nodes (including 1,020 variable names,
278 function names, and 37.4 class names) and
about 2,600 edges representing call relationship.
We store and compute our RelationGraph using
networkx (Hagberg et al., 2008) and DGL (Deep
Graph Library) (Wang et al., 2019).
Nodes: Each node in the RelationGraph corre-
sponds to a distinct code entity within the project,
such as: folder name (with relative path), file name
(with relative path), variable name, class name,
function name. By including nodes at multiple
abstraction levels, the RelationGraph allows for
a holistic understanding of the codebase—from
its highest-level directory structure down to the
granular level of individual methods.
Edges: Edges in the RelationGraph represent struc-
tural, import-based, and functional dependencies.
For example:

• Folders and their subfolders, as well as folders
and the files within them, are connected by
edges to reflect hierarchical relationships.

• Files that import other files or modules are
linked, indicating a dependency between these
code units.

CodeBase
RelationGraph

Building
RelationGraph

Nodes

black node represents: 1. variable; 2. class; 3. function; 4. file/folder name

Edge 1

Edge merging
example in

Building Process

Edge 2
Common node
in Edge 1 & 2

Merged Edge 1 & 2
and we get a small
RelationGraph

1

21 Pipeline of RelationGraph
building

An example of edges merging
during building RelationGraph

2

green and grey nodes are non-shared nodes

Figure 1: Pipeline of RelationGraph building and an edge
merging example during building RelationGraph.

• If a variable, class, or method defined in one
file is referenced or invoked by another file or
entity, an edge is drawn to represent that rela-
tionship (e.g., a method A calling method B).

Subgraph Construction and Merging: Relation-
Graph can be seen as a merging result of a lot of
edges. As shown in Figure 1, we firstly take an
overall pipeline of building RelationGraph. Then,
specifically, we take an example to show how
these edges can be merged into a RelationGraph.
Overall pipeline: Given a codebase, we can extract
numerous edges that link two nodes with calling
relationships. Then, with these edges, we can
merge them them into the final RelationGraph.
An example of merging will be introduced in the
following. Example of merging edges: As Edge 1
and Edge 2 have a common red node, we can merge
these two edges into a small graph, just shown in
the second part in Figure 1.

2.2 Localization
In this section, we focus on code localization for
problem statements and obtain necessary contextual
information for later patch generation by foundation
large language models.

As a codebase contains various codes and
complex structural organization, we need to quickly
localize the most suspicious code line related to
the problem statement. To systematically identify
and rank these minimal code regions requiring
modification, we integrate a multi-step strategy that
includes RelationGraph analysis, embedding-based
retrieval, and LLM-based reasoning. The localized
code’s context serves as input to the LLM for
later patch generation. However, considering
only the direct context of the localized code line

4880

Problem
Statement

Pass

Suspicious code
localization

Static Process

 Bug Analysis
& Patch

Generation

Applied?

</>
+++---

Static Patch

Updated
RelationGraph

Updated
CodeBase

CodeBase

class

variable
function

N

</>+
- </>+
- </>+
-One-hop

Nodes

RelationGraph
Building

1

2

3

4

Dynamic Process

No

Yes

5

6
7 8

RelationGraph Localization Synchrony Patch Validation

Generated patches

Figure 2: Pipeline of SYNFIX

is insufficient, as critical semantic and structural
dependencies may exist elsewhere in the codebase.
Thus, step 2 introduces a dynamic process to
retrieve additional relevant context, ensuring more
informed and accurate patch generation.

Details of the first 2 steps are introduced as
follows:
Step 1: Suspicious Node Identification. Let the
RelationGraph be represented as G=(V,E), where
V denotes nodes and E is the set of edges for nodes.
Given a problem statement P , SYNFIX derives a
ranking R⊆V of the top-N most suspicious nodes
using a hybrid retrieval mechanism:

• Embedding-based retrieval: Each node
v∈V is converted into a textual representation
containing its code snippet, comments,
and related files. Using OpenAI’s ‘text-
embedding-3-small’ model, embeddings ϕ(v)
are computed for each node and compared
with ϕ(P) (the problem statement embedding)
using cosine similarity. The top-N candidates
with the highest similarity scores are selected.

• LLM-based reranking: A structured
prompt containing the problem statement and
extracted node context is provided to GPT-3.5,
which ranks the candidates based on their
relevance to the issue.

After LLM-based reranking, we can localize
the suspicious lines.
Step 2: Contextualized Error Correction. Once
the most relevant suspicious nodes are identified,
SYNFIX refines the error localization through static
process and dynamic process, both of which guide
LLM-based correction.

• Static Process: The LLM performs error
correction using only the local context of the
identified suspicious node. This means that
the code snippet, along with its immediate
surrounding context (e.g., function or class def-

inition), is provided to the model with carefully
designed prompts to adjust for potential errors.

• Dynamic Process: To improve correction
accuracy, SYNFIX extends the context by
incorporating one-hop neighbors from the
RelationGraph. These additional nodes
provide supplementary structural information,
such as dependencies and interactions with
the suspicious node. The LLM then processes
both the direct context and the expanded
context from RelationGraph neighbors,
improving its ability to generate precise fixes.

Since we have performed localization and pro-
vided both static and dynamic process, we supply
sufficient contextual information for utilizing
LLM in bug analysis (Step 4) and fixing patch
generation, as illustrated in Figure 2, to address
the stated problem. To verify whether the generated
patches effectively resolve the issue, we discuss
this in Patch Validation. Additionally, because the
dynamic process collects suspicious code one-hop
node information from the RelationGraph, these
nodes may also exhibit issues since they are struc-
turally related to the suspicious code lines. If such
issues arise, further corrective modifications are
necessary. This aspect is discussed in Synchrony.

2.3 Synchrony

In large-scale codebases, modifying a single code
entity can introduce inconsistencies in its dependent
components. The synchrony phase in SYNFIX

ensures that when a suspicious node vs is modified
via a patch ∆(vs) (discussed in Appendix E.4),
all directly related nodes are checked and updated
to maintain consistency. For each suspicious
node, SYNFIX identifies its one-hop neighbors,
which are components that either reference or are
referenced by the modified node. After applying
a modification to the suspicious node, SYNFIX

4881

verifies whether any inconsistencies arise in its
neighboring components. If inconsistencies are
detected, SYNFIX generates additional patches for
affected neighbors to maintain consistency.

Algorithm 1: Synchronous Repair Process
Input :G=(V,E): CallGraph, vs: suspicious node,

∆(vs): modification to vs
Output :Updated codebase with consistent

synchronous modifications

Extract one-hop neighbors:
N(vs)←{v∈V |(vs,v)∈E∨(v,vs)∈E}.

foreach v∈N(vs) do
if ConsistencyCheck(v,∆(vs)) = False then

Apply modification ∆(v) to v.

return Updated codebase.
Function ConsistencyCheck(v,∆(vs)):

Input :v: neighbor node, ∆(vs): modification
to suspicious node

Output :True if consistent, False otherwise
Evaluate whether modifications to vs introduce

inconsistencies in v.
if Dependencies in v are affected then

return False

return True

Algorithm 1 details the synchronization process.
The algorithm first extracts one-hop neighbors from
the RelationGraph, ensuring that all directly de-
pendent components are identified. Each extracted
neighbor is subjected to a consistency check, where
its local context is analyzed against the modifi-
cations made to vs. If dependencies are affected,
SYNFIX determines whether a corrective modifica-
tion is required. When inconsistencies are detected,
SYNFIX generates and applies a corrective patch
∆(v) to update the affected node. This process
iterates until all affected components are brought
into a consistent state. By systematically iterating
through affected dependencies, SYNFIX ensures
that modifications do not introduce unintended
errors elsewhere in the codebase, thereby preserving
functional correctness and structural integrity.

The synchronization process follows a structured
procedure: (1) The algorithm first identifies all
immediate dependencies of the modified node using
the RelationGraph, which provides a representation
of interdependencies across the codebase. (2) For
each identified neighbor, SYNFIX assesses whether
the applied modification affects its functional
behavior by examining variable dependencies,
function invocations, and data flow relations.
If no inconsistency is found, the node remains
unchanged. (3) If inconsistencies arise, SYNFIX

formulates a corrective patch based on the nature

of the dependency violation. This patch may
involve updating function calls, adjusting variable
assignments, or restructuring the code to preserve
consistency. (4) The process repeats iteratively,
propagating updates across the affected regions
until all dependencies are synchronized.

2.4 Patch Validation

Patch validation is the final and critical phase
of SYNFIX, ensuring that generated patches not
only resolve the identified issues but also preserve
the overall functionality of the codebase. In this
phase, the updated codebase, denoted as Cmod, is
rigorously evaluated against a curated test suite T to
verify that all changes are both syntactically correct
and semantically consistent with expected behavior.

The process begins as soon as a patch∆ is applied
to the original codebase Corig. SYNFIX executes
all tests in T—which include both regression tests
for baseline behavior and functional tests targeting
specific features—to ensure that the modifications
do not introduce new errors. A patch is considered
valid only if every test passes.

If any test fails, SYNFIX enters an iterative refine-
ment loop. Diagnostic feedback (such as error logs
and stack traces) is collected and used to prompt
the LLM to refine ∆. In this refinement process,
the LLM may adjust the patch for the originally
identified suspicious node or, if new issues emerge,
generate a patch for a different node. This iterative
cycle continues until a valid patch is produced or
a maximum number of iterations Kmax is reached.
A history of attempted patches is maintained to pre-
vent redundant corrections and cyclical refinements.

Algorithm 2 details the patch validation and
refinement process. In summary, SYNFIX applies
a patch to Corig, validates the resulting Cmod against
T , and, if necessary, iteratively refines the patch
based on feedback until the codebase passes all tests.

3 Experiment Design

3.1 Datasets

SWE-bench (Jimenez et al., 2024b): We evaluate
SYNFIX using three benchmarks: Lite, Verified, and
Full, which include real-world software engineering
problems requiring patches. Lite: A curated set of
300 high-quality, self-contained problems designed
for rapid prototyping and testing. Verified and Full:
Larger benchmarks covering increasingly complex
problems and extensive codebases.
BigCodeBench (Zhuo et al., 2024): BigCodeBench

4882

Algorithm 2: Patch Validation
Input :Corig: original codebase, ∆: generated patch,

T : test suite, Kmax: max iterations
Output :Cmod: validated codebase or failure status

Initialize: k←0, Cmod←Corig.
repeat

Apply ∆ to Corig, resulting in Cmod.
if Validate(Cmod, T) = True then

return Cmod.

else
Increment k←k+1.
Request refinement from LLM for ∆.

until k=Kmax

return Failure (no valid patch found within Kmax).
Function Validate(Cmod,T):

Input :Cmod: modified codebase, T : test suite
Output :True if all tests pass, False otherwise
foreach Ti∈T do

if Run(Ti, Cmod) ̸=Oi then
return False.

return True.

is a benchmark designed to evaluate large language
models on function-level code generation tasks. It
includes 1,140 tasks spanning 139 libraries across
seven domains, with an average of 5.6 test cases per
task to ensure rigorous evaluation.

3.2 Baselines & Metrics

Baselines We compare SYNFIX against 34 state-
of-the-art baseline approaches on SWE-bench 2,
including both open-source and closed-source
methods. These baselines encompass a diverse set
of techniques, including agent-based, agentless,
and retrieval-augmented generation (RAG) models.
Closed-source baselines (indicated accordingly)
primarily provide final submission patches without
revealing their execution trajectories, making it
difficult to analyze the intermediate steps taken to
generate fixes.
Metrics Following prior work (Zhang et al., 2024b;
Xia et al., 2024), we evaluate performance using
three key metrics: (1) % Resolved – the percentage
of issues successfully fixed by the tool within the
benchmark dataset; (2) Avg. $ Cost – the average
inference cost per issue, reflecting computational
efficiency; and (3) Avg. # Tokens – the average
number of input and output tokens used per query,
indicating the LLM’s resource consumption. These
metrics provide a comprehensive assessment of
effectiveness, efficiency, and scalability across
different repair strategies.

2https://www.swebench.com

3.3 Research Questions

[RQ1] Performance: How effective is SYNFIX in
resolving problems?
[RQ2] Ablation Study: How does removing
components like dynamic process or RelationGraph
affect performance?
[RQ3] Effect of Foundation Models: What is the
difference of SYNFIX by using different foundation
models?
[RQ4] Transferability: How well does SYNFIX

generalize to new data, such as BigCodeBench?

4 Experimental Results

Table 1: Results on SWE-bench Lite.

Tool LLM % Resolved
Avg.

$ Cost
Avg.

Tokens

CodeStory Aide (cod, 2024) GPT-4o+Claude 3.5 S 129 (43.00%) - -
Bytedance MarsCode (Liu et al., 2024b) N/A 118 (39.33%) - -
Honeycomb (hon, 2024) N/A 115 (38.33%) - -
MentatBot (men, 2024) GPT-4o 114 (38.00%) - -
Gru (gru, 2024) N/A 107 (35.67%) - -
Isoform (iso, 2024) N/A 105 (35.00%) - 41,963
SuperCoder2.0 (sup, 2024) N/A 102 (34.00%) - -
Alibaba Lingma Agent (lin, 2024) GPT-4o+ Claude 3.5 S 99 (33.00%) - -
Factory Code Droid (fac, 2024) N/A 94 (31.33%) - -
Amazon Q Developer-v2 (ama, 2024) N/A 89 (29.67%) - -
SpecRover (Ruan et al., 2024) GPT-4o+ Claude 3.5 S 93 (31.00%) $0.65 -
CodeR (Chen et al., 2024) GPT-4 85 (28.33%) $3.34 323,802
MASAI (Arora et al., 2024) N/A 84 (28.00%) - -
SIMA (sim, 2024) GPT-4o 83 (27.67%) $0.82 -
IBM Research Agent-101 (ibm, 2024) N/A 80 (26.67%) - -
OpenCSG StarShip (ope, 2024a) GPT-4 71 (23.67%) - -
Amazon Q Developer (ama, 2024) N/A 61 (20.33%) - -
RepoUnderstander (Ma et al., 2024) GPT-4 64 (21.33%) - -

AutoCodeRover-v2 (aut, 2024) GPT-4o 92 (30.67%) - -
RepoGraph (rep, 2024) GPT-4o 89 (29.67%) - -
Moatless (moa, 2024) Claude 3.5 S 80 (26.67%) $0.17 -

GPT-4o 74 (24.67%) $0.14 -
OpenDevin+CodeAct v1.8 (ope, 2024b) Claude 3.5 S 80 (26.67%) $1.14 -
Aider (Gauthier, 2024) GPT-4o+ Claude 3.5 S 79 (26.33%) - -
SWE-agent (Yang et al., 2024b) Claude 3.5 S 69 (23.00%) $1.62 521,208

GPT-4o 55 (18.33%) $2.53 498,346
GPT-4 54 (18.00%) $2.51 245,008

AppMap Navie (app, 2024) GPT-4o 65 (21.67%) - -
AutoCodeRover (Zhang et al., 2024a) GPT-4 57 (19.00%) $0.45 38,663

RAG (Yang et al., 2024b) Claude 3 Opus 13 (4.33%) $0.25 -
GPT-4 8 (2.67%) $0.13 -
Claude-2 9 (3.00%) - -
GPT-3.5 1 (0.33%) - -

Agentless (Xia et al., 2024) GPT-4o 96 (32.00%) $0.70 78,166

SYNFIX GPT-4o 157 (52.33%) $0.56 39,871

(Note: N/A means that the close-source tool does not show its
LLM in the official SWE-bench leaderboard.)
4.1 [RQ1]: Overall Performance

We evaluated SYNFIX on three benchmark
datasets—SWE-bench Lite, SWE-bench Full, and
SWE-bench Verified—each reflecting different
levels of issue complexity and description quality.
In this section, we discuss the performance on
SWE-bench Lite. Moreover, we also elaborate on
the performance on other two verions SWE-bench
in Appendix Sec F.1 and Sec F.2.

On SWE-bench Lite, SYNFIX resolves 157
out of 300 issues (52.33%), a marked improve-
ment over competing agent-based systems (e.g.,
AutoCodeRover-v2 at 30.67%) and agentless ap-
proaches (32.00%). This high resolution rate is

4883

https://www.swebench.com

intrinsically tied to SYNFIX ’s structured approach:
a RelationGraph is built to capture hierarchical
and dependency relationships across code entities,
which enables a fine-grained, hierarchical localiza-
tion of faults. By combining static structural anal-
ysis with dynamic process that captures runtime be-
haviors—such as parameter interactions and execu-
tion paths—SYNFIX is able to pinpoint error-prone
regions with enhanced precision. Furthermore, its
paired patch validation mechanism rigorously tests
proposed fixes using regression suites, ensuring
that corrections maintain overall codebase integrity
while minimizing the introduction of new errors.

In addition to its repair accuracy, SYNFIX demon-
strates remarkable efficiency. It operates at an aver-
age cost of only $0.56 per issue and utilizes 39,871
tokens per query, representing a significant reduc-
tion in resource consumption compared to methods
like CodeR (which incurs $3.34 per issue and
323,802 tokens). On SWE-bench Verified, where
the problem descriptions are of higher quality and
demand stricter repair criteria, SYNFIX achieves
a 55.8% resolution rate. Its intrinsic localization
performance reporting accuracies of 76.4% at the
class level, 56.7% at the function level, and 40.7%
at the line level—demonstrates the effectiveness
of the RelationGraph-driven analysis in handling
complex, multi-file dependencies. Overall, inte-
grating dynamic feedback, structured localization,
and iterative patch refinement in SYNFIX yields
high repair success and ensures scalability and
cost-effectiveness in diverse debugging scenarios.

4.2 [RQ2]: Ablation Study

SynFix (Default)

Without Dynamic Analysis
Without CallGraph

Without Dynamic + CallGraph

Configuration Variants

0

10

20

30

40

50

Re
so

lv
ed

 (%
)

52.33%

45.00%

36.67%

31.00%

% Resolved

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Co
st

 ($
)

$0.56

$0.43

$0.37

$0.30

Cost ($)

25000

30000

35000

40000

45000

To
ke

n
Co

un
t

39,871

33,124

29,523

26,180

Comparison of SynFix Configurations

Token Count

Figure 3: Ablation Study: Impact of removing dynamic
process and RelationGraph dependencies on SWE-bench
Lite.

We evaluated SYNFIX by selectively disabling
dynamic process and RelationGraph dependencies
to assess their individual contributions, as shown
in Figure 3. In the default configuration—with both

components enabled—SYNFIX achieves a resolu-
tion rate of 52.33%, an average cost of $0.56 per
issue, and consumes 39,871 tokens per query. When
dynamic process is removed, the resolution rate de-
creases to 45.00%, with an average cost of $0.43 and
33,124 tokens used, highlighting the importance
of runtime context for parameter synchronization
and inter-module interactions. Excluding Relation-
Graph dependencies further lowers the resolution
rate to 36.67%, with an average cost of $0.37 and
29,523 tokens, underscoring the role of structured
contextual information in accurate fault localization.
In the scenario where both dynamic process and
RelationGraph dependencies are disabled, the
resolution rate plummets to 31.00%, with the cost re-
duced to $0.30 and token usage dropping to 26,180.
Although these degraded configurations yield
marginal savings in cost and token consumption, the
significant decline in resolution rate confirms that
integrating both dynamic and structural analyses
is crucial for optimal repair performance.

4.3 [RQ3]: Results on Foundation Models

Table 2 presents an intrinsic performance compar-
ison of foundation models powering SYNFIX on
SWE-bench Lite. Our evaluation includes closed-
source models (GPT-4o and Claude 3.5 Sonnet) and
open-source models (Qwen-2.5 Coder (Yang et al.,
2024a) and LLAMA3.1-405B (Dubey et al., 2024)).

The closed-source models exhibit a clear
cost-performance trade-off. GPT-4o achieves the
highest resolution rate at 52.33% with an average
query time of 3.8 seconds, costing $0.56 per query
and consuming 39,871 tokens. This suggests that
GPT-4o’s ability to leverage additional tokens
translates into richer contextual understanding
and improved accuracy. In contrast, Claude 3.5
Sonnet attains a slightly lower resolution rate of
48.67% but processes queries faster (2.9 seconds)
and more cost-effectively ($0.48 per query with
32,124 tokens), making it a strong choice for
high-throughput or budget-sensitive applications.
Among the open-source models, Qwen-2.5 Coder
achieves a 45.67% resolution rate with notably low
cost, though its token usage remains comparable
to GPT-4o, which may indicate a more efficient, yet
less context-rich processing approach. LLAMA3.1-
405B, with a resolution rate of 42.33% and a longer
average query time (4.3 seconds), appears to be less
optimized for the intricacies of debugging tasks.

4884

Table 2: Performance comparison between GPT-4o and
Claude 3.5 Sonnet on SWE-bench Lite.

Model % Resolved Avg. Time (s) Avg. $ Cost Avg. Tokens

GPT-4o 157 (52.33%) 3.8 $0.56 39,871
Claude 3.5 Sonnet 146 (48.67%) 2.9 $0.48 32,124
Qwen-2.5 Coder 137 (45.67%) 3.5 $0.12 39,253
LLAMA3.1-405B 127 (42.33%) 4.3 $0.59 37,874

4.4 [RQ4]: Performance on BigCodeBench

Table 3 summarizes the Pass@1 results obtained
from our experiments on the BigCodeBench
benchmark using SynFix integrated with GPT-4o,
Qwen, and LLAMA3. Our evaluation shows that
SynFix-GPT-4o outperforms the baseline models,
achieving a Pass@1 of 37.2%, compared to the
top o1-2024-12-17 configurations at 35.5% (high
reasoning) and 34.5% (low reasoning), DeepSeek-
R1 at 35.1%, as well as Gemini-Exp-1206 and
DeepSeek-V3-Chat, both at 34.1%. SynFix-Qwen
and SynFix-LLAMA3 attained Pass@1 scores of
34.2% and 33.8% respectively, demonstrating that
the enhanced reasoning capabilities of GPT-4o
within SynFix deliver a significant performance
boost on program repair tasks.

Table 3: BigCodeBench Performance Comparison.

Model Pass@1

o1-2024-12-17 (temperature=1, reasoning=high) 35.5
DeepSeek-R1 35.1
o1-2024-12-17 (temperature=1, reasoning=low) 34.5
Gemini-Exp-1206 34.1
DeepSeek-V3-Chat 34.1
SynFix-Qwen-2.5 Coder 34.2
SynFix-LLAMA3.1-405B 33.8
SynFix-GPT-4o 37.2

5 Related Work

5.1 Agent-Based Software Engineering

Agent-based systems leverage large language
models (LLMs) to iteratively plan and execute
multi-step debugging and repair tasks. Early
approaches like Devin (dev, 2024) and Open-
Devin (ope, 2024b) introduced agents capable of
file editing and environment interaction, while later
systems such as SWE-agent (Yang et al., 2024b)
and Aider (Gauthier, 2024) enhance these methods
with direct repository interactions and targeted
fault localization. More recent tools, including
Moatless (moa, 2024) and AutoCodeRover (Zhang
et al., 2024a), integrate code search and context
retrieval to refine patch generation. Despite

these advances, the high computational costs and
complexity of agent-based approaches motivate our
simpler, deterministic pipeline.

5.2 Localization and Repair

Fault localization techniques have evolved from dy-
namic methods (e.g., spectrum-based and mutation-
based approaches) that require comprehensive
test suites, to static, information-retrieval based
methods that compare code with bug reports. While
effective for single-file issues, these methods strug-
gle with repository-level defects due to complex
interdependencies. Recent LLM-based repair tech-
niques (Xia et al., 2023; Kolak et al., 2022) generate
and rank candidate patches to improve scalability
and accuracy. Our approach adopts a similar patch-
generation strategy while ensuring a structured,
interpretable, and cost-effective repair process.

Overall, our method builds on prior work while
overcoming key limitations. By integrating Rela-
tionGraph analysis, we effectively handle cross-file
dependencies that traditional fault localization
methods often miss. For further detailed related
work, please see the Appendix D.

6 Conclusion

SYNFIX addresses the challenges of repository-
level program repair with a RelationGraph and
Synchronous approach. Its four-phase pipeline: Re-
lationGraph, Localization, Synchrony, and Paired
Patch Validation—enables precise issue localiza-
tion, consistent synchronization of changes, and
thorough validation to ensure repository integrity.
By leveraging the RelationGraph representation,
SYNFIX effectively captures code dependencies,
enabling it to handle multi-file and cross-module in-
teractions that are common in real-world codebases.
This representation not only ensures that fixes
are accurate and localized but also helps maintain
consistency across interdependent components of
the repository. We evaluate our experiments across
all versions of SWE-bench datasets. Experimental
results indicate that SYNFIX can outperform
the state-of-the-art approaches on all versions of
SWE-bench datasets across accuracy, and cost.

To facilitate replication, we have made the source
code available at

https://github.com/Daniel4SE/SynFixCode

4885

https://github.com/Daniel4SE/SynFixCode

7 Acknowledgments

This work is supported by the NATURAL project,
which has received funding from the European
Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation
programme (grant No. 949014). The author
Jiechao Gao is partially sponsored by funding from
Yonghua Foundation.

Ethics Statement

This work aims to improve repository-level program
repair by developing a structured and deterministic
tool. SYNFIX uses pre-trained language models
and established benchmarks, such as SWE-bench,
without introducing or manipulating sensitive or
proprietary data. We ensure that the design and
evaluation of SYNFIX adhere to ethical research
standards, including transparency, reproducibility,
and respect for intellectual property. However,
SYNFIX’s reliance on language models may inherit
biases or inaccuracies present in the underlying mod-
els, which should be considered in its application.

Limitations

While SYNFIX achieves strong performance on
SWE-bench benchmarks, several factors may limit
its effectiveness in real-world scenarios. The tool’s
performance may vary when applied to highly
domain-specific repositories or programming
languages that differ from those used in training the
underlying language models, potentially affecting
its generalizability. Additionally, SYNFIX relies
heavily on regression tests to validate patches,
meaning that in environments with incomplete
or low-quality test coverage, the reliability of
the generated repairs may be compromised.
Another limitation is that SYNFIX assumes
well-documented code dependencies and accurately
structured information within the CallGraph;
however, in projects with poorly structured or
inadequately documented code, accurate fault
localization and repair propagation may be hindered.
Furthermore, SYNFIX does not currently account
for version-specific code generation within repos-
itories (e.g., handling differences between Torch
2.2 and Torch 1.1), which presents challenges in
evolving software ecosystems where dependencies
frequently change. Incorporating version-aware
dependency tracking could significantly enhance
the method’s utility, as highlighted by works such
as VersiCode, LibEvolutionEval, and Code-

UpdateArena. To mitigate these issues, future
work could integrate heuristic-based validation and
robust static analysis techniques to complement re-
gression tests, reducing dependence on test quality.
Additionally, expanding SYNFIX to support a wider
range of programming languages, domain-specific
characteristics, and version-aware dependency
management will be critical for improving its
adaptability and broadening its applicability.

References

2024. Agent-101: A software engineering
agent for code assistance developed by ibm
research. https://github.com/swe-bench/
experiments/blob/main/evaluation/lite/
20240612_IBM_Research_Agent101/README.
md/.

2024. Aide by codestory. https:
//github.com/swe-bench/experiments/
tree/main/evaluation/lite/20240702_
codestory_aide_mixed.

2024. Alex sima. https://github.com/
swe-bench/experiments/tree/main/
evaluation/lite/20240706_sima_gpt4o.

2024. Amazon q developer the most
capable generative ai–powered assis-
tant for software development. https:
//aws.amazon.com/q/developer//.

2024. Appmap speedruns to the
top of the swe bench leaderboard.
https://appmap.io/blog/2024/06/20/
appmap-navie-swe-bench-leader/.

2024. Autocoderover autonomous software
engineering. https://autocoderover.dev/.

2024. Devin, ai software engineer. https:
//www.cognition.ai/introducing-devin.

2024. Factory bringing autonomy to software
engineering. https://www.factory.ai/.

2024. Honeycomb. https://honeycomb.sh.

2024. Isoform. https://github.com/
swe-bench/experiments/tree/main/
evaluation/lite/20240829_Isoform.

2024. Lingma agent. https://github.
com/swe-bench/experiments/tree/main/
evaluation/lite/20240622_Lingma_Agent.

4886

https://github.com/swe-bench/experiments/blob/main/evaluation/lite/20240612_IBM_Research_Agent101/README.md/
https://github.com/swe-bench/experiments/blob/main/evaluation/lite/20240612_IBM_Research_Agent101/README.md/
https://github.com/swe-bench/experiments/blob/main/evaluation/lite/20240612_IBM_Research_Agent101/README.md/
https://github.com/swe-bench/experiments/blob/main/evaluation/lite/20240612_IBM_Research_Agent101/README.md/
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240702_codestory_aide_mixed
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240702_codestory_aide_mixed
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240702_codestory_aide_mixed
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240702_codestory_aide_mixed
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240706_sima_gpt4o
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240706_sima_gpt4o
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240706_sima_gpt4o
https://aws.amazon.com/q/developer//
https://aws.amazon.com/q/developer//
https://appmap.io/blog/2024/06/20/appmap-navie-swe-bench-leader/
https://appmap.io/blog/2024/06/20/appmap-navie-swe-bench-leader/
https://autocoderover.dev/
https://www.cognition.ai/introducing-devin
https://www.cognition.ai/introducing-devin
https://www.factory.ai/
https://honeycomb.sh
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240829_Isoform
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240829_Isoform
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240829_Isoform
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240622_Lingma_Agent
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240622_Lingma_Agent
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240622_Lingma_Agent

2024. Mentatbot: New sota coding agent,
available now. https://mentat.ai/blog/
mentatbot-sota-coding-agent.

2024. Moatless tools. https://github.com/
aorwall/moatless-tools.

2024a. Opencsg starship. https:
//opencsg.com/product?class=StarShip/.

2024b. Opendevin: Code less, make more. https:
//github.com/OpenDevin/OpenDevin/.

2024. Repograph: Enhancing ai software en-
gineering with repository-level code graph.
https://github.com/ozyyshr/RepoGraph.

2024. The road
to ultimate pull re-
quest machine.
https://gru.ai/
blog/road-to-ultimate-pull-request-machine/.

2024. Supercoder. https://superagi.com/
supercoder/.

2024. Swe-bench lite. https://www.swebench.
com/lite.html.

Rui Abreu, Peter Zoeteweij, and Arjan JC
Van Gemund. 2007. On the accuracy of
spectrum-based fault localization. In Testing:
Academic and industrial conference practice and
research techniques-MUTATION (TAICPART-
MUTATION 2007), pages 89–98. IEEE.

Daman Arora, Atharv Sonwane, Nalin Wadhwa,
Abhav Mehrotra, Saiteja Utpala, Ramakrishna
Bairi, Aditya Kanade, and Nagarajan Natara-
jan. 2024. Masai: Modular architecture for
software-engineering ai agents. arXiv preprint
arXiv:2406.11638.

Jacob Austin, Augustus Odena, Maxwell Nye,
Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry,
Quoc Le, and Charles Sutton. 2021. Program
synthesis with large language models. Preprint,
arXiv:2108.07732.

Dong Chen, Shaoxin Lin, Muhan Zeng, Daoguang
Zan, Jian-Gang Wang, Anton Cheshkov, Jun Sun,
Hao Yu, Guoliang Dong, Artem Aliev, et al. 2024.
Coder: Issue resolving with multi-agent and task
graphs. arXiv preprint arXiv:2406.01304.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, et al. 2021. Evaluating
large language models trained on code. arXiv
preprint arXiv:2107.03374.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav
Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten,
Amy Yang, Angela Fan, et al. 2024. The
llama 3 herd of models. arXiv preprint
arXiv:2407.21783.

Paul Gauthier. 2024. Aider is ai pair programming
in your terminal. https://aider.chat/.

Aric Hagberg, Pieter J Swart, and Daniel A Schult.
2008. Exploring network structure, dynamics,
and function using networkx. Technical report,
Los Alamos National Laboratory (LANL), Los
Alamos, NM (United States).

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. 2024a. SWE-bench: Can language
models resolve real-world github issues? In The
Twelfth International Conference on Learning
Representations.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. 2024b. Swe-bench leaderboard.
https://www.swebench.com/.

James A Jones and Mary Jean Harrold. 2005.
Empirical evaluation of the tarantula automatic
fault-localization technique. In Proceedings of
the 20th IEEE/ACM international Conference on
Automated software engineering, pages 273–282.

Sophia D Kolak, Ruben Martins, Claire Le Goues,
and Vincent Josua Hellendoorn. 2022. Patch
generation with language models: Feasibility
and scaling behavior. In Deep Learning for Code
Workshop.

Claire Le Goues, ThanhVu Nguyen, Stephanie
Forrest, and Westley Weimer. 2012. Genprog:
A generic method for automatic software repair.
IEEE Transactions on Software Engineering,
38(1):54–72.

Raymond Li, Loubna Ben Allal, Yangtian Zi,
Niklas Muennighoff, Denis Kocetkov, Chenghao

4887

https://mentat.ai/blog/mentatbot-sota-coding-agent
https://mentat.ai/blog/mentatbot-sota-coding-agent
https://github.com/aorwall/moatless-tools
https://github.com/aorwall/moatless-tools
https://opencsg.com/product?class=StarShip/
https://opencsg.com/product?class=StarShip/
https://github.com/OpenDevin/OpenDevin/
https://github.com/OpenDevin/OpenDevin/
https://github.com/ozyyshr/RepoGraph
https://gru.ai/blog/road-to-ultimate-pull-request-machine/
https://gru.ai/blog/road-to-ultimate-pull-request-machine/
https://superagi.com/supercoder/
https://superagi.com/supercoder/
https://www.swebench.com/lite.html
https://www.swebench.com/lite.html
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://aider.chat/
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://www.swebench.com/

Mou, Marc Marone, Christopher Akiki, Jia Li,
Jenny Chim, et al. 2023. Starcoder: may the
source be with you!

Junwei Liu, Kaixin Wang, Yixuan Chen, Xin
Peng, Zhenpeng Chen, Lingming Zhang, and
Yiling Lou. 2024a. Large language model-based
agents for software engineering: A survey. arXiv
preprint arXiv:2409.02977.

Kui Liu, Anil Koyuncu, Dongsun Kim, and
Tegawendé F. Bissyandé. 2019. Tbar: Revisiting
template-based automated program repair.
In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing
and Analysis, ISSTA 2019, page 31–42, New
York, NY, USA. ACM.

Yizhou Liu, Pengfei Gao, Xinchen Wang, Chao
Peng, and Zhao Zhang. 2024b. Marscode agent:
Ai-native automated bug fixing. arXiv preprint
arXiv:2409.00899.

Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang,
Haotian Zhang, Dan Hao, and Lu Zhang. 2020.
Can automated program repair refine fault
localization? a unified debugging approach.
In Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing
and Analysis, pages 75–87.

Yingwei Ma, Qingping Yang, Rongyu Cao, Binhua
Li, Fei Huang, and Yongbin Li. 2024. How to
understand whole software repository? arXiv
preprint arXiv:2406.01422.

Sergey Mechtaev, Jooyong Yi, and Abhik Roy-
choudhury. 2016. Angelix: Scalable multiline
program patch synthesis via symbolic analysis.
In Proceedings of the 38th International Confer-
ence on Software Engineering, ICSE ’16, page
691–701.

Theo X Olausson, Jeevana Priya Inala, Chenglong
Wang, Jianfeng Gao, and Armando Solar-
Lezama. 2023. Is self-repair a silver bullet for
code generation? In The Twelfth International
Conference on Learning Representations.

Mike Papadakis and Yves Le Traon. 2015.
Metallaxis-fl: mutation-based fault localization.
Software Testing, Verification and Reliability,
25(5-7):605–628.

Haifeng Ruan, Yuntong Zhang, and Abhik Roy-
choudhury. 2024. Specrover: Code intent extrac-
tion via llms. arXiv preprint arXiv:2408.02232.

Ripon K Saha, Matthew Lease, Sarfraz Khurshid,
and Dewayne E Perry. 2013. Improving
bug localization using structured information
retrieval. In 2013 28th IEEE/ACM International
Conference on Automated Software Engineering
(ASE), pages 345–355. IEEE.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan
Scales, David Dohan, Ed H Chi, Nathanael
Schärli, and Denny Zhou. 2023. Large language
models can be easily distracted by irrelevant
context. In International Conference on Machine
Learning, pages 31210–31227. PMLR.

Amit Singhal et al. 2001. Modern information
retrieval: A brief overview. IEEE Data Eng.
Bull., 24(4):35–43.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan,
Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, et al. 2019. Deep graph
library: A graph-centric, highly-performant
package for graph neural networks. arXiv
preprint arXiv:1909.01315.

Qianqian Wang, Chris Parnin, and Alessandro Orso.
2015. Evaluating the usefulness of ir-based
fault localization techniques. In Proceedings of
the 2015 international symposium on software
testing and analysis, pages 1–11.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng
Ding, and Lingming Zhang. 2023. Magicoder:
Source code is all you need. arXiv preprint
arXiv:2312.02120.

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn,
and Lingming Zhang. 2024. Agentless: Demys-
tifying llm-based software engineering agents.
arXiv preprint arXiv:2407.01489.

Chunqiu Steven Xia, Yuxiang Wei, and Lingming
Zhang. 2023. Automated program repair in the
era of large pre-trained language models. In
Proceedings of the ACM/IEEE 45th International
Conference on Software Engineering, ICSE ’23.

An Yang, Baosong Yang, Beichen Zhang, Binyuan
Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al.
2024a. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115.

4888

John Yang, Carlos E Jimenez, Alexander Wettig,
Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. 2024b. Swe-agent: Agent-
computer interfaces enable automated software
engineering. arXiv preprint arXiv:2405.15793.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and
Abhik Roychoudhury. 2024a. Autocoderover:
Autonomous program improvement. Preprint,
arXiv:2404.05427.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and
Abhik Roychoudhury. 2024b. Autocoderover:
Autonomous program improvement. In Proceed-
ings of the 33rd ACM SIGSOFT International
Symposium on Software Testing and Analysis,
pages 1592–1604.

Jian Zhou, Hongyu Zhang, and David Lo. 2012.
Where should the bugs be fixed? more accurate
information retrieval-based bug localization
based on bug reports. In 2012 34th International
conference on software engineering (ICSE),
pages 14–24. IEEE.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim,
Han Hu, Wenhao Yu, Ratnadira Widyasari,
Imam Nur Bani Yusuf, Haolan Zhan, Junda
He, Indraneil Paul, et al. 2024. Bigcodebench:
Benchmarking code generation with diverse
function calls and complex instructions. arXiv
preprint arXiv:2406.15877.

A Efficiency Considerations with GPT-4o

Given the iterative nature of patch refinement,
SYNFIX prioritizes computational efficiency by
utilizing lightweight LLMs such as GPT-4o during
the validation and repair loop. By structuring
prompts to focus on localized edits and reusing
previously analyzed contexts, the overhead of
LLM calls is minimized. Additionally, leveraging
a concise representation of the RelationGraph
reduces the input size, allowing SYNFIX to
maintain cost-effective and rapid iterations.

Paired patches validation ensures that every
modification proposed by SYNFIX is rigorously
tested for both correctness and consistency. By
combining regression testing, iterative refinement,
and efficient LLM-based validation, this phase acts
as the final safeguard in the pipeline, delivering
useable patches.

B Matching Prompt for Using Chatgpt 3.5

You are tasked with identifying
suspicious nodes in a software
repository based on the given
problem description. Each
node represents a file, class,
or function, along with its
structural relationships. The
goal is to rank the top N nodes
that are most likely relevant to
solving the problem. Below is
the RelationGraph summary and the
problem statement:
RelationGraph: [Insert
hierarchical representation here]
Problem Statement: [Insert
problem description here]
Task: Provide a ranked list of
N suspicious nodes, along with
a brief justification for each.
The justification should explain
why the node is relevant in terms
of function, dependencies, or
potential issues.

C Analysis Prompt for Using Chatgpt 4o

You are tasked with evaluating
dependencies in a codebase. The
main node has been modified
to address an issue, and
its neighboring nodes in the
dependency graph may require
corresponding updates.
Main Node: [Code and proposed
modifications for vs]
Neighboring Nodes: [Skeleton
representation of N(vs)]
Task: For each neighbor, indicate
whether it requires updates and,
if so, describe the changes needed
to maintain consistency.

D Full version of related work

D.1 Agent-Based Software Engineering
Rise of Agent-Based Systems in Software
Development Agent-based systems have gained
prominence in software engineering, leveraging
the iterative and interactive capabilities of large
language models (LLMs) to solve complex tasks.
Tools like Devin (dev, 2024) and its open-source
counterpart OpenDevin (ope, 2024b) pioneered the

4889

https://arxiv.org/abs/2404.05427
https://arxiv.org/abs/2404.05427

integration of agents to handle multi-step processes,
such as planning, file editing, and environment
interaction. These systems use LLMs to iteratively
perform actions, such as utilizing file editors or
terminal tools, to achieve task objectives.

Other systems have expanded on this foundation
by introducing specialized functionalities. For
instance, SWE-agent (Yang et al., 2024b) incorpo-
rates a custom agent-computer interface to facilitate
direct interactions with repositories, enabling tasks
such as reading and editing files or running shell
commands. Similarly, Aider (Gauthier, 2024)
employs static and dynamic analysis techniques to
construct repository maps, allowing LLMs to pre-
cisely localize and patch defective code segments.

Advanced Functionalities in Agent Systems
Expanding on these ideas, Moatless (moa, 2024)
integrates code search and retrieval tools with
LLM-generated queries to identify relevant code lo-
cations, while AutoCodeRover (Zhang et al., 2024a)
introduces APIs that allow for targeted searches
within specific code contexts, such as class methods.
These innovations have enabled iterative refinement
of agent workflows, improving localization and
debugging accuracy. SpecRover (Ruan et al.,
2024), for example, builds on AutoCodeRover
by generating functional summaries and feedback
messages during debugging steps, ensuring
specification-driven repair processes.

Despite their sophistication, agent-based systems
often face challenges such as high computational
costs, reliance on extensive toolsets, and the risk of
cascading errors from incorrect agent decisions. In
contrast, AutoFix takes a simpler approach, avoid-
ing these complexities by leveraging a deterministic
pipeline for localization, synchronization, and
validation. This structured methodology not only
reduces computational overhead but also ensures
more interpretable and cost-effective debugging
workflows.

D.2 Localization and Repair
Evolution of Fault Localization Techniques Fault
localization (FL) is a critical step in debugging,
aiming to identify the exact code segments respon-
sible for software defects. Traditional FL methods
can be broadly categorized into dynamic, static,
and learning-based techniques. Dynamic FL ap-
proaches, such as spectrum-based FL (SBFL)(Jones
and Harrold, 2005; Abreu et al., 2007) and mutation-
based FL (MBFL)(Papadakis and Le Traon, 2015;
Lou et al., 2020), analyze test executions to identify

suspicious code. SBFL identifies lines covered
predominantly by failing tests as likely culprits,
while MBFL goes further by assessing the impact
of code mutations on test outcomes. These methods
rely on the availability of a comprehensive test suite,
which can limit their applicability in real-world
scenarios with sparse testing.

Static techniques address these limitations by
using information retrieval (IR) methods (Sing-
hal et al., 2001). These approaches treat fault
localization as a search problem, comparing
textual similarities between code elements and bug
reports (Wang et al., 2015; Saha et al., 2013). While
effective for single-file issues, static methods often
struggle with multi-file and repository-level defects,
where interdependencies between components
complicate localization.

Program Repair Techniques After local-
izing faults, program repair techniques focus
on generating patches to fix them. Traditional
repair methods include template-based (Liu et al.,
2019), heuristic-based (Le Goues et al., 2012),
and constraint-based (Mechtaev et al., 2016)
approaches. While these methods have proven
effective in certain scenarios, their scalability and
patch diversity are often limited, making them less
suitable for complex, multi-component systems.

In contrast, learning-based approaches, partic-
ularly LLM-based program repair (Xia et al., 2023;
Kolak et al., 2022), have demonstrated superior
performance by leveraging modern models’ gener-
ative capabilities. These tools can sample multiple
candidate patches and utilize ranking mechanisms
or regression tests to identify the most suitable fix.
AutoFix adopts a similar patch-generation strategy,
producing concise, diff-format patches (Gauthier,
2024) to minimize the risk of introducing unrelated
changes. This design not only improves the
reliability of the patches but also makes the repair
process more efficient and scalable.

E Discussion in Details

E.1 Existing Agentless Approaches

Agentless method (Xia et al., 2024) directly
generates patches using static context without
iterative agent-based workflows, which reduces
computational overhead but limits the ability
to handle complex cross-file dependencies and
dynamic context shifts. In contrast, our approach
integrates structured RelationGraph analysis with
iterative refinement, enabling more robust bug

4890

repairs. Table 4 summarizes key differences
between the two approaches.

Table 4: Comparison between Agentless and Our Ap-
proach.

Method Iterative Refinement Cross-File Analysis

Agentless No Limited
Our Approach Yes Extensive

E.2 RelationGraph Size
The scalability of the RelationGraph is a critical
aspect of SYNFIX, as it must efficiently handle
large-scale codebases while maintaining accurate
structural relationships. To quantify its size, we
analyze the SWE-bench datasets and report the
following average statistics per 10,000 lines of code:

• 1,020 variable names

• 278 function names

• 37.4 class names

Based on our preliminary analysis, there are
approximately 2,600 edges per 10,000 lines of code.

E.3 Comparison
between RelationGraph and Tree-sitter

Table 5 summarizes the key differences between the
RelationGraph used in SYNFIX and the Tree-sitter
parser.

Table 5: Key Differences between RelationGraph and
Tree-sitter

Aspect RelationGraph Tree-sitter

Cross-File Analysis Supports cross-file
dependencies and
inter-file relations,
enabling holistic
program repair.

Focuses on single-file
parsing; lacks built-in
cross-file analysis.

Scope of Information Captures only essen-
tial elements (e.g.,
class names, func-
tions, and variables).

Produces a full parse
tree with additional
grammar rules and
nodes, including
many syntactic
details.

LLM Integration Reduces noise by fil-
tering out irrelevant
syntax, focusing on
key code elements.

May introduce non-
essential structural
nodes, potentially
adding noise for
LLM-based process-
ing.

Why RelationGraph over Tree-sitter?
While Tree-sitter provides detailed per-file parse
trees with comprehensive syntactic information,
it does not inherently capture cross-file depen-
dencies—an essential aspect for debugging and

repair tasks in large-scale codebases. In contrast,
RelationGraph tracks file-level dependencies and
inter-file relations, offering a minimal yet meaning-
ful representation that is optimized for LLM-based
repair. By reducing extraneous details, Relation-
Graph facilitates more precise error localization
and synchronized patch generation, making it
particularly well-suited for holistic program repair.

E.4 Code
Modification and Consistency Adjustment

Algorithm 1 includes the line “Apply modification
∆(v) to v if an inconsistency is detected,” which
encapsulates the corrective mechanism of SYNFIX.
Here, ∆(v) represents the set of code edits applied
to node v when an analysis reveals that its imple-
mentation is no longer consistent with a modified
node u. This mechanism ensures that when a
change in one part of the codebase affects depen-
dent components, those dependencies are updated
accordingly to maintain overall consistency.
Example: Python calculate_discount Func-
tion

Original State:
In Node u, a function calculate_discount is

defined to apply a discount based on two parameters:
Node u: discount_utils.py
def calculate_discount(price

↪→ : float, discount_rate: float) -> float:
return price - price * discount_rate

Node v calls this function as follows:
Node v: order_processor.py
from discount_utils import calculate_discount

def process_order(price_list: list[float
↪→], discount_rate: float) -> list[float]:

discounted_prices = []
for price in price_list:

discounted_prices.append(
↪→ calculate_discount(price, discount_rate))

return discounted_prices

Modification in Node u:
Suppose the design is updated so that

calculate_discount must enforce a minimum
price threshold. A new parameter, min_price, is
added:
Node u: discount_utils.py
def calculate_discount

↪→ (price: float, discount_rate
↪→ : float, min_price: float) -> float:

discounted = price - price * discount_rate
return max(discounted, min_price)

Resulting Inconsistency:
Node v still calls calculate_discount with

only two arguments, causing a mismatch with the

4891

updated signature.
Applying ∆(v):
A static or dynamic analysis step detects this in-

consistency in Node v. The corrective patch∆(v) is
then generated to update the function call, for exam-
ple by adding a default minimum price value of 5.0:
Node v: order_processor.py
from discount_utils import calculate_discount

def process_order(price_list: list[float
↪→], discount_rate: float) -> list[float]:

discounted_prices = []
for price in price_list:

Adding
↪→ the missing min_price argument (e.g., 5.0)
discounted_prices

↪→ .append(calculate_discount
↪→ (price, discount_rate, 5.0))

return discounted_prices

Outcome:
After applying ∆(v), the function call in Node

v becomes consistent with the updated definition in
Node u. This example illustrates how ∆(v) is used
to propagate changes and resolve inconsistencies
across interdependent code modules, ensuring
that all parts of the codebase remain in harmony
following modifications.

F Results on Full
and Verified Versions of SWE-bench

F.1 Results on SWE-bench Full

Performance on SWE-bench Full. The SWE-
bench Full dataset, known for its complexity and
inclusion of large-scale issues, poses a greater
challenge. Table 6 shows that SYNFIX achieves
a resolution rate of 29.86%, slightly surpassing
leading baselines such as OpenHands + CodeAct
(29.38%) and AutoCodeRover-v2.0 (24.89%).
Despite the increased difficulty, SYNFIX maintains
its competitive edge by leveraging dynamic analysis
and fine-grained localization to address issues with
multi-level dependencies.

This performance underscores the robustness of
SYNFIX across diverse problem types, demonstrat-
ing its ability to scale and adapt to more challenging
debugging scenarios. By efficiently combining
hierarchical localization with paired patches
validation, SYNFIX effectively resolves even
the most intricate problems in SWE-bench-Full,
reinforcing its position as a state-of-the-art tool.

F.2 Results on SWE-bench Verified

Performance Comparison. In terms of resolution
rates, GPT-4o achieves the highest performance,

Table 6: Results on SWE-bench Full.

Tool LLM % Resolved

OpenHands + CodeAct v2.1 Claude-3.5-Sonnet 29.38
AutoCodeRover-v2.0 Claude-3.5-Sonnet 24.89
Honeycomb N/A 22.06
Amazon Q Developer Agent N/A 19.75
Factory Code Droid N/A 19.27
AutoCodeRover + GPT 4o GPT 4o 18.83
SWE-agent Claude 3.5 Sonnet 18.13
AppMap Navie GPT 4o 14.60
Amazon Q Developer Agent N/A 13.82
SWE-agent GPT 4 12.47
SWE-agent GPT 4o 11.99
SWE-agent Claude 3 Opus 10.51
RAG Claude 3 Opus 3.79
RAG Claude 2 1.96
RAG GPT 4 1.31
RAG SWE-Llama 13B 0.70
RAG SWE-Llama 7B 0.70
RAG ChatGPT 3.5 0.17

SYNFIX Qwen2.5-Coder 25.72
SYNFIX LLAMA3.1-405B 24.38
SYNFIX GPT 4o 29.86

resolving 52.33% of issues on SWE-bench Lite,
compared to 48.67% for Claude 3.5 Sonnet. This
performance gap can be attributed to GPT-4o’s
advanced contextual understanding, which allows
it to handle more complex issues and interdepen-
dencies effectively. However, Claude 3.5 Sonnet
also delivers competitive results, demonstrating its
ability to resolve a significant proportion of issues
while being more cost-efficient.

G RelationGraph Driven Error
Detection and Synchronous Repair

In this section, we propose a RelationGraph-driven,
optimization-based framework for dynamically
detecting and resolving bugs within a Python
project’s call graph. Consider a directed call graph
G = (V,E), where each nodev ∈ V represents
a code entity (e.g., a file, a class, or a function),
and each edge (u,v) ∈ E encodes an invocation
or dependency relationship. We assume that each
node v is annotated with two attributes: a binary
status status(v)∈{0,1} reflecting whether the node
has been visited or not, and a nonnegative integer
modified_count(v)∈N counting how many times
that node has been modified.

We start by extracting an erroneous node nodeE
from the runtime log L, which pinpoints a specific
line of code and its corresponding node in G. We
define a traversal T that, starting at the project’s
root node vroot, proceeds along the directed edges
to reach nodeE. All visited nodes along this path

4892

Table 7: Results on SWE-bench Verified.

Tool LLM % Resolved

Amazon Q Developer Agent (v20241202-dev) N/A 55.00
devlo N/A 54.20
OpenHands + CodeAct v2.1 Claude-3.5-Sonnet 53.00
Engine Labs N/A 51.80
Agentless-1.5 + Claude-3.5 Sonnet Claude-3.5 Sonnet 50.80
Solver (2024-10-28) N/A 50.00
Bytedance MarsCode Agent N/A 50.00
nFactorial (2024-11-05) N/A 49.20
Tools + Claude 3.5 Sonnet Claude-3.5 Sonnet 49.00
Composio SWE-Kit N/A 48.60
AppMap Navie v2 N/A 47.20
Emergent E1 N/A 46.60
AutoCodeRover-v2.0 Claude-3.5-Sonnet 46.20
Solver (2024-09-12) N/A 45.40
Gru (2024-08-24) N/A 45.20
Solver (2024-09-12) N/A 43.60
nFactorial (2024-10-30) N/A 41.60
Nebius AI Qwen 2.5 72B Generator LLaMa 3.1 70B Critic 40.60
Artemis Agent v1 N/A 32.00
SWE-agent + Claude 3.5 Sonnet Claude-3.5 Sonnet 33.60
nFactorial (2024-10-07) N/A 31.60
Lingma Agent + Lingma SWE-GPT 72b SWE-GPT 72b 28.80
EPAM AI/Run Developer Agent + GPT4o GPT4o 27.00
AppMap Navie + GPT 4o GPT 4o 26.20
nFactorial (2024-10-01) N/A 25.80
Amazon Q Developer Agent (v20240430-dev) N/A 25.60
Lingma Agent + SWE-GPT 7b SWE-GPT 7b 25.00
EPAM AI/Run Developer Agent + GPT4o GPT4o 24.00
SWE-agent + GPT 4o (2024-05-13) GPT 4o 23.20
SWE-agent + GPT 4 GPT 4 22.40
SWE-agent + Claude 3 Opus Claude 3 Opus 18.20
Lingma Agent + SWE-GPT 7b SWE-GPT 7b 18.20
Lingma Agent + SWE-GPT 7b SWE-GPT 7b 10.20
RAG + Claude 3 Opus Claude 3 Opus 7.00
RAG + Claude 2 Claude 2 4.40
RAG + GPT 4 (1106) GPT 4 2.80
RAG + SWE-Llama 7B SWE-Llama 7B 1.40
RAG + SWE-Llama 13B SWE-Llama 13B 1.20
RAG + ChatGPT 3.5 ChatGPT 3.5 0.40

SYNFIX Qwen2.5-Coder 49.3
SYNFIX LLAMA3.1-405B 46.4
SYNFIX ChatGPT 4o 55.8

have their status updated to 1, but no modifications
are performed during this stage.

Once nodeE is reached, if a bug fix is needed, we
perform a local correction to nodeE and increment
modified_count(nodeE). This local fix may have
implications for context consistency. To model
these implications formally, let X (v) be the local
code context of node v, and letN (v)=N1(v) be its
immediate neighbors. We require a multi-context
consistency condition:

∧

v∈V
Consistent

(
X (v),{X (u) :u∈N (v)}

)
,

i.e., each node’s local context must remain
consistent with the contexts of its neighbours.

We formulate the modification process as an
optimization problem under strict constraints.
Suppose each modification to a node v carries a
cost c(v) representing the complexity or risk of
changing the code. We seek to minimize the total
modification cost, subject to constraints on both
the recursion depth D of node expansions (for

neighbors of nodeE) and the maximum number of
total modifications Mmax . Specifically:

min
{xv}v∈V

∑

v∈V
c(v)xv

subject to xv∈{0,1}, ∀v∈V,∑

v∈V
xv≤Mmax,

D≤3,

Consistent(X (v),{X (u) :u∈N (v)}).
(1)

Here, xv = 1 if and only if node v undergoes
modification. The constraint

∑
v∈V xv ≤ Mmax

ensures that we do not exceed a predefined global
modification budget, which we set to Mmax = 3.
Similarly, D ≤ 3 ensures that the recursive
exploration of neighbors from nodeE does not
propagate unbounded.

To implement this procedure, we employ Algo-
rithm 3, which outlines the process of detecting and
resolving bugs dynamically. The algorithm first ini-
tializes all nodes, then parses the logL to find nodeE,
traverses the graph to mark visited nodes, and, if
necessary, applies modifications to nodeE and sub-
sequently to its neighbors. A consistency check
function ConsistencyCheck is used to ensure that
all contexts remain coherent after any series of mod-
ifications. If any inconsistency is detected, we reset
the relevant nodes’ statuses to 0, potentially reintro-
ducing them into the modification pipeline, but still
subject to depth and modification count constraints.

This approach yields a highly controlled and the-
oretically grounded mechanism for error correction.
By modelling the resolution as a constrained opti-
mization problem within a bounded recursion frame-
work, we provide guarantees of termination, limited
global impact, and multi-context consistency.

4893

Algorithm 3: Dynamic and Synchronous
Repair

procedure DetectResolve(G=(V,E), L)
input :G=(V,E): call graph of the

Python project.
L: runtime log file containing

error details.
output :Modified Python project with

resolved bugs.
foreach node v∈V do

Initialize: status(v)←0,
modified_count(v)←0.

Parse L to locate erroneous node
nodeE∈V .

Traverse G from root to nodeE, marking
status(v)←1.

if Modification required at nodeE then
Modify nodeE;

modified_count(nodeE)←
modified_count(nodeE)+1.

Call ConsistencyCheck(nodeE).
foreach neighbor v∈N1(nodeE) where
status(v)=0 do

Analyze and modify recursively
(respecting D≤3 and Mmax=3).

return Modified Python project.

procedure ConsistencyCheck(v)
input :v: node to verify consistency.
output :Updated dependent nodes if

necessary.
if Context consistency is violated then

Update dependent nodes’ status to 0.

4894

