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Abstract

Vision Language Models (VLMs) have
achieved remarkable progress in multimodal
tasks, yet they often struggle with visual arith-
metic, seemingly simple capabilities like object
counting or length comparison, which are es-
sential for relevant complex tasks like chart
understanding and geometric reasoning. In this
work, we first investigate the root causes of
this deficiency through a suite of probing tasks
focusing on basic visual arithmetic. Our anal-
ysis reveals that while pre-trained vision en-
coders typically capture sufficient information,
the text decoder often fails to decode it cor-
rectly for arithmetic reasoning. To address this,
we propose COGALIGN, a novel post-training
strategy inspired by Piaget’s theory of cogni-
tive development. COGALIGN trains VLMs
to recognize invariant properties under visual
transformations. We demonstrate that this ap-
proach significantly improves the performance
of three diverse VLMs on our proposed prob-
ing tasks. Furthermore, COGALIGN enhances
performance by an average of 4.6% on CHOCO-
LATE and 2.9% on MATH-VISION, outperform-
ing or matching supervised fine-tuning meth-
ods while requiring only 60% less training data.
These results highlight the effectiveness and
generalizability of COGALIGN in improving
fundamental visual arithmetic capabilities and
their transfer to downstream tasks. '

1 Introduction

In recent years, vision language models (VLMs)
have rapidly advanced, demonstrating remarkable
capabilities in integrating and processing multi-
modal information (Liu et al., 2023; Dai et al.,
2023; Chen et al., 2024; Xue et al., 2024). These
models have found extensive applications across
various domains, ranging from visual common-
sense reasoning to sophisticated tasks like web

'COGALIGN data has been released at: https://github.
com/SalesforceAIResearch/CogAlign.

agents (Xu et al., 2024; Zhang et al., 2024a; Xie
et al., 2024; Lin et al., 2024). By leveraging both
visual and textual data, VLMs promise a nuanced
understanding that surpasses what can be achieved
by analyzing them individually.

Despite these advancements, current VLMs
exhibit noticeable deficiencies in performing
fundamental visual arithmetic: these models strug-
gle with seemingly simple tasks like accurately
counting objects, comparing lengths, assessing
angles, and evaluating relative sizes or areas (Rah-
manzadehgervi et al., 2024; Wang et al., 2024c;
Huang et al., 2024a; Ullman, 2024; Wei et al.,
2024; Kamoi et al., 2024). These shortcomings are
particularly evident in complex tasks such as chart
understanding (Huang et al., 2024¢) and geometric
problem-solving (Gao et al., 2025).

In this study, we first delve into the root causes
of VLMs’ difficulties with visual arithmetic, ex-
ploring several hypotheses to elucidate why VLMs
often fail when faced with such challenges (§2).
We propose a suite of probing tasks, focusing on
basic visual arithmetic such as length comparison,
to answer this question. Our analysis reveals that
pre-trained vision encoders coupled with a simple
linear classifier perform poorly on these probing
tasks, indicating that a single linear layer is insuffi-
cient to decode the complex visual representations
for arithmetic reasoning. However, when we fine-
tune the text decoder of a VLM on these tasks, per-
formance significantly improves. This suggests the
bottleneck lies in the decoder’s ability to effec-
tively process and utilize the visual information,
rather than in the visual representation itself.

To tackle these challenges, we propose a novel
post-training strategy, COGALIGN, designed to im-
prove the performance of VLMs in visual arith-
metic tasks (§3). Drawing inspiration from Piaget’s
theory of cognitive development (Piaget, 1952), our
method focuses on enhancing VLMs’ understand-
ing of conservation (recognizing that certain prop-
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Angle Comparison

QO >

Question: Are these two of the
same angle?

GPT-40: Yes X
InternVL2.5-78B: Yes X

Perpendicular Detection

Question: Are these two lines
perpendicular?

GPT-40: No X
InternVL2.5-78B: No X

Length Comparison

|

Question: Are these two of the
same length?

GPT-40: No
InternVL2.5-78B: Yes X

Chart Projection

Question: Is the red dot valued
between 60 and 70?

GPT-40: Yes X
InternVL2.5-78B: Yes X

Figure 1: Examples of probing tasks designed to assess visual arithmetic abilities. Each task presents a visual input
and a question requiring comparison or evaluation of geometric properties. At the bottom of each task, we see that
even top-performing VLMs like GPT-40 and InternVL2.5-78B struggle with these seemly simple tasks.

erties remain unchanged despite transformations)
and decentration (considering multiple aspects si-
multaneously). We train VLMs using synthetically
generated image pairs that demonstrate transfor-
mations, enabling them to compare and evaluate
based on specific properties like length, angle, and
quantity. By employing Direct Preference Opti-
mization (DPO) (Rafailov et al., 2023), the model
learns from both positive and negative examples,
offering a richer learning signal than traditional
Supervised Fine-Tuning (SFT). Our experiments
show that COGALIGN significantly enhances per-
formance across three VLMs of different scales
and architectures on the proposed probing tasks.
Furthermore, we evaluate COGALIGN on
two downstream benchmarks: CHOCOLATE
(Huang et al., 2024c) for chart understanding, and
MATH-VISION (Wang et al., 2024a) for geometric
problem-solving (§4). Our results demonstrate
the effectiveness of COGALIGN in enhancing
performance on these complex tasks. On average,
COGALIGN boosts performance by 4.6% and 2.9%
on CHOCOLATE and MATH-VISION respectively,
demonstrating that improving fundamental visual
arithmetic capabilities translates to improved
performance on downstream tasks. Notably,
COGALIGN outperforms or achieves comparable
performance to SFT methods while requiring 60%
less training data, even though COGALIGN does
not involve direct optimization for specific tasks.
This showcases its strong generalizability and
highlights its potential of focusing on foundational
skills to unlock broader capabilities in VLMs.
Our main contributions are as follows:

* We conduct an in-depth analysis to uncover the
root causes of VLMs’ underperformance in tasks
that involve visual arithmetic.

* We develop COGALIGN, a post-training strat-
egy designed to enhance VLMs’ abilities in
understanding performing visual arithmetic.

» Extensive experiments on three VLMs show that
COGALIGN significantly improves performance
in chart comprehension and geometric problem-
solving, highlighting its generalizability.

2 Why Vision Language Models Struggle
with Visual Arithmetic?

As suggested in previous studies, VLMs struggle
with visual arithmetic (Rahmanzadehgervi et al.,
2024; Wang et al., 2024c), leading to poor perfor-
mance in tasks involving such capabilities such as
chart understanding (Huang et al., 2024c) and geo-
metric problem-solving (Gao et al., 2025). In this
section, we aim to understand the root causes be-
hind such phenomenon. We first propose a suite of
probing tasks we design to facilitate our analysis
(§2.1) and then illustrate the various analyses we
conduct to validate our hypotheses (§2.2).

2.1 Probing Tasks

We propose four probing tasks for assessing visual
arithmetic capabilities, motivated by the fundamen-
tal operations needed to interpret visual data quan-
titatively. For a VLM to successfully understand
a chart, for example, it must be able to compare
lengths of bars or lines, discern relationships in-
dicated by line slopes, and projecting points onto
axes. An overview of the probing tasks are shown
in Figure 1. All four tasks are discriminative and
can be considered binary classification tasks. Be-
low, we illustrate these tasks in details.

Angle Comparison asks models to determine
whether the angle of two wedges are the same.
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Vision Encoder Angle Comparison

Perpendicular Detection

Length Comparison

Chart Projection

LLaVA-v1.5-proj 89.7 87.3 74.4 61.3
CLIP ViT-L/14 95.8 92.2 81.0 60.0
SigLIP-SO400M/14 98.5 92.1 89.9 74.5
InternViT-300M-V2.5 88.2 85.5 70.8 59.0
DINOv2-Large 96.2 94.7 81.8 57.3
Random guessing 50.0 50.0 50.0 50.0

Table 1: Accuracy (%) of different vision encoders with a linear classifier on the test set of each probing task. We
conduct feature probing experiments by freezing the vision encoder and only fine-tuning the linear layer for binary
classification. LLaVA-v1.5-proj refers to the representations obtained from the projection layer of LLaVA-v1.5.

This requires the model to differentiate and mea-
sure angular magnitude, a seemly more complex
operation that tests the model’s grasp of spatial rela-
tionships and angular geometry. This task assesses
the model’s capacity to interpret rotational dimen-
sions and engage in deeper analytical processing
to distinguish subtle differences in angle, thereby
evaluating the core geometric understanding of the
model in angular perception.

Perpendicular Detection challenges models to
determine if two given lines are perpendicular to
each other. Building upon the concept of angles,
this task requires a deeper understanding of spe-
cific angular relationships, where perpendicularity
implies a 90° angle. While Angle Comparison fo-
cuses on general angle differentiation, Perpendicu-
lar Detection assesses a model’s ability to recognize
this specific geometric configuration.

Length Comparison asks models whether two
lines with arbitrary slopes are of the same lengths.
In addition to basic spatial reasoning, this task re-
quires models to consider trigonometric relation-
ships between the lines, demanding higher-level
understanding of equivalence regardless of orien-
tation. The variability in slopes necessitates an ad-
vanced ability to rotate or translate lines, challeng-
ing the model’s proficiency in geometric reasoning
beyond simple horizontal and vertical comparisons.

Chart Projection challenges the model to de-
termine if the value of a red dot on a black line
chart lies between 60 and 70. As the most complex
task, this task integrates key aspects of the preced-
ing tasks. It requires spatial reasoning to project
the dot’s position onto the y-axis, similar to Angle
and Perpendicular Detection. It then involves com-
paring the projected value’s magnitude against the
specified range, akin to Length Comparison.

2.2 Probing Analysis

The research question we aim to answer is: Do
visual representations from pre-trained vision en-
coders contain enough information to perform vi-

sual arithmetic tasks? To answer this question, we
conduct experiments by feeding the outputs from
various encoders into a linear classifier to perform
binary classification on the probing tasks. For each
task, we randomly generate 12,000 images pro-
grammatically with a train:development:test split
of 10:1:1. Each split has a balanced portion of
positive and negative labels. We test a wide range
of vision encoder, including CLIP ViT-L/14 (Rad-
ford et al., 2021), SigLIP-SO400M/14 (Zhai et al.,
2023), InternViT-300M-V2.5 (Chen et al., 2024),
and DINOv2-Large (Oquab et al., 2024).We also
evaluate the features produced by the projection
layer of LLaVA-v1.5 (Liu et al., 2023). Each
model (i.e., the single classifier) was trained for 200
epochs and the checkpoint that achieves the highest
performance on the development set is selected.

The results are presented in Table 1. Over-
all, we observe that fixed visual representations,
when paired with a single linear layer, yield reason-
able performance on simpler tasks such as Simple
Length Comparison and Angle Comparison. How-
ever, they struggle significantly with more complex
tasks like Length Comparison and Chart Projection.
Therefore, we conclude that pre-trained vision
encoders do not convey sufficient information
through their fixed visual representations for a
linear classifier to succeed at visual arithmetic.
This may be attributed to two potential reasons:
(1) the visual representations genuinely lack the
information necessary for visual arithmetic tasks,
or (2) a linear layer lacks the capacity to effectively
leverage the visual features provided.

To further investigate the underlying cause of
this limitation, we perform additional experiments
by fine-tuning the LLM-based text decoder com-
ponent of LLaVA-v1.5, while keeping its vision
encoder frozen. In VLMs, visual representations
are concatenated with text representations in the
decoder. Unlike a linear layer, the text decoder can
process textual queries as inputs, offering an op-
portunity to understand the effect of textual clues
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VLM Query Type  Fine-tuned? Length Comparison Chart Projection
- 50.0 51.3
ORIGINAL 954 98.9
LLaVA-v1.5-7B EMPTY 95.2 98.1
IRRELEVANT 95.8 97.8

Table 2: Accuracy (%) of fine-tuned LLaVA-v1.5-7B with different queries on the test set of each probing task. We
conduct experiments by freezing the vision encoder and only fine-tune the LLM decoder for binary classification.

The top row displays the zero-shot performance.

provided by input queries. We test with three dif-
ferent queries: an ORIGINAL query reflecting the
task as shown in Figure 1, an EMPTY query which
is a blank string, and an IRRELEVANT query such
as “My name is John?”’. Additionally, we evaluate
LLaVA-v1.5 in a zero-shot setting for comparisons.
Given our previous observations, these experiments
focus exclusively on the Length Comparison and
Chart Projection tasks.

The fine-tuned LLaVA results are shown in
Table 2. We have the following observations. First,
existing VLMs do struggle with challenging
visual arithmetic when used in zero-shot
manners, achieving less than 90% and 75% on
the two more challenging probing tasks, even
with extensive in-domain training. The finding is
consistent with prior studies (Rahmanzadehgervi
et al., 2024; Wang et al., 2024c) and highlights
the validity and complexity of our proposed
probing tasks. Second, VLMs fine-tuned on
in-domain data perform reasonably well in
visual arithmetic. LLaVA-v1.5-7B is able to
achieve an accuracy of above 95% on both Length
Comparison and Chart Projection tasks. Third,
the high performance of fine-tuned VLMs on
in-domain data is due to the larger capacity of
an LLM. Comparing the three different queries,
we see the performance on Length Comparison
and Chart Projection does not vary too much.
This means that a fine-tuned LLaVA-v1.5-7B
performs well even when the query provides no
clue or irrelevant information about the given tasks.
Combing this observation with our findings in
Table 1, we learn that fine-tuned VLMs perform
well because the LLM-based text decoder have
larger capacity than a linear layer rather than
leveraging the semantics of the input query.

2.3 Visual Representation Inspection

While the analysis conducted in §2.2 reveals im-
portant findings, one may argue that the fine-tuning
success might be caused by the fine-tuned model
exploiting patterns in binary tasks. Motivated by

the visual representation analysis of Rudman et al.
(2025), we conduct additional experiments focus-
ing on visual representations’ ability to differen-
tiate isolated geometric properties. We generated
datasets of images, each containing a single an-
gle (sampled in 10-degree increments from 10° to
100°) or a single line (sampled in 0.1 length incre-
ments from 0.1 to 1.0). We created 100 images per
class, resulting in 1,000 images each for the angle
and line datasets. We then extracted visual embed-
dings for these images using the pre-trained CLIP
and SigLIP vision encoders. To assess whether
embeddings for different angles or lengths occupy
distinct regions in the feature space (a prerequisite
for successful differentiation or classification), we
performed t-SNE visualization (van der Maaten
and Hinton, 2008) to understand cluster separation.
The results are shown in Figure 2.

We have the following observations. First,
there are some clear clusters for both CLIP and
SigLIP embeddings, particularly for smaller angles
and shorter lines. However, the separation is
less distinct for longer lines and larger angles,
especially with CLIP embeddings. Second, the
separation for angles is more obvious than that
for lines, aligning with our findings in Table 3
that Length Comparison is more challenging than
Angle Comparison. Third, SigLIP embeddings
demonstrate superior clustering for both angles
and lines. This is also consistent with our Table
3 results where SigL.IP outperforms CLIP across
the proposed probing tasks.

Based on these observations and our findings
in §2.2, we conclude that while visual repre-
sentations from VLMs do encode information
for visual arithmetic, it cannot be effectively
decoded without further fine-tuning, which
may in turn affect their zero-shot performance on
downstream tasks like chart understanding and
that fine-tuning success is nof merely exploiting
patterns in a binary task.
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t-SNE Visualization of CLIP Embeddings for Angle Images
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(d) Line clustering by SigL.IP

Figure 2: t-SNE visualizations of clustering by CLIP and SigLIP for angles and lines.

3 COGALIGN

To address the challenges VLMs face in performing
visual arithmetic, we propose a novel post-training
method inspired by Piaget’s theory of cognitive
development (Piaget, 1952), which outlines four
stages: Sensorimotor, Preoperational, Concrete Op-
erational, and Formal Operational. Each stage rep-
resents a different ability to process information
and solve problems, culminating in abstract reason-
ing. The Concrete Operational Stage is particularly
relevant. At this stage, children develop (1) conser-
vation, understanding that certain properties like
length remains constant despite changes in appear-
ance, and (2) decentration, the ability to consider
multiple aspects of a situation at once. These skills
are essential for VLMs to perform visual arithmetic
accurately, recognizing invariant properties such
as length or angle across transformations. Current
VLM training paradigms often neglect these cogni-
tive processes, resulting in models that struggle to
maintain key properties during visual transforma-
tions and to integrate multiple visual features effec-
tively. While pre-trained visual encoders use losses
that encourage some invariance to transformations,
the integration of vision and language representa-

tions in decoders often lacks explicit enforcement
of conservation and decentration principles, lead-
ing to models that capture visual features but fail
to reason about them effectively.

To address these issues, we present a
post-training method, Cognitive Alignment
(COGALIGN), aimed at enhancing VLMs’ under-
standing of conservation and decentration. Our
approach explicitly trains VLMs to recognize
invariant properties like length, angle, and count
across different visual transformations. We achieve
this by presenting the model with pairs of figures
and associated queries designed to highlight these
properties. The queries prompt the model to
compare and contrast the figures, focusing on
whether a specific property is different or same
despite variations in appearance. This approach
encourages the model to develop a stronger under-
standing of geometric concepts and move beyond
superficial visual comparisons. Furthermore, we
leverage DPO (Rafailov et al., 2023) for training,
rather than SFT. DPO allows the model to learn
from both positive and negative examples within
the preference framework, providing a richer
learning signal compared to SFT. By strengthening
these cognitive capacities within VLMs, our goal
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Volume

Query: Which of these two
shapes is smaller?

® X

Slope
Query: Which non-black line

shares the same slope as the
black line?

X

Position

A Query: How are the olive and
gray triangles positioned
relative to each other?

Distance

Query: Which circle pairs are

. . further apart?

e
9‘\5‘3‘\:

Slope

Spatial Relation

Position ec\“’“
e

Intersection

Query: Will the line cross the
shape if it is extended without
end?

X

Length

Query: Can you tell which of
the two lines is longer?

X

Angle

Query: Between these two
angles, which one is greater?

X

Quantity

Query: Which items have a
smaller quantity?

X

X

Figure 3: Example training data for COGALIGN. Each example consists of a visual input, a query prompting
comparison of a specific property (i.e. angle, length, distance, and etc), a positive response consistent with the visual

input, and a negative response that contradicts it.

is to improve their performance on tasks involving
visual arithmetic. The subsequent subsections
detail the specific training procedure employed
(§3.1) and the automated construction of our
training data (§3.2).

3.1 DPO Training Objective

Our goal is to train a model with parameters 6
that learns conservation and decentration from con-
trasting responses by maximizing the conditional
probability of positive responses over their nega-
tive counterparts. Concretely, the DPO training
data consists of preference pairs, each containing
a user query (), an input image I, a positive re-
sponse R, and a negative response I?,,. The entire

set of DPO training data can be represented as
1 1P

D = {(Q,I,Rp,Rn)(z)}A - The objective func-

iz

tion Lppo that DPO minimizes is:

Lopo(7e; Tret) = —E(Q,I,Rp,Rn)m[ log U(TA)]v
W@(Rplel) WQ(Rle;I)
ﬂref(Rplel) ﬂref(Rn|Q7[)7

where o is the sigmoid function, my is the param-
eterized policy under training, m..¢ is the initial
frozen policy, and f is a hyper-parameter that con-
trols the deviation from 7.

ra = [log — Blog

3.2 Training Data Synthesis

To effectively train VLMs on the principles of con-
servation and decentration, we require a training

dataset designed to highlight these concepts. This
section details our automated process for synthesiz-
ing training data, encompassing visual generation
and tailored query-response construction. We draw
inspiration from our probing tasks but adapt the for-
mat to better suit the DPO training procedure. By
plotting two shapes within a single image, we allow
the model to directly compare invariant properties
like length and angle across various transforma-
tions. We devise eight fundamental tasks, each of
which aim to enhance VLMs’ different abilities to
reason about visual arithmetic operations: under-
standing angle, length, distance, quantity, volume,
position, slope, and intersection. An overview of
these tasks is shown in Figure 3

To automate data synthesis, we present a data
generation pipeline. First, we programmatically
generate images using Python, allowing precise
control over each figure’s properties, such as
lengths and positions. Next, we create query-
response pairs for these images based on predefined
templates (see Table 7). These queries are designed
to prompt VLMs to make comparisons, identify
similarities/dissimilarities, and reason about geo-
metric properties. Given the known ground truth,
positive responses are generated by accurately pop-
ulating placeholders in the templates, while neg-
ative responses are created with incorrect values.
For instance, a positive query for the first sub-figure
in Figure 3 might be, “The angle S is larger.”, and
a negative query might be, “The angle C is larger.”
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Model Angle Comparison Perpendicular Detection Length Comparison Chart Projection
LLaVA-OV-0.5B 51.8 50.5 52.5 50.7
__ ¥COGALIGN (Ours) 798 (+54.0%) _ _ _ _ _ S15(+20%) ___ __ 334G+17%) 532 (+4.9%) _
InternVL-2.5-MPO-1B 51.8 49.6 52.3 60.0
__ ¥COGALIGN (Ours) _ _ 521 (+0.6%) _ _ _ _ _ 50.7(+20%) _ _ _ _ _ 526(+0.6%) __ _ 669 (+11.5%)
InternVL-2.5-MPO-4B 60.6 54.9 56.3 84.0
+COGALIGN (Ours) 72.3 56.4 60.0 86.3

Table 3: Accuracy (%) of different VLMs on our proposed probing tasks. All models produce output in a zero-shot

fashion without fine-tuning on the tasks.

To ensure diversity, we use an LLM” to create mul-
tiple variations of each query and response, fol-
lowing the approach of Huang et al. (2024b). We
synthesize a total of 64,000 training instances for
DPO, with a balanced splits of each task.

3.3 Effectiveness on the Probing Tasks

To assess the effectiveness of COGALIGN on our
proposed probing tasks, we trained three VLMs
with varying scales and architectures: LLaVA-
OV-0.5B (Li et al., 2024), InternVL-2.5-MPO-1B
(Wang et al., 2024b), and InternVL-2.5-MPO-4B
using COGALIGN, as described in §3.1 and §3.2,
for one epoch. The results are presented in Table 3.

We observe that COGALIGN demonstrably im-
proves performance across all three models across
all probing tasks. More significant gains are ob-
served on simpler tasks of Angle Comparison,
likely due to their similarity with the DPO training
instances. For instance, LLaVA-OV-0.5B sees a
substantial 54.0% improvement on Angle Compari-
son after training with COGALIGN. This highlights
the effectiveness of our approach in enhancing the
core visual arithmetic capabilities that are crucial
for these tasks. Interestingly, while the gain in
angle-related tasks like Angle Comparison was sub-
stantial, the performance increases for Perpendic-
ularity Detection were more modest (e.g., a 2.0%
improvement for LLaVA-OV-0.5B). This suggests
that certain geometric properties, such as perpen-
dicularity, may pose greater challenges.

Overall, these findings collectively demonstrate
the effectiveness of COGALIGN in enhancing vi-
sual arithmetic capabilities across various VLMs.

4 Generalizability of COGALIGN

Now that we have demonstrated the advantage of
COGALIGN on our probing tasks, we ask: does the
improvement on simple visual arithmetic tasks
transfer to more complex tasks? To answer
this question, we explore whether COGALIGN en-

: gpt-4o is used for paraphrasing.

hances model performance in chart understanding
and geometric problem-solving. In the following
subsections, we detail the experimental setup (§4.1)
and present our findings (§4.2).

4.1 Experimental Setups

Benchmarks We evaluate the effectiveness of
our method on two tasks relevant to visual arith-
metic: chart understanding and geometry problem-
solving. For chart understanding, we utilize the
CHOCOLATE dataset (Huang et al., 2024¢), which
tests a model’s capability to determine whether a
given caption is factually consistent with its cor-
responding chart.” CHOCOLATE comprises three
splits: LvLM, LLM, and FT, each generated by
models of varying architectures and scales. Each
CHOCOLATE instance is annotated with a binary
label £ € {consistent,inconsistent}. The
dataset includes a total of 1,187 chart-caption pairs.
For geometry problem-solving, we assess perfor-
mance using the test set of the MATH-VISION
dataset (Wang et al., 2024a), which comprises
3,040 questions spanning 16 mathematical disci-
plines. We concentrate on the eight disciplines
related to geometry: analytic geometry (ANAG),
combinatorial geometry (COMBG), descriptive ge-
ometry (DESCGQG), solid geometry (SOLQG), trans-
formation geometry (TRANSG), and three metric
geometry branches - angle, area, and length. For
evaluations, we employ AUC score for CHOCO-
LATE and accuracy for MATH-VISION, in align-
ment with Huang et al. (2024c) and Wang et al.
(2024a). Detailed dataset statistics for these bench-
marks are provided in Appendix A.

Models and Baselines To assess the efficacy of
COGALIGN compared to methods that directly op-
timize model capabilities towards specific tasks,
we consider a chart supervised fine-tuning dataset:
CHARTGEMMA160K (Masry et al., 2024), as
well as one geometric problem-solving dataset:

*We decided against using other common datasets like

ChartQA (Masry et al., 2022) due to their training data already
being included in some VLMs, such as LLaVA-OneVision.
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CHOCOLATE

MATH-VISION

Model Lvim LLM Fr AVG ANAG CoMBG DESCG ANGLE AREA LEN SoLG TRANSG AVG
GPT-40 74.7 69.6 685 70.9 35.7 31.2 28.8 38.2 348  36.7 31.1 21.4 322
LLaVA-Next-Vicuna-7B 500 503 50.1 50.1 9.5 14.9 18.3 12.7 15.6 13.4 7.0 17.3 15.6
Qwen2-VL-7B-Instruct 573 640 71.1 654 17.9 17.9 24.0 19.7 224 214 16.0 25.0 19.5
ChartGemma-3B 51.8 542 537 532 11.9 13.6 14.4 9.8 11.2 10.0 10.6 13.7 11.9
G-LLaVA-13B 50.0 50.0 50.0 50.0 14.3 15.9 22.1 19.1 200 212 15.6 16.1 18.0
LLaVA-OV-0.5B 56.6 50.4 578 549 16.7 17.2 22.1 17.3 13.6 189 11.1 16.7 16.7
+CHARTGEMMAL60K  50.2 500 503 50.2 11.9 15.6 16.3 17.9 12.4 14.6 10.2 19.0 14.7
+GEO170K 508 487 505 50.0 16.7 16.9 13.5 17.3 14.6 16.9 10.7 17.3 15.5
+COGALIGN (Ours) 56.7 647 5777 59.7 15.5 17.5 19.2 17.3 13.8 17.8 11.5 16.1 16.1
InternVL-2.5-MPO-1B 53.2 60.2 650 595 16.7 18.2 22.1 26.0 15.8 18.0 10.7 17.3 18.1
+CHARTGEMMAL60K ~ 54.5 61.8 609 59.1 20.2 16.6 24.0 26.6 19.2 16.3 12.3 214 19.6
+GEO170K 54.6 62.1 609 592 19.0 16.6 32.7 24.9 20.0 15.4 13.1 18.5 20.0
+COGALIGN (Ours) 59.7 60.1 64.6 61.5 16.7 16.2 31.7 25.4 17.0 17.4 13.1 20.8 19.7
InternVL-2.5-MPO-4B 60.3 672 759 678 28.6 23.1 22.1 324 226 249 19.7 17.9 23.8
+CHARTGEMMA160K  62.1 66.0 762 68.1 23.8 18.5 18.3 16.8 244 234 10.7 17.9 22.3
+GE0170K 600 655 643 599 32.1 18.8 23.7 31.2 23.6 238 15.6 21.4 23.8
+COGALIGN (Ours) 61.2 68.6 768 68.9 27.4 19.8 24.0 329 226 269 17.2 25.6 24.6

Table 4: Performance (%) on the CHOCOLATE and MATH-VISION datasets.

GEO170K (Gao et al., 2025). We use the above
methods to train three open-source VLMs for one
epoch: InternVL2.5-1B-MPO (Wang et al., 2024b),
InternVL2.5-4B-MPO (Wang et al., 2024b), and
LLaVA-OV-0.5B (Li et al., 2024). We also com-
pare performance of two VLMs instruction-tuned
specifically for chart understanding and geometric
problem-solving: ChartGemma-3B (Masry et al.,
2024) and G-LLaVA-13B (Gao et al., 2025). Ex-
perimental details can be found in Appendix B.

4.2 Results

The results for experiments on CHOCOLATE and
MATH-VISION are shown in Table 4. We find
that COGALIGN is effective in enhancing chart
understanding and geometric problem-solving
capabilities of VLMs even though COGALIGN
was not specifically optimized for these two tasks.
On average, COGALIGN boosts the performance
by 4.6% and 2.9% on the CHOCOLATE and MATH-
VISION datasets, respectively. This shows that
patching fundamental capabilities such as visual
arithmetic of VLMs can enhance their capabilities
in tasks involving such abilities.

More importantly, we find that COGALIGN
demonstrates better generalizability compared
to supervised fine-tuning VLMs using task-
specific data. For instance, when compar-
ing the InternVL-2.5-MPO-1B variants, CoO-
GALIGN achieves an average score of 61.5% on
CHOCOLATE, outperforming both the CHART-
GEMMA 160K (59.1%) and GEO170K (59.2.%)
variants. Similarly, on the MATH-VISION dataset,
while the GEO170K variant shows competitive
performance, COGALIGN achieves a comparable
average performance across all geometry subtasks,
indicating a broader improvement. Notably, CO-
GALIGN requires only 60% less training data com-

pared to these two baseline methods.

The results suggest that COGALIGN offers a
valuable approach to enhancing VLMs by improv-
ing their fundamental visual arithmetic capabili-
ties. It exhibits strong generalizability across dif-
ferent tasks and base models, often outperform-
ing or achieving comparable performance to task-
specific fine-tuning methods without being explic-
itly trained on the target datasets. This highlights
the potential of focusing on foundational skills to
unlock broader capabilities in VLMs.

4.3 Discussions

Impact of learning from contrasting examples
We investigate the impact of learning from contrast-
ing examples versus solely positive examples by
comparing DPO (the default COGALIGN setting)
and SFT training method (using only the positive
response). Figure 4 presents the results. We
observe that the SFT approaches can lead to much
worse performance (e.g. LLaVA-OV-0.5B), while
the DPO approach improves performance over the
original models more consistently. This suggests
that learning from contrasting examples provides
a richer learning signal compared to traditional
supervised learning, leading to better performance.

Impact on general VLM benchmarks To as-
sess the impact of COGALIGN on general VLM
capabilities, we compare the performance on two
additional benchmarks: MME (Fu et al., 2023)
and MMMU (Yue et al., 2024). The results are
presented in Figure 5. Overall, COGALIGN con-
sistently improves performance across most set-
tings (five out of six), indicating that its benefits
extend beyond the specific probing tasks and gen-
eralize to other multimodal reasoning challenges.
This suggests that COGALIGN enhances visual
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Figure 4: Performance comparison when training differ-
ent models with SFT and DPO.

arithmetic capabilities without compromising
performance on general tasks.

5 Related Works

5.1 Vision Language Models

Vision language models (VLMs) are multimodal
models that learns to generate text outputs based
on both visual and textual inputs. The development
of large-scale VLMs has demonstrated impressive
zero-shot capabilities, enabling them to perform
well with a variety of image types, such as docu-
ments and web pages (Liu et al., 2023; Dai et al.,
2023; OpenAl, 2023; Google, 2023; Anthropic,
2023). These VLMs generally consist of three
major components: a vision encoder, such as CLIP
(Radford et al., 2021) or SigLIP (Zhai et al., 2023),
which processes visual inputs; a language model
that handles textual inputs and generates text to-
kens; and a projector layer that connects the image
and text modalities. Typically, VLMs are trained
using image captioning data and instruction-tuning
datasets. Recently, several post-training strategies
have been suggested to enhance VLM capabilities
in areas like conversational interaction (Xiong
et al., 2024) and reasoning (Wang et al., 2024b). In
this work, we propose a new post-training strategy,
COGALIGN, for improving VLMs’ proficiency in
understanding visual arithmetic operations.

5.2 Shortcomings of Vision Language Models

While Vision-Language Models (VLMs) demon-
strate impressive performance across a range
of tasks, several studies have highlighted their
limitations by examining various aspects such as

architectures (McKinzie et al., 2024; Karamcheti
et al., 2024; Tong et al., 2024; Shi et al., 2025),

mmm Original
MME

CogAlign

LLaVA-OV-0.5B E—

0 |
InternVL-2.5-MPO-1B

1
InternVL-2.5-MPO-4B

30 40 50
Performance

Figure 5: Performance on two general VLM bench-
marks: MME and MMMU with or without COGALIGN.

training methods (Laurencon et al., 2024), and
data considerations (Udandarao et al., 2024; Gadre
et al., 2024; Zhang et al., 2024b; Wei et al., 2024).
Some research indicates that VLMs struggle
with specific tasks, including basic geometric
understanding (Gao et al., 2025; Ullman, 2024) and
chart comprehension (Huang et al., 2024¢), and
are prone to hallucinations (Qiu et al., 2024). Our
study seeks to uncover the root causes behind these
challenges, especially those that involve visual
arithmetic operations, and proposes solutions to
address these shortcomings.

6 Conclusion

This study investigates the challenges faced by
VLMs in performing visual arithmetic, revealing
that while visual encoders often capture necessary
information, text decoders struggle to effectively
utilize it. We introduce COGALIGN, a novel post-
training strategy inspired by Piaget’s theory of cog-
nitive development, focusing on enhancing VLMs’
understanding of conservation and decentration
through DPO training. Our evaluations show that
COGALIGN not only enhances VLMs’ understand-
ing of visual arithmetic, but also improves their
performance in chart understanding and geometric
problem-solving through experiments on the
CHOCOLATE and MATH-VISION datasets, show-
casing its effectiveness and generalizability across
various models and tasks. Notably, COGALIGN of-
ten outperforms or achieves comparable results to
task-specific supervised fine-tuning methods with-
out direct training on the target domain, highlight-
ing the potential of bolstering foundational cog-
nitive skills for broader VLM capabilities. Future
work could explore how COGALIGN impacts other
multimodal tasks beyond charts and geometry,
potentially leading to a more unified approach in
VLM training where generalizability is prioritized.
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7 Limitations

Probing Tasks While the probing tasks we have
proposed provide valuable insights into the visual
arithmetic capabilities of VLMs, it is important to
acknowledge that they may not encompass all pos-
sible dimensions of visual reasoning. Our choice
to limit the scope of these tasks was intentional,
as they serve as initial, simple tests to determine
whether VLMs exhibit failure in fundamental as-
pects of visual arithmetic. These tasks allow us to
iterate different experiments in a controlled and ef-
ficient manner, providing clear, actionable insights
without the complexity that more comprehensive
tasks might introduce. However, there is potential
to explore additional tasks that involve more com-
plex interactions of basic geometric properties. For
instance, tasks requiring the model to simultane-
ously assess both length and angle, or combinations
of length and area, could be valuable for under-
standing the compositionality of these atomic tasks.

Training Data Synthesis The training data syn-
thesis method of COGALIGN is not only scalable
but also effectively enhances the visual arithmetic
capabilities of VLMs. Our approach serves as a
proof-of-concept, demonstrating the potential of
automated data generation for improving models’
understanding of basic geometric properties. To
further enrich the training data, we could consider
utilizing additional configurations for each task.
For instance, in generating positive and negative
responses, we could leverage LLMs to produce
rationales based on the specific configuration
of each figure. By including explanations or
justifications for why a particular geometric
property holds or does not hold, we could foster
deeper understanding within the VLMs.
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A Dataset statistics

Table 5 and Table 6 show the dataset statistics for
the CHOCOLATE and MATH-VISION datasets, re-
spectively.

B Training Settings

For all models and all training approaches, we
set all other hyper-parameters according to the
guidelines described in their corresponding GitHub
repository. These settings are described in Table 8.

# Factual # Non-factual # Total

Sentence 2,561 2,762 5,323
Caption 213 974 1,187

Table 5: Statistics of the CHOCOLATE dataset. A
sentence is considered factual if and only if it does
not contain any factual error. A caption is considered
factual if all its sentences are factual.
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Statistic Number
Total questions 3,040

- multiple-choice questions 1,532 (50.4%)
- Free-form questions 1,508 (49.6%)

- Questions in the testmini set 304 (10.0%)

Table 6: Statistics of the MATH-VISION dataset.



Task Query Templates

The angle with the [COLOR] color is larger.
The angle X is larger.

The angle with the [COLOR] color is smaller.
The angle X is smaller.

These two angles are the same.

Angle

g s wN =

The line with the [COLOR] color is longer.
The line X is longer.

The line with the [COLOR] color is shorter.
The line X is shorter.

These two lines are the same length.

Length

g wN =

The pair of circles with the [COLOR] color has the longer distance.
The pair of circles with the [COLOR] color has the smaller distance.
These two pair of circles have the same distance.

Distance

w N =

The [COLOR] [SHAPE] appears more times.
The [COLOR] [SHAPE] appears less times.
The [COLOR-A] [SHAPE-A] and [COLOR-B] [SHAPE-B] appear the same number of times.

Quantity

w N =

The [COLOR] [SHAPE] has the larger volume.
The [COLOR] [SHAPE] has the smaller volume.
These two shapes have the same volume.

Volume

w N =

The line with the [COLOR] has the same slope.
Both lines have the same slope as the black line.
Neither line has the same slope as the black line.

. The [COLOR-A] [SHAPE-A] is [POSITION] of [COLOR-B] [SHAPE-B].
They occupy the exact same position in the image.
The [COLOR-A] [SHAPE-A] is [WRONG-POSITION] of [COLOR-B] [SHAPE-B].

Slope

w N =

N —

Position

w

1. Yes, the line does intersect the [COLOR] [SHAPE].

Intersection 2. No, the line does not intersect the [COLOR] [SHAPE].

Table 7: The full set of query templates used for query generation.

Model Training Method  Batch Size  Learning Rate
LLaVA-OV-0.5B o 1% o
InternVL-2.5-MPO-1B P 2 e
InternVL-2.5-MPO-4B o 2% e

Table 8: Experimental details for different training approaches. All models are trained for one epoch for fair
comparisons.

4843



